JPS62183012A - Magnetic head and its manufacture - Google Patents

Magnetic head and its manufacture

Info

Publication number
JPS62183012A
JPS62183012A JP2321186A JP2321186A JPS62183012A JP S62183012 A JPS62183012 A JP S62183012A JP 2321186 A JP2321186 A JP 2321186A JP 2321186 A JP2321186 A JP 2321186A JP S62183012 A JPS62183012 A JP S62183012A
Authority
JP
Japan
Prior art keywords
magnetic
ferromagnetic metal
metal film
head
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321186A
Other languages
Japanese (ja)
Inventor
Takahisa Aoi
青井 孝久
Yuji Nagata
裕二 永田
Hiroshi Takeuchi
寛 竹内
Mitsuaki Uenishi
上西 光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2321186A priority Critical patent/JPS62183012A/en
Publication of JPS62183012A publication Critical patent/JPS62183012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress decomposition and a crack due to processing of a ferromagnetic metallic film caused by the machine processing by adopting a composite material magnetic core being the combination of a magnetic core made of an oxide magnetic material and a tip chip member imbedded with a ferromagnetic metallic film. CONSTITUTION:A magnetic core 30 of a ferromagnetic oxide magnetic substance of a high specific resistance made of an Mn-Zn single crystal ferrite is used as the major component of a magnetic circuit. A tip chip member 31 is adhered onto the magnetic core 30 by an adhesives 32. The tip chip member 31 is a separate member from the magnetic core 30 and adhered during the head manufacture process. The member 31 is formed by sandwiching a ferromagnetic metallic film 35 made of a Sendust film at the midpoint in the track width direction of side cores 33, 34 made of an oxide comprising an Mn-Zn single crystal ferrite. The member 31 having a sandwich structure of the cores 33, 34 and the film 35 in the track broadwise direction has a thickness (t) in the gap depth direction.

Description

【発明の詳細な説明】 卒業上の利用分野 本発明はメタルテープのような高抗磁力媒体に記録、再
生するのに適したビデオテープレコーダ(以下VTRと
略称する)などに用いられる磁気ヘッドおよびその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to magnetic heads and the like used in video tape recorders (hereinafter abbreviated as VTR) suitable for recording and reproducing on high coercive force media such as metal tapes. It relates to its manufacturing method.

従来の技術 一般のVTRでは磁気ヘッドのコア材として単結晶フェ
ライト等の酸化物磁性材料が多く使用されている。しか
し近年高密度記録再生技術の進展に伴い、VTR用磁気
ヘッドとしてはメタルテープなどの高抗磁力の磁気テー
プへの記録、再生が可能なことや、狭ギャップ、狭トラ
ツク化が要求されている。この要求を実現するためには
磁気ヘッドコア材として飽和磁束密度の低い酸化物磁性
材料では不適となる。狭ギャップ、狭トランクのメタル
テープ対応ヘッドとして単結晶フェライト等の酸化物磁
性材料と高飽和磁束密度を有するセンダストやアモルフ
ァス合金等の強磁性金属材料との複合磁性材料で磁気コ
ア半休を形成し、この磁気コア半休対をガラス等のギャ
ップスペーサを介して接合する磁気ヘッド構造が多く提
案されている。この従来の複合構造の代表的な例として
第5図(a)、 (b)にその斜視図とそのx −x’
線断面図を示す。第5図は記録時に最も磁気飽和を起こ
しやすい磁気コア半休対のフロントギャップ部にセンダ
スト等の高飽和磁束密度を呈する強磁性金属材料を付設
する構成のもので、1,2はそれぞれC型、1型のフェ
ライトコア半体である。コア半体1.2のそれぞれ突き
合わせをする対向面には厚さ1Q〜20μmのセンダス
ト又はアモルファス合金等の強磁性金属膜3,4がスパ
ッタリング等で付着されている。またコア半体1,2に
は、それぞれ磁気テープ(図示せず)摺動面5のトラッ
ク幅規制用の溝加工が行なわれる。コア半体1には溝6
,7、コア半体2には溝8,9が有り、それぞれ高融点
ガラスが充填され所定形状に整形される。さらにコア半
体1には巻線コイル(図示せず)用の巻線窓1Qが開設
されている。この巻線10は磁気ヘッドとしてのギャッ
プデプスの下端を規制するものである。次に半休コアの
どちらが一方又は両方の突き合わせ対向面に、溝6,7
゜8.9の充填に使用したガラス材より低融点ガラスを
スパッタしてギャップスペーサ11とし、それぞれのコ
ア半体1,2を突き合わせ後、加圧熱溶着を行なう。こ
の時ギャップスペーサ11がコア半体1,2を接着する
と同時に所望のフロントギヤソゲ長となる様に、その厚
さは調整される。
2. Description of the Related Art In general VTRs, oxide magnetic materials such as single crystal ferrite are often used as the core material of the magnetic head. However, in recent years, with the advancement of high-density recording and reproducing technology, magnetic heads for VTRs are required to be capable of recording on and reproducing magnetic tapes with high coercive force such as metal tapes, and to have narrower gaps and narrower tracks. . To meet this requirement, oxide magnetic materials with low saturation magnetic flux density are not suitable as magnetic head core materials. As a head compatible with narrow-gap, narrow-trunk metal tapes, the magnetic core is made of a composite magnetic material consisting of an oxide magnetic material such as single-crystal ferrite and a ferromagnetic metal material such as sendust or amorphous alloy, which has a high saturation magnetic flux density. Many magnetic head structures have been proposed in which half pairs of magnetic cores are joined via a gap spacer made of glass or the like. As a typical example of this conventional composite structure, FIGS. 5(a) and 5(b) are perspective views and x-x'
A line cross-sectional view is shown. Figure 5 shows a configuration in which a ferromagnetic metal material exhibiting a high saturation magnetic flux density, such as sendust, is attached to the front gap of the half-dormant pair of magnetic cores, which is most likely to cause magnetic saturation during recording, and 1 and 2 are C-type, respectively. This is a type 1 ferrite core half. Ferromagnetic metal films 3, 4 made of sendust or amorphous alloy, having a thickness of 1Q to 20 μm, are deposited on opposing faces of the core halves 1.2 by sputtering or the like. Furthermore, grooves are formed in each of the core halves 1 and 2 to regulate the track width of a sliding surface 5 of a magnetic tape (not shown). Core half 1 has groove 6
, 7. The core half body 2 has grooves 8 and 9, each of which is filled with high melting point glass and shaped into a predetermined shape. Furthermore, the core half 1 is provided with a winding window 1Q for a winding coil (not shown). This winding 10 regulates the lower end of the gap depth of the magnetic head. Next, either one of the semi-dead cores has grooves 6, 7 on one or both of the abutting opposing surfaces.
A glass having a lower melting point than the glass material used for filling the gap spacer 11 is sputtered to form the gap spacer 11, and after the core halves 1 and 2 are butted together, pressure welding is performed. At this time, the thickness of the gap spacer 11 is adjusted so that the core halves 1 and 2 are bonded together and at the same time the desired front gear sawing length is achieved.

最終仕上げとして磁気テープ摺動面6の表面研摩を行な
うとともに、所望のギャップデプスが形成される。なお
磁気テープ摺動面6のトラック幅規制溝6,7,8.9
にガラス材を充填する工程はギャップスペーサ11形成
後における半休コア1゜2の加圧熱溶着時に行なうこと
も可能である。
As a final finishing step, the surface of the magnetic tape sliding surface 6 is polished and a desired gap depth is formed. Note that the track width regulating grooves 6, 7, 8.9 on the magnetic tape sliding surface 6
The step of filling the glass material into the gap spacer 11 can also be carried out when the semi-dead core 1.degree. 2 is welded under pressure and heat after the gap spacer 11 is formed.

第6図は別の従来例の斜視図を示す。磁気ヘッド半休コ
アブロック12.13がギャップスペーサ14を挟んで
接合されている。それぞれの半休コアブロック12.1
3はガラス、セラミック等の非磁性基板15.16にセ
ンダスト、アモルファス合金等の強磁性金属膜17.1
8が所望のトラック幅分の厚さでスパッタリングされて
いる。
FIG. 6 shows a perspective view of another conventional example. The magnetic head half-dead core blocks 12 and 13 are joined with a gap spacer 14 in between. Each half-break core block 12.1
3 is a ferromagnetic metal film 17.1 made of sendust, amorphous alloy, etc. on a non-magnetic substrate 15.16 made of glass, ceramic, etc.
8 is sputtered to a thickness corresponding to the desired track width.

高域周波数特性を考慮して電気絶縁性層間膜(図示せず
)を介して磁性膜を多層化するのが一般的である。この
強磁性金属膜17.18の上にガラス、セラミック等の
補強用非磁性基板19 、20が樹脂又はガラス材等で
接合されている。なお半休コアブロック12には巻線窓
21が開いている。
In consideration of high frequency characteristics, magnetic films are generally multilayered with an electrically insulating interlayer film (not shown) interposed therebetween. On top of the ferromagnetic metal films 17 and 18, reinforcing nonmagnetic substrates 19 and 20 made of glass, ceramic, etc. are bonded with resin, glass, or the like. Note that a winding window 21 is open in the half-vacant core block 12.

またトラック幅相当の厚さを有する強磁性金属体アモル
ファス合金薄板を(〆こともできる。
It is also possible to use a ferromagnetic metal amorphous alloy thin plate having a thickness equivalent to the track width.

以上のように構成された磁気ヘッドにおいて、高飽和磁
束密度を有する強磁性金属体を使用する目的はメタルテ
ープなどの高抗磁力磁気テープを記録するとき、磁気コ
アのフロントギャップ部における磁気飽和を防ぐためで
ある。第5図の構成ではフェライトから成る半休コア対
1,2のフロ面 ントギャノプ及びパックギャップ対向゛にのみそれぞれ
強磁性金属体が配される結果、フロントギャップ部の磁
気飽和は軽減される。
In the magnetic head configured as described above, the purpose of using a ferromagnetic metal body having a high saturation magnetic flux density is to reduce magnetic saturation in the front gap of the magnetic core when recording a high coercive force magnetic tape such as a metal tape. This is to prevent it. In the configuration shown in FIG. 5, ferromagnetic metal bodies are disposed only in the front gap of the pair of half-dormant cores 1 and 2 made of ferrite and opposite the pack gap, so that magnetic saturation in the front gap is reduced.

第6図の構成は磁束伝搬路としての磁気コアは強磁性金
属体から成る薄膜又は薄板のみであり、磁束の流れる磁
路断面積は薄膜又は薄板の厚さで規制され、この厚さは
磁気テープ摺動面のトラック幅に等しい。しかしフロン
トギャップを含めてすべての磁路構成部材が高飽和磁束
密度を有する強磁性金属体であることから、コアの磁気
飽和は低減されている。
In the configuration shown in Figure 6, the magnetic core as a magnetic flux propagation path is only a thin film or thin plate made of a ferromagnetic metal, and the cross-sectional area of the magnetic path through which the magnetic flux flows is regulated by the thickness of the thin film or thin plate, and this thickness is determined by the magnetic flux. Equal to the track width of the tape sliding surface. However, since all the magnetic path components including the front gap are made of ferromagnetic metal bodies with high saturation magnetic flux density, the magnetic saturation of the core is reduced.

発明が解決しようとする問題点 しかしながら、上記に示した従来の構成では以下に述べ
るいくつかの大きな問題点を有していた。
Problems to be Solved by the Invention However, the conventional configuration shown above had several major problems as described below.

まず第6図に示した構成について述べる。First, the configuration shown in FIG. 6 will be described.

(1)フェライトコア半体対のそれぞれの対向面にスパ
ッタリング等の真空蒸着によりセンダスト等の強磁性金
属膜を付着する過程やテープ摺動面の機掛加工の際に、
強磁性金属膜と接合するフェライトコアに変質層が発生
する。この変質層はテープ摺動面上に副次的ギャップと
して現われ、ヘッドの周波数特性上に大きなうねりを生
じせしめる。この対策として、強磁性金属膜の膜厚を2
0〜3071m程度と大幅に厚くして、メインのフロン
トギャップから副次的ギャップを遠ざける必要があり、
膜厚を考えると量産性に欠けていた。
(1) During the process of attaching a ferromagnetic metal film such as sendust to the opposing surfaces of each pair of ferrite core halves by vacuum deposition such as sputtering, or during machining of the tape sliding surface,
An altered layer occurs in the ferrite core that joins the ferromagnetic metal film. This deteriorated layer appears as a secondary gap on the tape sliding surface and causes large undulations in the frequency characteristics of the head. As a countermeasure to this, the film thickness of the ferromagnetic metal film was increased by 2
It is necessary to make it significantly thicker, from 0 to 3071m, and to move the secondary gap away from the main front gap.
Considering the film thickness, mass production was lacking.

(2)上記の如く強磁性金属膜厚を厚くする結果、スパ
ッタリング中に強磁性金属膜に亀裂が発生したり、フェ
ライトコア表面からはく離を起こす。またヘッドチップ
切断や摺動面研摩等の機械加工時に強磁性金属膜の亀裂
、はく離を誘起せしめるものであった。
(2) As a result of increasing the thickness of the ferromagnetic metal film as described above, the ferromagnetic metal film cracks during sputtering or peels off from the ferrite core surface. Moreover, it induces cracking and peeling of the ferromagnetic metal film during machining such as head chip cutting and sliding surface polishing.

(3)フェライトと強磁性金属膜との境界面積が、フロ
ントギャップ構成面積に比べて同等かわずかに大きい程
度で、上記境界面でフェライトコアの磁気飽和を生じる
恐れがあった。狭トラツク化の要求が強くなる中で、境
界面積を大きくするには薄膜の厚さを大きくせざるを得
す、成膜時間を考慮すると量産性に問題が生じていた。
(3) If the boundary area between the ferrite and the ferromagnetic metal film is equal to or slightly larger than the front gap constituent area, there is a risk of magnetic saturation of the ferrite core at the boundary. As the demand for narrower tracks becomes stronger, increasing the boundary area requires increasing the thickness of the thin film, which poses problems in mass production when film formation time is taken into account.

(4)強磁性金属膜厚の増大に伴ない、エディ−カレン
トロスが増大し、ヘッドの高域出力の劣化を招いていた
(4) As the thickness of the ferromagnetic metal film increases, the eddy current loss increases, leading to deterioration of the high-frequency output of the head.

次に第6図に示した構成の問題点について述べる。Next, problems with the configuration shown in FIG. 6 will be described.

(5)非磁性基板上に電気絶縁性層間膜を介して強磁性
金属の薄膜又は薄板を多層積層する場合、機械加工の際
に一層ごとの磁性膜に加工変質が生じる。この変質層が
テープ摺動面上に現われる。
(5) When multiple layers of ferromagnetic metal thin films or thin plates are laminated on a non-magnetic substrate via an electrically insulating interlayer film, processing changes occur in each layer of the magnetic film during machining. This altered layer appears on the tape sliding surface.

知 2枚の非磁性基板間に強磁性金属体をサンドインチ
構造としてコア半休を形成する際、後工程の非磁性基板
が樹脂又はガラス材で接着されるが、テープ摺動面上に
この接着層が露出し、テープ走行に伴なう偏摩耗を生じ
る結果となっていた。
When a ferromagnetic metal body is sandwiched between two non-magnetic substrates to form a half-core core, the non-magnetic substrate is bonded with a resin or glass material in the subsequent process, but this bond is applied to the tape sliding surface. The layer was exposed, resulting in uneven wear as the tape ran.

(7)強磁性金属体が磁気コアの全体を構成しているこ
と、磁性体の厚さがトラック幅であることから、加工工
程及び量産時の一基板上でのヘッドチップ数取りなどを
考慮したスループットが悪く、製造コストの上昇を招い
ていた。
(7) Since the ferromagnetic metal body constitutes the entire magnetic core, and the thickness of the magnetic body is the track width, consideration must be given to the processing process and the number of head chips on one board during mass production. This resulted in poor throughput and increased manufacturing costs.

本発明は上記問題点に鑑み、酸化物磁性材料と強磁性金
属膜との複合磁性材料で構成される高抗磁力テープ対応
型複合磁気コアにおいて、酸化物磁性体の加工変質に伴
なう副次的に発生するギャップの影響と、両磁性体の境
界面積を広げ酸化物磁性体コアの磁気飽和を除去し、テ
ープ摺動面の偏摩耗特性を向上せしめ、かつ周波数特性
及び量産性に優れた構造を有する磁気ヘッド及びその製
造方法を提供するものである。
In view of the above-mentioned problems, the present invention provides a composite magnetic core compatible with high coercive force tape made of a composite magnetic material of an oxide magnetic material and a ferromagnetic metal film. This eliminates the influence of the gap that occurs next and the magnetic saturation of the oxide magnetic core by expanding the boundary area between both magnetic materials, improving the uneven wear characteristics of the tape sliding surface, and providing excellent frequency characteristics and mass productivity. The present invention provides a magnetic head having a structure and a method for manufacturing the same.

問題点を解決するための手段 本発明の磁気ヘッドは高固有抵抗の酸化物磁性体から成
る磁気コアとフロントギャップを形成する強磁性金属膜
とで磁気回路が形成されており、強磁性金属膜はその膜
厚と磁気テープ摺動面の曲率半径で決定される長さで酸
化物磁性体の磁気コアと接し、かつ磁気テープ摺動面上
で磁気テープ走行方向に露出せしめる構造のものである
。上記のフロントギャップ部とテープ摺動面の走行方向
に延びて付設される強磁性金属膜は酸化物磁性体の磁気
コアとは別個部材の基板上に一回の薄膜積層工程で実現
できる。
Means for Solving the Problems The magnetic head of the present invention has a magnetic circuit formed by a magnetic core made of an oxide magnetic material with high specific resistance and a ferromagnetic metal film forming a front gap. is in contact with the magnetic core of the oxide magnetic material with a length determined by its film thickness and the radius of curvature of the magnetic tape sliding surface, and is exposed in the magnetic tape running direction on the magnetic tape sliding surface. . The above-described ferromagnetic metal film extending in the running direction of the front gap portion and the tape sliding surface can be realized by a single thin film lamination process on a substrate that is a separate member from the magnetic core of the oxide magnetic material.

ヘッド製造手段が用いられる、また磁気テープ摺動面に
露出する強磁性金属膜はフロントギャップ部では所望の
規制トラック幅に加工されており、磁気テープと振触す
る大部分は、規制トラック幅の3〜4倍を有し、かつ耐
摩耗性に優れる酸化物磁性体又は非磁性体に埋込まれた
構造としている。
The ferromagnetic metal film exposed on the sliding surface of the magnetic tape, which is used in head manufacturing means, is processed to have the desired regulating track width at the front gap, and most of the part that vibrates with the magnetic tape is within the regulating track width. It has a structure in which it is embedded in an oxide magnetic material or non-magnetic material, which has a wear resistance of 3 to 4 times and has excellent wear resistance.

作   用 酸化物磁性体は磁気コアの主要部を構成しており、フロ
ントギャップ部に付設される強磁性金属膜はフロントギ
ャップでの磁気飽和を防正し、またテープ摺動面上でテ
ープ走行方向に沿って露出する強磁性金属膜は、酸化物
磁性体との境界面積を確保し、境界での磁気飽和を大幅
に低減すると同時に、テープ走行方向の境界線がメイン
のフロントギャップから遠ざかり、酸化物磁性体の変質
層による副次的ギャップ効果を大幅に低減できる。
The oxide magnetic material constitutes the main part of the magnetic core, and the ferromagnetic metal film attached to the front gap prevents magnetic saturation in the front gap and also prevents the tape from running on the tape sliding surface. The ferromagnetic metal film exposed along the tape direction secures the boundary area with the oxide magnetic material, greatly reducing magnetic saturation at the boundary, and at the same time moves the boundary line in the tape running direction away from the main front gap. The secondary gap effect caused by the altered layer of oxide magnetic material can be significantly reduced.

また強磁性金属膜と酸化物磁性体の磁気コアはそれぞれ
別個部材より構成することにより、機械加工による強磁
性金属膜の特性劣化を防止し、加工精度の向上及び量産
性の向上を実現できる。
Furthermore, by configuring the ferromagnetic metal film and the magnetic core of the oxide magnetic material as separate members, deterioration of the characteristics of the ferromagnetic metal film due to machining can be prevented, and improved machining accuracy and mass productivity can be realized.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。第1図は本発明の磁気ヘッドの斜視図を示して
おり、C型、1型の磁気コア半体対を接合した状態であ
り、C型コア半休は実線で、I型コア半体は点線で描い
ている。以下の説明は主にC型コア半休を使って行なう
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 shows a perspective view of the magnetic head of the present invention, in which a pair of C-type and 1-type magnetic core halves are joined, with the C-type core half being shown by a solid line and the I-type core half being shown by a dotted line. I'm drawing it with The following explanation will mainly be made using the C-type core half-break.

Mn −Zn単結晶フェライト等から成る強磁性かつ高
固有抵抗を有する酸化物磁性体の磁気コア30が磁気回
路の主要構成部材となっている。磁気コア30上には先
端チップ部材31がガラス材又は樹脂などの接着剤32
で接合されている。本発明の特徴である先端チップ部材
31は磁気コア30と別個部材であり、ヘッド製造工程
の途中で接合される。先端チップ部材31はMn −Z
n単結晶フェライト等から成る酸化物磁性体又は非磁性
体のサイドコア33,34のトラック幅方向の中間にセ
ンダスト膜、アモルファス合金膜などから成る強磁性金
属膜35がサンドイッチされている。トラック幅方向で
サイドコア33.34及び強磁性金属膜36のサンドイ
ッチ構造をもつ先端チップ部材31は、工型磁気コア4
3の先端チップ部材44とで形成されるフロントギャッ
プ36の対向面37ではギャップデプス方向の厚さtを
有し、ヘッドとしての動作ギャップデプスDの一部を構
成している。
A magnetic core 30 made of an oxide magnetic material having ferromagnetism and high resistivity, such as Mn-Zn single-crystal ferrite, is the main component of the magnetic circuit. A tip end member 31 is placed on the magnetic core 30 with an adhesive 32 made of glass or resin.
are joined with. The distal tip member 31, which is a feature of the present invention, is a separate member from the magnetic core 30, and is joined during the head manufacturing process. The tip tip member 31 is Mn-Z
A ferromagnetic metal film 35 made of a sendust film, an amorphous alloy film, etc. is sandwiched between side cores 33 and 34 of oxide magnetic material or nonmagnetic material made of n-single crystal ferrite or the like in the track width direction. The tip end member 31 has a sandwich structure of side cores 33, 34 and a ferromagnetic metal film 36 in the track width direction.
The opposing surface 37 of the front gap 36 formed with the tip tip member 44 of No. 3 has a thickness t in the gap depth direction, and constitutes a part of the operational gap depth D of the head.

一部テープ走行方向に沿い、フロントギャップ36から
遠ざかるにつれて先端チップ部材31の厚さは薄くなり
、距離りでゼロとなり磁気コア30と境界38をもつ。
Partially along the tape running direction, the thickness of the tip member 31 becomes thinner as it moves away from the front gap 36, and becomes zero at a distance, forming a boundary 38 with the magnetic core 30.

また強磁性金属膜36のテープ摺動面39での幅はTで
あり、フロントギヤング36ではトラック幅規制溝40
.41によって実効トラック幅Twに加工されている。
The width of the ferromagnetic metal film 36 on the tape sliding surface 39 is T, and the track width regulating groove 40 on the front gearing 36
.. 41 to have an effective track width Tw.

トラック幅規制溝40.41には高融点ガラス材が充填
さ磁気コア43及びC型の磁気コア30のそれぞれの対
向面又はどちらか一方の対向面に所望のフロントギャッ
プ長となるギャップスペーサ46が付着されている。こ
のギャップスペーサ46はトラック幅規制溝40,41
に充填されるガラス材と異なる融点をもつガラス材で形
成され、工程順位によって上記両者のガラス材の選定が
必要である。
The track width regulating groove 40.41 is filled with a high melting point glass material, and a gap spacer 46 is provided on each opposing surface of the magnetic core 43 and the C-shaped magnetic core 30, or on either one of the opposing surfaces to provide a desired front gap length. It is attached. This gap spacer 46 has track width regulating grooves 40, 41.
It is formed from a glass material having a different melting point from the glass material filled in the glass material, and it is necessary to select the above two glass materials depending on the order of the process.

それぞれのコア半休は加圧熱溶着が行なわれ、C型と1
型コアの接合が完了する。
Pressure heat welding is performed on each half core, forming C type and 1 type.
The joining of the mold core is completed.

第1図に示した実施例の構成ではギャップデプスDがセ
ンダストなどの強磁性金属膜36の厚さtと酸化物磁性
体の磁気コア30とで形成されているが、ギャップデプ
スDの全高を高飽和磁束密度を呈する強磁性金属膜36
で構成することもできる。この実施例を第2図に示す。
In the configuration of the embodiment shown in FIG. 1, the gap depth D is formed by the thickness t of the ferromagnetic metal film 36 such as sendust and the magnetic core 30 made of oxide magnetic material. Ferromagnetic metal film 36 exhibiting high saturation magnetic flux density
It can also be composed of This embodiment is shown in FIG.

第2図C型コアのみを示し、第1図と同一個所には同一
番号を付している。第2図において先端チップ部材46
を構成する強磁性金属膜49のフロントギャップでのギ
ャップデプス方向の厚さtはD′で、ギャップデプスの
全高となっており、テープ摺動面上ではテープ走行方向
の長さはL′で磁気コア30と境界SOを成している。
FIG. 2 shows only the C-type core, and the same parts as in FIG. 1 are given the same numbers. In FIG.
The thickness t of the ferromagnetic metal film 49 in the gap depth direction at the front gap is D', which is the total height of the gap depth, and the length on the tape sliding surface in the tape running direction is L'. It forms a boundary SO with the magnetic core 30.

42は巻線窓である。47゜49は強磁性金属膜49の
両側に配されるサイドコアである。51.52はトラッ
ク幅規制溝である。
42 is a winding window. Reference numerals 47 and 49 indicate side cores arranged on both sides of the ferromagnetic metal film 49. 51 and 52 are track width regulating grooves.

上記した実施例において先端チップ部材に埋設される強
磁性金属膜のテープ走行方向の長さL又はL′は強磁性
金属膜で構成されるギャップデプスとヘッド先端の曲率
半径で決まる。ヘッド先端形状の曲率半径を6rrLr
nの円弧とし、テープ走行方向の磁気コア幅を1wnと
すると、強磁性金属膜の厚さt=10μmのときL又は
L′は0.35 rtan 、 t ==20μmでL
又はL′は0.49酬となる。また薄膜で形成される強
磁性金属膜はVTRのビデオ信号の高域周波数特性を考
慮して電気給線性層間膜を介して多層化することができ
る。第3図は先端チップ部材63の強磁性金属膜54は
ギャップデプス方向で3層の強磁性金属膜54にSio
2などの層間膜66を介して多層化し、ギャップデプス
アを形成している。
In the embodiment described above, the length L or L' of the ferromagnetic metal film embedded in the tip member in the tape running direction is determined by the gap depth formed by the ferromagnetic metal film and the radius of curvature of the head tip. The radius of curvature of the head tip shape is 6rrLr
Assuming that the magnetic core width in the tape running direction is 1wn, L or L' is 0.35 rtan when the thickness of the ferromagnetic metal film t=10μm, and L when t==20μm.
Or L' becomes 0.49 reward. Further, the ferromagnetic metal film formed as a thin film can be multilayered through an electrical feed line interlayer film in consideration of the high frequency characteristics of a video signal of a VTR. FIG. 3 shows that the ferromagnetic metal film 54 of the distal tip member 63 is attached to the three-layer ferromagnetic metal film 54 in the gap depth direction.
2, etc., with interlayer films 66 interposed therebetween to form a gap depth.

なお先端チップ部材を構成するサイドコアの材質は、フ
ェライト等の酸化物磁性体に限らず、ガラス材、セラミ
ック材などの非磁性材料でもかまわない。
Note that the material of the side core constituting the distal tip member is not limited to oxide magnetic materials such as ferrite, but may also be non-magnetic materials such as glass materials and ceramic materials.

次に本実施例の製造工程の一例について述べる。Next, an example of the manufacturing process of this embodiment will be described.

第4図(a)〜(i)は製造工程を示すものである。こ
の工程では先端チップ部材のサイドコアを酸化物磁性体
として進める。第4図(a)においては先端チップ部材
の基板となりかつサイドコアとして動作する単結晶フェ
ライト等の酸化物磁性体基板60に複数本の溝61が加
工される。溝幅はトラック幅以上が必要である。第4図
(b)においては溝加工された酸化物磁性基板60上に
センダスト又はアモルファス合金などの強磁性金属膜6
2をスパッタリング法で付着する。第4図(C)では、
複数の溝61に埋設された強磁性金属膜62の上表面が
同一平面となる様に平坦化基板63を作製する。酸化物
磁性体基板60の凸部表面には強磁性金属膜62が残留
しない様に注意する。第4図(d)では、磁路の主要構
成部材の磁気コアとなる単結晶フェライト等の酸化物磁
性体母材ブロック64上に、平坦化基板63を強磁性金
属膜62の上表面が酸化物磁性体母材ブロック64に対
面する様に接合してヘッドブロック65を作る。さらに
強磁性金属膜62の長手方向を2等分する一点鎖線A−
Aに沿って2ブロツクに切断する。第4図(e)では、
この2等分に切断されたそれぞれの半休ブロックはトラ
ック幅規制溝66と高融点ガラス材を充填するためのガ
ラス材設置溝67を加工する。68はガラス棒である。
FIGS. 4(a) to 4(i) show the manufacturing process. In this step, the side core of the tip member is made of oxide magnetic material. In FIG. 4(a), a plurality of grooves 61 are formed in an oxide magnetic substrate 60 made of single crystal ferrite or the like, which becomes the substrate of the tip end member and acts as a side core. The groove width must be greater than the track width. In FIG. 4(b), a ferromagnetic metal film 6 such as sendust or amorphous alloy is placed on a grooved oxide magnetic substrate 60.
2 is deposited by sputtering method. In Figure 4 (C),
A planarized substrate 63 is manufactured so that the upper surfaces of the ferromagnetic metal films 62 embedded in the plurality of grooves 61 are on the same plane. Care must be taken so that the ferromagnetic metal film 62 does not remain on the surface of the convex portion of the oxide magnetic substrate 60. In FIG. 4(d), a flattened substrate 63 is placed on a base material block 64 of an oxide magnetic material such as single crystal ferrite, which becomes the magnetic core of the main component of the magnetic path, and the upper surface of the ferromagnetic metal film 62 is oxidized. A head block 65 is made by joining the head block 65 so as to face the magnetic material base material block 64. Further, a dashed line A- which divides the longitudinal direction of the ferromagnetic metal film 62 into two equal parts.
Cut into 2 blocks along A. In Figure 4(e),
Each half-block cut into two halves is machined with a track width regulating groove 66 and a glass material installation groove 67 for filling with a high melting point glass material. 68 is a glass rod.

第4図(f)では、高温熱処理炉を使用してガラス棒6
8を溶融し、トラック幅規制溝66にガラス材e9を流
し込む。その後半体ブロックと整形研削を行ない所望の
寸法に仕上げ、I型コア70を完成する。一方、第4図
((J)に示す工程ではC型コア71はI型コア70に
巻線窓用の溝72を形成して完成させる。なお溝72を
加工する時、所望のギャップデプスとなる様に磁性膜か
ら溝上端までの寸法δを調整する。第4図(h)に示す
工程ではI型コア7oとC型コア71の両方又はどちら
か一方にS 102などのギャップスペーサ73をスパ
ッタリング等で付着せしめ、両コア接着用のガラス棒7
4を巻線窓溝72に挿入して加圧熱融着て接合を完成す
る。上記コア対を接合した後、E−E線までギャップデ
プス粗研塵を行ない、アジマス角度θをもったB−B、
B’−B’。
In FIG. 4(f), a glass rod 6 is heated using a high-temperature heat treatment furnace.
8 is melted and glass material e9 is poured into the track width regulating groove 66. The I-shaped core 70 is completed by shaping and grinding the half body block to the desired dimensions. On the other hand, in the process shown in FIG. 4(J), the C-type core 71 is completed by forming a groove 72 for a winding window in the I-type core 70. When processing the groove 72, the desired gap depth and Adjust the dimension δ from the magnetic film to the top end of the groove so that Glass rod 7 for adhering both cores by sputtering etc.
4 is inserted into the winding window groove 72 and bonded by pressure and heat to complete the bonding. After joining the above core pair, gap depth coarse grinding is performed to line E-E, and B-B with azimuth angle θ,
B'-B'.

B″−B“及び高さ整形線C−Cに沿って切断を行なう
。ヘッドコアチップ(上記の例では2チツプができ上が
る)のテープ摺動面を第4図(i)に示すように所望の
曲率半径で円弧形状に鏡面研摩して、第1図、第2図に
示したものと同じ構成を有するヘッドコアチップ76が
完成する。
Make the cut along B''-B'' and height shaping line C-C. The tape sliding surface of the head core chip (two chips are completed in the above example) is polished to a circular arc shape with the desired radius of curvature as shown in Fig. 4(i), and then the tape sliding surface is polished to a circular arc shape as shown in Figs. 1 and 2. A head core chip 76 having the same configuration as the one above is completed.

以上の様に構成された磁気ヘッドについて以下その動作
について主に第1図に従って説明する。
The operation of the magnetic head constructed as described above will be explained below mainly with reference to FIG.

磁気回路の主要構成部材である磁気コア上にある先端チ
ップ部材31が記録時に最も磁気飽和を起こし易いフロ
ントギャップ36周辺を構築し複合磁性材料から成る磁
気コアを形成している。巻線窓42に巻回されるコイル
(図示せず)に流れる記録電流によって誘起される誘導
磁束は、磁気コア3o→強磁性金属膜36→フロントギ
ャップ36→I型コアの先端チップ部材44の強磁性金
属膜(図番なし)→磁気コア43→磁気コア30の磁束
伝搬経路に沿って流れ、フロントギャップ3eでの漏洩
磁束によって磁気テープに信号が記録される。磁気テー
プの高密度飽和記録に必要なフロントギャップ磁界はギ
ャップ長、ギャップデプスにも依存するが磁気テープの
有する抗磁力の4〜6倍以上とされている。強磁性金属
膜36が高飽和磁束密度であることから、約1600エ
ルステツドの抗磁力を有するメタルテープへの飽和記録
でも、フロントギャップ部での磁気飽和を押さえること
ができる。また磁束伝搬経路の中で、飽和磁束密度の低
い磁気コア3oと強磁性金属膜35との接合面積を大き
くしていることから、接合境界近傍で磁気コア30の磁
気飽和を防いでいる。設計上必要な上記接合面積は強磁
性金属膜36の幅Tを調整可能である。また磁気テープ
摺動面上で強磁性金属膜35と磁気コア30との境界3
8が出現するが、本構成に依ればL又はL′を0.36
〜0.5−とフロントギャップ36から遠ざけることに
より磁気テープとのスペーシングが発生し副次的ギャッ
プに起因する記優再生特性のみだれは消失する。また第
3図に示した厚さ約1o0〇への絶縁性層間膜55をは
さんで強磁性金属膜64を多層化することにより強磁性
金属膜のエディ−カレンドロスゲ低減し、ヘッドの高域
出力の劣化を低減するものである。さらに第2図に示し
た溝成例では、フロントギャップ面のギヤツブデプス全
高を強磁性金属膜にすれば、フロントギャップの磁気飽
和余裕度がさらに増大し、かつ磁気コア30との接合面
積も増大せしめることができる。
The tip tip member 31 on the magnetic core, which is a main component of the magnetic circuit, constructs the vicinity of the front gap 36 where magnetic saturation is most likely to occur during recording, thereby forming a magnetic core made of a composite magnetic material. The induced magnetic flux induced by the recording current flowing in the coil (not shown) wound around the winding window 42 is caused by the magnetic core 3o → the ferromagnetic metal film 36 → the front gap 36 → the tip tip member 44 of the I-shaped core. The magnetic flux flows along the magnetic flux propagation path from the ferromagnetic metal film (not shown) to the magnetic core 43 to the magnetic core 30, and a signal is recorded on the magnetic tape by leakage magnetic flux at the front gap 3e. The front gap magnetic field required for high-density saturation recording on magnetic tape is said to be 4 to 6 times more than the coercive force of the magnetic tape, although it also depends on the gap length and gap depth. Since the ferromagnetic metal film 36 has a high saturation magnetic flux density, magnetic saturation at the front gap can be suppressed even during saturation recording on a metal tape having a coercive force of approximately 1600 oersteds. Furthermore, since the junction area between the magnetic core 3o, which has a low saturation magnetic flux density, and the ferromagnetic metal film 35 is increased in the magnetic flux propagation path, magnetic saturation of the magnetic core 30 near the junction boundary is prevented. The width T of the ferromagnetic metal film 36 can be adjusted to determine the junction area necessary for design. Also, on the sliding surface of the magnetic tape, the boundary 3 between the ferromagnetic metal film 35 and the magnetic core 30
8 appears, but according to this configuration, L or L' is 0.36.
~0.5- and away from the front gap 36, spacing with the magnetic tape occurs, and the deterioration of the recording/reproducing characteristics caused by the secondary gap disappears. Furthermore, by making the ferromagnetic metal film 64 multi-layered with the insulating interlayer film 55 to a thickness of about 1000 as shown in FIG. This reduces the deterioration of Furthermore, in the groove formation example shown in FIG. 2, if the entire height of the gear lug depth on the front gap surface is made of a ferromagnetic metal film, the magnetic saturation margin of the front gap will further increase, and the area of contact with the magnetic core 30 will also increase. be able to.

以上のように本実施例によれば、磁気回路の主要構成部
材である酸化物磁性体の磁気コア上に強磁性金属膜が埋
設された先端チップ部材を構築したことにより、ギャッ
プスペーサを挾んで対向するC型と1型コアのフロント
ギャップの磁気飽和を防止し、かつ磁気コアと強磁性金
属膜との境界面積が大きくなることから境界近傍での磁
気飽和も除去することができる。さらに先端チップ部材
次的ギャップの影響と高域出力の劣化を大幅に低減でき
る。また本実施例に示した製造工程によれば、先端チッ
プ部材となる基板に溝加工を施こし、この溝に強磁性金
属膜を埋込みその表面が互いに接するように磁気コアの
母材ブロックに接合している。これはへラドチップ完成
のためのテープ摺動面研摩やギャップデプス加工時に強
磁性金属膜の露出が極めて少ない。従って機械加工に起
因する強磁性金属膜の加工変質や基板からのはく離。
As described above, according to this embodiment, by constructing the tip tip member in which the ferromagnetic metal film is embedded on the magnetic core of the oxide magnetic material, which is the main component of the magnetic circuit, it is possible to sandwich the gap spacer. Magnetic saturation in the front gap between the opposing C-type and 1-type cores is prevented, and since the boundary area between the magnetic core and the ferromagnetic metal film is increased, magnetic saturation near the boundary can also be eliminated. Furthermore, the influence of the gap due to the tip tip member and the deterioration of high frequency output can be significantly reduced. Furthermore, according to the manufacturing process shown in this example, a groove is formed on the substrate that will become the tip tip member, a ferromagnetic metal film is embedded in the groove, and the film is bonded to the base material block of the magnetic core so that the surfaces thereof are in contact with each other. are doing. This means that there is extremely little exposure of the ferromagnetic metal film during tape sliding surface polishing and gap depth processing to complete the Herad chip. Therefore, the ferromagnetic metal film deteriorates due to machining and peels from the substrate.

亀裂などのトラブルを取り除く効果も大きい。先端チッ
プ部材となる基板材料の選択自由度が大きく、テープ摺
動面の偏摩耗特性を考慮した場合、強磁性金属膜と同等
の硬度を有する基板材料の選択範囲が広い。
It is also very effective in removing problems such as cracks. There is a large degree of freedom in selecting the substrate material that will become the tip member, and when considering the uneven wear characteristics of the tape sliding surface, there is a wide range of selection of substrate materials that have the same hardness as the ferromagnetic metal film.

発明の効果 本発明は酸化物磁性材から成る磁気コアとフロントギャ
ップ側及びテープ摺動面の磁気テープ走行方向じ沿って
長く延びる強磁性金属膜を埋設した先端テップ部材と全
組合わせた複合材料磁気コアとすることにより、ギャッ
プスペーサを挾んで対向するC型と1型コアのフロント
ギャップ部及び上記強磁性金属膜との境界近傍の酸化物
磁性体の磁気飽和を防止することができる。磁気コアを
別個部材で構成することで、先端チップ部材の製造工程
では基板選択の自由度が大きいこと、溝加工後に強磁性
金属膜を埋設して強磁性金属膜厚のレベルで基板表面の
平坦化処理を行ない磁気コアの母材ブロックに接合して
いるので、ヘッドチップ仕上げ時の切断やテープ摺動面
のラッピングにおいても、強磁性金属膜の露出加工がな
く、機械加工に起因する強磁性金属膜の加工変質、亀裂
や基板からのはく離などの発生を抑えることができるな
ど、量産性、耐摩耗性9周波数特性に優れた狭トラック
幅、狭ギャップの磁気ヘッドを実現できるものである。
Effects of the Invention The present invention provides a composite material that is a complete combination of a magnetic core made of an oxide magnetic material and a tip tip member embedded with a ferromagnetic metal film that extends long along the magnetic tape running direction on the front gap side and tape sliding surface. By using a magnetic core, it is possible to prevent magnetic saturation of the oxide magnetic material near the front gap portion of the C-type and 1-type cores, which face each other with the gap spacer in between, and the boundary between the ferromagnetic metal film and the ferromagnetic metal film. By configuring the magnetic core as a separate member, there is greater freedom in substrate selection during the manufacturing process of advanced chip components, and by embedding a ferromagnetic metal film after groove processing, the substrate surface can be flattened at the level of the ferromagnetic metal film thickness. Since the ferromagnetic metal film is bonded to the base material block of the magnetic core through a chemical treatment, there is no need to expose the ferromagnetic metal film during cutting when finishing the head chip or lapping the tape sliding surface. It is possible to realize a narrow track width, narrow gap magnetic head that is mass-producible, has excellent wear resistance, and has excellent frequency characteristics, such as suppressing processing deterioration of the metal film, cracking, and peeling from the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における磁気ヘッドの斜
視図、第2図は本発明の第2の実施例におけるC型磁気
コアの斜視図、第3図は本発明の第3の実施例における
C型磁気コアの斜視図、第4図(a>〜(i)は本発明
の磁気ヘッドの製造工程の一例を示す工程図、第6図(
a)は従来の磁気ヘッドの斜視図、第5図0))は第5
図(a)のx−x’線断面図、第6図は他の従来の磁気
ヘッドの斜視図である。 30.43・・・・・・磁気コア、31,44,46゜
63・・・・・・先端チップ部材、33,34,47.
48・・・・・・サイドコア、35,49,54.62
・・・・・・強磁性金属膜、36・・・・・・フロント
ギャップ、37・・・・・・フロントギャップ対向面、
38・・・・・・境界、39・・・・・・磁気テープ摺
動面、40,41.61.52゜66・・・・・・トラ
ック幅規制溝、42・・・・・・巻線窓、46゜73・
・・・・・ギャップスペーサ、6o・・・・・・基板、
61・・・・・・溝、63・・・・・・平坦化基板、6
4・・・・・・磁気コア母材ブロック、66・・・・・
・ヘッドブロック、70・・・・・・エヤコア、71・
・・・・・C型コア、72・・・・・・巻線窓用溝、7
6・・・・・・ヘッドコアチップ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名30
汗3−−−f磁気−コア 3i斜・−先脆九7−邪^ヤ 33・34−一一ブイドコア ガーーー5引(近+生μ月尺 3tE−−−711ントイヤノ7゜ 第1図    37−  ・ 灯向面 38−戊孕 42−傷楳危 45−−−(〒〕7°スイ−7 ffi4図 第4図
FIG. 1 is a perspective view of a magnetic head according to a first embodiment of the present invention, FIG. 2 is a perspective view of a C-shaped magnetic core according to a second embodiment of the present invention, and FIG. 3 is a perspective view of a magnetic head according to a third embodiment of the present invention. A perspective view of a C-shaped magnetic core in an embodiment, and FIGS.
a) is a perspective view of a conventional magnetic head, and FIG.
FIG. 6 is a cross-sectional view taken along the line xx' in FIG. 6(a) and a perspective view of another conventional magnetic head. 30.43...Magnetic core, 31,44,46°63...Tip tip member, 33,34,47.
48... Side core, 35, 49, 54.62
...Ferromagnetic metal film, 36...Front gap, 37...Front gap opposing surface,
38...Boundary, 39...Magnetic tape sliding surface, 40, 41.61.52゜66...Track width regulation groove, 42...Volume Line window, 46°73・
...Gap spacer, 6o...Substrate,
61... Groove, 63... Flattened substrate, 6
4...Magnetic core base material block, 66...
・Head block, 70...Air core, 71・
...C-shaped core, 72 ... Winding window groove, 7
6...Head core chip. Name of agent: Patent attorney Toshio Nakao and 1 other person30
Sweat 3 - - f Magnetic - Core 3i Oblique - - Tip brittle 97 - Evil ^ Ya 33, 34 - 11 Void core gar - 5 pull (Near + Raw μ Moon Shaku 3tE - - 711 Toiyano 7゜ Fig. 1 37- ・ Light facing surface 38- Boko 42- Injuki 45---(〒〒〒〒7°Swi-7 ffi4Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)酸化物磁性体から成る磁気コアとフロントギャッ
プを形成する強磁性金属膜とで磁気回路を形成し、上記
強磁性金属膜は、上記強磁性金属膜厚と磁気テープ摺動
面の曲率半径とで決まる長さで上記磁気テープ摺動面上
で磁気テープ走行方向に露出し、かつ上記磁気コアと接
していることを特徴とする磁気ヘッド。
(1) A magnetic circuit is formed by a magnetic core made of an oxide magnetic material and a ferromagnetic metal film forming a front gap, and the ferromagnetic metal film has a curvature of the ferromagnetic metal film thickness and a magnetic tape sliding surface. The magnetic head is exposed in the magnetic tape running direction on the magnetic tape sliding surface with a length determined by the radius, and is in contact with the magnetic core.
(2)強磁性金属膜と酸化物磁性体から成る磁気コアと
はそれぞれ別個部材より構成されていることを特徴とす
る特許請求の範囲第1項記載の磁気ヘッド。
(2) A magnetic head according to claim 1, wherein the ferromagnetic metal film and the magnetic core made of an oxide magnetic material are each constructed from separate members.
(3)強磁性金属膜は電気絶縁性層間膜を介して多層化
されていることを特徴とする特許請求の範囲第1項記載
の磁気ヘッド。
(3) A magnetic head according to claim 1, wherein the ferromagnetic metal film is multilayered with an electrically insulating interlayer film interposed therebetween.
(4)強磁性金属膜はこの膜厚より深い溝を有する酸化
物磁性体あるいは非磁性体から成る基板上にスパッタリ
ング等により被着され、上記溝内に形成された上記強磁
性金属膜の表面とは同一平面となるよう上記基板表面の
平坦化加工を行ない、上記平坦化加工面が酸化物磁性体
から成る磁気コアの母材ブロックと対向する如く接合し
てヘッドブロックを形成し、しかる後に上記強磁性金属
膜の長手方向で上記ヘッドブロックを2等分切断して、
それぞれC型、I型磁気コアに加工したことを特徴とす
る磁気ヘッドの製造方法。
(4) The ferromagnetic metal film is deposited by sputtering or the like on a substrate made of an oxide magnetic material or non-magnetic material having a groove deeper than this film thickness, and the surface of the ferromagnetic metal film formed in the groove is The surface of the substrate is flattened so that it is flush with the surface of the substrate, and the flattened surface is joined to the base material block of the magnetic core made of oxide magnetic material to form a head block, and then the head block is formed. Cutting the head block into two equal parts in the longitudinal direction of the ferromagnetic metal film,
A method of manufacturing a magnetic head, characterized in that the magnetic head is processed into C-type and I-type magnetic cores, respectively.
(5)酸化物磁性体あるいは非磁性体から成る基板上に
形成される溝幅はトラック幅以上でかつ上記トラック幅
方向の磁気ヘッド幅よりは小さいことを特徴とする特許
請求の範囲第4項記載の磁気ヘッドの製造方法。
(5) Claim 4, characterized in that the groove width formed on the substrate made of oxide magnetic material or non-magnetic material is greater than or equal to the track width and smaller than the magnetic head width in the track width direction. A method of manufacturing the described magnetic head.
(6)酸化物磁性体あるいは非磁性体から成る基板上に
形成される溝の長さは磁気ヘッドの磁気テープ走行方向
幅以上としたことを特徴とする特許請求の範囲第4項記
載の磁気ヘッドの製造方法。
(6) A magnetic device according to claim 4, characterized in that the length of the groove formed on the substrate made of an oxide magnetic material or a non-magnetic material is greater than or equal to the width of the magnetic head in the magnetic tape running direction. Head manufacturing method.
(7)強磁性金属膜は電気絶縁性層間膜を介して多層化
されていることを特徴とする特許請求の範囲第4項記載
の磁気ヘッドの製造方法。
(7) A method of manufacturing a magnetic head according to claim 4, wherein the ferromagnetic metal film is multilayered with an electrically insulating interlayer film interposed therebetween.
JP2321186A 1986-02-05 1986-02-05 Magnetic head and its manufacture Pending JPS62183012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321186A JPS62183012A (en) 1986-02-05 1986-02-05 Magnetic head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321186A JPS62183012A (en) 1986-02-05 1986-02-05 Magnetic head and its manufacture

Publications (1)

Publication Number Publication Date
JPS62183012A true JPS62183012A (en) 1987-08-11

Family

ID=12104325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321186A Pending JPS62183012A (en) 1986-02-05 1986-02-05 Magnetic head and its manufacture

Country Status (1)

Country Link
JP (1) JPS62183012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113810U (en) * 1988-01-22 1989-07-31
JPH03120604A (en) * 1989-10-03 1991-05-22 Ngk Insulators Ltd Production of core for composite magnetic head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397409A (en) * 1977-02-07 1978-08-25 Hitachi Ltd Magnetic head core and its production
JPS58224420A (en) * 1982-06-23 1983-12-26 Matsushita Electric Ind Co Ltd Magnetic head and its production
JPS6028012A (en) * 1983-07-27 1985-02-13 Seiko Epson Corp Composite magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397409A (en) * 1977-02-07 1978-08-25 Hitachi Ltd Magnetic head core and its production
JPS58224420A (en) * 1982-06-23 1983-12-26 Matsushita Electric Ind Co Ltd Magnetic head and its production
JPS6028012A (en) * 1983-07-27 1985-02-13 Seiko Epson Corp Composite magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113810U (en) * 1988-01-22 1989-07-31
JPH03120604A (en) * 1989-10-03 1991-05-22 Ngk Insulators Ltd Production of core for composite magnetic head

Similar Documents

Publication Publication Date Title
JPH0542726B2 (en)
JPS62183012A (en) Magnetic head and its manufacture
JPS60231903A (en) Composite type magnetic head and its production
JPS62205507A (en) Magnetic head
JPS62212905A (en) Magnetic head and its production
JPS59203210A (en) Magnetic core and its production
JPH0548244Y2 (en)
JP2542946B2 (en) Magnetic head and manufacturing method thereof
JPS6383906A (en) Magnetic head and its manufacture
JPH04117606A (en) Magnetic head device
JPH0354704A (en) Magnetic head and its manufacture
JPH0467246B2 (en)
JPS63288407A (en) Production of magnetic head
JPS61280009A (en) Magnetic head
JPH05282619A (en) Magnetic head
JPS62266708A (en) Magnetic head
JPS62246110A (en) Composite magnetic head and its production
JPS6251009A (en) Magnetic core and its production
JPH0877508A (en) Laminated magnetic head
JPS6276014A (en) Magnetic core
JPS62141609A (en) Manufacture of magnetic head
JPH05307711A (en) Magnetic head and production therefor
JPH05114113A (en) Magnetic head and production thereof
JPH05290327A (en) Production of magnetic head
JPS6257112A (en) Production of magnetic head chip