JPS6251009A - Magnetic core and its production - Google Patents

Magnetic core and its production

Info

Publication number
JPS6251009A
JPS6251009A JP18936485A JP18936485A JPS6251009A JP S6251009 A JPS6251009 A JP S6251009A JP 18936485 A JP18936485 A JP 18936485A JP 18936485 A JP18936485 A JP 18936485A JP S6251009 A JPS6251009 A JP S6251009A
Authority
JP
Japan
Prior art keywords
magnetic
groove
core
gap
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18936485A
Other languages
Japanese (ja)
Inventor
Takeshi Origasa
折笠 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18936485A priority Critical patent/JPS6251009A/en
Publication of JPS6251009A publication Critical patent/JPS6251009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of a false gap function and to secure the satisfactory electromagnetic characteristics, by burying a nonmagnetic material on a medium rubbing surface at an approximately entire outer edge of a magnetic material near a gap. CONSTITUTION:Both core halves 6 and 6' are joined together by means of the glass 58, 59 and 57 of low menting points serving as the nonmagnetic adhesive material a filled into a part of a winding groove 53 and an adhering groove 53' and the whole of a groove 56. While the glass 57 of a low melting point is filled into both grooves 56 and 56' adjacent to both sides along the track width direction against the metallic magnetic films 55 and 55' holding a magnetic gap 61 on a magnetic tape rubbing surface of a magnetic recording medium on the upper surface side shown in the diagram. At the same time, the nonmagnetic glass 52 of a high melting point is filled into the grooves 51 and 51. In such a way, both glass 57 and 52 are buried on the magnetic tape rubbing surface with adjacency to the entire outer edges of both films 55 and 55'.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気コア及びその製造方法に関し、さらに詳し
くは磁気記録媒体に磁気ギャップを摺動させて情報の記
録再生を行なう誘導型の磁気ヘッドの磁路を構成する磁
気コア及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic core and a method for manufacturing the same, and more particularly to an inductive magnetic head that records and reproduces information by sliding a magnetic gap on a magnetic recording medium. The present invention relates to a magnetic core constituting a magnetic path and a method for manufacturing the same.

[従来の技術] 従来より上記の誘導型の磁気ヘッドの磁気コア材として
フェライト(金属酸化物の焼結磁心材料)が広く用いら
れている。フェライトは固有抵抗が大きいのでこれをコ
ア材に用いたフェライトヘッドは高周波領域での損失が
少なく、また耐摩耗性にも優れている。
[Prior Art] Ferrite (a sintered magnetic core material of metal oxide) has been widely used as a magnetic core material for the above-mentioned induction type magnetic head. Since ferrite has a high specific resistance, a ferrite head using ferrite as a core material has less loss in the high frequency range and also has excellent wear resistance.

一方近年テープ幅8腸1のビデオテープレコーダやスチ
ルビデオ等の開発における磁気記録の高密度化に伴ない
、高保磁力を有する磁気記録媒体、例えば保磁力が10
000eのメタルテープ等に記録が可能な高飽和磁束密
度を有する磁気ヘットの必要性が急速に高まっている。
On the other hand, in recent years, with the development of high-density magnetic recording in video tape recorders and still videos with tape widths of 8 mm and 1 mm, magnetic recording media with high coercive force, for example, magnetic recording media with a coercive force of 10 mm
The need for a magnetic head with a high saturation magnetic flux density that can record on 000e metal tapes and the like is rapidly increasing.

ところがフェライトは飽和磁束密度が比較的低いため、
フェライトヘッドでは高保磁力磁気記録媒体に対して十
分な飽和記録が行なえないと言う欠点があった。
However, since ferrite has a relatively low saturation magnetic flux density,
Ferrite heads have the disadvantage that they cannot perform sufficient saturation recording on high coercivity magnetic recording media.

これに対して高飽和磁束密度を有するコア材としてセン
ダスト(Fe−Affl−3i合金)やアモルファス合
金等の金属磁性材のバルク材があるが、これらの金属磁
性材をコア材に用いた場合には固有抵抗が小さいため高
周波領域において渦電流損失が大きく、透磁率が低下す
るという欠点があった。
On the other hand, there are bulk metal magnetic materials such as sendust (Fe-Affl-3i alloy) and amorphous alloys as core materials with high saturation magnetic flux density, but when these metal magnetic materials are used as core materials, Since the resistivity is small, the eddy current loss is large in the high frequency region, and the magnetic permeability is reduced.

そこで従来第17図、第18図に示すようにフェライト
と上記金属磁性材を組み合わせて構成した磁気コアの構
造が採用されていた。
Therefore, as shown in FIGS. 17 and 18, a magnetic core structure constructed by combining ferrite and the above-mentioned magnetic metal materials has been adopted.

第17図の構造ではフェライトチップ10゜10′金属
磁性材の薄[12,12′を5i02等からなる絶縁層
13.13′を介して積層してコア半体1.1’を形成
し、一方のコア半体lには巻線溝14を形成し、磁気ギ
ャップ11を介してコア半体1.1′を突き合わせ、接
合している。
In the structure shown in FIG. 17, a core half body 1.1' is formed by laminating ferrite chips 10° 10' thin metal magnetic material [12, 12'] with an insulating layer 13.13' made of 5i02 or the like interposed therebetween. A winding groove 14 is formed in one of the core halves 1, and the core halves 1.1' are butted against each other through a magnetic gap 11 and joined together.

また第18図の構造では金属磁性材から形成したコア半
体22.21′を磁気ギャップ21を介して突き合わせ
、接合し、その両側面の下部領域にはフェライトからな
り巻線溝24を形成した補強板20 、20 ′を貼り
付け、上部領域には非磁性材から成る補強板23 、2
3 ′を貼り付けている。
In addition, in the structure shown in FIG. 18, core halves 22 and 21' made of metal magnetic material are butted and joined through a magnetic gap 21, and winding grooves 24 made of ferrite are formed in the lower regions of both sides. Reinforcement plates 20 and 20' are attached, and reinforcement plates 23 and 2 made of non-magnetic material are attached to the upper region.
3' is attached.

しかしこれらの構造によると製造工程において第17図
の構造ではコア半体1.1′を1個ずつ突き合わせる作
業が必要であり、第18図の構造では補強板20.20
”、23.23′を貼り合わせる作業が必要であり、い
ずれも生産性が悪く、特性のバラツキも大きくなると言
う欠点があった。
However, according to these structures, in the manufacturing process, it is necessary to butt the core halves 1.1' one by one in the structure shown in FIG. 17, and in the structure shown in FIG.
", 23, 23' are required to be pasted together, and both have disadvantages in that productivity is poor and variations in characteristics become large.

そこで従来のフェライトコアと製造工程が比較的類似し
ていて生産性が良く、なおかつ高飽和磁束密度を有する
構造として第19図に示すようないわゆる複合コアが特
開昭51−8517号公報等で提案されている。
Therefore, a so-called composite core as shown in FIG. 19 has been proposed in Japanese Patent Application Laid-Open No. 51-8517, etc., as a structure that has a manufacturing process relatively similar to that of conventional ferrite cores, has good productivity, and has a high saturation magnetic flux density. Proposed.

この構造ではそれぞのコア半体3.3′はフェライトチ
ップ30 、30 ’の一方の表面にセンダスト等から
なる金属磁性膜32 、32 ′を形成して構成されて
おり、コア半体3.3′の金属磁性膜32.32”形成
面を磁気ギャップ31を介して突き合わせ、接合してい
る。
In this structure, each core half 3.3' is constructed by forming a metal magnetic film 32, 32' made of sendust or the like on one surface of a ferrite chip 30, 30'. The surfaces on which the metal magnetic films 32 and 32'' are formed are abutted against each other with a magnetic gap 31 interposed therebetween and are bonded.

しかしこの構造では図中上面の磁気テープ摺動面に金属
磁性膜32.32′とフェライトチップ30 、30 
′間の境界部33.33′が存在し、これが磁気ギャッ
プ31と平行であるため、擬似ギャップとして作用する
結果ヘッドの電磁変換特性に悪影響を及ぼすと言う欠点
があった。
However, in this structure, metal magnetic films 32, 32' and ferrite chips 30, 30 are formed on the sliding surface of the magnetic tape at the top in the figure.
Since there is a boundary 33, 33' between the magnetic holes 33 and 33', which is parallel to the magnetic gap 31, there is a drawback that it acts as a pseudo gap and has a negative effect on the electromagnetic conversion characteristics of the head.

そこで第20図に示すような構造が特開昭53−118
809号、特開昭57.−84324号、特開昭58−
17522号及び特開昭58−220232号公報等で
提案されている。
Therefore, the structure shown in Fig. 20 was developed in JP-A-53-118.
No. 809, Japanese Patent Publication No. 57. -84324, JP-A-58-
This method has been proposed in, for example, No. 17522 and Japanese Unexamined Patent Publication No. 58-220232.

この構造ではそれぞれのコア半体4.4′はフェライト
チップ40.40′の磁気テープ摺動側の上面に非磁性
板45 、45 ′を接着した上でそれぞれの一方の表
面に金属磁性膜42.42′を形成して構成されており
、コア半体4,4′の金属磁性膜42.42′形成面を
磁気ギャップ41を介して突き合わせ、固定している。
In this structure, each core half 4.4' has a nonmagnetic plate 45, 45' adhered to the upper surface of the magnetic tape sliding side of the ferrite chip 40.40', and a metal magnetic film 42 on one surface of each core half. .42' is formed, and the surfaces of the core halves 4, 4' on which metal magnetic films 42 and 42' are formed are abutted against each other via a magnetic gap 41 and fixed.

[発明が解決しようとする問題点] 第20図の構造では磁気テープ摺動面の非磁性板45 
、45 ′と金属磁性膜42.42′間の境界部43 
、43 ′は擬似ギャップとして作用しないので、擬似
ギャップ作用による問題はない。ところがフェライトチ
ップ40 、40 ′と非磁性板45 、45 ”間の
接着面46 、46 ′の接着強度が問題であり、加工
中に非磁性板45.45’が剥れたり、欠けたりして信
頼性、生産性が良くないと言う欠点があった。
[Problems to be Solved by the Invention] In the structure shown in FIG. 20, the non-magnetic plate 45 on the magnetic tape sliding surface
, 45' and the metal magnetic film 42, the boundary 43 between 42'
, 43' do not act as a pseudo gap, so there is no problem due to the pseudo gap effect. However, the adhesive strength of the adhesive surfaces 46, 46' between the ferrite chips 40, 40' and the non-magnetic plates 45, 45'' is a problem, and the non-magnetic plates 45, 45' may peel or chip during processing. The drawback was that reliability and productivity were poor.

[問題点を解決するための手段] 上述した問題点を解決するため本発明にあっては磁気記
録媒体に磁気ギャップを摺動させて情報の記録再生を行
なう誘導型の磁気ヘッドの磁路を構成し、前記ギャップ
近傍部分とそれ以外の部分を異なる磁性材で形成した磁
気コアにおいて、前記媒体摺動面で、前記ギャップ近傍
の磁性材のほぼ全外縁に接して非磁性材を埋設した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a magnetic path of an inductive magnetic head that records and reproduces information by sliding a magnetic gap on a magnetic recording medium. In a magnetic core configured such that a portion near the gap and a portion other than the gap are formed of different magnetic materials, a non-magnetic material is embedded in the medium sliding surface in contact with almost the entire outer edge of the magnetic material near the gap.

また本発明の磁気コアの製造方法にあっては第1の磁性
材からなるブロックに幅がトラック幅以上の第1の溝を
ほぼ直線状に形成した後、前記溝に非磁性材を埋設する
工程と、前記ブロックを前記溝に交わる切断面で切断し
た後断面がコア半体形状のコア半体ブロックに加工する
工程と、前記コア半体ブロックの前記切断面に第2の磁
性材を付着させる工程と、前記付着面の非磁性材の埋設
部分の間にトラック幅を決める第2の溝を形成する工程
と、前記第2の溝を形成後コア半体ブロックどうしを磁
気ギャップ材を介して突き合わせ前記第2の溝に非磁性
接着材を充填して接合してコアブロックを得る工程とを
含む構成を採用した。
Further, in the method for manufacturing a magnetic core of the present invention, after forming a first groove having a width equal to or larger than a track width in a substantially linear shape in a block made of a first magnetic material, a non-magnetic material is buried in the groove. a step of processing the block into a core half block having a core half shape in cross section after cutting the block along a cut surface intersecting the groove; and attaching a second magnetic material to the cut surface of the core half block. a step of forming a second groove for determining the track width between the buried portion of the non-magnetic material on the attachment surface; and a step of connecting the core half blocks to each other through a magnetic gap material after forming the second groove. The second groove is filled with a non-magnetic adhesive and joined to obtain a core block.

[作 用] 上述した本発明の構造によれば磁気記録媒体摺動面にお
いて磁気ギャップ近傍の磁性材のほぼ全外縁が非磁性材
に接しており、異なる磁性材間の境界部が存在しないの
で、擬似ギャップ作用が発生しない、また上記非磁性材
は摺動面に埋設されているので、製造工程において剥れ
や欠けの発生のおそれは少ない。
[Function] According to the structure of the present invention described above, almost the entire outer edge of the magnetic material near the magnetic gap on the sliding surface of the magnetic recording medium is in contact with the non-magnetic material, and there is no boundary between different magnetic materials. Since the non-magnetic material is embedded in the sliding surface, there is little risk of peeling or chipping during the manufacturing process.

また上記の本発明の製造方法によれば本発明の構造の磁
気コアを製造でき、その場合非磁性材。
Further, according to the above manufacturing method of the present invention, a magnetic core having the structure of the present invention can be manufactured, in which case a non-magnetic material is used.

非磁性接着材は前述のように埋設されるので、前述した
ように剥れ、欠けの発生が少ない。
Since the non-magnetic adhesive is buried as described above, peeling and chipping are less likely to occur as described above.

[実施例] 以下、本発明の実施例を図を参照して詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1実施例による磁気コアの構造を示
す斜視図である。
FIG. 1 is a perspective view showing the structure of a magnetic core according to a first embodiment of the present invention.

同図に示すように本実施例の磁気コアは、符号6.6′
で示すコア半体を磁気ギャップ61を介して突き合わせ
、接合して構成されており、一方のコア半体6の突き合
わせ面上部には不図示のコイル巻線を巻回するための巻
線溝53が形成され、下端部には接着用溝53′が形成
されている。
As shown in the figure, the magnetic core of this embodiment has a code of 6.6'.
It is constructed by abutting and joining two core halves shown through a magnetic gap 61, and a winding groove 53 for winding a coil winding (not shown) is provided on the upper part of the abutting surface of one core half 6. is formed, and an adhesive groove 53' is formed at the lower end.

そしてコア半体6.6′はこの巻線溝53の一部と接着
用溝53′の一部及び後述する溝56の全部に充填され
た非磁性接着材の低融点ガラス58.59.57により
接合されている。
The core half 6.6' is made of low-melting glass 58, 59, 57 made of a non-magnetic adhesive filled in a part of the winding groove 53, a part of the adhesive groove 53', and all of the groove 56 to be described later. It is joined by

またコア半体6,6′のそれぞれはフェライトチップ6
0 、60 ”の突き合わせ面にセンダスト(Fe−A
ffl−3t合金)等からなる高飽和磁束密度の金属磁
性膜55.55”を形成して構成されている。
In addition, each of the core halves 6 and 6' has a ferrite chip 6.
Sendust (Fe-A
It is constructed by forming a metal magnetic film 55.55'' of high saturation magnetic flux density made of a material such as FFL-3T alloy.

また図中上面の磁気記録媒体の磁気テープ摺動面には磁
気ギャップ61を挟む金属磁性膜55゜55′部分に対
してトラック幅方向に沿う両側に隣接して溝56 、5
6 ”が形成されており、この溝56.56”によりト
ラック幅が決められている。そしてこの溝56.56”
中には先述したように低融点ガラス57が充填され、埋
設されている。また金属磁性膜55.55’部分に対し
て図中左右方向の磁気テープ摺動方向に沿う両側に隣接
して溝51.51がトラック幅よりわずかに大きな幅で
かつ磁性膜部分を除いて磁気テープ摺動面全体を摺動方
向に横断して形成されており、この溝51.51中には
非磁性材の高融点ガラス52が充填され、埋設されてい
る。このようにして磁気テープ摺動面において金属磁性
膜55゜55′の全外縁に接して低融点ガラス57.高
融点ガラス52が埋設されている。
Further, on the magnetic tape sliding surface of the magnetic recording medium shown on the upper side of the figure, there are grooves 56, 5 adjacent to both sides along the track width direction with respect to the metal magnetic film 55° 55' portion sandwiching the magnetic gap 61.
6'' is formed, and the track width is determined by this groove 56.56''. And this groove 56.56"
As described above, the low melting point glass 57 is filled and buried therein. In addition, grooves 51 and 51 are adjacent to the metal magnetic film 55 and 55' on both sides along the magnetic tape sliding direction in the left-right direction in the figure, and have a width slightly larger than the track width and are magnetic except for the magnetic film portion. The grooves 51 and 51 are formed across the entire sliding surface of the tape in the sliding direction, and a high melting point glass 52 made of a non-magnetic material is filled and buried therein. In this way, the low melting point glass 57. High melting point glass 52 is embedded.

このような構造によればコア半体6.6′の突き合わせ
面部分は高飽和磁束密度の金属磁性膜55.55′から
構成され、残りの部分は固有抵抗の大きなフェライトチ
ップ60.60”から構成されているので、全体として
高飽和磁束密度かつ高固有抵抗とすることができ、高保
磁力の磁気記録媒体に対して飽和記録を行なえるととも
に高周波領域での損失を小さくできる。
According to this structure, the abutting surface portion of the core halves 6.6' is made of a metal magnetic film 55.55' with a high saturation magnetic flux density, and the remaining part is made of a ferrite chip 60.60'' with a high specific resistance. As a result, it is possible to achieve a high saturation magnetic flux density and high specific resistance as a whole, and it is possible to perform saturation recording on a magnetic recording medium with a high coercive force, and to reduce loss in a high frequency region.

また磁気テープ摺動面において金属磁性膜55 、55
 ’の磁気ギャップ61と平行な外縁63 、63 ′
を含む全外縁は非磁性の高融点ガラス52、低融点ガラ
ス56に接しており、フェライトチップ60.60′の
フェライト部分との境界部は存在しないので擬似ギャッ
プ作用は発生しない。
Also, on the sliding surface of the magnetic tape, metal magnetic films 55, 55
' Outer edges 63 , 63 ' parallel to the magnetic gap 61
The entire outer edge including the non-magnetic high melting point glass 52 and low melting point glass 56 are in contact with each other, and there is no boundary with the ferrite portion of the ferrite chip 60, 60', so no pseudo gap effect occurs.

さらに磁気テープ摺動面に露出した高融点ガラス52及
び低融点ガラス57は磁気テープ摺動面に埋設されてい
るので、製造工程におけるこれらの非磁性材部分の剥れ
や欠は等の発生は少ない。
Furthermore, since the high melting point glass 52 and low melting point glass 57 exposed on the magnetic tape sliding surface are buried in the magnetic tape sliding surface, peeling or chipping of these non-magnetic material parts during the manufacturing process is prevented. few.

次に以上のような構造の本実施例コアの製造方法を第2
図〜第8図(a) 、 (b)を参照して説明する。
Next, the method for manufacturing the core of this embodiment having the above structure was carried out in a second manner.
This will be explained with reference to FIGS. 8(a) and 8(b).

まずフェライトから第2図に示すような直方形のフェラ
イトブロック5を形成し、その上面に直線状の溝51を
所定間隔で平行に形成する。この蒔溝51の幅は完成品
の磁気コアのトラック幅と等しいかあるいはそれ以上に
大きくシ、また深さは少なくとも完成品のギャップデプ
スより大きくする。
First, a rectangular ferrite block 5 as shown in FIG. 2 is formed from ferrite, and linear grooves 51 are formed in parallel at predetermined intervals on its upper surface. The width of this sowing groove 51 is equal to or larger than the track width of the finished magnetic core, and the depth is at least larger than the gap depth of the finished product.

次に第3図に示すようにフェライトブロック5の溝51
に高融点ガラス(作業温度600℃以上)52を充填す
る。しかる後に同図に破線で示すように溝51に対して
適当なアジマス角θをつけた切断面ないしは直交する切
断面でフェライトブロック5を先述のフェライトチップ
60.60′の幅に対応した厚みで切断する。
Next, as shown in FIG.
is filled with high melting point glass (working temperature 600°C or higher) 52. Thereafter, as shown by the broken line in the same figure, the ferrite block 5 is cut with a cut surface having an appropriate azimuth angle θ or perpendicular to the groove 51 to a thickness corresponding to the width of the ferrite chip 60 and 60'. disconnect.

次に第4図(a)、(b)に符号50.50′で示すよ
うに上記切断により得たコア半体ブロックを2つ用意し
、一方のコア半体ブロック50の上記切断面に巻線溝5
3を高融点ガラス52の後端に沿って形成し、また高融
点ガラス52と反対側の端縁に沿って接着用溝53′を
形成する。
Next, as shown by reference numerals 50 and 50' in FIGS. 4(a) and 4(b), two core half blocks obtained by the above cutting are prepared, and the core half blocks 50 are wound around the above cut surface of one of the core half blocks 50. Line groove 5
3 is formed along the rear end of the high melting point glass 52, and an adhesive groove 53' is formed along the edge on the opposite side to the high melting point glass 52.

次に第5図(a)、(b)に示すようにコア半体ブロッ
ク50 、50 ′の上記切断面側全面に先述した金属
磁性1g155,55′をスパッタリング等の方法で、
金属磁性材の付着により形成する。
Next, as shown in FIGS. 5(a) and 5(b), the above-mentioned magnetic metal 1g 155, 55' is applied to the entire surface of the cut surface of the core half blocks 50, 50' by a method such as sputtering.
Formed by adhering metal magnetic material.

次に第6図(a)、(b)に示すようにコア半体ブロッ
ク50 、50 ”の金属磁性膜55゜55′形成面と
高融点ガラス52埋設面の角部で各高融点ガラス埋設部
分の間に溝56.56 ”を形成する。この溝56.5
6”の間隔Twが先述したように完成品のトラック幅と
なる。
Next, as shown in FIGS. 6(a) and 6(b), each high melting point glass is buried at the corner of the metal magnetic film 55° 55' forming surface of the core half blocks 50, 50'' and the high melting point glass 52 buried surface. A groove 56.56'' is formed between the parts. This groove 56.5
As mentioned above, the interval Tw of 6'' is the track width of the finished product.

次にコア半体ブロック50 、50 ”の金属磁性膜面
を研磨した後、その上に5i02.Aj!□03等の非
磁性層をギャップ幅に対応した0、1〜0.3pm程度
の厚みで形成する。
Next, after polishing the metal magnetic film surfaces of the core half blocks 50 and 50'', a nonmagnetic layer such as 5i02.Aj! to form.

しかる後に第7図に示すようにコア半体ブロック50 
、50 ′を金属磁性膜形成面で磁気ギャップ61を介
して突き合わせ、各溝561巻線溝53上部及び接着用
溝53′に低融点ガラス(作業温度600℃以下)57
,58.59を充填してコア半体ブロック50.50”
を接着する。
Thereafter, as shown in FIG. 7, the core half block 50 is
, 50' are butted together with the metal magnetic film forming surface through the magnetic gap 61, and a low melting point glass (working temperature 600°C or less) 57 is placed on the top of each groove 561, winding groove 53, and adhesive groove 53'.
, 58.59 and core half block 50.50"
Glue.

このようにして得たコアブロック100を磁気テープ搏
動面に相当する面の平面図が第8図(a)であり、この
ブロックを同図に示す破線に沿う切断面で切断して第1
図の完成品が得られる。
FIG. 8(a) is a plan view of the surface of the thus obtained core block 100 corresponding to the magnetic tape rolling surface.
The finished product shown in the figure is obtained.

なお以上の工程において第3図の切断時にアジマス角を
つけなかった場合にはコアブロック100は第8図(b
)に示すようになる。この場合同図に破線で示すように
コアブロックを切断してアジヤス角をつける。
In addition, in the above process, if the azimuth angle is not set when cutting as shown in FIG. 3, the core block 100 will be cut as shown in FIG.
). In this case, the core block is cut to form an azimuth angle as shown by the broken line in the same figure.

以上のようにして第1図の磁気コアを製造することがで
き、この場合磁気テープ摺動面に露出する高融点ガラス
52.低融点ガラス56はそれ自体接着材で充填により
埋設されるので先述のように剥れや欠けの発生が少ない
The magnetic core shown in FIG. 1 can be manufactured as described above, and in this case, the high melting point glass 52 exposed on the sliding surface of the magnetic tape. Since the low melting point glass 56 itself is buried by filling with an adhesive, there is little chance of peeling or chipping as described above.

1L11遺 ト述した第1実施例では第5図(a)、(b)の工程で
形成した金属磁性膜55.55′の密着強度に多少問題
があり、その結果例えば第6図(a)、(b)の工程で
溝56 、56 ’を形成する場合に金属磁性膜の剥れ
が発生する場合がある。また第1実施例の構造では磁気
ギャップ近傍を除いて突き合わせ接着部に金属磁性体が
露出することになるが、金属磁性体はガラスとの濡れ性
が悪いため接着強度が取れない。
1L11 In the first embodiment described above, there is some problem in the adhesion strength of the metal magnetic film 55,55' formed in the steps shown in FIGS. 5(a) and (b), and as a result, for example, as shown in FIG. 6(a). , (b) when forming the grooves 56 and 56', peeling of the metal magnetic film may occur. Further, in the structure of the first embodiment, the metal magnetic material is exposed at the butt bonding portion except in the vicinity of the magnetic gap, but the metal magnetic material has poor wettability with glass, so that adhesive strength cannot be obtained.

このような問題を解決した本発明の第2実施例を第9図
〜第16図(a)、(b)を参照して説明する。なおこ
れらの図において第1実施例の第1図〜第8図(a) 
 、 (b)と同一もしくは相当する部分には同一符号
を付してあり、同一部分の詳細な説明は省略する。
A second embodiment of the present invention that solves these problems will be described with reference to FIGS. 9 to 16 (a) and (b). In addition, in these figures, FIGS. 1 to 8(a) of the first embodiment
, The same reference numerals are given to the same or corresponding parts as in (b), and a detailed explanation of the same parts will be omitted.

第9図は本実施例の磁気コアの構造を示す斜視図である
。同図に示すように本実施例の磁気コアは金属磁性材部
分が第1実施例と異なっている。
FIG. 9 is a perspective view showing the structure of the magnetic core of this embodiment. As shown in the figure, the magnetic core of this embodiment differs from the first embodiment in the metal magnetic material portion.

即ち金属磁性材は符号70.70′、71で示すように
磁気テープ摺動面の磁気ギャップ61を挟んだ部分と、
コア半体6の巻線溝53に面した部分にだけ設けられて
いる。そして磁気ギャップ51を挟んで設けられた金属
磁性材70 、70 ′は膜状ではなく断面がほぼ半円
形のバルク状に形成され、磁気テープ摺動面に埋設され
ている。また巻線溝53に面する金属磁性材71は膜状
に形成されている。他の部分の構造は第1実施例と同様
である。
That is, the metal magnetic material is located between the parts of the magnetic tape sliding surface sandwiching the magnetic gap 61 as shown by 70, 70', and 71;
It is provided only in the portion of the core half 6 facing the winding groove 53. The metal magnetic materials 70 and 70' provided across the magnetic gap 51 are not formed in a film shape but in a bulk shape with a substantially semicircular cross section, and are embedded in the magnetic tape sliding surface. Further, the metal magnetic material 71 facing the winding groove 53 is formed in a film shape. The structure of other parts is the same as that of the first embodiment.

次に本実施例の製造方法を以下に説明する。Next, the manufacturing method of this example will be explained below.

まず第1O図、第11図に示すように先述した第2図、
第3図の工程と同様に、フェライトブロック5に溝51
を形成し、溝51に高融点ガラス52を充填、埋設した
後、フェライトブロク5を切断して第12図(a)、(
b)に示すコア半体ブロック50 、50 ′を得る。
First, as shown in Figure 1O and Figure 11, Figure 2 mentioned earlier,
Similarly to the process shown in FIG.
After filling and embedding the high melting point glass 52 in the groove 51, the ferrite block 5 is cut to form the structure shown in FIGS. 12(a) and 12(a).
The core half blocks 50, 50' shown in b) are obtained.

次に両図に示すように第1実施例と同様に一方のコア半
体ブロック50に巻線溝53.接着用溝53′を形成す
る。そして本実施例ではこれに加えて両方のコア半体ブ
ロック50.50”の切断面の高融点ガラス埋設部分の
それぞれに断面がほぼ半円形の溝74 、74 ”を形
成する。この溝74 、74 ’は先述した磁気ギャッ
プ61を挟む金属磁性材70.70′を埋設するための
ものである。
Next, as shown in both figures, one core half block 50 has a winding groove 53. An adhesive groove 53' is formed. In this embodiment, in addition to this, grooves 74 and 74'' having approximately semicircular cross sections are formed in the high melting point glass embedded portions of the cut surfaces of both core half blocks 50 and 50'', respectively. These grooves 74 and 74' are for embedding metal magnetic materials 70 and 70' sandwiching the magnetic gap 61 mentioned above.

次にコア半体ブロック50 、50 ′の切断面側全面
(接着用溝53′部分を除く)に対してセンダスト等の
金属磁性材をスパッタリング等により付着させる。この
付着は構74 、74 ”全体が金属磁性材により満た
されるまで行なう。
Next, a metal magnetic material such as sendust is deposited on the entire cut surface side of the core half blocks 50, 50' (excluding the adhesive groove 53') by sputtering or the like. This deposition is continued until the entire structure 74, 74'' is filled with the metallic magnetic material.

しかる後にコア半体ブロック50.50”の切断面を研
磨して、第13図(1k) 、 (b)に示すように溝
74 、74 ′中の金属磁性材70゜70′と巻線溝
53部分の金属磁性材71を残して金属磁性材を切断面
から除去する。
Thereafter, the cut surface of the core half block 50.50'' is polished, and the metal magnetic material 70°70' in the grooves 74 and 74' and the winding groove are polished as shown in FIG. The metal magnetic material is removed from the cut surface, leaving 53 portions of the metal magnetic material 71.

後の工程は第14図〜第16図(a)、(b)に示すよ
うに第1実施例の第6図〜第8図(a)、(b)の工程
と同様にコア半体ブロック50.50′にトラック幅を
決める溝56゜56′を形成した後磁気ギャップ幅に対
応して非磁性層を形成し、続いてコア半体ブロック50
゜50′を磁気ギャップ61を介して突き合わせ、低融
点ガラス57,58.59で接着してコアブロック10
0を得、これを切断して第10図の完成品を得る。
In the subsequent steps, as shown in FIGS. 14 to 16(a) and (b), the core half block is manufactured in the same way as the steps in FIGS. 6 to 8(a) and (b) of the first embodiment. After forming grooves 56°56' to determine the track width at 50.50', a nonmagnetic layer is formed corresponding to the magnetic gap width, and then a core half block 50 is formed.
50' are butted together through a magnetic gap 61 and bonded with low melting glass 57, 58, 59 to form the core block 10.
0 is obtained, and this is cut to obtain the finished product shown in FIG.

以上のような本実施例によれば金属磁性材70 、70
 ′は溝74.74′中にバルク状に埋設され、金属磁
性材71は巻線溝中に設けられているので製造工程にお
いてこれらの金属磁性材部分に剥れが発生するおそれは
少ない、またコア半体ブロック50 、50 ′の突き
合わせ接着部分に露出するのは殆どフェライト部分であ
るので従来のフェライトコアとほぼ同等の高い接着強度
が得られる。
According to this embodiment as described above, the metal magnetic materials 70, 70
' are buried in bulk in the grooves 74 and 74', and the metal magnetic material 71 is provided in the winding groove, so there is little risk that these metal magnetic material parts will peel off during the manufacturing process. Since most of the ferrite portion is exposed at the butt bonding portion of the core half blocks 50, 50', a high bonding strength almost equivalent to that of a conventional ferrite core can be obtained.

またこれらの作用効果の他に第1実施例の場合と同様の
理由により前述した第1実施例と同様の作用効果が得ら
れるのは勿論である。
In addition to these effects, of course, the same effects as in the first embodiment described above can be obtained for the same reasons as in the first embodiment.

なお以上の第1.第2実施例においては磁気テープ摺動
面において金属磁性膜55.55”ないし金属磁性材7
0.70’の全外縁が低融点ガラス、高融点ガラスに接
するものとしたが、ごくわずかな部分であれば、また磁
気ギャップと平行でない部分であればフェライトとの接
触部分があっても良い。
Note that the above 1. In the second embodiment, a metal magnetic film 55.55'' or a metal magnetic material 7 is used on the magnetic tape sliding surface.
Although the entire outer edge of 0.70' is assumed to be in contact with the low melting point glass and the high melting point glass, there may be a contact portion with the ferrite as long as it is a very small portion or a portion that is not parallel to the magnetic gap. .

[効 果1 以上の説明から明らかなように本発明の構成によれば、
磁気記録媒体摺動面において磁気ギャップ近傍の磁性材
のほぼ全外縁が非磁性材に接するので擬似ギャップ作用
が発生せず良好な電磁変換特性が得られる。また上記非
磁性材は埋設されるため製造工程における剥れ、欠は等
の不良が減少するので、信頼性、生産性の向上が図れる
[Effect 1 As is clear from the above explanation, according to the configuration of the present invention,
Since almost the entire outer edge of the magnetic material near the magnetic gap on the sliding surface of the magnetic recording medium is in contact with the non-magnetic material, a pseudo gap effect does not occur and good electromagnetic conversion characteristics can be obtained. Furthermore, since the non-magnetic material is embedded, defects such as peeling and chipping during the manufacturing process are reduced, so reliability and productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例による磁気コアの構造を示
す斜視図、第2図、第3図、第4図(a) 、 (b)
 、第5図(a) 、 (b) 、第6図(a)、(b
)、第7図はそれぞれ第1図のコアの製造工程を順に示
す斜視図、第8図(a)。 (b)はそれぞれ同工程の最終の切断工程を説明するコ
アブロックの平面図及び説明図、第9図は第2実施例に
よる磁気コアの斜視図、第1θ図、第9図の製造工程を
順に示す斜視図、第16図(a)、(b)はそれぞれ同
工程の最終の切断工程を説明する平面図、第17図〜第
20図はhれ異なる従来の磁気コアの構造を示す斜視図
である。 5・・・フェライトブロック 6.6′・・・コア半体 50・・・コア半体ブロック
51.56.56′、74・・・溝 52・・・高融点ガラス 53・・・巻線溝53′・・
・接着用溝 55 、55 ′・・・金属磁性膜 57.58.59・・・低融点ガラス 60 、60 ′・・・フェライトチップ61・・・磁
気ギャップ 70.70′、71・・・全屈磁性材 100・・・コアブロック
FIG. 1 is a perspective view showing the structure of a magnetic core according to a first embodiment of the present invention, FIGS. 2, 3, and 4 (a), (b)
, Fig. 5 (a), (b), Fig. 6 (a), (b)
), FIG. 7 is a perspective view sequentially showing the manufacturing process of the core shown in FIG. 1, and FIG. 8(a). (b) is a plan view and an explanatory view of the core block respectively explaining the final cutting step of the same process, FIG. 9 is a perspective view of the magnetic core according to the second embodiment, FIG. 1θ, and the manufacturing process of FIG. FIGS. 16(a) and 16(b) are respectively plan views illustrating the final cutting process of the same process, and FIGS. 17 to 20 are perspective views showing different structures of conventional magnetic cores. It is a diagram. 5... Ferrite block 6.6'... Core half body 50... Core half block 51.56.56', 74... Groove 52... High melting point glass 53... Winding groove 53'...
・Adhesive grooves 55, 55'...Metal magnetic film 57, 58, 59...Low melting point glass 60, 60'...Ferrite chip 61...Magnetic gap 70, 70', 71...All Magnetic material 100...core block

Claims (1)

【特許請求の範囲】 1)磁気記録媒体に磁気ギャップを摺動させて情報の記
録再生を行なう誘導型の磁気ヘッドの磁路を構成し、前
記ギャップ近傍部分とそれ以外の部分を異なる磁性材で
形成した磁気コアにおいて、前記媒体摺動面で前記ギャ
ップ近傍の磁性材のほぼ全外縁に接して非磁性材を埋設
したことを特徴とする磁気コア。 2)第1の磁性材からなるブロックに幅がトラック幅以
上の第1の溝をほぼ直線状に形成した後、前記溝に非磁
性材を埋設する工程と、前記ブロックを前記溝に交わる
切断面で切断しコア半体ブロックを得る工程と、前記コ
ア半体ブロックの前記切断面に第2の磁性材を付着させ
る工程と、前記付着面の非磁性材埋設部分の間にトラッ
ク幅を決める第2の溝を形成する工程と、前記第2の溝
を形成後コア半体ブロックどうしを磁気ギャップ材を介
して突き合わせ前記第2の溝に非磁性接着材を充填し、
接合してコアブロックを得る工程とを含むことを特徴と
する磁気コアの製造方法。
[Scope of Claims] 1) A magnetic path of an inductive magnetic head that records and reproduces information by sliding a magnetic gap on a magnetic recording medium is configured, and a portion near the gap and a portion other than the gap are made of different magnetic materials. 1. A magnetic core formed of a magnetic core, characterized in that a non-magnetic material is buried in contact with almost the entire outer edge of the magnetic material in the vicinity of the gap on the medium sliding surface. 2) After forming a first groove having a width equal to or larger than a track width in a substantially straight line in a block made of a first magnetic material, embedding a non-magnetic material in the groove, and cutting the block at a point that intersects with the groove. determining a track width between a step of cutting at a surface to obtain a core half block, a step of attaching a second magnetic material to the cut surface of the core half block, and a non-magnetic material buried portion of the adhesion surface. forming a second groove; after forming the second groove, butting the core half blocks together via a magnetic gap material; filling the second groove with a non-magnetic adhesive;
A method for manufacturing a magnetic core, comprising the step of joining to obtain a core block.
JP18936485A 1985-08-30 1985-08-30 Magnetic core and its production Pending JPS6251009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18936485A JPS6251009A (en) 1985-08-30 1985-08-30 Magnetic core and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18936485A JPS6251009A (en) 1985-08-30 1985-08-30 Magnetic core and its production

Publications (1)

Publication Number Publication Date
JPS6251009A true JPS6251009A (en) 1987-03-05

Family

ID=16240082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18936485A Pending JPS6251009A (en) 1985-08-30 1985-08-30 Magnetic core and its production

Country Status (1)

Country Link
JP (1) JPS6251009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313307A (en) * 1987-06-17 1988-12-21 Sanyo Electric Co Ltd Manufacture of magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313307A (en) * 1987-06-17 1988-12-21 Sanyo Electric Co Ltd Manufacture of magnetic head

Similar Documents

Publication Publication Date Title
JPH0475564B2 (en)
JPS6251009A (en) Magnetic core and its production
JPS60231903A (en) Composite type magnetic head and its production
JPS6214313A (en) Magnetic head
JPH0548244Y2 (en)
JP2906641B2 (en) Magnetic head and method of manufacturing the same
JPH045046Y2 (en)
JP3104185B2 (en) Magnetic head
JPH0467246B2 (en)
JPS59203210A (en) Magnetic core and its production
KR100200809B1 (en) Magnetic head and method of manufacturing the same
JPS6050608A (en) Magnetic head and its production
JPH0227506A (en) Composite type magnetic head and its production
JPS61280009A (en) Magnetic head
JPH0648529B2 (en) Magnetic head
JPH0546009B2 (en)
JPH0770023B2 (en) Magnetic head
JPS63288407A (en) Production of magnetic head
JPS60151808A (en) Production of narrow track head
JPS63201905A (en) Composite type magnetic head and its manufacture
JPS6247810A (en) Magnetic core and its production
JPH0664696B2 (en) Magnetic head and method of manufacturing the same
JPH03225607A (en) Magnetic head and its production
JPH01260609A (en) Composite magnetic head and its manufacture
JPH01251409A (en) Coil thin film magnetic head and its substrate