JP2004156092A - Porous metal having excellent energy absorbability, and production method therefor - Google Patents

Porous metal having excellent energy absorbability, and production method therefor Download PDF

Info

Publication number
JP2004156092A
JP2004156092A JP2002322432A JP2002322432A JP2004156092A JP 2004156092 A JP2004156092 A JP 2004156092A JP 2002322432 A JP2002322432 A JP 2002322432A JP 2002322432 A JP2002322432 A JP 2002322432A JP 2004156092 A JP2004156092 A JP 2004156092A
Authority
JP
Japan
Prior art keywords
powder
aluminum
porous metal
porous
energy absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002322432A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
康雄 山田
Suiga Bun
翠娥 文
Mamoru Mabuchi
馬渕  守
Hiroyuki Hosokawa
裕之 細川
Yasumasa Chino
千野  靖正
Yasutsugu Shimojima
康嗣 下島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002322432A priority Critical patent/JP2004156092A/en
Publication of JP2004156092A publication Critical patent/JP2004156092A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous material which has excellent energy absorbability, and to provide a production method therefor. <P>SOLUTION: In the production method for a porous metal having excellent energy absorbability, water soluble spacer material powder is mixed into aluminum powder or aluminum alloy powder, the powdery mixture is packed into a vessel, the powdery mixture is subjected to pulse electric heating while applying compressive force thereto to sinter the aluminum powder or aluminum alloy powder, and thereafter, the spacer material in the sintered compact is eluted with water, so that it is made into the porous one. The porous metal is produced by the method, and has a mean crystal grain size of ≤50 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギー吸収性に優れた多孔質金属に関するものであり、更に詳しくは、例えば、自動車等の部材に用いられる高衝撃エネルギー吸収性を示すアルミニウム又はアルミニウム合金を主成分とする多孔質金属及びその製造方法に関するものである。本発明は、簡便な製造プロセスで、エネルギー吸収性に優れた多孔質化金属を製造することを可能とする新規多孔質金属の製造方法を提供するものとして有用である。
【0002】
【従来の技術】
これまで、多孔質アルミニウムの製造方法としては、3つの方法が採られてきた。第1は、鋳造法によるものであり、溶融した金属中に発泡剤(水素化チタン等)を混合して発泡させ、発生したガスを多量に含んだ状態で凝固させることで多孔質化する溶湯発泡法(例えば、特許文献1参照)と呼ばれる方法である。第2は、発泡ポリウレタンのような多孔質高分子材料を石膏等で型どりし、高分子材料を焼失すると同時に鋳型を焼成させ、その空隙に溶湯金属を鋳込み、凝固させた後に鋳型を破砕・除去する精密鋳造法と呼ばれる方法である(非特許文献1参照)。第3は、金属粉末とスペーサー材を混合・圧縮成型した後、焼結と同時にスペーサー材(例えば、尿素)を焼失・除去する方法、又は焼結後スペーサー材(例えば、塩化ナトリウム等)を溶出・除去する方法(非特許文献2参照)等のスペーサー法と呼ばれる方法である。
【0003】
【特許文献1】
特開平11−302765号公報
【非特許文献1】
Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi and K. Higashi: J. Mater. Sci. Lett. 18 (1999) 842
【非特許文献2】
Y. Y. Zhao and D. X. Sun: Scripta Mater. 44 (2001) 105−110
【0004】
しかしながら、溶湯発泡法の場合は、気泡を溶湯内に保持するために溶湯の粘性を増す必要があり、そのため、合金成分に厳しい制約があり、実用アルミニウム合金成分の多孔質金属を製造することができない。更に、溶湯発泡法、精密鋳造法いずれにおいても結晶粒及び析出物は粗大となる。スペーサー法においても、長時間の焼結を必要とするため、結晶粒及び析出物が粗大化することは避けられない。以上の理由により、これまでの製法では、優れた衝撃吸収性を示す多孔質金属を創製することができないのが実情である。
【0005】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術の諸問題を解決することが可能な新しい多孔質金属材料を開発することを目標として種々研究した結果、多孔質金属の内部微視組織制御、すなわち、結晶粒と析出物の微細化に着目し、スぺーサー法における焼結時の結晶粒及び析出物の粗大化を防ぐことで、多孔質金属の強度を向上させることができると共に、優れたエネルギー吸収性が得られることを見出し、本発明を完成するに至った。
本発明は、上述する従来技術に対して、強度とエネルギー吸収性を飛躍的に向上させた新規多孔質金属材料及びその製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)アルミニウム粉末又はアルミニウム合金粉末のアルミニウム系材料粉末に水溶性のスペーサー材粉末を混合して混合粉末とし、それを容器内に充填し、その混合粉末に圧縮力を加えながらパルス通電加熱を加えることによりアルミニウム粉末又はアルミニウム合金粉末を焼結した後、焼結体中のスペーサー材を水により溶出させて多孔質化させることを特徴とするエネルギー吸収性に優れた多孔質金属の製造方法。
(2)空隙率が55%以上の多孔質金属であることを特徴とする前記(1)記載のエネルギー吸収性に優れた多孔質金属の製造方法。
(3)スペーサー材の成分が塩化ナトリウムである前記(1)記載のエネルギー吸収性に優れた多孔質金属の製造方法。
(4)焼結時の加圧力が5MPaから200MPaである前記(1)記載のエネルギー吸収性に優れた多孔質金属の製造方法。
(5)焼結時の試験片温度が450℃から650℃であり、焼結時間が3分から60分である前記(1)記載のエネルギー吸収性に優れた多孔質金属の製造方法。
(6)アルミニウム系材料が、1000系純アルミニウム、5000系アルミニウム合金、6000系アルミニウム合金、7000系アルミニウム合金のいずれかであることを特徴とする前記(1)記載のエネルギー吸収性に優れた多孔質金属の製造方法。
(7)前記(1)から(6)のいずれかに記載の方法により作製された、平均結晶粒径が50μm以下であることを特徴とするエネルギー吸収性に優れた多孔質金属。
【0007】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明では、原料アルミニウム系材料粉末として、アルミニウム粉末又はアルミニウム合金粉末が用いられる。これらの原料アルミニウム系材料として、好適には、例えば、1000系純アルミニウム、5000系アルミニウム合金、6000系アルミニウム合金、7000系アルミニウム合金のいずれかが用いられるが、これらに限らず、これらと同効のものであれば同様に使用することができる。また、本発明では、上記アルミニウム系材料粉末に水溶性のスペーサー材粉末を混合するが、この水溶性のスペーサー材の成分としては、好適には、例えば、所定の粒径の塩化ナトリウムが用いられるが、これに限らず、これと同効の成分であれば同様に使用することができる。
【0008】
本発明においては、上記アルミニウム系材料粉末と水溶性のスペーサー材粉末とを適宜の撹拌・混合手段で十分に撹拌・混合して混合体とし、これをプレス成形手段等で所定形状に加圧成形した後、この成形体をパルス通電焼結する。次いで、焼結体中のスペーサー材を水で溶出させることにより、スペーサー材の空間を空孔として残して多孔質化させる。上記プロセスにおける原料粉末の混合条件、撹拌・混合、成形、パルス通電焼結、及びスペーサー材溶出の具体的な構成及び条件は、上記アルミニウム系材料、及び目的とする多孔質体の種類等に応じて、任意に設定することができる。
【0009】
図1に、本発明の方法による多孔質化プロセスの一例を示す。この例では、原料アルミニウム粉末とスペーサー材料粉末とを、攪拌・混合装置1にて攪拌・混合し、得られた混合体をプレス装置2で所定形状に加圧成形する。次に、成形体をパルス通電加熱焼結装置3にセットし、同装置によって成形体に対するパルス通電加熱を行って焼結処理する。次に、焼結体中のスペーサー材をスペーサー材料溶出装置4により溶出させる。本方法によって、スペーサー材の空間が空孔として残った多孔質体が得られる。
【0010】
本発明では、パルス通電加熱焼結により、所定温度までの昇温時間及び焼結が完了するまでの加熱時間を従来の電気炉で焼結する場合に比べ極端に短縮でき、昇温時及び焼結時に生じる結晶粒の粒成長及び析出物の粗大化を抑制することができる。パルス通電加熱焼結により製造される本発明の多孔質金属は、微細結晶粒や微細分散析出物に起因し、高い強度、優れたエネルギー吸収性を示す。
また、塩化ナトリウムは、容易に温湯又は水に溶解することから、塩化ナトリウムをスペーサー材料とし、焼結体中の塩化ナトリウムを温湯流又は水流中で溶出させることでアルミニウム多孔体を得ることができる。
【0011】
多孔体の空孔径は、スペーサー材料粉末の粒径に依存することから、予め、スペーサー材料粉末の粒径を所定の範囲に調整して、スペーサー材料粉末の粒径を任意に選択することにより、目的とする空孔径を有する多孔質金属を得ることができる。本発明の方法では、焼結時の結晶粒成長が抑制され、平均結晶粒径50μm以下の多孔質体を作製することが可能であり、後記する実施例に示されるように、高いプラトー応力及び高いエネルギー吸収量を有する高強度及び高エネルギー吸収性を示す多孔質アルミニウム材料を作製することができる。
【0012】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
純アルミニウム粉末(粉末径3μm)と塩化ナトリウム粉末(粒径200μm〜300μm)を体積比1:4の割合で混合し、ボールミルにて十分に攪拌した。その後、この混合粉末を、円筒状黒鉛型(内径20mm、高さ50mm)内に充填した。これを、円柱状黒鉛ダイス(外径20mm、長さ25mm)を用い、20MPaで加圧し、ダイスの上端と下端よりパルス通電(電圧5V 、電流800A 、ON−OFFパルス制御)により480℃で5分間焼結した。その結果、直径20mmの多孔質アルミニウム(空隙率80%)が得られた(図2)。
【0013】
得られた多孔質純アルミニウムを、丸棒試験片(Φ20×20mm)に加工した後、室温で圧縮試験(初期歪み速度10−3−1)を行った。その結果を図3と表1に示す。比較材として、本発明材と同じ純アルミニウム粉末と塩化ナトリウム粉末の混合粉を電気炉(加圧200MPa、焼結温度680℃、焼結時間180分)で焼結した材料を作製し、本発明材と比較した。本発明材では、焼結時の結晶粒成長が抑制された結果、比較材に比べ10倍以上高いプラトー応力を示した。なお、プラトー応力は、圧縮ひずみ0.3時の流動応力とした。また、図3の斜線部から求められるエネルギー吸収量においても、本発明材は、比較材に比べ、10倍以上高い値を示した。光学顕微鏡の組織観察の結果、本発明を利用して作製された多孔質純アルミニウムの結晶粒径は5μm、比較材の結晶粒径は200μmであり、本発明の方法により作製された多孔質純アルミニウムでは、焼結時の結晶粒成長が抑制されていた。
【0014】
【表1】

Figure 2004156092
【0015】
実施例2
7075アルミニウム合金粉末(粉末径45μm)と塩化ナトリウム粉末(粒径50μm〜300μm)を体積比20:80の割合で混合した混合粉を、パルス通電(電圧5V、電流800A、ON−OFFパルス制御)により480℃で5分間焼結し、直径20mmの多孔質7075アルミニウム合金(空隙率80%)を製造した。
【0016】
得られた多孔質7075アルミニウム合金を用いて室温で圧縮試験(試料サイズ:Φ20×20mm、歪み速度:10−3−1)を行った結果を図4に示す。本多孔質7075アルミニウム合金のプラトー応力(圧縮ひずみ0.3時の流動応力)は6.4MPa、エネルギー吸収量は4.2MJ/m であり、多孔質純アルミニウムより高い値を示した。
【0017】
多孔質7075アルミニウム合金の組織観察を行ったところ、図5に示すように、析出物が微細に分散していた。また、多孔質7075アルミニウム合金の結晶粒径は約45μmと微細であった。以上のことから、7075系合金を利用して多孔質金属を作製することにより、純アルミニウムよりも高強度、高エネルギー吸収性を示す多孔質金属を作製可能であることがわかった。
【0018】
実施例3
上記実施例1の方法と同様にして、1000系純アルミニウム及び5000系、6000系、7000系のアルミニム合金を用いて多孔質を作製したところ、本発明の方法は、これらのアルミニウム系材料においても適用可能であり、同様の多孔質体が得られた。すなわち、いずれの多孔質アルミニウム材料も、微細結晶粒及び微細析出物に起因し、高強度、高エネルギー吸収性を示した。なお、1000系純アルミニウム及び5000系、6000系、7000系アルミニウム合金とは、JIS H 4000記載のアルミニウム合金を指す。
【0019】
【発明の効果】
以上説明したように、本発明は、エネルギー吸収性に優れた多孔質金属及びその製造方法に係るものであり、本発明によれば、従来技術により製造された多孔質アルミニウム材料に比べ格段に高い強度及びエネルギー吸収性を示す多孔質アルミニウム材料を製造することが可能である。本発明の多孔質アルミニウム材料は、例えば、自動車のクラッシュボックス用材料や各種輸送機器のバンパー用材料等として有用である。
【図面の簡単な説明】
【図1】本発明に係るエネルギー吸収性に優れた多孔質化金属の製造手順を示す。
【図2】本発明によって製造された直径20mmの多孔質純アルミニウム(空隙率80%)の組織写真である。
【図3】本発明によって製造された多孔質純アルミニウムを圧縮試験した場合の応力―歪み曲線図である(比較のため、電気炉で焼結した多孔質純アルミニウムの結果も示してある)。
【図4】本発明によって製造された多孔質7075アルミニウム合金を圧縮試験した場合の応力―歪み曲線図である。
【図5】本発明によって製造された多孔質7075アルミニウム合金の透過電子顕微鏡写真である。
【符号の説明】
1 攪拌・混合装置
2 プレス装置
3 パルス通電加熱焼結装置
4 スペーサー材料溶出装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous metal excellent in energy absorption, and more specifically, for example, a porous metal mainly composed of aluminum or aluminum alloy exhibiting high impact energy absorption used for members of automobiles and the like. And a method of manufacturing the same. INDUSTRIAL APPLICABILITY The present invention is useful as providing a novel method for producing a porous metal, which enables production of a porous metal having excellent energy absorption by a simple production process.
[0002]
[Prior art]
Up to now, three methods have been adopted as methods for producing porous aluminum. The first is a casting method, in which a foaming agent (titanium hydride or the like) is mixed into a molten metal to cause foaming, and the molten metal is solidified in a state containing a large amount of generated gas to make the molten metal porous. This is a method called a foaming method (for example, see Patent Document 1). Second, a porous polymer material such as foamed polyurethane is molded with gypsum or the like, and the polymer material is burned off and the mold is baked at the same time. The molten metal is cast in the voids, solidified, and then crushed and removed. This method is called a precision casting method (see Non-Patent Document 1). Third, a method of burning and removing a spacer material (eg, urea) simultaneously with sintering after mixing and compression-molding a metal powder and a spacer material, or eluting a spacer material (eg, sodium chloride, etc.) after sintering. A method called a spacer method such as a removing method (see Non-Patent Document 2).
[0003]
[Patent Document 1]
JP-A-11-302765 [Non-Patent Document 1]
Y. Yamada, K .; Shimojima, Y .; Sakaguchi, M .; Mabuchi, M .; Nakamura, T .; Asahina, T .; Mukai, H .; Kanahashi and K.K. Higashi: J.M. Mater. Sci. Lett. 18 (1999) 842
[Non-patent document 2]
Y. Y. Zhao and D.S. X. Sun: Script Mater. 44 (2001) 105-110
[0004]
However, in the case of the molten metal foaming method, it is necessary to increase the viscosity of the molten metal in order to keep air bubbles in the molten metal, and therefore, there are severe restrictions on alloy components, and it is necessary to produce a porous metal of a practical aluminum alloy component. Can not. Further, in both the molten metal foaming method and the precision casting method, crystal grains and precipitates become coarse. Also in the spacer method, sintering for a long time is required, so that it is inevitable that crystal grains and precipitates become coarse. For the above reasons, it is a fact that a porous metal exhibiting excellent shock absorption cannot be created by the conventional manufacturing methods.
[0005]
[Problems to be solved by the invention]
Under these circumstances, the present inventors have performed various studies with the aim of developing a new porous metal material capable of solving the problems of the conventional technology in view of the conventional technology. By controlling the internal microstructure of the porous metal, that is, focusing on the refinement of the crystal grains and precipitates, and preventing the coarsening of the crystal grains and precipitates during sintering in the spacer method, the porous metal Of the present invention, and found that excellent energy absorption was obtained, and completed the present invention.
An object of the present invention is to provide a novel porous metal material having significantly improved strength and energy absorption over the above-described conventional technology, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems includes the following technical means.
(1) A water-soluble spacer material powder is mixed with an aluminum-based material powder such as an aluminum powder or an aluminum alloy powder to form a mixed powder, which is filled in a container, and pulsed heating is performed while applying a compressive force to the mixed powder. A method for producing a porous metal excellent in energy absorption, characterized in that after addition, after sintering an aluminum powder or an aluminum alloy powder, a spacer material in a sintered body is eluted with water to be porous.
(2) The method for producing a porous metal excellent in energy absorption according to the above (1), wherein the porous metal has a porosity of 55% or more.
(3) The method for producing a porous metal excellent in energy absorption according to (1), wherein the component of the spacer material is sodium chloride.
(4) The method for producing a porous metal excellent in energy absorption according to the above (1), wherein the pressure during sintering is from 5 MPa to 200 MPa.
(5) The method for producing a porous metal excellent in energy absorption as described in (1) above, wherein the test piece temperature during sintering is from 450 ° C. to 650 ° C., and the sintering time is from 3 minutes to 60 minutes.
(6) The porous material having excellent energy absorption described in (1) above, wherein the aluminum-based material is any of 1000-based pure aluminum, 5000-based aluminum alloy, 6000-based aluminum alloy, and 7000-based aluminum alloy. Method of producing high quality metal.
(7) A porous metal excellent in energy absorption, which is produced by the method according to any one of (1) to (6) and has an average crystal grain size of 50 μm or less.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
In the present invention, aluminum powder or aluminum alloy powder is used as the raw aluminum-based material powder. As the raw material aluminum-based material, preferably, for example, any one of 1000-based pure aluminum, 5000-based aluminum alloy, 6000-based aluminum alloy, and 7000-based aluminum alloy is used, but not limited thereto, and has the same effect as these. Can be used as well. In the present invention, a water-soluble spacer material powder is mixed with the aluminum-based material powder. As a component of the water-soluble spacer material, for example, sodium chloride having a predetermined particle size is preferably used. However, the present invention is not limited to this, and any component having the same effect can be used in the same manner.
[0008]
In the present invention, the aluminum-based material powder and the water-soluble spacer material powder are sufficiently stirred and mixed by an appropriate stirring and mixing means to form a mixture, which is press-molded into a predetermined shape by press molding means or the like. After this, the compact is sintered by pulse current conduction. Next, the spacer material in the sintered body is eluted with water, thereby leaving the space of the spacer material as pores to make the sintered body porous. The specific composition and conditions for mixing the raw material powder, stirring / mixing, molding, pulse current sintering, and spacer material elution in the above process depend on the aluminum-based material, the type of the target porous material, and the like. And can be set arbitrarily.
[0009]
FIG. 1 shows an example of a porosity forming process according to the method of the present invention. In this example, the raw aluminum powder and the spacer material powder are stirred and mixed by the stirring and mixing device 1, and the obtained mixture is press-formed into a predetermined shape by the press device 2. Next, the compact is set in a pulse current heating and sintering device 3, and the compact is subjected to pulse current heating to perform sintering. Next, the spacer material in the sintered body is eluted by the spacer material elution device 4. According to this method, a porous body in which the space of the spacer material remains as a hole is obtained.
[0010]
In the present invention, the pulse heating and sintering can significantly reduce the heating time to a predetermined temperature and the heating time until sintering is completed as compared with the case of sintering in a conventional electric furnace. Grain growth of crystal grains and coarsening of precipitates generated during sintering can be suppressed. The porous metal of the present invention produced by pulse current heating sintering has high strength and excellent energy absorption due to fine crystal grains and finely dispersed precipitates.
In addition, since sodium chloride is easily dissolved in hot water or water, a porous aluminum body can be obtained by using sodium chloride as a spacer material and eluting sodium chloride in the sintered body in a hot water stream or a water stream. .
[0011]
Since the pore diameter of the porous body depends on the particle diameter of the spacer material powder, by previously adjusting the particle diameter of the spacer material powder to a predetermined range, and arbitrarily selecting the particle diameter of the spacer material powder, A porous metal having an intended pore diameter can be obtained. In the method of the present invention, the growth of crystal grains during sintering is suppressed, and it is possible to produce a porous body having an average crystal grain size of 50 μm or less. As shown in Examples described later, high plateau stress and A porous aluminum material having high energy absorption and high strength and high energy absorption can be manufactured.
[0012]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
Example 1
Pure aluminum powder (powder diameter 3 μm) and sodium chloride powder (particle diameter 200 μm to 300 μm) were mixed at a volume ratio of 1: 4, and sufficiently stirred by a ball mill. Thereafter, the mixed powder was filled in a cylindrical graphite mold (inner diameter 20 mm, height 50 mm). This was pressurized at 20 MPa using a cylindrical graphite die (outer diameter 20 mm, length 25 mm), and pulsed (voltage 5 V, current 800 A, ON-OFF pulse control) at 480 ° C. from the upper and lower ends of the die. Sintered for minutes. As a result, porous aluminum (porosity: 80%) having a diameter of 20 mm was obtained (FIG. 2).
[0013]
After processing the obtained porous pure aluminum into a round bar test piece (Φ20 × 20 mm), a compression test (initial strain rate 10 −3 s −1 ) was performed at room temperature. The results are shown in FIG. As a comparative material, a material obtained by sintering the same mixed powder of pure aluminum powder and sodium chloride powder as the material of the present invention in an electric furnace (pressure 200 MPa, sintering temperature 680 ° C., sintering time 180 minutes) was produced. Compared with wood. The material of the present invention exhibited a plateau stress that was at least 10 times higher than that of the comparative material as a result of suppressing the growth of crystal grains during sintering. The plateau stress was a flow stress at a compression strain of 0.3. Also, in the energy absorption obtained from the hatched portion in FIG. 3, the material of the present invention showed a value 10 times or more higher than the comparative material. As a result of observation of the structure with an optical microscope, the crystal grain size of the porous pure aluminum produced using the present invention was 5 μm, and the crystal grain size of the comparative material was 200 μm, and the porous pure aluminum produced by the method of the present invention was used. With aluminum, crystal grain growth during sintering was suppressed.
[0014]
[Table 1]
Figure 2004156092
[0015]
Example 2
7075 aluminum alloy powder (powder diameter: 45 μm) and sodium chloride powder (particle diameter: 50 μm to 300 μm) mixed at a volume ratio of 20:80, pulse current (voltage 5 V, current 800 A, ON-OFF pulse control) And sintered at 480 ° C. for 5 minutes to produce a porous 7075 aluminum alloy having a diameter of 20 mm (porosity: 80%).
[0016]
FIG. 4 shows the results of a compression test (sample size: Φ20 × 20 mm, strain rate: 10 −3 s −1 ) performed at room temperature using the obtained porous 7075 aluminum alloy. The porous 7075 aluminum alloy had a plateau stress (flow stress at a compression strain of 0.3) of 6.4 MPa and an energy absorption of 4.2 MJ / m 3 , which was higher than that of porous pure aluminum.
[0017]
Observation of the structure of the porous 7075 aluminum alloy revealed that precipitates were finely dispersed as shown in FIG. The crystal grain size of the porous 7075 aluminum alloy was as fine as about 45 μm. From the above, it was found that a porous metal exhibiting higher strength and higher energy absorption than pure aluminum can be produced by producing a porous metal using a 7075 series alloy.
[0018]
Example 3
In the same manner as in the method of Example 1 described above, porous materials were produced using 1000 series pure aluminum and 5000 series, 6000 series, and 7000 series aluminum alloys. It was applicable and a similar porous body was obtained. That is, all porous aluminum materials exhibited high strength and high energy absorption due to fine crystal grains and fine precipitates. The 1000 series pure aluminum and 5000 series, 6000 series, and 7000 series aluminum alloys refer to aluminum alloys described in JIS H4000.
[0019]
【The invention's effect】
As described above, the present invention relates to a porous metal having excellent energy absorption and a method for producing the same, and according to the present invention, is significantly higher than a porous aluminum material produced by a conventional technique. It is possible to produce a porous aluminum material that exhibits strength and energy absorption. The porous aluminum material of the present invention is useful, for example, as a material for crash boxes of automobiles and a material for bumpers of various transportation equipment.
[Brief description of the drawings]
FIG. 1 shows a procedure for producing a porous metal having excellent energy absorption according to the present invention.
FIG. 2 is a structural photograph of porous pure aluminum having a diameter of 20 mm (porosity of 80%) manufactured according to the present invention.
FIG. 3 is a stress-strain curve diagram when a porous pure aluminum produced according to the present invention is subjected to a compression test (for comparison, the result of porous pure aluminum sintered in an electric furnace is also shown).
FIG. 4 is a stress-strain curve diagram when a porous 7075 aluminum alloy manufactured according to the present invention is subjected to a compression test.
FIG. 5 is a transmission electron micrograph of a porous 7075 aluminum alloy manufactured according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stirring / mixing apparatus 2 Press apparatus 3 Pulse electric heating sintering apparatus 4 Spacer material elution apparatus

Claims (7)

アルミニウム粉末又はアルミニウム合金粉末のアルミニウム系材料粉末に水溶性のスペーサー材粉末を混合して混合粉末とし、それを容器内に充填し、その混合粉末に圧縮力を加えながらパルス通電加熱を加えることによりアルミニウム粉末又はアルミニウム合金粉末を焼結した後、焼結体中のスペーサー材を水により溶出させて多孔質化させることを特徴とするエネルギー吸収性に優れた多孔質金属の製造方法。By mixing a water-soluble spacer material powder with an aluminum-based material powder such as an aluminum powder or an aluminum alloy powder to form a mixed powder, filling it into a container, and applying pulsed current heating while applying a compressive force to the mixed powder. A method for producing a porous metal excellent in energy absorption, characterized in that after sintering an aluminum powder or an aluminum alloy powder, a spacer material in a sintered body is eluted with water to be porous. 空隙率が55%以上の多孔質金属であることを特徴とする請求項1記載のエネルギー吸収性に優れた多孔質金属の製造方法。The method for producing a porous metal excellent in energy absorption according to claim 1, wherein the porous metal has a porosity of 55% or more. スペーサー材の成分が塩化ナトリウムである請求項1記載のエネルギー吸収性に優れた多孔質金属の製造方法。The method for producing a porous metal excellent in energy absorption according to claim 1, wherein the component of the spacer material is sodium chloride. 焼結時の加圧力が5MPaから200MPaである請求項1記載のエネルギー吸収性に優れた多孔質金属の製造方法。2. The method for producing a porous metal excellent in energy absorption according to claim 1, wherein the pressure during sintering is 5 MPa to 200 MPa. 焼結時の試験片温度が450℃から650℃であり、焼結時間が3分から60分である請求項1記載のエネルギー吸収性に優れた多孔質金属の製造方法。The method for producing a porous metal excellent in energy absorption according to claim 1, wherein the test piece temperature during sintering is from 450 ° C to 650 ° C, and the sintering time is from 3 minutes to 60 minutes. アルミニウム系材料が、1000系純アルミニウム、5000系アルミニウム合金、6000系アルミニウム合金、7000系アルミニウム合金のいずれかであることを特徴とする請求項1記載のエネルギー吸収性に優れた多孔質金属の製造方法。2. The production of a porous metal excellent in energy absorption according to claim 1, wherein the aluminum-based material is any of 1000-based pure aluminum, 5000-based aluminum alloy, 6000-based aluminum alloy, and 7000-based aluminum alloy. Method. 請求項1から6のいずれかに記載の方法により作製された、平均結晶粒径が50μm以下であることを特徴とするエネルギー吸収性に優れた多孔質金属。A porous metal excellent in energy absorption, characterized by having an average crystal grain size of 50 µm or less, produced by the method according to any one of claims 1 to 6.
JP2002322432A 2002-11-06 2002-11-06 Porous metal having excellent energy absorbability, and production method therefor Pending JP2004156092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322432A JP2004156092A (en) 2002-11-06 2002-11-06 Porous metal having excellent energy absorbability, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322432A JP2004156092A (en) 2002-11-06 2002-11-06 Porous metal having excellent energy absorbability, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004156092A true JP2004156092A (en) 2004-06-03

Family

ID=32802620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322432A Pending JP2004156092A (en) 2002-11-06 2002-11-06 Porous metal having excellent energy absorbability, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004156092A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052451A (en) * 2004-08-13 2006-02-23 National Institute Of Advanced Industrial & Technology Method for manufacturing porous metal member made of ferromagnetic material
JP2007238971A (en) * 2006-03-06 2007-09-20 Taiheiyo Cement Corp Porous aluminum composite material and its production method
JP2011042873A (en) * 2009-07-22 2011-03-03 Hitachi Ltd Porous metal and method for producing the same
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
WO2013103043A1 (en) 2012-01-06 2013-07-11 古河スカイ株式会社 Method for manufacturing porous aluminum
JP2013140745A (en) * 2012-01-06 2013-07-18 Furukawa Sky Kk Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
KR20150002631A (en) 2012-03-30 2015-01-07 가부시키가이샤 유에이씨제이 Electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP2020084312A (en) * 2018-11-30 2020-06-04 地方独立行政法人鳥取県産業技術センター Porous magnesium production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052451A (en) * 2004-08-13 2006-02-23 National Institute Of Advanced Industrial & Technology Method for manufacturing porous metal member made of ferromagnetic material
JP4505605B2 (en) * 2004-08-13 2010-07-21 独立行政法人産業技術総合研究所 Shock absorbing metal member made of ferromagnetic porous metal material and method for manufacturing the same
JP2007238971A (en) * 2006-03-06 2007-09-20 Taiheiyo Cement Corp Porous aluminum composite material and its production method
US8480783B2 (en) 2009-07-22 2013-07-09 Hitachi, Ltd. Sintered porous metal body and a method of manufacturing the same
JP2011042873A (en) * 2009-07-22 2011-03-03 Hitachi Ltd Porous metal and method for producing the same
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
WO2013103043A1 (en) 2012-01-06 2013-07-11 古河スカイ株式会社 Method for manufacturing porous aluminum
JP2013140745A (en) * 2012-01-06 2013-07-18 Furukawa Sky Kk Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
JPWO2013103043A1 (en) * 2012-01-06 2015-05-11 株式会社Uacj Method for producing porous aluminum
KR20150002631A (en) 2012-03-30 2015-01-07 가부시키가이샤 유에이씨제이 Electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP2020084312A (en) * 2018-11-30 2020-06-04 地方独立行政法人鳥取県産業技術センター Porous magnesium production method
JP7281164B2 (en) 2018-11-30 2023-05-25 地方独立行政法人鳥取県産業技術センター Porous magnesium manufacturing method

Similar Documents

Publication Publication Date Title
EP1755809B1 (en) Method of production of porous metallic materials
CN105624455B (en) A kind of porous high-entropy alloy and preparation method thereof
US6852272B2 (en) Method for preparation of metallic and ceramic foam products and products made
JP4344141B2 (en) Metal foam manufacturing
JP4176975B2 (en) Manufacturing method of foam metal
JP4189401B2 (en) Method for producing foamed aluminum
JP2004156092A (en) Porous metal having excellent energy absorbability, and production method therefor
RU2444418C1 (en) Method of producing sintered porous articles from tungsten-base pseudoalloy
WO2009116305A1 (en) Precursor, foamed metallic molding, and processes for producing these
JP2010116623A (en) Metal foamed body and method for producing metal foamed body
JP2007217715A (en) FOAMED IMPACT ABSORBING MATERIAL MADE OF Zn-Al ALLOY HAVING EXCELLENT IMPACT ABSORPTION CHARACTERISTIC, AND ITS MANUFACTURING METHOD
JP2005344153A (en) Method for producing member made of foamed aluminum alloy
JP5620658B2 (en) Method for producing high-strength porous aluminum alloy
CN1252299C (en) Process for cold pressing-solving-vacuum sintering preparation of foamed aluminum
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
RU2623566C1 (en) Method of manufacture of sintered porous products from tungsten-based pseudoalloy
RU2414329C1 (en) Method of producing sintered porous tungsten-based articles
JP4752749B2 (en) Method for producing iron powder for powder metallurgy
JP2004308004A (en) Method of producing aluminum sintered material
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP4126366B2 (en) Method for producing foamed inorganic powder
US20140356216A1 (en) Slip and pressure casting of refractory metal bodies
JP2007162052A (en) Stock for foam metal and its production method
Baumeister et al. Manufacturing Processes for Metal Foams
Timac et al. Ni-718 superalloy foam processed by powder space-holder technique: Microstructural and mechanical characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040818

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612