JP2020084312A - Porous magnesium production method - Google Patents

Porous magnesium production method Download PDF

Info

Publication number
JP2020084312A
JP2020084312A JP2018225886A JP2018225886A JP2020084312A JP 2020084312 A JP2020084312 A JP 2020084312A JP 2018225886 A JP2018225886 A JP 2018225886A JP 2018225886 A JP2018225886 A JP 2018225886A JP 2020084312 A JP2020084312 A JP 2020084312A
Authority
JP
Japan
Prior art keywords
powder
magnesium
spacer
sample
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018225886A
Other languages
Japanese (ja)
Other versions
JP7281164B2 (en
Inventor
亮 塚根
Akira Tsukane
亮 塚根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori Institute of Industrial Technology
Original Assignee
Tottori Institute of Industrial Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Institute of Industrial Technology filed Critical Tottori Institute of Industrial Technology
Priority to JP2018225886A priority Critical patent/JP7281164B2/en
Publication of JP2020084312A publication Critical patent/JP2020084312A/en
Application granted granted Critical
Publication of JP7281164B2 publication Critical patent/JP7281164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a technology for producing porous magnesium.SOLUTION: Provided is a porous magnesium production method, characterized, including: mixing a magnesium powder, a sintering aid and a soluble spacer powder; heating and applying pressure to sinter the magnesium powder in a state in which the spacer powder is dispersed under the presence of the sintering aid; and removing the spacer powder portion in the sintered material with solvent to yield a porous magnesium.SELECTED DRAWING: Figure 1

Description

本発明は、多数の空孔(ポーラス)が形成されたマグネシウム材料の製造方法に関し、特に、空孔率の制御や空孔の配分の設計が可能なポーラスマグネシウムに関する。 TECHNICAL FIELD The present invention relates to a method for producing a magnesium material having a large number of pores formed therein, and more particularly to porous magnesium capable of controlling the porosity and designing the distribution of the pores.

金属素材の一例として、内部に空孔を散在させ多孔質金属ともいえるポーラス金属材料が知られている。特許文献1や特許文献2には、アルミニウムやチタンのポーラス材料が挙げられている。
このようなポーラス金属材料はスペーサ法により得ることができる。すなわち、水に可溶であり、金属の焼結温度より高温な融点をもつ素材、たとえばNaClを金属粉末と混合して型にいれ、加圧および加熱して焼結体を作出し、これを水にいれてNaClを除去する方法である。
As an example of a metal material, a porous metal material is known, which is a porous metal with pores scattered inside. Patent Documents 1 and 2 list porous materials such as aluminum and titanium.
Such a porous metal material can be obtained by the spacer method. That is, a material that is soluble in water and has a melting point higher than the sintering temperature of metal, such as NaCl, is mixed with metal powder, placed in a mold, and pressed and heated to produce a sintered body. It is a method of removing NaCl by putting it in water.

ポーラス金属材料の適用例としては衝撃吸収材があり、今後更に研究を進めれば触媒や生体材料としての用途も期待できる。 An impact absorption material is an application example of a porous metal material, and if further research is conducted in the future, its application as a catalyst or a biomaterial can be expected.

しかしながら、ポーラス金属材料を製造するにあたっては素材金属の制約があるという問題点があった。
具体的には、マグネシウムのポーラス材料は粉末焼結が困難であり、かつ、水と反応してしまうので、NaClを除去できないという問題点があった。
However, there is a problem in that there is a restriction on a raw material metal in manufacturing a porous metal material.
Specifically, the magnesium porous material is difficult to powder sinter and reacts with water, so that there is a problem that NaCl cannot be removed.

特開2004−156092号JP-A-2004-156092 特開2016−79445号JP-A-2016-79445 特開2014−231638号公JP-A-2014-231638

本発明は上記に鑑みてなされたものであって、ポーラスマグネシウムの製造技術を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a technique for producing porous magnesium.

請求項1に記載のポーラスマグネシウム製造方法は、マグネシウム粉末と焼結助剤と可溶性スペーサ粉末とを混合し、加熱および加圧を施して焼結助剤のもとマグネシウム粉末をスペーサ粉末が分散した状態で焼結し、焼結体中のスペーサ粉末部分を溶媒にて除去して得ることを特徴とする。 In the method for producing porous magnesium according to claim 1, the magnesium powder, the sintering aid, and the soluble spacer powder are mixed and heated and pressed to disperse the magnesium powder under the sintering aid in the spacer powder. It is characterized in that it is obtained by sintering in a state and removing the spacer powder portion in the sintered body with a solvent.

用いるマグネシウム粉末は粒径が50μm〜300μmとすることができるが、焼結固化できるのであれば特に制限はない。なお、通常はマグネシウム粉末の表面は酸化膜が形成されており、本発明では、このような被膜があるものも単にマグネシウム粉末と称することとする。
焼結助剤はマグネシウム粉末を焼結させることができるのであれば特に限定されないが焼結を促すべく全体に分散可能な粉末であるものとする。添加量はマグネシウム粉末に対して、10mass%以下とする例を挙げることができる。
可溶性とは溶媒に可溶であることをいい、溶媒も水(HO)に限定されるものではない。
スペーサ粉末は、消失粉末とも称され、マグネシウム粉末や焼結助剤と反応せず、また、焼結温度より高い融点であれば特に制限されない。製造コストの面からは塩、特に、塩化ナトリウムが好適である。また、粒径は得られるポーラスの大きさに基づき適宜決定すればよいが、たとえば、150μm〜400μmとすることができる。
溶媒は溶剤とも称され、当然ながらマグネシウムと反応しないものを用いる。
なお、溶媒にてスペーサ粉末を除去する観点から(溶媒がマグネシウム間を侵入していく観点から)、それぞれの粉末の粒径やその形状、また、粒度分布に依存するものの、マグネシウム粉末とスペーサ粉末との体積比は10:90〜40:60とする。
焼結に際しては、型に混合粉末を投入し、任意の形状を作出することも可能である。
The magnesium powder used can have a particle size of 50 μm to 300 μm, but is not particularly limited as long as it can be sintered and solidified. Note that an oxide film is usually formed on the surface of the magnesium powder, and in the present invention, the one having such a coating is simply referred to as magnesium powder.
The sintering aid is not particularly limited as long as it can sinter magnesium powder, but it is assumed that it is a powder that can be dispersed throughout to promote sintering. An example in which the addition amount is 10 mass% or less with respect to the magnesium powder can be given.
Soluble means being soluble in a solvent, and the solvent is not limited to water (H 2 O).
The spacer powder is also referred to as vanishing powder and is not particularly limited as long as it does not react with the magnesium powder or the sintering aid and has a melting point higher than the sintering temperature. A salt, especially sodium chloride, is preferable from the viewpoint of production cost. Further, the particle diameter may be appropriately determined based on the size of the obtained porous material, and may be, for example, 150 μm to 400 μm.
The solvent is also called a solvent, and as a matter of course, a solvent that does not react with magnesium is used.
From the viewpoint of removing the spacer powder with the solvent (from the viewpoint that the solvent penetrates between the magnesium), the magnesium powder and the spacer powder depend on the particle size and shape of each powder and the particle size distribution. And the volume ratio thereof is 10:90 to 40:60.
At the time of sintering, it is also possible to put a mixed powder into a mold to create an arbitrary shape.

請求項2に記載のポーラスマグネシウム製造方法は、請求項1に記載のポーラスマグネシウム製造方法により場所によりマグネシウム粉末とスペーサ粉末との配合比率を異ならせ、空孔率を設計ないし制御することを特徴とする。 The porous magnesium manufacturing method according to claim 2 is characterized in that the porosity is designed or controlled by changing the mixing ratio of the magnesium powder and the spacer powder depending on the location by the porous magnesium manufacturing method according to claim 1. To do.

連続的に配合比率を異ならせる態様であっても、断続的に配合比率を異ならせる態様であってもよい。 It may be an aspect in which the blending ratio is continuously changed or an aspect in which the blending ratio is intermittently changed.

請求項3に記載のポーラスマグネシウム製造方法は、請求項1または2に記載のポーラスマグネシウム製造方法において、焼結助剤は、亜鉛、アルミニウム、スズ、アンチモン、またはビスマスであることを特徴とする。 The porous magnesium production method according to claim 3 is the porous magnesium production method according to claim 1 or 2, wherein the sintering aid is zinc, aluminum, tin, antimony, or bismuth.

請求項4に記載のポーラスマグネシウム製造方法は、請求項1、2または3に記載のポーラスマグネシウム製造方法において、溶媒はアルカリ性であって、スペーサ粉末は当該アルカリ性溶媒に溶解するものであることを特徴とする。 The method for producing porous magnesium according to claim 4 is the method for producing porous magnesium according to claim 1, 2 or 3, wherein the solvent is alkaline and the spacer powder is soluble in the alkaline solvent. And

溶媒の例としてはpH>12の水酸化ナトリウム水溶液や水酸化カリウム水溶液、水酸化カルシウム水溶液(石灰水)を挙げることができ、このときのスペーサ粉末は塩化ナトリウムを挙げることができる。 Examples of the solvent include sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, and calcium hydroxide aqueous solution (lime water) having a pH>12, and the spacer powder at this time can include sodium chloride.

請求項5に記載の発明は、200μm〜600μmの連続空孔が形成された、体積率が15%〜35%であることを特徴とするマグネシウム合金である。 The invention according to claim 5 is a magnesium alloy having continuous pores of 200 μm to 600 μm and a volume ratio of 15% to 35%.

マグネシウム合金の例としては、AZ31のように亜鉛および/またはアルミニウムを合金成分としたものや、LZ91のように亜鉛および/リチウムを合金成分としたものを挙げることができる。
マグネシウム合金の体積率が15%〜35%とは、連続空孔部分のしめる割合が85%〜65%であることを意味する。好ましくはマグネシウムの体積率は20%〜30%である。
なお、連続空孔は連続気泡と称することもできる。
Examples of magnesium alloys include alloys containing zinc and/or aluminum as alloy components such as AZ31, and alloys containing zinc and/or lithium as alloy components such as LZ91.
The volume ratio of the magnesium alloy of 15% to 35% means that the filling ratio of the continuous void portion is 85% to 65%. The volume ratio of magnesium is preferably 20% to 30%.
The open pores can also be called open cells.

本発明によれば、従来製造できなかったポーラスマグネシウムを得ることができる。焼結スペーサ法を採用するので鋳造スペーサ法と比べて製造設備を簡素化することも可能である。 According to the present invention, it is possible to obtain porous magnesium that could not be produced conventionally. Since the sintering spacer method is adopted, it is possible to simplify the manufacturing equipment as compared with the casting spacer method.

ポーラスマグネシウムの光学写真およびX線CT写真である。It is an optical photograph and X-ray CT photograph of porous magnesium. ポーラスマグネシウムの応力ひずみ線図である。It is a stress-strain diagram of porous magnesium. 空孔率を異ならせた複合化ポーラスマグネシウムの外観写真である。It is an appearance photograph of composite porous magnesium having different porosities. 空孔率を異ならせた複合化ポーラスマグネシウムの応力ひずみ線図である。FIG. 4 is a stress-strain diagram of composite porous magnesium having different porosities. 空孔率とプラトー応力との関係を示した図である。It is a figure showing the relation between porosity and plateau stress. ポーラスマグネシウムのヤング率の算出結果を示した図である。It is a figure showing the calculation result of Young's modulus of porous magnesium.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
ここでは、焼結助剤にZnを用い、スペーサ粉末をNaCl,これを溶かす溶媒をNaOH水溶液とした例について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Here, an example in which Zn is used as the sintering aid, the spacer powder is NaCl, and the solvent for dissolving the spacer powder is NaOH aqueous solution will be described.

まず、マグネシウム粉末(日亜化学工業株式会社製、粒径約100μm)に亜鉛粉末(和光純薬工業株式会社製、販売元コード191−01665、粒径約6μm)を5mass%添加した混合粉に、スペーサ粉末として塩化ナトリウム(和光純薬工業株式会社製、販売元コード260−00225、粒径約180μm〜300μm)を体積割合で70%および80%添加し混合粉末を調製した。 First, a mixed powder obtained by adding 5 mass% of zinc powder (manufactured by Wako Pure Chemical Industries, Ltd., distributor code 191-1165, particle size of about 6 μm) to magnesium powder (manufactured by Nichia Corporation, particle size of about 100 μm). As a spacer powder, sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd., vendor code 260-00225, particle diameter of about 180 μm to 300 μm) was added in a volume ratio of 70% and 80% to prepare a mixed powder.

混合粉末を直径26mmの合金工具鋼製円筒に約9000mm充填し、電気炉を装備した油圧プレス機を用いて大気中にて一軸加圧成形した。焼結条件は400℃まで約15℃/minで昇温していき400℃に到達した後5min保持し、続いて圧力100MPa×保持時間3minとした。その後は自然放冷した。 The alloy powder steel cylinder having a diameter of 26 mm was filled with about 9000 mm 3 of the mixed powder, and uniaxial pressure molding was performed in the atmosphere using a hydraulic press equipped with an electric furnace. The sintering conditions were such that the temperature was raised to 400° C. at about 15° C./min, and after reaching 400° C., the temperature was held for 5 minutes, and subsequently the pressure was 100 MPa×the holding time was 3 minutes. After that, it was naturally cooled.

得られた成形体を切断機により約8mm×10mm×10mmの大きさに切り出し、これをpH>12の水酸化ナトリウム水溶液に浸漬して内部の塩化ナトリウムを溶出させ、評価試料を得た。これをポーラスマグネシウムと適宜称し、また、スペーサ粉末70vol%として作成した評価試料を70%試料、80vol%として作成した評価試料を80%試料と適宜称することとする。 The obtained molded body was cut into a size of about 8 mm×10 mm×10 mm by a cutting machine, and this was immersed in an aqueous sodium hydroxide solution having a pH>12 to elute the sodium chloride therein to obtain an evaluation sample. This is appropriately referred to as porous magnesium, and the evaluation sample prepared with 70 vol% of the spacer powder is referred to as 70% sample, and the evaluation sample prepared with 80 vol% is appropriately referred to as 80% sample.

得られた評価試料の光学写真およびX線CT写真(軸方向中央付近)を図1に示す。
図示したように目視にてもCT写真にてもポーラス(多孔質)が確認でき、その形状はスペーサ粉末由来、すなわち、スペーサ粉末部分が空孔に置換されていることが確認できた。また、空孔は連続空孔として存在し、スペーサ粉末の十分な除去がなされていることも確認できた。
なお、同じ方法に従って別途60%試料と90%試料も作成してみたが、60%試料では、塩化ナトリウム粉末がマグネシウムに囲まれ残存している部分があり(独立泡として残存し)、90%試料では形にならず整形できなかった。よって、用いる各粉末の粒度や形状にも依存するが、スペーサ粉末の添加量は60vol%を超え90vol%未満、好ましくは65vol%以上85%以下であるといえる。更に好ましくは70vol%以上80vol%以下である。
また、焼結が不十分であると、水酸化ナトリウム水溶液に浸漬した際に成形体がバラバラになってしまう。逆に、バラバラにならないものは焼結が十分におこなわれていると言え、上記の加熱および加圧条件により焼結体が得られることが確認できた。
An optical photograph and an X-ray CT photograph (around the center in the axial direction) of the obtained evaluation sample are shown in FIG.
As shown in the drawing, it was possible to confirm both visually and in the CT photograph, and the shape thereof was derived from the spacer powder, that is, it was confirmed that the spacer powder portion was replaced with pores. It was also confirmed that the pores existed as continuous pores and the spacer powder was sufficiently removed.
In addition, although the 60% sample and the 90% sample were separately prepared according to the same method, in the 60% sample, there was a portion where sodium chloride powder was surrounded by magnesium and remained (remained as independent bubbles), and 90% The sample could not be shaped and could not be shaped. Therefore, it can be said that the addition amount of the spacer powder is more than 60 vol% and less than 90 vol%, preferably 65 vol% or more and 85% or less, although it depends on the particle size and shape of each powder used. More preferably, it is 70 vol% or more and 80 vol% or less.
Further, if the sintering is insufficient, the molded body will be disjointed when immersed in an aqueous sodium hydroxide solution. On the other hand, it can be said that those that do not fall apart are sufficiently sintered, and it was confirmed that a sintered body can be obtained by the above heating and pressing conditions.

スペーサ粉末の添加割合と、X線CT写真から算出した空孔率との関係を表1に示す。

表から明らかなように、ポーラスマグネシウムの空孔率はスペーサの添加割合と同等といえ、これより、本発明のポーラスマグネシウム製造方法は空孔率を設計可能な製造方法であるといえる。
Table 1 shows the relationship between the addition ratio of the spacer powder and the porosity calculated from the X-ray CT photograph.

As is clear from the table, it can be said that the porosity of porous magnesium is equal to the addition ratio of spacers, and thus the porous magnesium production method of the present invention can be said to be a production method capable of designing porosity.

次に、評価試料について圧縮試験をおこなった。得られた応力ひずみ線図を図2に示す。70%試料も80%試料も変形初期に線形弾性領域がみられ、降伏後はほぼ一定の応力で変形するプラトー領域が観察された。さらに変形が進行すると応力が急増する緻密化領域が現れた。緻密化領域が現れたことからも十分な焼結が行われていることが確認できる。
なお、プラトー領域における変形応力すなわちプラトー応力は80%試料が70%試料の1/4程度であり、緻密化が始まるひずみ値は高くなっていた。
Next, a compression test was performed on the evaluation sample. The obtained stress-strain diagram is shown in FIG. A linear elastic region was observed in the early stage of deformation of both the 70% sample and the 80% sample, and a plateau region in which the sample was deformed by a substantially constant stress after yielding was observed. As the deformation progressed, a densified region where the stress increased sharply appeared. From the appearance of the densified region, it can be confirmed that sufficient sintering is performed.
The deformation stress in the plateau region, that is, the plateau stress was about 1/4 of that of the 70% sample in the 80% sample, and the strain value at which densification started was high.

マグネシウムは、実用金属の中で最軽量であり、振動や衝撃を吸収しやすいという特徴がある。従って、ポーラスマグネシウムとすれば上述のプラトー領域の発現も相まって衝撃吸収材等としての利用価値も高いと考えられる。そこで、更に、空孔率の設計ないし制御の観点から複合的なポーラスマグネシウムの製造検討をおこなうこととした。 Magnesium is the lightest of the practical metals and has the characteristic of easily absorbing vibration and shock. Therefore, it is considered that porous magnesium has a high utility value as a shock absorber and the like in combination with the expression of the plateau region described above. Therefore, it was decided to further study the production of composite porous magnesium from the viewpoint of designing or controlling the porosity.

具体的には、上記の製造方法にならって、合金工具鋼製円筒に、70vol%の塩化ナトリウム混合粉末を充填した上から80vol%の塩化ナトリウム混合粉末を充填したものと、70vol%の塩化ナトリウム混合粉末を充填した上から塩化ナトリウムなしの混合粉末を充填したものについて、それぞれ同様の焼結および塩化ナトリウム除去をおこなった。得られた評価試料を、70/80%試料、0/70%試料と適宜称することとする。 Specifically, according to the above manufacturing method, a cylinder made of alloy tool steel was filled with 70 vol% of sodium chloride mixed powder and then 80 vol% of sodium chloride mixed powder, and 70 vol% of sodium chloride. Sintering and sodium chloride removal were performed in the same manner for the ones filled with the mixed powder without sodium chloride after the mixed powder was filled. The obtained evaluation samples will be appropriately referred to as 70/80% sample and 0/70% sample.

0/70%試料の外観写真を図3に示す。境界面においても十分な溶着および焼結がおこなわれていることが確認できた。
また、二つの試料について圧縮試験をおこなった。応力ひずみ線図を図4に示す。70/80%試料はプラトー領域が広いものの、0/80%試料はプラトー領域が狭くなっている。これは、70/80%試料は先に低強度部である80%部が主に変形していき、後から高強度部である70%部が変形していって、いずれも空孔の寄与が続くためプラトー領域が広く、一方、0/70%試料ははじめ低強度部である70%部が変形していくもののその後は0%部(中実部)が変形していくため、プラトー領域が狭くなっているものと考えられた。
A photograph of the appearance of the 0/70% sample is shown in FIG. It was confirmed that sufficient welding and sintering were performed even on the boundary surface.
A compression test was performed on two samples. The stress-strain diagram is shown in FIG. The 70/80% sample has a wide plateau region, while the 0/80% sample has a narrow plateau region. This is because in the 70/80% sample, the 80% part, which is the low-strength part, deforms first, and the 70% part, which is the high-strength part, deforms afterwards. , The plateau region is wide. On the other hand, in the 0/70% sample, the 70% part, which is the low-strength part, starts to deform, but after that, the 0% part (solid part) deforms. Was thought to be narrowing.

次に、70%試料と80%試料について、圧縮ひずみ0.2〜0.3におけるプラトー応力の平均値を算出した結果を図5に示す。プラトー応力は、スペーサ粉末の割合(実部であるマグネシウム割合)に依存しているといえ、この点から応力設計が可能であることがわかった。 Next, FIG. 5 shows the results of calculating the average value of the plateau stress at compressive strains of 0.2 to 0.3 for the 70% sample and the 80% sample. It can be said that the plateau stress depends on the ratio of the spacer powder (the ratio of magnesium that is the real part), and from this point it was found that the stress design is possible.

更に、70%試料、80%試料、70/80%試料についてエネルギー吸収量を検討した。ここでは、エネルギー吸収量Wは、応力ひずみ線図において圧縮ひずみが0.5までの積分値として算出した。結果を表2に示す。
この結果も、エネルギー吸収量Wが空孔率に依存していることを示し、また、複合化によっても単純配合の場合の中間値をとることの確認ができた。
Further, the amount of energy absorption was examined for the 70% sample, 80% sample, and 70/80% sample. Here, the energy absorption amount W was calculated as an integral value up to a compression strain of 0.5 in the stress-strain diagram. The results are shown in Table 2.
This result also shows that the energy absorption amount W depends on the porosity, and that it was confirmed that the energy absorption amount W takes an intermediate value in the case of the simple blending even by complexing.

最後に70%試料、80%試料についてヤング率を算出した。これはプラトー領域に遷移する前すなわち変形初期の弾性領域の直線部分の勾配から算出した。結果を図6に示す。図示したように、70%試料のヤング率は約0.4GPa、80%試料のヤング率は約0.3GPaであって、ヤング率は空孔率の増大に伴って低下する傾向があるもののエネルギー吸収量Wのような明確な差がでるようなものではないともいえる。これは、弾性領域であるため、ポーラスの構造は影響しにくくマグネシウム素材そのものが主としてヤング率に寄与していると考えられる。 Finally, Young's modulus was calculated for the 70% sample and the 80% sample. This was calculated from the slope of the straight part of the elastic region before the transition to the plateau region, that is, in the initial stage of deformation. Results are shown in FIG. As shown in the figure, the Young's modulus of the 70% sample is about 0.4 GPa, the Young's modulus of the 80% sample is about 0.3 GPa, and the Young's modulus tends to decrease as the porosity increases, but the energy It can be said that there is no clear difference like the absorption amount W. Since this is in the elastic region, the structure of the porous structure is unlikely to affect, and it is considered that the magnesium material itself contributes mainly to the Young's modulus.

以上の結果から、本発明によれば、従来の焼結スペーサ法では得られなかったところのポーラスマグネシウムを製造することができる。そして、空孔率を設計できるので、反射的に応力(そしてエネルギー吸収量)を調製でき、衝撃吸収材等としての物性の設計自由度を高めることができる。
断続的または連続的な空孔率の調整も可能であり、この点からも構造材等としての設計自由度を高めた製造方法であるといえる。
From the above results, according to the present invention, it is possible to manufacture porous magnesium that could not be obtained by the conventional sintered spacer method. Since the porosity can be designed, the stress (and energy absorption amount) can be adjusted reflectively, and the degree of freedom in designing the physical properties of the shock absorber or the like can be increased.
It is possible to adjust the porosity intermittently or continuously, and from this point as well, it can be said that this is a manufacturing method with a high degree of freedom in designing as a structural material or the like.

以上の例は、焼結助剤として微量の亜鉛を添加した例であるが、アルミニウム、スズ、アンチモン、またはビスマスを添加して焼結することもできる。共晶生成による融点低下をする金属やマグネシウム粉末表面との反応性が高いものであることが好ましい。また、焼結スペーサ法として採用できるのであれば(焼結ないし溶融固化するのであれば)、助剤というよりはむしろマグネシウム合金の合金成分としてある程度の量を添加する態様であってもよい。 Although the above example is an example in which a slight amount of zinc is added as a sintering aid, aluminum, tin, antimony, or bismuth may be added to perform sintering. It is preferable that it has high reactivity with the surface of a metal or magnesium powder that lowers the melting point due to eutectic formation. Further, if it can be adopted as the sintering spacer method (if it is sintered or melted and solidified), it may be a mode in which a certain amount is added as an alloy component of the magnesium alloy rather than an auxiliary agent.

なお、スペーサ粉末の粒径や添加量を調整することにより、焼結後このスペーサ粉末を除去した後に200μm〜600μmの連続空孔が形成された、体積率が20%〜30%のマグネシウム合金を得ることができる。この合金は上述の様に衝撃吸収材として用いることもでき、また、電磁波遮へい材や人工骨としても利用可能である。 By adjusting the particle size and the addition amount of the spacer powder, a magnesium alloy having a volume ratio of 20% to 30% in which continuous pores of 200 μm to 600 μm were formed after the spacer powder was removed after sintering was formed. Obtainable. This alloy can be used as a shock absorbing material as described above, and can also be used as an electromagnetic wave shielding material and artificial bone.

人工骨については、たとえば海綿骨のヤング率は0.01GPa〜2GPaであって、70%試料や80%試料と同等の値といえる。加えて、マグネシウムや亜鉛は人体との親和性が高いので好適であり、かつ、一本の骨の表面と内側の粗密も本方法によれば再現可能であるため特に好適である。 Regarding the artificial bone, for example, the Young's modulus of cancellous bone is 0.01 GPa to 2 GPa, which can be said to be a value equivalent to that of the 70% sample and the 80% sample. In addition, magnesium and zinc are preferable because they have a high affinity with the human body, and the density of the surface and the inside of one bone can also be reproduced by this method, and are therefore particularly preferable.

本発明によれば、軽量かつ高強度であるという点も奏功し、新たな衝撃吸収材、防音材、電磁波遮へい材、人工骨素材等として利用可能である。
According to the present invention, the fact that it is lightweight and has high strength also succeeds, and it can be used as a new shock absorbing material, soundproofing material, electromagnetic wave shielding material, artificial bone material and the like.

Claims (5)

マグネシウム粉末と焼結助剤と可溶性スペーサ粉末とを混合し、加熱および加圧を施して焼結助剤のもとマグネシウム粉末をスペーサ粉末が分散した状態で焼結し、
焼結体中のスペーサ粉末部分を溶媒にて除去して得ることを特徴とするポーラスマグネシウム製造方法。
The magnesium powder, the sintering aid and the soluble spacer powder are mixed, heated and pressed to sinter the magnesium powder under the sintering aid in a state where the spacer powder is dispersed,
A method for producing porous magnesium, which is obtained by removing a spacer powder portion in a sintered body with a solvent.
場所によりマグネシウム粉末とスペーサ粉末との配合比率を異ならせ、空孔率を設計ないし制御することを特徴とする請求項1に記載のポーラスマグネシウム製造方法。 The method for producing porous magnesium according to claim 1, wherein the porosity is designed or controlled by changing the mixing ratio of the magnesium powder and the spacer powder depending on the location. 焼結助剤は、亜鉛、アルミニウム、スズ、アンチモン、またはビスマスであることを特徴とする請求項1または2に記載のポーラスマグネシウム製造方法。 The method for producing porous magnesium according to claim 1 or 2, wherein the sintering aid is zinc, aluminum, tin, antimony, or bismuth. 溶媒はアルカリ性であって、スペーサ粉末は当該アルカリ性溶媒に溶解するものであることを特徴とする請求項1、2または3に記載のポーラスマグネシウム製造方法。 The method for producing porous magnesium according to claim 1, 2 or 3, wherein the solvent is alkaline and the spacer powder is soluble in the alkaline solvent. 200μm〜600μmの連続空孔が形成された、体積率が15%〜35%であることを特徴とするマグネシウム合金。 A magnesium alloy having continuous pores of 200 μm to 600 μm and having a volume ratio of 15% to 35%.
JP2018225886A 2018-11-30 2018-11-30 Porous magnesium manufacturing method Active JP7281164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225886A JP7281164B2 (en) 2018-11-30 2018-11-30 Porous magnesium manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225886A JP7281164B2 (en) 2018-11-30 2018-11-30 Porous magnesium manufacturing method

Publications (2)

Publication Number Publication Date
JP2020084312A true JP2020084312A (en) 2020-06-04
JP7281164B2 JP7281164B2 (en) 2023-05-25

Family

ID=70906680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225886A Active JP7281164B2 (en) 2018-11-30 2018-11-30 Porous magnesium manufacturing method

Country Status (1)

Country Link
JP (1) JP7281164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299213A1 (en) * 2022-06-27 2024-01-03 The Manufacturing Technology Centre Limited A method for creating an object

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298716A (en) * 1976-02-17 1977-08-18 Fujitsu Ltd Magnesium sintered bodies
JP2002285204A (en) * 2001-03-23 2002-10-03 National Institute Of Advanced Industrial & Technology Method for manufacturing high-strength porous body
JP2004156092A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Porous metal having excellent energy absorbability, and production method therefor
JP2004349683A (en) * 2003-04-28 2004-12-09 Showa Denko Kk Valve action metallic sintered body, manufacturing method therefor and solid electrolytic capacitor
JP2005163145A (en) * 2003-12-04 2005-06-23 Toyota Industries Corp Composite casting, iron based porous body for casting, and their production method
JP2006002195A (en) * 2004-06-16 2006-01-05 Tohoku Univ Method for manufacturing porous metal glass, and porous metal glass
WO2006087973A1 (en) * 2005-02-18 2006-08-24 The University Of Tokushima Process for producing porous metal, porous metal, and porous metallic structure
JP2008274402A (en) * 2007-02-21 2008-11-13 Depuy Products Inc Porous metal foam structure and manufacturing method
JP2009535504A (en) * 2006-04-28 2009-10-01 バイオマグネシウム システムズ リミテッド Biodegradable magnesium alloy and use thereof
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal
JP2012162756A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Light weight structure
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
JP2013204050A (en) * 2012-03-27 2013-10-07 Hitachi Zosen Corp Method for producing metal sintered compact
JP2014231638A (en) * 2013-04-30 2014-12-11 地方独立行政法人東京都立産業技術研究センター Method of producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material
JP2015053466A (en) * 2013-08-07 2015-03-19 株式会社Nttファシリティーズ Thermoelectric material, process of manufacturing the same, and thermoelectric conversion device
JP2016079445A (en) * 2014-10-15 2016-05-16 国立大学法人名古屋大学 Production method of porous layer, joining method of metal and resin, porous layer, joined structure of metal and resin
US20180037976A1 (en) * 2015-02-25 2018-02-08 Shanghai Jiao Tong University Preparation method and application of three-dimensional interconnected porous magnesium-based material

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298716A (en) * 1976-02-17 1977-08-18 Fujitsu Ltd Magnesium sintered bodies
JP2002285204A (en) * 2001-03-23 2002-10-03 National Institute Of Advanced Industrial & Technology Method for manufacturing high-strength porous body
JP2004156092A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Porous metal having excellent energy absorbability, and production method therefor
JP2004349683A (en) * 2003-04-28 2004-12-09 Showa Denko Kk Valve action metallic sintered body, manufacturing method therefor and solid electrolytic capacitor
JP2005163145A (en) * 2003-12-04 2005-06-23 Toyota Industries Corp Composite casting, iron based porous body for casting, and their production method
JP2006002195A (en) * 2004-06-16 2006-01-05 Tohoku Univ Method for manufacturing porous metal glass, and porous metal glass
WO2006087973A1 (en) * 2005-02-18 2006-08-24 The University Of Tokushima Process for producing porous metal, porous metal, and porous metallic structure
JP2009535504A (en) * 2006-04-28 2009-10-01 バイオマグネシウム システムズ リミテッド Biodegradable magnesium alloy and use thereof
JP2008274402A (en) * 2007-02-21 2008-11-13 Depuy Products Inc Porous metal foam structure and manufacturing method
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal
JP2012162756A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Light weight structure
JP2013082965A (en) * 2011-10-07 2013-05-09 Gunma Univ Method of producing porous metal, and porous metal
JP2013204050A (en) * 2012-03-27 2013-10-07 Hitachi Zosen Corp Method for producing metal sintered compact
JP2014231638A (en) * 2013-04-30 2014-12-11 地方独立行政法人東京都立産業技術研究センター Method of producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material
JP2015053466A (en) * 2013-08-07 2015-03-19 株式会社Nttファシリティーズ Thermoelectric material, process of manufacturing the same, and thermoelectric conversion device
JP2016079445A (en) * 2014-10-15 2016-05-16 国立大学法人名古屋大学 Production method of porous layer, joining method of metal and resin, porous layer, joined structure of metal and resin
US20180037976A1 (en) * 2015-02-25 2018-02-08 Shanghai Jiao Tong University Preparation method and application of three-dimensional interconnected porous magnesium-based material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299213A1 (en) * 2022-06-27 2024-01-03 The Manufacturing Technology Centre Limited A method for creating an object
GB2620365A (en) * 2022-06-27 2024-01-10 The Manufacturing Tech Centre Limited A method of creating an object

Also Published As

Publication number Publication date
JP7281164B2 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
Bekoz et al. Effects of carbamide shape and content on processing and properties of steel foams
EP1755809B1 (en) Method of production of porous metallic materials
CN101722306B (en) Near-net-shape method for porous metal part
CN102534275B (en) TiNi alloy-based composite material with near-zero thermal expansion characteristic and preparation method thereof
US20140349132A1 (en) Method for manufacturing a compact component, and component that can be produced by means of the method
EP1377401A1 (en) A method of producing a metal body by coalescence and the metal body produced
CN110508788B (en) Preparation method of zinc or zinc alloy or composite material tissue engineering scaffold thereof
Kumar et al. The nature of tensile ductility as controlled by extreme-sized pores in powder metallurgy Ti-6Al-4V alloy
Mahmutyazicioglu et al. Effects of alumina (Al2O3) addition on the cell structure and mechanical properties of 6061 foams
Sergey et al. Fabrication and study of double sintered TiNi-based porous alloys
JP2020084312A (en) Porous magnesium production method
Ja-ye et al. Compressive behavior of porous materials fabricated by laser melting deposition using AlSi12 powder and foaming agent
Agbedor et al. Recent progress in porous Mg-based foam preparation approaches: effect of processing parameters on structure and mechanical property
JP2016079445A (en) Production method of porous layer, joining method of metal and resin, porous layer, joined structure of metal and resin
CN104476653B (en) The 3D of a kind of porous niobium product prints manufacture method
GB2551755B (en) A method of manufacturing granules having a layer of metallic particles surrounding a salt core
Huo et al. The Compressive Behavior of Porous AlSi10Mg Prepared by Selective Laser Melting (SLM).
JP2002285203A (en) Method for manufacturing high-strength porous body
Leśniewski et al. Porous titanium materials produced using the HIP method
Esen Production and characterization of porous titanium alloys
JP2004050225A (en) Method for producing metal-made formed material
Singh et al. A Novel Hybrid Additive Manufacturing Methodology for the Development of Ti6Al4V Parts
Baumeister et al. Manufacturing Processes for Metal Foams
Abdallah et al. Effect of effect of cold isostatic pressing on the physical and mechanical properties of tungsten heavy alloys
Lehmhus et al. Iron matrix syntactic foams

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7281164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150