JP2016079445A - Production method of porous layer, joining method of metal and resin, porous layer, joined structure of metal and resin - Google Patents

Production method of porous layer, joining method of metal and resin, porous layer, joined structure of metal and resin Download PDF

Info

Publication number
JP2016079445A
JP2016079445A JP2014210721A JP2014210721A JP2016079445A JP 2016079445 A JP2016079445 A JP 2016079445A JP 2014210721 A JP2014210721 A JP 2014210721A JP 2014210721 A JP2014210721 A JP 2014210721A JP 2016079445 A JP2016079445 A JP 2016079445A
Authority
JP
Japan
Prior art keywords
powder
metal
porous layer
nacl
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014210721A
Other languages
Japanese (ja)
Other versions
JP6447969B2 (en
Inventor
眞 小橋
Makoto Kobashi
眞 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2014210721A priority Critical patent/JP6447969B2/en
Publication of JP2016079445A publication Critical patent/JP2016079445A/en
Application granted granted Critical
Publication of JP6447969B2 publication Critical patent/JP6447969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a porous layer, with which both improved porosity and sufficient sinterability are achieved even if a temperature set for sintering metal powder is not raised.SOLUTION: In a production method of a porous layer: Ti powder, Al powder, and NaCl powder are mixed together (procedures 1, 2); the mixture is pressurized and heated in a pressure and temperature condition in which the Al powder is diffused and the NaCl powder is not decomposed (procedure 3) so as to sinter the Ti powder; and subsequently the NaCl powder is removed with water (procedures 4, 5). In the production method of the porous layer: because cavities caused by sintering of the Ti powder and those caused by removal of the NaCl powder are formed in the Ti-Al alloy, high porosity is materialized; and TiAl, generated by a reaction of the diffused Al powder, having been diffused only by raising a set temperature to a temperature near to the melting point of Al, and the Ti powder, functions as a binder to bond pieces of the Ti powder with one another, and sufficient sinterability is obtained.SELECTED DRAWING: Figure 3

Description

本発明は、多孔質層の作製方法、金属と樹脂との接合方法、多孔質層、金属と樹脂との接合構造に関する。   The present invention relates to a method for producing a porous layer, a method for joining a metal and a resin, a porous layer, and a structure for joining a metal and a resin.

例えば自動車や航空機等の輸送機器を始めとする様々な分野で、優れた材料を適材適所に配置するマルチマテリアル化が進んでいる。特に炭素繊維強化樹脂複合材料(CFRP:carbon fiber reinforced plastic)を用いることで、著しい軽量化が可能となる。例えば自動車ではキャビン部分にCFRPが用いられたり、航空機ではジェットエンジンのファンブレード部分にCFRPが用いられたりする動きがあり、何れの場合も金属と樹脂との強固な接合が不可欠である。   For example, in various fields including transportation equipment such as automobiles and airplanes, multi-materialization is progressing in which excellent materials are arranged at appropriate places. In particular, by using a carbon fiber reinforced plastic (CFRP), a significant weight reduction can be achieved. For example, there is a movement in which CFRP is used for a cabin portion in an automobile and CFRP is used for a fan blade portion of a jet engine in an aircraft. In any case, a strong bond between a metal and a resin is indispensable.

金属と樹脂とを接合する方法として、金属の表面に多孔質層(相互浸透層)を作製し、樹脂を多孔質層の空隙部(気孔)に浸透させる方法がある。この方法では、植物が根付くように樹脂が多孔質層の空隙部に浸透することで、金属と樹脂とが多孔質層を介して接合する。金属として軽量化に優れた特性を有するTi(チタン)を採用し、Tiの表面に多孔質層を作製する方法として、Ti粉末を焼結する方法(例えば非特許文献1参照)や、Ti粉末とスペーサー粉末(例えばNaCl(塩化ナトリウム)粉末やカルバミド粉末等)とを混合して焼結する方法(例えば非特許文献2参照)や、Ti粉末とBC(炭化ホウ素)粉末とを混合して焼結する方法(例えば非特許文献3参照)等がある。 As a method for joining a metal and a resin, there is a method in which a porous layer (interpenetrating layer) is produced on the surface of the metal and the resin is infiltrated into voids (pores) of the porous layer. In this method, the resin and the resin penetrate into the voids of the porous layer so that the plant takes root, so that the metal and the resin are bonded via the porous layer. As a method of adopting Ti (titanium) having excellent characteristics for weight reduction as a metal and producing a porous layer on the surface of Ti, a method of sintering Ti powder (for example, see Non-Patent Document 1), Ti powder, And spacer powder (for example, NaCl (sodium chloride) powder, carbamide powder, etc.) are mixed and sintered (for example, see Non-Patent Document 2), Ti powder and B 4 C (boron carbide) powder are mixed. And a method of sintering (see, for example, Non-Patent Document 3).

Materials Letters 59 (2005)2178−2182Materials Letters 59 (2005) 2178−2182 Journal of Materials Processing Technology 212 (2012)1061−1069Journal of Materials Processing Technology 212 (2012) 1061-1069 一般社団法人軽金属学会 第124回春季大会 講演予稿集(平成25年4月18日発行)Proceedings of the 124th Spring Conference of the Japan Institute of Light Metals (April 18, 2013)

樹脂を多孔質層の空隙部に浸透させて金属と樹脂とを接合する方法では、多孔質層にある程度の空隙部が必要である。しかしながら、非特許文献1の方法では、形成される多孔質層の気孔率が低く、樹脂が多孔質層の空隙部に十分に浸透せず、十分な接合強度を得ることができないという問題がある。多孔質層の気孔率が低いと、例えば軽量且つ強固な特性を持つ炭素繊維が樹脂に含有されていても、その炭素繊維が多孔質層の空隙部に十分に浸透せず、炭素繊維の特性を十分に発揮することができない。非特許文献2の方法では、Tiの融点の方がスペーサー粉末を構成する物質の融点よりも高いので、焼結させるための設定温度(焼結温度)をTiの融点近くまで高くすると、スペーサー粉末が分解してしまう。そのため、設定温度を十分に高くすることができず、十分な焼結性が得られないという問題がある。非特許文献3の方法では、非特許文献1の方法と同様に、形成される多孔質層の気孔率が低いという問題があると共に、設定温度を少なくともTiの融点近くまで高くする必要がある。   In the method of bonding a metal and a resin by infiltrating a resin into the void portion of the porous layer, a certain amount of void portion is required in the porous layer. However, the method of Non-Patent Document 1 has a problem that the porosity of the formed porous layer is low, the resin does not sufficiently penetrate into the voids of the porous layer, and sufficient bonding strength cannot be obtained. . When the porosity of the porous layer is low, for example, even if carbon fibers having light and strong characteristics are contained in the resin, the carbon fibers do not sufficiently penetrate into the voids of the porous layer, and the characteristics of the carbon fibers Cannot be fully utilized. In the method of Non-Patent Document 2, the melting point of Ti is higher than the melting point of the material constituting the spacer powder. Therefore, when the set temperature (sintering temperature) for sintering is increased to near the melting point of Ti, the spacer powder Will be disassembled. Therefore, there is a problem that the set temperature cannot be made sufficiently high and sufficient sinterability cannot be obtained. In the method of Non-Patent Document 3, as with the method of Non-Patent Document 1, there is a problem that the porosity of the formed porous layer is low, and it is necessary to raise the set temperature to at least near the melting point of Ti.

本発明は、上記した事情に鑑みてなされたものであり、その目的は、金属粉末を焼結させるための設定温度を高くしなくとも、気孔率の向上と十分な焼結性とを両立することができる多孔質層の作製方法、金属と樹脂との接合方法、多孔質層、金属と樹脂との接合構造を提供することにある。   The present invention has been made in view of the above-described circumstances, and the object is to achieve both improvement in porosity and sufficient sinterability without increasing the set temperature for sintering metal powder. An object of the present invention is to provide a porous layer manufacturing method, a metal-resin bonding method, a porous layer, and a metal-resin bonding structure.

請求項1に記載した多孔質層の作製方法は、第1金属の粉末である第1金属粉末と、前記第1金属よりも融点が低い第2金属の粉末である第2金属粉末と、少なくとも前記第2金属よりも融点が高い物質からなるスペーサー粉末とを用い、前記第1金属粉末と前記第2金属粉末と前記スペーサー粉末とを、前記第2金属粉末が拡散し且つ前記スペーサー粉末が分解しない圧力及び温度の条件下で加圧及び加熱して前記第1金属粉末を焼結させて第1空隙部を形成し、その後に前記スペーサー粉末を除去して第2空隙部を形成し、前記第1空隙部と前記第2空隙部とを有する多孔質層を作製することを特徴とする。   The method for producing a porous layer according to claim 1 includes a first metal powder that is a powder of a first metal, a second metal powder that is a powder of a second metal having a melting point lower than that of the first metal, and at least A spacer powder made of a substance having a higher melting point than the second metal is used, and the second metal powder diffuses and the spacer powder decomposes the first metal powder, the second metal powder, and the spacer powder. And pressurizing and heating under the conditions of pressure and temperature to sinter the first metal powder to form a first void, and then remove the spacer powder to form a second void, A porous layer having a first void portion and the second void portion is produced.

請求項8に記載した多孔質層は、少なくとも第1領域と第2領域とを有し、前記第1領域では、第1金属の粉末である第1金属粉末と当該第1金属よりも融点が低い第2金属の粉末である第2金属粉末との化合物が前記第1金属粉末の表面の少なくとも一部に形成され、前記第1金属粉末同士が前記化合物を介して結合されていることで第1空隙部が形成されており、前記第2領域では、前記第1空隙部とは異なる第2空隙部が形成されていることを特徴とする。   The porous layer according to claim 8 has at least a first region and a second region, and in the first region, the melting point is higher than that of the first metal powder that is a powder of the first metal and the first metal. A compound with a second metal powder, which is a low second metal powder, is formed on at least a part of the surface of the first metal powder, and the first metal powders are bonded together via the compound. One gap is formed, and a second gap different from the first gap is formed in the second region.

請求項1に記載した多孔質層の作製方法によれば、第1金属粉末を焼結させて第1空隙部を形成し、その後にスペーサー粉末を除去して第2空隙部を形成するので、高い気孔率を実現することができる。このとき、第1金属粉末同士が当該第1金属粉末と第2金属粉末との化合物を介して結合するので、第1金属粉末を焼結させるための設定温度(焼結温度)を第1金属の融点近くまで高くしなくとも、十分な焼結性を得ることができる。これにより、焼結させるための設定温度を高くしなくとも、気孔率の向上と十分な焼結性とを両立することができる。又、このように第1金属粉末を焼結させるための設定温度を高くする必要がないので、設定温度を高くする設備を不要とし、高い気孔率と十分な焼結性を備えた高品質な多孔質層の低コストでの大量生産を期待することができる。又、第1金属粉末の焼結による第1空隙部だけでなく、スペーサー粉末の除去による第2空隙部も気孔率に寄与するので、スペーサー粉末の添加量や粒径を調整することで、多孔質層全体の気孔率を容易に調整することができ、所望の気孔率を容易に実現することができる。   According to the method for producing a porous layer according to claim 1, since the first metal powder is sintered to form the first void, and then the spacer powder is removed to form the second void, High porosity can be achieved. At this time, since the first metal powders are bonded to each other through the compound of the first metal powder and the second metal powder, the set temperature (sintering temperature) for sintering the first metal powder is set to the first metal. Sufficient sinterability can be obtained without increasing the melting point to near the melting point. Thereby, it is possible to achieve both improvement in porosity and sufficient sinterability without increasing the set temperature for sintering. In addition, since it is not necessary to increase the set temperature for sintering the first metal powder in this way, no equipment for increasing the set temperature is required, and a high quality with high porosity and sufficient sinterability is provided. The mass production of the porous layer at a low cost can be expected. Also, not only the first void due to the sintering of the first metal powder but also the second void due to the removal of the spacer powder contributes to the porosity. Therefore, by adjusting the addition amount and particle size of the spacer powder, The porosity of the entire mass layer can be easily adjusted, and a desired porosity can be easily realized.

請求項8に記載した多孔質層によれば、第1領域では、第1金属粉末同士の化合物を介した結合による第1空隙部が形成されており、第2領域では、第1空隙部とは異なる第2空隙部が形成されているので、高い気孔率を実現することができる。このとき、第1金属粉末同士が当該第1金属粉末と第2金属粉末との化合物を介して結合するので、第1金属粉末を焼結させるための設定温度(焼結温度)を第1金属の融点近くまで高くしなくとも、十分な焼結性を得ることができる。これにより、焼結させるための設定温度を高くしなくとも、気孔率の向上と十分な焼結性とを両立することができる。又、このように第1金属粉末を焼結させるための設定温度を高くする必要がないので、設定温度を高くする設備を不要とし、高い気孔率と十分な焼結性を備えた高品質な多孔質層の低コストでの大量生産を期待することができる。又、第2空隙部を、請求項1に記載したスペーサー粉末の除去により形成すれば、スペーサー粉末の添加量や粒径を調整することで、多孔質層全体の気孔率を容易に調整することができ、所望の気孔率を容易に実現することができる。   According to the porous layer described in claim 8, in the first region, the first void portion is formed by bonding through the compound of the first metal powders, and in the second region, the first void portion and Since the different 2nd space | gap part is formed, high porosity can be implement | achieved. At this time, since the first metal powders are bonded to each other through the compound of the first metal powder and the second metal powder, the set temperature (sintering temperature) for sintering the first metal powder is set to the first metal. Sufficient sinterability can be obtained without increasing the melting point to near the melting point. Thereby, it is possible to achieve both improvement in porosity and sufficient sinterability without increasing the set temperature for sintering. In addition, since it is not necessary to increase the set temperature for sintering the first metal powder in this way, no equipment for increasing the set temperature is required, and a high quality with high porosity and sufficient sinterability is provided. The mass production of the porous layer at a low cost can be expected. Further, if the second void is formed by removing the spacer powder described in claim 1, the porosity of the entire porous layer can be easily adjusted by adjusting the added amount and particle size of the spacer powder. And a desired porosity can be easily realized.

本発明の一実施形態を示し、多孔質層単体を作製する態様を示す図The figure which shows one Embodiment of this invention and shows the aspect which produces the porous layer single-piece | unit Ti基板と多孔質層との接合体を作製する態様を示す図The figure which shows the aspect which produces the conjugate | zygote of Ti substrate and a porous layer 試料を作製する手順を示す図Diagram showing the procedure for preparing a sample 試料が作製されるまでの遷移を示す図Diagram showing the transition to sample preparation Ti粉末の焼結の態様を示す図The figure which shows the aspect of sintering of Ti powder Ti粉末、Al粉末、NaCl粉末のSEM画像を示す図The figure which shows the SEM image of Ti powder, Al powder, NaCl powder 試料(Al粉末あり)の外観画像及び断面のSEM画像を示す図The figure which shows the external appearance image and SEM image of a cross section of a sample (with Al powder) 試料(Al粉末なし)の外観画像を示す図Figure showing the appearance image of the sample (without Al powder) 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample 試料の断面のSEM画像を示す図The figure which shows the SEM image of the cross section of a sample

以下、本発明の一実施形態について図面を参照して説明する。
本実施形態では、第1金属として軽量化に優れた特性を持つTiを用い、第2金属として第1金属よりも融点が低いAl(アルミニウム)を用い、スペーサー粉末として第1金属よりも融点が低く且つ第2金属よりも融点が高いNaCl粉末を用いた場合を説明する。Tiの融点は約1668℃であり、Alの融点は約660℃であり、NaClの融点は約800℃である。又、NaClは静水に溶解する特性を持つ。多孔質層を作製する場合としては、多孔質層のみを作製する(多孔質層単体を作製する)場合と、Ti基板上(金属の表面上)に多孔質層を作製する(Ti基板と多孔質層との接合体を作製する)場合とがある。以下、多孔質層単体及び接合体を試料と総称する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, Ti having excellent characteristics for weight reduction is used as the first metal, Al (aluminum) having a lower melting point than the first metal is used as the second metal, and the melting point is higher than that of the first metal as the spacer powder. The case where NaCl powder having a melting point lower than that of the second metal is used will be described. The melting point of Ti is about 1668 ° C., the melting point of Al is about 660 ° C., and the melting point of NaCl is about 800 ° C. NaCl has the property of dissolving in still water. The porous layer is produced by producing only the porous layer (producing a porous layer alone) or producing the porous layer on the Ti substrate (on the metal surface) (Ti substrate and porous). In some cases, a joined body with a porous layer is produced. Hereinafter, the porous layer alone and the joined body are collectively referred to as a sample.

本実施形態では、Ti粉末(第1金属粉末)とAl粉末(第2金属粉末)とNaCl粉末とを加圧及び加熱する手段として、図1及び図2に示す装置1を用いた。装置1は、円筒状の型(黒鉛型)2と、上側部材3と、下側部材4とが組み合わされており、上側部材3及び下側部材4が型2の中空部2aを軸方向に移動可能となっている。装置1を用いて以下の条件及び図3に示す手順により、原料粉末(Ti粉末、Al粉末、NaCl粉末)から試料を作製した。   In this embodiment, the apparatus 1 shown in FIG.1 and FIG.2 was used as a means to pressurize and heat Ti powder (1st metal powder), Al powder (2nd metal powder), and NaCl powder. The apparatus 1 includes a cylindrical mold (graphite mold) 2, an upper member 3, and a lower member 4, and the upper member 3 and the lower member 4 extend the hollow portion 2 a of the mold 2 in the axial direction. It is movable. A sample was prepared from the raw material powder (Ti powder, Al powder, NaCl powder) using the apparatus 1 under the following conditions and the procedure shown in FIG.

・Ti粉末の粒径:<45μm,<150μm
・Al粉末の粒径:<45μm
・NaCl粉末の粒径:330−430μm
・Ti粉末とAl粉末との原子組成比:Ti−0,20,50at%Al
・NaCl粉末の体積比(原料粉末全体に対するNaCl粉末の割合):0−70vol%
・圧力:1.8MPa,10MPa
・昇温速度:1℃/sec
・設定温度:500−650℃
・保持時間(設定温度で保持する時間):0h,1h
尚、設定温度は、型2において原料粉末(Ti−Al−NaCl混合粉末)を充填する箇所付近に熱電対を設けて測定している。
-Particle size of Ti powder: <45 μm, <150 μm
-Particle size of Al powder: <45 μm
-Particle size of NaCl powder: 330-430 μm
-Atomic composition ratio of Ti powder and Al powder: Ti-0, 20, 50 at% Al
-Volume ratio of NaCl powder (ratio of NaCl powder to the whole raw material powder): 0-70 vol%
・ Pressure: 1.8MPa, 10MPa
・ Raising rate: 1 ℃ / sec
・ Set temperature: 500-650 ° C
-Holding time (holding time at set temperature): 0h, 1h
The set temperature is measured by providing a thermocouple in the vicinity of the location where the raw material powder (Ti—Al—NaCl mixed powder) is filled in the mold 2.

手順1:Ti粉末とAl粉末とを所定の原子組成比で混合し、そのTi−Al混合粉末にNaCl粉末を所定の体積比で添加し、Ti−Al−NaCl混合粉末を作製する。
手順2:多孔質層単体を作製する場合であれば、下側部材4を型2に装着した状態で、Ti−Al−NaCl混合粉末を型2の中空部2aに充填する。接合体を作製する場合であれば、最初にTi基板を型2の中空部2aに充填し、続いてTi−Al−NaCl混合粉末を型2の中空部2aに充填する。尚、Ti基板のサイズは、例えば直径20mm、高さ5mmである。
Procedure 1: Ti powder and Al powder are mixed at a predetermined atomic composition ratio, and NaCl powder is added to the Ti-Al mixed powder at a predetermined volume ratio to produce a Ti-Al-NaCl mixed powder.
Procedure 2: In the case of producing a single porous layer, the hollow portion 2a of the mold 2 is filled with the Ti—Al—NaCl mixed powder with the lower member 4 attached to the mold 2. In the case of manufacturing a joined body, first, the Ti substrate is filled into the hollow portion 2a of the mold 2, and then the Ti-Al-NaCl mixed powder is filled into the hollow portion 2a of the mold 2. The size of the Ti substrate is, for example, 20 mm in diameter and 5 mm in height.

手順3:上方から上側部材3を型2に装着し、所定の圧力で加圧し、所定の昇温速度で所定の設定温度まで加熱する。このとき、設定温度(500−650℃)をAlの融点(約660℃)に近い温度まで加熱するので、図4及び図5に示すように、Al粉末がTi粉末同士の隙間に拡散し、その拡散したAl粉末とTi粉末との間で以下の反応が進む。   Procedure 3: The upper member 3 is mounted on the mold 2 from above, pressurized at a predetermined pressure, and heated to a predetermined set temperature at a predetermined temperature increase rate. At this time, since the set temperature (500-650 ° C.) is heated to a temperature close to the melting point of Al (about 660 ° C.), as shown in FIGS. 4 and 5, the Al powder diffuses into the gap between the Ti powders, The following reaction proceeds between the diffused Al powder and Ti powder.

Ti(S)+3Al(S)→TiAl(S)
このようにして生成されたTiAl(化合物)は、Ti粉末同士を結合させるバインダーとして機能する。即ち、従来とは異なり、Al粉末を添加していることで、TiAlが生成され、その生成されたTiAlがTi粉末同士を結合させることで、空隙部(気孔、第1空隙部)が形成される。尚、このとき、設定温度によっては拡散しないAl粉末が残留している場合もあり得る。又、設定温度をNaCl粉末の融点(約800℃)よりも十分に低い温度に抑えているので、Ti粉末同士の結合が進んでいる最中にNaCl粉末が分解することはない。即ち、Ti粉末同士のTiAlを介した結合によるTi粉末の焼結により空隙部が形成され、且つNaCl粉末が散在されている(原形を留めている)Ti−Al合金が作製される。
Ti (S) + 3Al (S) → TiAl 3 (S)
The TiAl 3 (compound) thus produced functions as a binder for bonding Ti powders together. That is, unlike the conventional case, by adding Al powder, TiAl 3 is generated, and the generated TiAl 3 bonds the Ti powder together, so that voids (pores, first voids) are formed. It is formed. At this time, Al powder that does not diffuse may remain depending on the set temperature. Further, since the set temperature is suppressed to a temperature sufficiently lower than the melting point (about 800 ° C.) of the NaCl powder, the NaCl powder is not decomposed while the bonding between the Ti powders proceeds. That is, a Ti-Al alloy in which voids are formed by sintering of Ti powder by bonding of Ti powders via TiAl 3 and NaCl powder is dispersed (preserving the original shape) is produced.

手順4:設定温度で所定の保持時間だけ保持する。
手順5:Ti−Al合金を常温まで冷却した後に型2から離型し、静水が注入されている容器(ビーカー)5内に放置し、Ti−Al合金を静水で水洗する。このとき、NaCl粉末が静水に溶解して除去されるので、図4に示すように、NaCl粉末が散在していた箇所にも空隙部(気孔、第2空隙部)が形成される。
手順6:NaCl粉末が除去されたTi−Al合金を容器5から取り出す。
Procedure 4: Hold for a predetermined holding time at the set temperature.
Procedure 5: After cooling the Ti—Al alloy to room temperature, it is released from the mold 2 and left in a container (beaker) 5 into which still water is poured, and the Ti—Al alloy is washed with still water. At this time, since the NaCl powder is dissolved and removed in the still water, voids (pores, second voids) are also formed at locations where the NaCl powder was scattered, as shown in FIG.
Procedure 6: Take out the Ti—Al alloy from which the NaCl powder has been removed from the container 5.

このような手順1から6を行うことで、Ti粉末の焼結による空隙部と、NaCl粉末の除去による空隙部とが形成された試料を作製することができる。Ti粉末の焼結による空隙部が形成されている領域が第1領域であり、NaCl粉末の除去による空隙部が形成されている領域が第2領域である。
図6は、原料を示し、(a)は粒径<45μmのTi粉末、(b)は粒径<45μmのAl粉末、(c)は粒径330−430μmのNaCl粉末のSEM(Scanning Electron Microscope)画像を示す。
By performing such procedures 1 to 6, it is possible to produce a sample in which voids formed by sintering of Ti powder and voids formed by removing NaCl powder are formed. The region where the voids are formed by sintering the Ti powder is the first region, and the region where the voids are formed by removing the NaCl powder is the second region.
FIG. 6 shows raw materials, (a) Ti powder with particle size <45 μm, (b) Al powder with particle size <45 μm, (c) SEM (Scanning Electron Microscope) with NaCl powder with particle size 330-430 μm. ) Show the image.

図7は、Ti粉末の粒径:<45μm、Al粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、Ti粉末とAl粉末との原子組成比:Ti−50at%Al、NaCl粉末の体積比:70vol%、圧力:1.8MPa、昇温速度:1℃/sec、設定温度:600℃、保持時間:0hを条件とし、手順1から6を行うことで作製した試料を示し、(a)は外観を撮像した外観画像、(b)は断面の組織を撮像したSEM画像を示す。尚、後述する断面のSEM画像は全て垂直断面のSEM画像である。上記した条件で作製した試料では、断面のEDX(Energy Dispersive X-ray Spectroscopy)分析により、TiAlが生成されていることが確認された。図7(b)において「1」の部分がNaCl粉末の除去による形成された空隙部である。即ち、添加したNaCl粉末の粒径が数100μm程度であるので、NaCl粉末の除去により数100μm程度の空隙部が形成されていることが確認された。図7(c)において「2」の部分がTi粉末の焼結により形成された空隙部である。NaCl粉末の除去により形成される空隙部ほどのサイズではないが、Ti粉末の焼結により数〜数10μm程度の空隙部が形成されていることが確認された。 FIG. 7 shows the particle size of Ti powder: <45 μm, the particle size of Al powder: <45 μm, the particle size of NaCl powder: 330-430 μm, the atomic composition ratio of Ti powder to Al powder: Ti-50 at% Al, NaCl A sample produced by performing steps 1 to 6 under the conditions of powder volume ratio: 70 vol%, pressure: 1.8 MPa, heating rate: 1 ° C./sec, set temperature: 600 ° C., holding time: 0 h. (A) is an appearance image obtained by imaging the appearance, and (b) is an SEM image obtained by imaging a cross-sectional tissue. In addition, all SEM images of the cross section described later are SEM images of a vertical cross section. In the sample manufactured under the above conditions, it was confirmed that TiAl 3 was generated by EDX (Energy Dispersive X-ray Spectroscopy) analysis of the cross section. In FIG. 7B, the portion “1” is a void formed by removing NaCl powder. That is, since the added NaCl powder has a particle size of about several hundred μm, it was confirmed that a void of about several hundred μm was formed by removing the NaCl powder. In FIG. 7C, the portion “2” is a void formed by sintering of Ti powder. Although not as large as the gap formed by removing the NaCl powder, it was confirmed that a gap of several to several tens of μm was formed by sintering the Ti powder.

尚、比較対象として、図8は、Al粉末を用いずにTi粉末とNaCl粉末とを用い、Ti粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、NaCl粉末の体積比:70vol%、圧力:1.8MPa、昇温速度:1℃/sec、設定温度:700℃、保持時間:0hを条件とし、手順1から4を行う(水洗なし)ことで作製した試料の外観画像を示す。Al粉末を用いずにTi粉末とNaCl粉末とを用いた場合では、人が力を加えるとTi粉末が粉々に崩壊する状態であり、Ti粉末の焼結が十分でないことが確認された。即ち、Ti粉末を十分に焼結させるためには、Tiの融点が約1668℃であるので、設定温度をTiの融点に近い1000℃程度まで加熱する必要があるが、1000℃程度まで加熱してしまうと、NaClの融点が約800℃であるので、NaCl粉末が分解してしまい、気孔率を低下させる要因となる。そのため、Al粉末を用いずにTi粉末とNaCl粉末とを用いた場合には、高い気孔率と十分な焼結性とを両立することは困難である。   For comparison, FIG. 8 uses Ti powder and NaCl powder without using Al powder, Ti powder particle size: <45 μm, NaCl powder particle size: 330-430 μm, NaCl powder volume ratio: 70 vol%, pressure: 1.8 MPa, temperature increase rate: 1 ° C./sec, set temperature: 700 ° C., holding time: 0 h, conditions 1 to 4 (without water washing) Indicates. In the case of using Ti powder and NaCl powder without using Al powder, it was confirmed that when a person applied force, Ti powder collapsed into pieces, and sintering of Ti powder was not sufficient. That is, in order to sufficiently sinter the Ti powder, since the melting point of Ti is about 1668 ° C., it is necessary to heat the set temperature to about 1000 ° C. close to the melting point of Ti. In this case, the melting point of NaCl is about 800 ° C., so that the NaCl powder is decomposed and becomes a factor of decreasing the porosity. Therefore, when Ti powder and NaCl powder are used without using Al powder, it is difficult to achieve both high porosity and sufficient sinterability.

これに対し、本発明では、Ti粉末よりも融点が低いAl粉末を添加することで、高い気孔率と十分な焼結性とを両立している。以下、Al粉末の添加量及び設定温度がTi粉末同士の結合に与える影響について説明する。尚、気孔率は、外部と連通する空隙部の容積と内部に封入されている空隙部の容積との和を、全容積(見かけ上の容積)で除した値であり、試料の質量と容積を用いて計算している。   On the other hand, in this invention, high porosity and sufficient sinterability are made compatible by adding Al powder whose melting | fusing point is lower than Ti powder. Hereinafter, the influence of the added amount of Al powder and the set temperature on the bonding between Ti powders will be described. The porosity is a value obtained by dividing the sum of the volume of the void portion communicating with the outside and the volume of the void portion enclosed inside by the total volume (apparent volume), and the mass and volume of the sample. It is calculated using

図9から図12は、Al粉末の添加量及び設定温度を変化させて作製した試料の断面のSEM画像である。この場合、Ti粉末の粒径:<45μm、Al粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、NaCl粉末の体積比:70vol%、圧力:1.8MPa、昇温速度:1℃/sec、保持時間:0hを共通の条件とし、Ti粉末とAl粉末との原子組成比をTi−0,20,50at%Alで変化させ、設定温度を500,550,600,650℃で変化させている。   9 to 12 are SEM images of cross sections of samples prepared by changing the amount of Al powder added and the set temperature. In this case, the particle size of Ti powder: <45 μm, the particle size of Al powder: <45 μm, the particle size of NaCl powder: 330-430 μm, the volume ratio of NaCl powder: 70 vol%, the pressure: 1.8 MPa, the heating rate: 1 ° C./sec, holding time: 0 h under common conditions, the atomic composition ratio of Ti powder and Al powder is changed with Ti-0, 20, 50 at% Al, and the set temperature is 500, 550, 600, 650 ° C. It is changed with.

図9に示すように、Ti粉末とAl粉末との原子組成比をTi−0at%Alとした場合では、何れの設定温度でも(設定温度に拘らず)Ti粉末同士の結合が十分でなく、Ti粉末が焼結していない(未焼結である)ことが確認された。尚、設定温度が500℃の試料は人が力を加えなくとも自然にTi粉末が粉々に崩壊する状態であり、設定温度が550℃以上の試料は上述した図8にも示したように人が力を加えるとTi粉末が粉々に崩壊する状態である。換言すれば、設定温度が550℃以上の試料は、人が力を加えなければ(慎重に扱えば)ある程度の気孔率を得られるが、これでは実用性に欠け、現実的でないことが明らかである。   As shown in FIG. 9, when the atomic composition ratio of Ti powder and Al powder is Ti-0 at% Al, the bonding between Ti powders is not sufficient at any set temperature (regardless of the set temperature), It was confirmed that the Ti powder was not sintered (unsintered). Note that the sample with a set temperature of 500 ° C. is a state where the Ti powder spontaneously collapses without human force, and the sample with the set temperature of 550 ° C. or higher is human as shown in FIG. When the force is applied, the Ti powder collapses into pieces. In other words, a sample with a set temperature of 550 ° C. or higher can obtain a certain degree of porosity unless human force is applied (if treated carefully), but this is not practical and is not practical. is there.

一方、図10及び図11に示すように、Ti粉末とAl粉末との原子組成比をTi−20at%Al、50at%Alとした場合では、設定温度が500℃では、Ti粉末同士の結合が十分でなく未焼結であるが、設定温度が550℃以上では、TiAlが生成されていることが確認された。尚、ここでいうAl粉末が添加されている場合の設定温度が500℃のときの未焼結とは、Al粉末が添加されていない場合(Ti−0at%Al)の未焼結とは状態が異なる。即ち、Al粉末が添加されている場合、保持時間:0hの条件では未焼結であるが、Al粉末が添加されているので、保持時間を長くすれば、TiAlが生成され、Ti粉末が焼結する可能性もあり得る。図12は、Ti−50at%Al、設定温度が650℃の試料である。即ち、設定温度が500−550℃の付近でAl粉末がTi粉末同士の隙間に拡散し始めることで、その拡散したAl粉末とTi粉末とが反応して生成されたTiAlがTi粉末同士を結合させるバインダーとして機能し、Ti粉末同士がTiAlを介して結合されていることが確認された。同じAl粉末の添加量で比較すると、設定温度が高くなるほどAl粉末の量が減り、TiAlの生成量が増えていることが確認された。又、同じ設定温度で比較すると、Al粉末の添加量が多くなるほどTiAlの生成量が増えていることが確認された。 On the other hand, as shown in FIGS. 10 and 11, when the atomic composition ratio of Ti powder and Al powder is Ti-20 at% Al and 50 at% Al, when the set temperature is 500 ° C., bonding between Ti powders is not possible. Although not sufficient and unsintered, it was confirmed that TiAl 3 was produced at a set temperature of 550 ° C. or higher. In addition, unsintered when the set temperature is 500 ° C. when Al powder is added here is unsintered when Al powder is not added (Ti-0 at% Al). Is different. That is, when Al powder is added, it is unsintered under the condition of holding time: 0 h, but since Al powder is added, if the holding time is lengthened, TiAl 3 is generated and Ti powder is There is also the possibility of sintering. FIG. 12 shows a sample having Ti-50 at% Al and a set temperature of 650 ° C. That is, when Al powder starts to diffuse into the gap between Ti powders when the set temperature is around 500-550 ° C., TiAl 3 produced by the reaction between the diffused Al powder and Ti powder causes the Ti powders to move together. It functioned as a binder to be bonded, and it was confirmed that Ti powders were bonded through TiAl 3 . When compared with the same amount of Al powder added, it was confirmed that the amount of Al powder decreased and the amount of TiAl 3 produced increased as the set temperature increased. Further, when compared at the same set temperature, it was confirmed that the amount of TiAl 3 produced increased as the amount of Al powder added increased.

次に、Al粉末の添加量及び設定温度以外の要素として、保持時間、圧力、Ti粉末の粒径、NaCl粉末の体積比のそれぞれがTi粉末同士の結合に与える影響について説明する。
図13は、保持時間を変化させて作製した試料の断面のSEM画像である。この場合、Ti粉末の粒径:<45μm、Al粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、Ti粉末とAl粉末との原子組成比:Ti−20at%Al、NaCl粉末の体積比:70vol%、圧力:1.8MPa、昇温速度:1℃/sec、設定温度:600℃を共通の条件とし、保持時間を0h、1hで変化させている。
Next, the influence of the holding time, pressure, Ti powder particle size, and NaCl powder volume ratio on the bonding between Ti powders as factors other than the addition amount of Al powder and the set temperature will be described.
FIG. 13 is an SEM image of a cross section of a sample manufactured by changing the holding time. In this case, the particle size of Ti powder: <45 μm, the particle size of Al powder: <45 μm, the particle size of NaCl powder: 330-430 μm, the atomic composition ratio of Ti powder to Al powder: Ti-20 at% Al, NaCl powder The volume ratio is 70 vol%, the pressure is 1.8 MPa, the heating rate is 1 ° C./sec, and the set temperature is 600 ° C., and the holding time is changed between 0 h and 1 h.

保持時間を0hとした場合では、TiAlが生成されている一方でTiAlが生成されていないが、保持時間を1hとした場合では、TiAlからTiAlが生成されていることが確認された。即ち、TiAlが生成される設定温度で一定時間(1h)保持することで、TiAlからTiAlが生成されていることが確認された。TiAlとTiAlとを力学的に比較すると、TiAlの方がTiAlよりも力学的に安定している(力学的な安定性が高い)ので、TiAlが生成される設定温度で一定時間保持し、TiAlからTiAlを生成させることで、力学的な安定性を高めることができ、Ti粉末同士の結合強度をより高めることができる。加えると、保持時間を更に長くすると、TiAlからTiAlが生成されると推測される。TiAlとTiAlとを力学的に比較すると、TiAlの方がTiAlよりも力学的に安定しているので、TiAlが生成される設定温度で保持する時間をより長くし、TiAlからTiAlを生成させ更にはTiAlからTiAlを生成させることで、力学的な安定性をより一層高めることができ、Ti粉末同士の結合強度をより一層高めることができる。 When the holding time was set to 0 h, TiAl 3 was generated but no TiAl was generated. However, when the holding time was set to 1 h, it was confirmed that TiAl was generated from TiAl 3 . That is, a certain period of time (1h) maintained at a set temperature TiAl 3 is generated, it was confirmed that the TiAl from TiAl 3 is generated. When TiAl 3 and TiAl are compared mechanically, TiAl is mechanically more stable than TiAl 3 (higher mechanical stability), so it is maintained for a certain time at the set temperature at which TiAl 3 is generated. In addition, by generating TiAl from TiAl 3 , the mechanical stability can be increased, and the bond strength between Ti powders can be further increased. In addition, it is estimated that Ti 3 Al is generated from TiAl when the holding time is further increased. When TiAl and Ti 3 Al are compared mechanically, Ti 3 Al is more stable than TiAl, so the time for holding TiAl 3 at the set temperature at which TiAl 3 is generated is longer, and TiAl 3 By generating TiAl from TiAl and further generating Ti 3 Al from TiAl, the mechanical stability can be further increased, and the bond strength between Ti powders can be further increased.

図14は、圧力を変化させて作製した試料の断面のSEM画像である。この場合、Ti粉末の粒径:<45μm、Al粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、Ti粉末とAl粉末との原子組成比:Ti−50at%Al、NaCl粉末の体積比:70vol%、昇温速度:1℃/sec、設定温度:600℃、保持時間:0hを共通の条件とし、圧力を1.8MPa、10MPaで変化させている。
圧力を10MPaとした場合では、圧力を1.8MPaとした場合よりもTi粉末同士の空隙率が低下し、気孔率が数%低下しているが、70%以上の気孔率を実現している。又、何れの場合でもTi粉末同士がTiAlを介して結合されていることが確認されており、圧力の増加によりTi粉末同士が隙間なく結合されていることが確認された。即ち、圧力を高めることで、Ti粉末同士の結合強度を高めることができる。
FIG. 14 is an SEM image of a cross section of a sample manufactured by changing the pressure. In this case, the particle size of Ti powder: <45 μm, the particle size of Al powder: <45 μm, the particle size of NaCl powder: 330-430 μm, the atomic composition ratio of Ti powder to Al powder: Ti-50 at% Al, NaCl powder The volume ratio is 70 vol%, the heating rate is 1 ° C./sec, the set temperature is 600 ° C., the holding time is 0 h, and the pressure is changed at 1.8 MPa and 10 MPa.
When the pressure is 10 MPa, the porosity between Ti powders is lower than when the pressure is 1.8 MPa, and the porosity is reduced by several percent, but a porosity of 70% or more is realized. . In any case, it was confirmed that the Ti powders were bonded together through TiAl 3, and it was confirmed that the Ti powders were bonded together with no gap due to the increase in pressure. That is, the bond strength between Ti powders can be increased by increasing the pressure.

図15は、Ti粉末の粒径を変化させて作製した試料の断面のSEM画像である。この場合、Al粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、圧力:1.8MPa、Ti粉末とAl粉末との原子組成比:Ti−20at%Al、NaCl粉末の体積比:70vol%、昇温速度:1℃/sec、設定温度:600℃、保持時間:0hを共通の条件とし、Ti粉末の粒径を<45μm、<150μmで変化させている。
Ti粉末の粒径を<150μmとした場合では、Ti粉末を取り囲むようにTiAlが生成されており、Ti粉末の粒径に依存せず、Ti粉末同士がTiAlを介して結合されていることが確認された。
FIG. 15 is an SEM image of a cross section of a sample prepared by changing the particle size of the Ti powder. In this case, the particle size of Al powder: <45 μm, the particle size of NaCl powder: 330-430 μm, the pressure: 1.8 MPa, the atomic composition ratio of Ti powder to Al powder: volume ratio of Ti-20 at% Al, NaCl powder : 70 vol%, temperature rising rate: 1 ° C / sec, set temperature: 600 ° C, holding time: 0h, and the particle size of Ti powder is changed to <45 µm and <150 µm.
When the particle size of the Ti powder is set to <150 μm, TiAl 3 is generated so as to surround the Ti powder, and the Ti powders are bonded to each other via the TiAl 3 without depending on the particle size of the Ti powder. It was confirmed.

図16から図20は、NaCl粉末の体積比を変化させて作製した試料の断面のSEM画像である。この場合、Ti粉末の粒径:<45μm、Al粉末の粒径:<45μm、NaCl粉末の粒径:330−430μm、Ti粉末とAl粉末との原子組成比:Ti−50at%Al、圧力:1.8MPa、昇温速度:1℃/sec、設定温度:600℃、保持時間:0hを共通の条件とし、NaCl粉末の体積比を0,40,50,60,70vol%で変化させている。
何れの体積比でも(体積比に拘らず)TiAlが生成されており、Ti粉末同士がTiAlを介して結合されていることが確認された。又、NaCl粉末の体積比の増加により気孔率が高くなることが確認された。更に、NaCl粉末の体積比を0vol%(NaCl粉末の添加なし)とした場合の気孔率が23.1%であるのに対し、NaCl粉末の体積比を40−70vol%とした場合の気孔率が51.5−70.6%であり、NaCl粉末を添加することで気孔率が大幅に高まり、NaCl粉末の添加量や粒径が最終的な気孔率に大きく寄与することが確認された。
16 to 20 are SEM images of cross sections of samples manufactured by changing the volume ratio of NaCl powder. In this case, the particle size of Ti powder: <45 μm, the particle size of Al powder: <45 μm, the particle size of NaCl powder: 330-430 μm, the atomic composition ratio of Ti powder to Al powder: Ti-50 at% Al, pressure: The common conditions are 1.8 MPa, temperature increase rate: 1 ° C./sec, set temperature: 600 ° C., holding time: 0 h, and the volume ratio of NaCl powder is changed at 0, 40, 50, 60, 70 vol%. .
It was confirmed that TiAl 3 was produced at any volume ratio (regardless of the volume ratio), and that Ti powders were bonded together through TiAl 3 . Further, it was confirmed that the porosity was increased by increasing the volume ratio of NaCl powder. Further, the porosity when the volume ratio of NaCl powder is 0 vol% (without addition of NaCl powder) is 23.1%, whereas the porosity when the volume ratio of NaCl powder is 40-70 vol%. Was 51.5-70.6%, and it was confirmed that the addition of NaCl powder greatly increased the porosity, and the addition amount and particle size of NaCl powder greatly contributed to the final porosity.

このように構成された多孔質層は、例えば自動車や航空機等の輸送機器を始めとする様々な分野で金属と樹脂(例えばエポキシ樹脂等)とを接合するのに用いられる。即ち、Ti基板上に多孔質層が作製された接合体では、植物が根付くように樹脂(硬化処理前の熱硬化性樹脂や、高温で軟化した熱可塑性樹脂)を多孔質層の空隙部に浸透させることで、Ti基板と樹脂とを接合することができる。この場合、本実施形態の方法で作製した多孔質層は高い気孔率と十分な焼結性とを両立しているので、樹脂が多孔質層の空隙部に十分に浸透し、その結果、Ti基板と樹脂との強固な接合を実現することができる。又、軽量且つ強固な特性を持つ炭素繊維が樹脂に含有されている場合、アクリル繊維が用いられたPAN(Polyacrylonitrile)系の炭素繊維であれば径が5−7μm程度であり、ピッチが用いられたピッチ系の炭素繊維であれば径が7−10μm程度であるのに対し、上述したようにTi粉末の焼結により数〜数10μm程度の空隙部が形成され、NaCl粉末の除去により数100μm程度の空隙部が形成されているので、これらの炭素繊維が多孔質層の空隙部に十分に浸透し、炭素繊維の特性を十分に発揮することができる。又、多孔質層単体の用途として例えばフィルター等を想定することができる。   The porous layer configured as described above is used to join a metal and a resin (for example, an epoxy resin) in various fields including transportation equipment such as an automobile and an aircraft. That is, in a joined body in which a porous layer is formed on a Ti substrate, a resin (a thermosetting resin before curing treatment or a thermoplastic resin softened at a high temperature) is placed in the voids of the porous layer so that plants can take root. By permeating, the Ti substrate and the resin can be joined. In this case, since the porous layer produced by the method of the present embodiment has both high porosity and sufficient sinterability, the resin sufficiently penetrates into the voids of the porous layer. A strong bond between the substrate and the resin can be realized. In addition, when carbon fiber having light and strong characteristics is contained in the resin, the diameter is about 5-7 μm if the PAN (Polyacrylonitrile) type carbon fiber using acrylic fiber is used, and the pitch is used. In the case of the pitch-based carbon fiber, the diameter is about 7-10 μm. On the other hand, as described above, a void of about several to several tens of μm is formed by sintering the Ti powder, and the removal of NaCl powder is several hundred μm. Since the void portion of a degree is formed, these carbon fibers can sufficiently penetrate into the void portion of the porous layer, and the characteristics of the carbon fiber can be sufficiently exhibited. Moreover, a filter etc. can be assumed as a use of a porous layer single-piece | unit.

以上に説明したように本実施形態によれば、Ti粉末とAl粉末とNaCl粉末とを、Al粉末が拡散し且つNaCl粉末が分解しない圧力及び温度の条件下で加圧及び加熱してTi粉末を焼結させ、その後にNaCl粉末を除去し、多孔質層を作製するようにした。Ti−Al合金に、Ti粉末の焼結による空隙部と、NaCl粉末の除去による空隙部とが形成されるので、高い気孔率を実現することができる。又、設定温度をAlの融点近くまで高くするだけでAl粉末が拡散し、その拡散したAl粉末とTi粉末とが反応して生成された化合物がTi粉末同士を結合させるバインダーとして機能するので、設定温度をTiの融点近くまで高くしなくとも、十分な焼結性を得ることができる。これにより、設定温度を高くしなくとも、気孔率の向上と十分な焼結性とを両立することができる。又、このように設定温度を高くする必要がないので、設定温度を高くする設備を不要とし、高い気孔率と十分な焼結性を備えた高品質な多孔質層の低コストでの大量生産を期待することができる。又、NaCl粉末の除去による空隙部も気孔率に寄与するので、NaCl粉末の添加量や粒径を調整することで、気孔率を容易に調整することができ、所望の気孔率を容易に実現することができる。   As described above, according to the present embodiment, Ti powder, Al powder, and NaCl powder are pressurized and heated under conditions of pressure and temperature at which Al powder diffuses and NaCl powder does not decompose, and Ti powder. After that, the NaCl powder was removed to prepare a porous layer. Since a void portion due to sintering of Ti powder and a void portion due to removal of NaCl powder are formed in the Ti—Al alloy, a high porosity can be realized. Also, Al powder diffuses just by raising the set temperature to near the melting point of Al, and the compound produced by the reaction between the diffused Al powder and Ti powder functions as a binder to bond Ti powders together. Sufficient sinterability can be obtained without increasing the set temperature to near the melting point of Ti. Thereby, it is possible to achieve both improvement in porosity and sufficient sinterability without increasing the set temperature. In addition, since there is no need to increase the set temperature in this way, no equipment for increasing the set temperature is required, and mass production of a high-quality porous layer with high porosity and sufficient sinterability at low cost is possible. Can be expected. In addition, voids due to the removal of NaCl powder also contribute to the porosity, so by adjusting the addition amount and particle size of NaCl powder, the porosity can be easily adjusted, and the desired porosity can be easily achieved. can do.

本発明は、上記した実施形態にのみ限定されるものではなく、以下のように変形又は拡張することができる。
本実施形態では、第1金属として比重が比較的小さいTi(比重は約4.54g/cm)を用いた場合を例示したが、軽量化の要求が小さければ比重がTiよりも大きい例えばCu(銅、融点は約1085℃、比重は約8.96g/cm)、Ni(ニッケル、融点は約1455℃、比重は約8.902g/cm)、Fe(鉄、融点は約1538℃、比重は約7.874g/cm)、W(タングステン、融点は約3422℃、比重は約19.3g/cm)等の別の金属を用いても良い。第2金属としてAlを用いた場合を例示したが、スペーサー粉末であるNaCl粉末よりも融点が低い条件を満たせばMg(融点は約650℃)、Pb(融点は約327.5℃)等の別の金属を用いても良い。
The present invention is not limited to the above-described embodiment, and can be modified or expanded as follows.
In this embodiment, the case where Ti having a relatively small specific gravity (specific gravity is about 4.54 g / cm 3 ) is used as the first metal is exemplified. However, if the demand for weight reduction is small, the specific gravity is larger than Ti, for example, Cu. (Copper, melting point is about 1085 ° C., specific gravity is about 8.96 g / cm 3 ), Ni (nickel, melting point is about 1455 ° C., specific gravity is about 8.902 g / cm 3 ), Fe (iron, melting point is about 1538 ° C.) , Specific metal of about 7.874 g / cm 3 ), W (tungsten, melting point of about 3422 ° C., specific gravity of about 19.3 g / cm 3 ) may be used. The case where Al is used as the second metal is exemplified, but Mg (melting point is about 650 ° C.), Pb (melting point is about 327.5 ° C.), etc., if the melting point is lower than that of the NaCl powder as the spacer powder. Another metal may be used.

本実施形態では、スペーサー粉末として、第1金属であるTiよりも融点が低く且つ第2金属であるAlよりも融点が高い条件を満たすNaCl粉末を用いた場合を例示したが、少なくとも第2金属よりも融点が高い条件を満たせばどのような物質を用いても良い。基板として用いる第1金属を最初に決定した上で多孔質層を作製する態様では、スペーサー粉末として、少なくとも第2金属よりも融点が高い条件を満たす粉末(第1金属の融点に依存しない粉末)を選択すれば良く、スペーサー粉末を選択する自由度が高まる。逆に、何らかの事情によりスペーサー粉末を最初に決定した上で多孔質層を作製する態様では、第1金属として、少なくとも第2金属よりも融点が高い条件を満たす金属(スペーサー粉末の融点に依存しない金属)を選択すれば良く、第1金属を選択する自由度が高まる。即ち、第1金属とスペーサー粉末との組み合わせを増やすことができる。このように第1金属粉末と第2金属粉末との化合物を介して第1金属粉末同士を結合させる本発明の方法では、第1金属の融点及びスペーサー粉末の融点のそれぞれについて第2金属の融点との相互関係を考慮すれば良く、第1金属の融点とスペーサー粉末の融点との相互関係を考慮せずに、気孔率の向上と十分な焼結性とを両立し得る多孔質層を作製することができる。   In the present embodiment, as the spacer powder, a case where NaCl powder having a lower melting point than Ti as the first metal and a higher melting point than Al as the second metal is exemplified, but at least the second metal is used. Any substance may be used as long as it satisfies the condition of a higher melting point. In an embodiment in which the porous layer is prepared after first determining the first metal to be used as the substrate, a powder satisfying a condition that the melting point is at least higher than that of the second metal as the spacer powder (powder independent of the melting point of the first metal) This increases the degree of freedom in selecting the spacer powder. Conversely, in an embodiment in which the porous layer is prepared after the spacer powder is first determined for some reason, the first metal is a metal that satisfies the condition that the melting point is at least higher than that of the second metal (does not depend on the melting point of the spacer powder). Metal) may be selected, and the degree of freedom for selecting the first metal is increased. That is, the combination of the first metal and the spacer powder can be increased. As described above, in the method of the present invention in which the first metal powders are bonded to each other through the compound of the first metal powder and the second metal powder, the melting point of the second metal for each of the melting point of the first metal and the melting point of the spacer powder. A porous layer that can achieve both improved porosity and sufficient sinterability without considering the mutual relationship between the melting point of the first metal and the melting point of the spacer powder. can do.

Claims (10)

第1金属の粉末である第1金属粉末と、前記第1金属よりも融点が低い第2金属の粉末である第2金属粉末と、少なくとも前記第2金属よりも融点が高い物質からなるスペーサー粉末とを用い、前記第1金属粉末と前記第2金属粉末と前記スペーサー粉末とを、前記第2金属粉末が拡散し且つ前記スペーサー粉末が分解しない圧力及び温度の条件下で加圧及び加熱して前記第1金属粉末を焼結させて第1空隙部を形成し、その後に前記スペーサー粉末を除去して第2空隙部を形成し、前記第1空隙部と前記第2空隙部とを有する多孔質層を作製することを特徴とする多孔質層の作製方法。   A first metal powder that is a powder of the first metal, a second metal powder that is a powder of the second metal having a melting point lower than that of the first metal, and a spacer powder made of a substance having a melting point higher than that of the second metal. And pressurizing and heating the first metal powder, the second metal powder, and the spacer powder under conditions of pressure and temperature at which the second metal powder diffuses and the spacer powder does not decompose. The first metal powder is sintered to form a first void, and then the spacer powder is removed to form a second void, and the first void and the second void are formed. A method for producing a porous layer, comprising producing a porous layer. 請求項1に記載した多孔質層の作製方法において、
前記スペーサー粉末として、前記第1金属よりも融点が低い物質からなる粉末を用いて作製することを特徴とする多孔質層の作製方法。
The method for producing a porous layer according to claim 1,
A method for producing a porous layer, wherein the spacer powder is produced using a powder made of a substance having a melting point lower than that of the first metal.
請求項1又は2に記載した多孔質層の作製方法において、
前記スペーサー粉末として、静水に溶解する粉末を用いて作製することを特徴とする多孔質層の作製方法。
In the method for producing a porous layer according to claim 1 or 2,
A method for producing a porous layer, wherein the spacer powder is produced using a powder that dissolves in still water.
請求項3に記載した多孔質層の作製方法において、
前記第1金属としてTiを用い、前記第2金属としてAlを用い、前記スペーサー粉末としてNaCl粉末を用いて作製することを特徴とする多孔質層の作製方法。
In the method for producing a porous layer according to claim 3,
A method for producing a porous layer, wherein Ti is used as the first metal, Al is used as the second metal, and NaCl powder is used as the spacer powder.
請求項4に記載した多孔質層の作製方法において、
前記Ti粉末と前記Al粉末と前記NaCl粉末とを加圧及び加熱する際に、前記Ti粉末と前記Al粉末とを反応させてTiAlから少なくともTiAlを生成させることを特徴とする多孔質層の作製方法。
In the method for producing a porous layer according to claim 4,
When the Ti powder, the Al powder, and the NaCl powder are pressurized and heated, the Ti powder and the Al powder are reacted to generate at least TiAl from TiAl 3 . Manufacturing method.
請求項5に記載した多孔質層の作製方法において、
前記Ti粉末と前記Al粉末と前記NaCl粉末とを加圧及び加熱する際に、前記Ti粉末と前記Al粉末とを反応させてTiAlからTiAlを生成させ、更にTiAlからTiAlを生成させることを特徴とする多孔質層の作製方法。
In the method for producing a porous layer according to claim 5,
When pressurizing and heating the Ti powder, the Al powder, and the NaCl powder, the Ti powder and the Al powder are reacted to generate TiAl from TiAl 3 and further to generate Ti 3 Al from TiAl. A method for producing a porous layer characterized in that.
請求項1から6の何れか一項に記載した多孔質層の作製方法を含み、
前記多孔質層の作製方法により多孔質層を前記第1金属からなる基板上に作製し、樹脂を前記第1空隙部及び前記第2空隙部のうち少なくとも何れかに浸透させることにより、前記第1金属と前記樹脂とを前記多孔質層を介して接合することを特徴とする金属と樹脂との接合方法。
A method for producing a porous layer according to any one of claims 1 to 6,
A porous layer is produced on the substrate made of the first metal by the method for producing the porous layer, and the resin is infiltrated into at least one of the first void portion and the second void portion. A method for joining a metal and a resin, comprising joining one metal and the resin through the porous layer.
少なくとも第1領域と第2領域とを有し、前記第1領域では、第1金属の粉末である第1金属粉末と当該第1金属よりも融点が低い第2金属の粉末である第2金属粉末との化合物が前記第1金属粉末の表面の少なくとも一部に形成され、前記第1金属粉末同士が前記化合物を介して結合されていることで第1空隙部が形成されており、前記第2領域では、前記第1空隙部とは異なる第2空隙部が形成されていることを特徴とする多孔質層。   The first metal has at least a first region and a second region, and in the first region, a first metal powder that is a powder of a first metal and a second metal that is a powder of a second metal having a melting point lower than that of the first metal. A compound with a powder is formed on at least a part of the surface of the first metal powder, and the first metal powder is bonded to the first metal powder through the compound, thereby forming a first gap. A porous layer characterized in that a second void portion different from the first void portion is formed in the two regions. 請求項8に記載した多孔質層において、
前記第1金属がTiであり、前記第2金属がAlであり、前記化合物の少なくとも一部がTiAl又はTiAlであることを特徴とする多孔質層。
In the porous layer according to claim 8,
The porous layer, wherein the first metal is Ti, the second metal is Al, and at least a part of the compound is TiAl 3 or TiAl.
請求項8又は9に記載した多孔質層を含み、
前記多孔質層が前記第1金属からなる基板上に作製されており、樹脂が前記第1空隙部及び前記第2空隙部のうち少なくとも何れかに浸透されていることにより、前記第1金属と前記樹脂とが前記多孔質層を介して接合されていることを特徴とする金属と樹脂との接合構造。
Comprising a porous layer according to claim 8 or 9,
The porous layer is formed on the substrate made of the first metal, and the resin is infiltrated into at least one of the first void portion and the second void portion, whereby the first metal and A joining structure of a metal and a resin, wherein the resin is joined via the porous layer.
JP2014210721A 2014-10-15 2014-10-15 Production method of porous layer, joining method of metal and resin, porous layer, joining structure of metal and resin Active JP6447969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210721A JP6447969B2 (en) 2014-10-15 2014-10-15 Production method of porous layer, joining method of metal and resin, porous layer, joining structure of metal and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210721A JP6447969B2 (en) 2014-10-15 2014-10-15 Production method of porous layer, joining method of metal and resin, porous layer, joining structure of metal and resin

Publications (2)

Publication Number Publication Date
JP2016079445A true JP2016079445A (en) 2016-05-16
JP6447969B2 JP6447969B2 (en) 2019-01-09

Family

ID=55955856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210721A Active JP6447969B2 (en) 2014-10-15 2014-10-15 Production method of porous layer, joining method of metal and resin, porous layer, joining structure of metal and resin

Country Status (1)

Country Link
JP (1) JP6447969B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868539A (en) * 2017-03-09 2017-06-20 长沙理工大学 A kind of multidimensional pore passage structure Ni Cu Ti alloy electrode materials and preparation method thereof
KR20190106487A (en) * 2018-03-09 2019-09-18 충남대학교산학협력단 Fabrication Method of Spherical Metal Particles
JP2020084312A (en) * 2018-11-30 2020-06-04 地方独立行政法人鳥取県産業技術センター Porous magnesium production method
GB2620365A (en) * 2022-06-27 2024-01-10 The Manufacturing Tech Centre Limited A method of creating an object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543958A (en) * 1991-01-17 1993-02-23 Sumitomo Light Metal Ind Ltd Production of oxidation resistant titanium aluminide
JP2011117066A (en) * 2009-10-31 2011-06-16 Furukawa-Sky Aluminum Corp Porous metal and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543958A (en) * 1991-01-17 1993-02-23 Sumitomo Light Metal Ind Ltd Production of oxidation resistant titanium aluminide
JP2011117066A (en) * 2009-10-31 2011-06-16 Furukawa-Sky Aluminum Corp Porous metal and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868539A (en) * 2017-03-09 2017-06-20 长沙理工大学 A kind of multidimensional pore passage structure Ni Cu Ti alloy electrode materials and preparation method thereof
KR20190106487A (en) * 2018-03-09 2019-09-18 충남대학교산학협력단 Fabrication Method of Spherical Metal Particles
KR102339241B1 (en) 2018-03-09 2021-12-14 충남대학교산학협력단 Fabrication Method of Spherical Metal Particles
JP2020084312A (en) * 2018-11-30 2020-06-04 地方独立行政法人鳥取県産業技術センター Porous magnesium production method
JP7281164B2 (en) 2018-11-30 2023-05-25 地方独立行政法人鳥取県産業技術センター Porous magnesium manufacturing method
GB2620365A (en) * 2022-06-27 2024-01-10 The Manufacturing Tech Centre Limited A method of creating an object

Also Published As

Publication number Publication date
JP6447969B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6447969B2 (en) Production method of porous layer, joining method of metal and resin, porous layer, joining structure of metal and resin
Murr et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies
JP2022517021A (en) Method of preparing metal material or metal composite material
CN107486559B (en) A kind of aluminium base density gradient material and its preparation method and application
Xu et al. Solvent-cast based metal 3D printing and secondary metallic infiltration
US11939649B2 (en) Metallic sintering compositions including boron additives and related methods
KR20100098507A (en) Open cell, porous material, and a method of, and mixture for, making same
DE102011089194A1 (en) Method of manufacturing a compact component and component that can be produced by the method
KR20180117721A (en) A high volume of ceramic phase having iron, silicon, vanadium and copper and an aluminum alloy
Yadav et al. Binder jetting 3D printing of titanium aluminides based materials: a feasibility study
CN106132598A (en) Porous aluminum sintered body and the manufacture method of porous aluminum sintered body
Gu et al. Processing and microstructure of submicron WC–Co particulate reinforced Cu matrix composites prepared by direct laser sintering
KR20120001890A (en) Method of manufacturing metal matrix composite containing networked carbon nanotubes/carbon fibers and the method therefor
Gu et al. Influence of Cu-liquid content on densification and microstructure of direct laser sintered submicron W–Cu/micron Cu powder mixture
Amosov et al. Producing TiC-Al cermet by combustion synthesis of TiC porous skeleton with spontaneous infiltration by aluminum melt
US9028584B2 (en) System and method for fabrication of 3-D parts
Bewerse et al. NiTi with 3D-interconnected microchannels produced by liquid phase sintering and electrochemical dissolution of steel tubes
JP6414965B2 (en) Porous layer manufacturing method, interpenetrating layer manufacturing method, metal and resin bonding method
CN107107196A (en) The manufacture method of porous aluminum sintered body and porous aluminum sintered body
Meyers et al. Direct selective laser sintering of reaction bonded silicon carbide
JP7281164B2 (en) Porous magnesium manufacturing method
WO2022085134A1 (en) Diamond-based composite material, method for manufacturing same, heat dissipation member, and electronic device
Fang et al. Fabrication of high porosity Cu-based structure using direct laser sintering
CN104476653A (en) Three-dimensional (3D) printing and manufacturing method of porous niobium parts
DE102011118295A1 (en) Producing an aluminum foam body, comprises providing a microporous body made of aluminum alloy reinforced with hard material particles, and melting the microporous body and then treating a melt under vacuum by acting upon with vibrations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6447969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250