JP2012001808A - Method for producing porous metal - Google Patents

Method for producing porous metal Download PDF

Info

Publication number
JP2012001808A
JP2012001808A JP2011107484A JP2011107484A JP2012001808A JP 2012001808 A JP2012001808 A JP 2012001808A JP 2011107484 A JP2011107484 A JP 2011107484A JP 2011107484 A JP2011107484 A JP 2011107484A JP 2012001808 A JP2012001808 A JP 2012001808A
Authority
JP
Japan
Prior art keywords
powder
metal
support
rolling
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011107484A
Other languages
Japanese (ja)
Inventor
Yuichi Tanaka
田中祐一
Masahiro Kurata
倉田正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2011107484A priority Critical patent/JP2012001808A/en
Publication of JP2012001808A publication Critical patent/JP2012001808A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a porous metal with a large surface area which can be effectively used for a catalytic reaction or electrode reaction, and a method of producing the porous metal equipped with an oxide film on a surface by rolling.SOLUTION: The porous metal production method includes: a mixing step of mixing metal powder and support powder of a grain size of 10 times or more of the metal powder in the volume ratio of the metal powder: the support powder =3:7 to 1:19; a rolling step of rolling the mixed powder or the rolling step of rolling the green compact after a pressure forming step of making the mixed powder into the green compact by carrying out pressure forming; and a supporting powder removing process to form a gap by eliminating the support powder.

Description

本発明は多孔質金属の製造方法に関し、大表面積を有する多孔質金属、更に表面処理を行うことによりその表面に酸化皮膜を備えた多孔質金属を大量生産することが出来る製造方法に関する。   The present invention relates to a method for producing a porous metal, and more particularly to a production method capable of mass-producing a porous metal having a large surface area and a porous metal having an oxide film on its surface by performing a surface treatment.

多孔質金属の製造方法としては、(1)溶融した金属中に水素化チタン等の発泡剤を混合し、発生したガスを含んだ状態で凝固させる溶湯発泡法(特許文献1)、(2)金属粉末と塩化ナトリウム等のスペーサー材を混合し、押出し又は圧延した後でスペーサー材を除去するスペーサー法(特許文献2)、通電やプラズマによる焼結を利用するスペーサー法(特許文献3)等が知られている。   As a method for producing a porous metal, (1) a molten metal foaming method in which a foaming agent such as titanium hydride is mixed in a molten metal and solidified in a state containing the generated gas (Patent Document 1), (2) A spacer method (Patent Document 2) that removes the spacer material after mixing and extruding or rolling a metal powder and a spacer material such as sodium chloride, and a spacer method (Patent Document 3) that uses sintering by energization or plasma, etc. Are known.

特開平11−302765号公報JP-A-11-302765 特許第4048251号Japanese Patent No. 4048251 特開平03−285880号公報Japanese Patent Laid-Open No. 03-285880

上記溶湯発泡法で作製される多孔質金属は孔同士が独立したクローズドセル型構造で、孔の内部が外部と通じていないために表面積が小さく、電池集電体や触媒又はその担体として利用することが出来なかった。また、従来の圧延を利用したスペーサー法では気孔率が70%未満と少なく、外部と連通することなく独立して存在する一部のスペーサー材が内部に残留することがあった。例えば、塩化ナトリウムをスペーサーとして利用した場合には、除去し切れなかった塩化ナトリウムが外部環境に曝された場合に多孔質金属基材の腐食を促進させてしまうという問題点があった。また、通電やプラズマ焼結を利用する作製法では気孔率の高い多孔質金属を作製することができるが、バッチ処理となるため量産には適していなかった。   The porous metal produced by the molten metal foaming method has a closed cell structure in which the pores are independent, and since the inside of the pores does not communicate with the outside, the surface area is small, and it is used as a battery current collector, a catalyst, or a carrier thereof. I couldn't. Further, in the spacer method using conventional rolling, the porosity is as low as less than 70%, and some spacer materials that exist independently without being communicated with the outside may remain inside. For example, when sodium chloride is used as a spacer, there is a problem in that corrosion of the porous metal substrate is promoted when sodium chloride that cannot be completely removed is exposed to the external environment. In addition, although a porous metal having a high porosity can be manufactured by a manufacturing method using energization or plasma sintering, it is not suitable for mass production because it is a batch process.

本発明者等は上記問題に鑑み鋭意検討の結果、圧延を利用したスペーサー法において金属粉末と支持粉末の粒径を調整することで、従来の圧延を利用した方法に比べて気孔率を大きくすることができ、表面積の大きな多孔質金属を製造する方法を見出した。具体的には、支持粉末の粒径を金属粉末の10倍以上に規定し、加えて支持粉末の混合割合を金属粉末:支持粉末=3:7〜1:19の体積比で規定するものである。これにより、金属粉末が個々に分かれることなく、連通した気孔率の大きな多孔質金属を製造することが出来る。また、製造方法として圧延を利用することで連続的に処理することが出来、大量生産が可能となる。加えて前記多孔質金属に対して表面処理を施すことで結合金属粉末の表面に酸化皮膜が形成され、連通気孔でかつ耐食性に優れた多孔質金属が得られることも見出した。   As a result of intensive studies in view of the above problems, the present inventors increase the porosity as compared with the conventional method using rolling by adjusting the particle size of the metal powder and the supporting powder in the spacer method using rolling. And a method for producing a porous metal having a large surface area. Specifically, the particle size of the support powder is specified to be 10 times or more that of the metal powder, and in addition, the mixing ratio of the support powder is specified by a volume ratio of metal powder: support powder = 3: 7 to 1:19. is there. Thereby, it is possible to produce a porous metal having a large porosity without being separated into individual metal powders. Moreover, it can process continuously by utilizing rolling as a manufacturing method, and mass production is attained. In addition, it has also been found that by subjecting the porous metal to a surface treatment, an oxide film is formed on the surface of the bonded metal powder, and a porous metal having continuous pores and excellent corrosion resistance can be obtained.

すなわち、本発明の第1の実施態様は請求項1において、金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合する混合工程と、混合した混合粉末を圧延する圧延工程と、前記支持粉末を除去して空隙を形成する支持粉末除去工程と、を含むことを特徴とする多孔質金属の製造方法とした。   That is, according to a first embodiment of the present invention, in claim 1, the metal powder and the support powder having a particle size of 10 times or more of the metal powder are mixed in a volume of metal powder: support powder = 3: 7 to 1:19. A method for producing a porous metal comprising: a mixing step of mixing at a ratio; a rolling step of rolling the mixed powder mixture; and a support powder removing step of removing the support powder to form voids; did.

本発明は請求項2において、金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合する混合工程と、混合した混合粉末を加圧成形して圧粉体とする加圧成形工程と、当該圧粉体を圧延する圧延工程と、前記支持粉末を除去して空隙を形成する支持粉末除去工程と、を含むことを特徴とする多孔質金属の製造方法とした。   The present invention according to claim 2, wherein the metal powder and the support powder having a particle size of 10 times or more of the metal powder are mixed in a volume ratio of metal powder: support powder = 3: 7 to 1:19, A pressure forming step of pressing the mixed powder mixture into a green compact; a rolling step of rolling the green compact; and a support powder removing step of removing the support powder to form a void. It was set as the manufacturing method of the porous metal characterized by including.

本発明は請求項3では請求項1又は2において、前記金属粉末を純アルミニウム及びアルミニウム合金の少なくとも一方から成るものとし、前記支持粉末を水溶性塩とした。   According to a third aspect of the present invention, in the first or second aspect, the metal powder is made of at least one of pure aluminum and an aluminum alloy, and the support powder is a water-soluble salt.

本発明は請求項4では請求項1〜3のいずれか一項において、前記圧延工程の前に、前記混合粉末又は圧粉体を、前記支持粉末の融点未満で、かつ、前記金属粉末の再結晶温度以上融点未満の温度に予め加熱する予熱工程を備えるものとした。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the mixed powder or the green compact is less than the melting point of the supporting powder and the metal powder is recycled before the rolling step. A preheating step of preheating to a temperature higher than the crystal temperature and lower than the melting point is provided.

次に本発明の第2の実施態様は請求項5において、金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合して混合粉末とし、この混合粉末を圧延して圧延体とし、次いで、この圧延体に、水、アルカリ溶液及び酸溶液を用いた少なくともいずれか一の表面処理を施すことを特徴とする多孔質金属の製造方法とした。   Next, a second embodiment of the present invention is the method according to claim 5, wherein the metal powder and the support powder having a particle size of 10 times or more of the metal powder have a volume of metal powder: support powder = 3: 7 to 1:19. The mixed powder is mixed to obtain a mixed powder, the mixed powder is rolled into a rolled body, and then the rolled body is subjected to at least one surface treatment using water, an alkaline solution, and an acid solution. It was set as the manufacturing method of the porous metal to do.

本発明は請求項6において、金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合して混合粉末とし、この混合粉末を圧延して圧延体とし、次いで、この圧延体から前記支持粉末を除去して空隙を形成し、水、アルカリ溶液、酸溶液及び水蒸気を用いた少なくともいずれか一の表面処理を施すことを特徴とする多孔質金属の製造方法とした。   The present invention provides the mixed powder according to claim 6 by mixing the metal powder and the support powder having a particle size of 10 times or more of the metal powder in a volume ratio of metal powder: support powder = 3: 7 to 1:19. The mixed powder is rolled into a rolled body, and then the support powder is removed from the rolled body to form voids, and at least one surface treatment using water, an alkali solution, an acid solution, and water vapor is performed. It was set as the manufacturing method of the porous metal characterized by performing.

本発明は請求項7では請求項5又は6において、前記金属粉末を純アルミニウム及びアルミニウム合金の少なくとも一方から成るものとし、前記支持粉末を水溶性塩とした。   According to a seventh aspect of the present invention, in the fifth or sixth aspect, the metal powder is made of at least one of pure aluminum and an aluminum alloy, and the support powder is a water-soluble salt.

本発明は請求項8では請求項5〜7のいずれか一項において、前記圧延工程の前に、前記混合粉末を加圧成形して圧粉体とするものとした。   According to an eighth aspect of the present invention, in any one of the fifth to seventh aspects, the mixed powder is pressure-molded into a green compact before the rolling step.

本発明は請求項9では請求項5〜8のいずれか一項において、前記圧延工程の前に、前記混合粉末又は圧粉体を、前記支持粉末の融点未満で、かつ、前記金属粉末の再結晶温度以上融点未満の温度に予め加熱する予熱工程を備えるものとした。   According to a ninth aspect of the present invention, the mixed powder or the green compact is less than the melting point of the support powder and the metal powder is recycled before the rolling step. A preheating step of preheating to a temperature higher than the crystal temperature and lower than the melting point is provided.

本発明は請求項10では請求項5〜9のいずれか一項において、前記表面処理を、前記圧延体を50℃以上100℃以下の水、アルカリ溶液及び酸溶液のいずれかに1分以上60分以下浸漬させるものとした。更に、本発明は請求項11では請求項6〜9のいずれか一項において、前記表面処理を、前記圧延体を100℃以上300℃以下の水蒸気に10分以上180分以下曝すものとした。   According to a tenth aspect of the present invention, in any one of the fifth to ninth aspects, the surface treatment is performed in any one of water, an alkali solution, and an acid solution at 50 ° C to 100 ° C for 1 minute to 60 minutes. It was assumed to be immersed for less than a minute. Furthermore, the present invention according to claim 11 is the surface treatment according to any one of claims 6 to 9, in which the rolled body is exposed to water vapor of 100 ° C or higher and 300 ° C or lower for 10 minutes or longer and 180 minutes or shorter.

本発明により、金属粉末と支持粉末の粒径及びそれらの混合割合を調整した混合粉末やこの圧粉体を圧延することで、表面積の大きな多孔質金属を量産できる方法を提供することができる。更に本発明は、板状又は帯状の金属と前記混合粉末又は圧粉体とを一緒に圧延することで、多孔質金属と板状又は帯状の金属とを重ねて一体化した複合材料を製造することも出来る。更に、多孔質金属の結合金属粉末表面に酸化皮膜を形成させることで、優れた耐食性を有する多孔質金属を製造することが出来る。このようにして作製した多孔質金属は、大面積の表面を吸着反応、触媒反応、電極反応、光反応などの反応サイトとして利用することによって反応効率を増大させることができる。また、複合体とすることで平滑な表面を必要とする部分にも利用することが出来る。   According to the present invention, it is possible to provide a method capable of mass-producing a porous metal having a large surface area by rolling a mixed powder in which the particle sizes of the metal powder and the supporting powder and the mixing ratio thereof are adjusted, or this green compact. Furthermore, the present invention manufactures a composite material in which a porous metal and a plate-like or band-like metal are stacked and integrated by rolling together the plate-like or belt-like metal and the mixed powder or green compact. You can also Furthermore, a porous metal having excellent corrosion resistance can be produced by forming an oxide film on the surface of the bonded metal powder of the porous metal. The porous metal produced in this way can increase the reaction efficiency by utilizing the surface of a large area as a reaction site for adsorption reaction, catalytic reaction, electrode reaction, photoreaction and the like. Moreover, it can utilize also for the part which requires a smooth surface by setting it as a composite_body | complex.

本発明の方法により製造される多孔質アルミニウムの断面を表すSEM写真である。It is a SEM photograph showing the cross section of the porous aluminum manufactured by the method of this invention. 図1の断面を圧延方向との関係で示す説明図である。It is explanatory drawing which shows the cross section of FIG. 1 by the relationship with a rolling direction.

(a)多孔質金属
本発明の第1の実施態様によって製造される多孔質金属は、金属粉末と支持粉末の混合物を圧延した後に、支持粉末を除去することで得られる空隙とその空隙を形成する結合金属粉末壁とによって構成される。圧延することで金属粉末と共に支持粉末も変形し、支持粉末を除去して形成される空隙は圧延面に対して垂直方向に潰れた形状をなす。支持粉末によって形成される空隙同士は、結合金属粉末壁の一部に開いた孔によって連通する構造をなす。そのため、空隙同士が連通せずに孤立している構造と異なり、本来外部と接していない位置にある支持粉末を除去することが可能である。
(A) Porous metal The porous metal produced according to the first embodiment of the present invention forms voids and voids obtained by removing the support powder after rolling the mixture of metal powder and support powder. And a bonded metal powder wall. The support powder is deformed together with the metal powder by rolling, and the void formed by removing the support powder has a shape crushed in the direction perpendicular to the rolling surface. The voids formed by the support powder have a structure in which they are communicated by a hole opened in a part of the bonded metal powder wall. Therefore, unlike the structure in which the voids are isolated without being communicated with each other, it is possible to remove the support powder at a position not originally in contact with the outside.

(b)金属粉末
本発明では金属粉末と支持粉末の混合粉末に圧延を施すことから、金属には圧延で塑性変形する延伸材料であることが求められる。延伸材料としては、例えばアルミニウム、マグネシウム、亜鉛、錫、銅、鉄及びこれらの合金が挙げられる。中でもアルミニウム材が好ましく、純アルミニウム又はアルミニウム合金が好適に用いられる。アルミニウム合金としては、1000系、2000系、3000系、4000系、5000系、6000系、7000系のアルミニウム合金が用いられる。支持粉末の粒径が金属粉末の10倍以上である必要があるため、様々な粒径の支持粉末を利用できるようにするためにも金属粉末の粒径は小さい方が好ましい。本発明に用いる金属粉末の粒径は1〜50μmが好ましい。ここでいう粒径とは、レーザー回折/散乱法で測定した粒径のメジアン径である。
(B) Metal powder In the present invention, since the mixed powder of the metal powder and the support powder is rolled, the metal is required to be a stretched material that is plastically deformed by rolling. Examples of the stretched material include aluminum, magnesium, zinc, tin, copper, iron, and alloys thereof. Among these, an aluminum material is preferable, and pure aluminum or an aluminum alloy is preferably used. As the aluminum alloy, 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, and 7000 series aluminum alloys are used. Since the particle size of the support powder needs to be 10 times or more that of the metal powder, it is preferable that the metal powder has a small particle size so that the support powder having various particle sizes can be used. The particle size of the metal powder used in the present invention is preferably 1 to 50 μm. The particle diameter here is the median diameter of the particle diameter measured by the laser diffraction / scattering method.

(c)支持粉末
本発明に用いる支持粉末には、圧延時に金属粉末の変形に伴い一緒に粉砕され、かつ/又は変形し、圧延後は容易に除去できる物質が使用できる。圧延後の支持粉末の除去では水を用いて溶出させる方法が簡便であり、このために支持粉末としては水溶性塩が好適に用いられる。水溶性塩としては、例えばアルカリ金属やアルカリ土類金属の塩化物や炭酸塩などが挙げられる。塩化ナトリウムや塩化カリウムが、入手の容易性から好ましい。また、支持粉末を除去してこれが存在していたスペースを空隙として残すことから、支持粉末の粒径は多孔質金属の孔径に直接影響する。本発明では支持粉末の粒径は金属粉末の10倍以上である必要がある。10倍を下回ると金属粉末による支持粉末の被覆が十分ではなくなり、金属粉末同士の結合が途切れ易くなる。このため、支持粉末を除去した際に結合の途切れた部分で金属粉末が単独又は幾つかの塊としてなって、他の金属粉末と分離してしまう。本発明に用いる支持粉末は、10〜1000μmの粒径を有するものが好ましい。ここでいう粒径とは、ふるい目開き又はレーザー回折/散乱法で測定した粒径のメジアン径である。
(C) Support powder The support powder used in the present invention may be a substance that is pulverized and / or deformed together with the deformation of the metal powder during rolling and can be easily removed after rolling. For removing the support powder after rolling, a method of elution with water is simple, and for this reason, a water-soluble salt is preferably used as the support powder. Examples of the water-soluble salt include alkali metal and alkaline earth metal chlorides and carbonates. Sodium chloride and potassium chloride are preferable from the viewpoint of availability. Further, since the support powder is removed and the space in which the support powder existed is left as a void, the particle size of the support powder directly affects the pore size of the porous metal. In the present invention, the particle size of the support powder needs to be 10 times or more that of the metal powder. If it is less than 10 times, the support powder is not sufficiently covered with the metal powder, and the bonding between the metal powders is likely to be interrupted. For this reason, when the support powder is removed, the metal powder becomes a single or several lumps at the portion where the bonding is interrupted, and is separated from other metal powders. The support powder used in the present invention preferably has a particle size of 10 to 1000 μm. The particle diameter here is a median diameter of the particle diameter measured by a sieve opening or a laser diffraction / scattering method.

(d)混合工程
前記金属粉末と前記支持粉末からなる混合粉末の混合比は体積比で、金属粉末:支持粉末=3:7〜1:19である。すなわち、混合粉末中における金属粉末の体積含有率は5〜30%であり、支持粉末の体積含有率は95〜70%、好ましくは95〜75%、更に好ましくは90〜80%である。多孔質金属の気孔率にはこの混合割合が反映されるため、本発明で作製できる多孔質金属の気孔率は70〜95%程度となる。
(D) Mixing step The mixing ratio of the mixed powder composed of the metal powder and the support powder is a volume ratio, and is metal powder: support powder = 3: 7 to 1:19. That is, the volume content of the metal powder in the mixed powder is 5 to 30%, and the volume content of the support powder is 95 to 70%, preferably 95 to 75%, and more preferably 90 to 80%. Since this mixing ratio is reflected in the porosity of the porous metal, the porosity of the porous metal that can be produced by the present invention is about 70 to 95%.

支持粉末の体積含有率が95%を超える場合、多孔質金属を構成する結合金属粉末壁が少な過ぎるため壁の強度が弱くなると共に、壁が途切れる可能性が大きくなってしまうため、支持粉末を除去した時に多孔質金属が分裂してしまう。一方、支持粉末の体積含有率が70%未満の場合には、支持粉末の含有率が少な過ぎるために支持粉末同士が接触することなく独立して存在することになり、支持粉末を除去する際に多孔質金属内に残留する可能性が大きくなる。また、残留支持粉末の除去に長時間を要することにもなる。例えば、金属粉末として純アルミニウム粉末を、支持粉末として塩化ナトリウム粉末を用いて、体積比で純アルミニウム粉末:塩化ナトリウム粉末=35:65%の混合粉末を圧延し、これを水道水の流水に24時間に浸漬させても、塩化ナトリウムの除去率は95%程度であった。従って、溶出除去に長時間を要し生産効率が著しく低下するので採用できない。そのため、金属粉末と支持粉末の体積混合比は、金属粉末:支持粉末=3:7〜1:19、好ましくは1:3〜1:19であり、更に好ましくは2:8〜1:9である。   If the volume content of the supporting powder exceeds 95%, the bonding metal powder wall constituting the porous metal is too few, so that the strength of the wall is weakened and the possibility that the wall is interrupted increases. When removed, the porous metal splits. On the other hand, when the volume content of the support powder is less than 70%, the support powder content is too small to be present without contact between the support powders. The possibility of remaining in the porous metal increases. In addition, it takes a long time to remove the residual support powder. For example, a pure aluminum powder is used as a metal powder and a sodium chloride powder is used as a support powder, and a mixed powder of pure aluminum powder: sodium chloride powder = 35: 65% in a volume ratio is rolled, and this is mixed with running tap water. Even when immersed in time, the removal rate of sodium chloride was about 95%. Accordingly, it takes a long time for the elution removal, and the production efficiency is remarkably lowered. Therefore, the volume mixing ratio of the metal powder and the support powder is metal powder: support powder = 3: 7 to 1:19, preferably 1: 3 to 1:19, more preferably 2: 8 to 1: 9. is there.

混合手段としては、タンブラーミキサー、ドラムミキサー等の各種ミキサー、V型混合機、W型混合機、振動攪拌機、容器回転混合機等が用いられるが、十分な混合物が得られるのであれば特に限定されるものではない。   As a mixing means, various mixers such as a tumbler mixer and a drum mixer, a V-type mixer, a W-type mixer, a vibration stirrer, a container rotary mixer and the like are used, but are particularly limited as long as a sufficient mixture can be obtained. It is not something.

(e)圧延工程
本発明では金属粉末と支持粉末の前記混合粉末を、冷間又は熱間で圧延する。圧延により金属粉末が塑性変形することで金属粉末を覆っていた酸化皮膜が破れて金属新生面が現れ、金属粉末同士が結合する。この時、支持粉末も金属粉末と一緒に変形し、後に空隙となる空間を保持する。圧延は圧延体の理論比重に対する嵩比重の比(嵩比重/理論比重)が80%以上、好ましくは85%以上となるようにロールギャップを調整して圧延する。ここで、理論比重とは、圧延体に空隙がないものとして、金属粉末と支持粉末の真比重から算出される。一方、嵩比重とは、実測定した圧延体の質量と体積から求められる。圧延技術としては、公知のあらゆる圧延技術を利用することが出来るが、粉末圧延機を使用することが好ましい。圧延時には潤滑剤を使用しても良く、その種類は特に限定されるものではない。但し、支持粉末として水溶性塩を使用する場合には水系の潤滑剤を使用することはできない。
(E) Rolling step In the present invention, the mixed powder of the metal powder and the support powder is rolled cold or hot. When the metal powder is plastically deformed by rolling, the oxide film covering the metal powder is broken, a new metal surface appears, and the metal powders are bonded to each other. At this time, the support powder is also deformed together with the metal powder, and a space that becomes a void later is maintained. Rolling is performed by adjusting the roll gap so that the ratio of the bulk specific gravity to the theoretical specific gravity of the rolled product (bulk specific gravity / theoretical specific gravity) is 80% or more, preferably 85% or more. Here, the theoretical specific gravity is calculated from the true specific gravity of the metal powder and the support powder, assuming that the rolled body has no voids. On the other hand, bulk specific gravity is calculated | required from the mass and volume of the rolling body actually measured. Any known rolling technique can be used as the rolling technique, but a powder rolling machine is preferably used. A lubricant may be used during rolling, and the type thereof is not particularly limited. However, when a water-soluble salt is used as the support powder, an aqueous lubricant cannot be used.

また、圧延体を構成する金属粉末同士の結合を促進させるために、圧延後において圧延体を原料金属粉末の融点付近まで加熱し、焼結してもよい。この時の雰囲気としては大気、窒素やアルゴン等の不活性雰囲気、真空雰囲気を利用できるが、不活性雰囲気や真空雰囲気であることが好ましい。   Moreover, in order to accelerate | stimulate the coupling | bonding of the metal powder which comprises a rolling body, you may heat and sinter a rolling body to the melting | fusing point vicinity of raw material metal powder after rolling. As the atmosphere at this time, air, an inert atmosphere such as nitrogen or argon, or a vacuum atmosphere can be used, but an inert atmosphere or a vacuum atmosphere is preferable.

(f)加圧成形を利用した圧延工程
上記のように金属粉末と支持粉末の混合粉末を直接圧延する方法(粉末圧延)に代えて、予め金型を用いて混合粉末を加圧成形して圧粉体を形成し、これを圧延する方法を採用しても良い。この場合、粉末圧延機以外の圧延機を利用して圧延できるという利点がある。また、予め圧粉体を形成しておくことで、粉末供給時に供給量が偏るといった問題も解消することができる。圧粉体としては取り扱いが困難でない程度に固まっていればよく、そのためには、10〜200MPa程度の荷重を加えて加圧成形すればよい。
(F) Rolling process using pressure molding Instead of the method of directly rolling the mixed powder of the metal powder and the support powder as described above (powder rolling), the mixed powder is pressure-molded in advance using a mold. A method of forming a green compact and rolling the green compact may be adopted. In this case, there exists an advantage that it can roll using rolling mills other than a powder rolling mill. Further, by forming the green compact in advance, it is possible to solve the problem that the supply amount is biased when the powder is supplied. The green compact only needs to be hardened to such an extent that it is not difficult to handle. For that purpose, a pressure of about 10 to 200 MPa may be applied and pressure-molded.

(g)予熱工程
圧延を熱間で実施する場合には、圧延前に混合粉末又は圧粉体を予め加熱しておくことが好ましい。加熱ロールを用いて圧延し、圧延時に混合粉末又は圧粉体を加熱する方法でも同様の効果を得ることができる。予熱は必ずしも必要ではなく、金属粉末同士に十分な結合を生じさせられるのであれば冷間でも構わない。但し、温度が高いほど一般的には金属粉末及び支持粉末の変形が容易になると共に、金属結合が進行し易いため予熱するのが好ましい。予熱温度は、使用する支持粉末の融点未満であり、かつ、金属粉末の再結晶温度以上融点未満である。圧延時にこのような温度範囲に達するように、予熱温度を調整する。例えば金属粉末として純アルミニウム、支持粉末として塩化ナトリウムを使用する場合には、予熱温度としては300〜500℃が好ましい。加熱ロールを用いる場合には加熱ロールの温度が支持粉末及び金属粉末の融点を越えてはならない。
(G) Preheating process When rolling is carried out hot, it is preferable to preheat the mixed powder or green compact before rolling. The same effect can be obtained by rolling using a heating roll and heating the mixed powder or green compact during rolling. Preheating is not always necessary, and it may be cold as long as sufficient bonding can be generated between the metal powders. However, the higher the temperature, the easier the deformation of the metal powder and the support powder, and it is preferable to preheat because the metal bonding is likely to proceed. The preheating temperature is lower than the melting point of the supporting powder to be used, and is higher than the recrystallization temperature of the metal powder and lower than the melting point. The preheating temperature is adjusted to reach such a temperature range during rolling. For example, when pure aluminum is used as the metal powder and sodium chloride is used as the support powder, the preheating temperature is preferably 300 to 500 ° C. When a heating roll is used, the temperature of the heating roll must not exceed the melting points of the support powder and the metal powder.

(h)支持粉末の除去工程
圧延体中の支持粉末の除去には、溶出等の方法が用いられる。支持粉末として水溶性塩を用いる場合には、圧延体を十分な量の水浴又は流水浴に浸漬する等の方法で容易に溶出除去することができる。この場合、溶出に用いる水は温水のように温度は高い方が溶出は速くなるため、30℃以上の水を用いるのが好ましい。水溶性塩を溶出させる水は適用先によってはイオン交換水や蒸留水等、不純物の少ない方が好ましいが、水道水でも特に問題は無い。
(H) Support Powder Removal Step For removal of the support powder in the rolled body, a method such as elution is used. When a water-soluble salt is used as the support powder, it can be easily eluted and removed by a method such as immersing the rolled body in a sufficient amount of water bath or flowing water bath. In this case, it is preferable to use water of 30 ° C. or higher because elution is faster when the temperature is higher, such as warm water, for the elution. The water from which the water-soluble salt is eluted preferably has less impurities, such as ion-exchanged water or distilled water, depending on the application destination, but there is no particular problem with tap water.

(i)多孔質金属と板状又は帯状の金属との複合多孔質金属
次に本発明の応用技術である複合多孔質金属は、本発明の実施態様に係る発明によって製造される多孔質金属と板状又は帯状の金属とを一体化した複合材である。この複合多孔質金属は、板状又は帯状の金属の片面に前記混合粉末を載置しこれを圧延して得られる2層構造体、或いは、2枚の板状又は帯状の金属の間に前記混合粉末を挟んでこれを圧延した3層構造体、更には、板状又は帯状金属と前記混合粉末を交互に複数積層してこれを圧延した多層構造体とすることができる。また、粉末を圧延機に供給するホッパーを通す形で、板状又は帯状の金属を粉末と一緒に圧延機に送り出して圧延し、板状又は帯状の金属を粉末で挟んだ多層構造体とすることもできる。本発明の実施態様と同様に、混合粉末に代えてこれを予め加圧成形した圧粉体を用いることもできる。また、支持粉末の径や混合割合の異なる圧粉体を載置してこれを圧延し、気孔の大きさや気孔率の異なる多層構造体とすることもできる。もちろん、圧粉体を重ねたものを板状又は帯状の金属に載置し、又は挟んだ状態で圧延して多層構造体とすることもできる。この複合多孔質金属では、用いる金属粉末及び支持粉末、ならびに、これらの混合方法、加圧成形方法、支持粉末の除去方法については、本発明の実施態様に係る発明によって製造される多孔質金属の場合と同じである。以下においては、本発明の応用技術である複合多孔質金属に特有な点についてのみ説明する。
(I) Composite porous metal of porous metal and plate-like or belt-like metal Next, a composite porous metal which is an applied technique of the present invention is a porous metal produced by the invention according to an embodiment of the present invention. It is a composite material in which a plate-like or strip-like metal is integrated. This composite porous metal is a two-layer structure obtained by placing the mixed powder on one side of a plate-like or strip-like metal and rolling it, or between two plate-like or strip-like metals. A three-layer structure in which the mixed powder is sandwiched and rolled, or a multilayer structure in which a plurality of the plate-like or strip-like metal and the mixed powder are alternately laminated and rolled. In addition, a plate-like or strip-shaped metal is fed to the rolling mill together with the powder and rolled by passing a hopper that supplies the powder to the rolling mill to form a multilayer structure in which the plate-shaped or strip-shaped metal is sandwiched between the powders. You can also. Similarly to the embodiment of the present invention, a green compact obtained by previously press-molding this can be used instead of the mixed powder. It is also possible to place green compacts having different support powder diameters and mixing ratios and to roll them to form a multilayer structure having different pore sizes and different porosity. Of course, a stack of green compacts can be placed on a plate-like or belt-like metal, or rolled in a sandwiched state to form a multilayer structure. In this composite porous metal, the metal powder to be used and the supporting powder, and the mixing method, the pressure forming method, and the removing method of the supporting powder are the same as those of the porous metal produced by the invention according to the embodiment of the present invention. Same as the case. Below, only the point peculiar to the composite porous metal which is an applied technique of this invention is demonstrated.

(j)板状又は帯状の金属
該複合多孔質金属に使用する板状又は帯状の金属は、圧延において延伸性を示す材料であればその種類は特に限定されず、エキスパンドメタルやパンチングメタル等の穴の開いたものでも構わない。延伸材料としては、例えばアルミニウム、マグネシウム、亜鉛、錫、銅、鉄及びこれらの合金が挙げられる。中でもアルミニウム材が好ましく、純アルミニウム又はアルミニウム合金が好適に用いられる。アルミニウム合金としては、1000系、2000系、3000系、4000系、5000系、6000系、7000系のアルミニウム合金が用いられる。
(J) Plate-like or strip-like metal The plate-like or strip-like metal used for the composite porous metal is not particularly limited as long as it is a material exhibiting stretchability in rolling, such as expanded metal and punching metal. It can be a hole. Examples of the stretched material include aluminum, magnesium, zinc, tin, copper, iron, and alloys thereof. Among these, an aluminum material is preferable, and pure aluminum or an aluminum alloy is preferably used. As the aluminum alloy, 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, and 7000 series aluminum alloys are used.

(k)圧延工程
該複合多孔質金属では、金属粉末と支持粉末の混合粉末を板状又は帯状の金属に載置してこれを冷間又は熱間で圧延する。圧延は、混合粉末が板状又は帯状の金属の片面に接した2層構造体の状態で、或いは、混合粉末を2枚の板状又は帯状の金属で挟んだ3層構造体の状態で、或いは、混合粉末と板状又は帯状の金属を交互に複数層重ねた多層構造体状態の状態で実施される。圧延により金属粉末及び板状又は帯状の金属が塑性変形することで、それぞれの酸化皮膜が破れて金属新生面が現れ、金属粉末同士、ならびに、金属粉末と板状又は帯状の金属とが結合する。この時、支持粉末も金属粉末と一緒に変形し、後に空隙となる空間を保持する。圧延は圧延体の理論比重に対する嵩比重の比(嵩比重/理論比重)が80%以上、好ましくは85%以上となるように圧延する。圧延技術としては、公知のあらゆる圧延技術を利用することが出来る。圧延時には潤滑剤を使用することが好ましく、その種類は特に限定されるものではない。但し、支持粉末として水溶性塩を使用する場合には水系の潤滑剤を使用することはできない。
なお、本発明と同様に、混合粉末に代えて予め加圧成形した圧粉体を用いること、そして圧粉体同士を重ねて圧延することもできる。また、粉末を圧延機に供給するホッパーを通す形で、板状又は帯状の金属を粉末と一緒に圧延機に送り出して圧延し、板状又は帯状の金属を粉末で挟んだ多層構造体とすることもできる。更に、圧延体を構成する金属粉末同士の結合を促進させるために、圧延後、圧延体を原料金属粉末あるいは板状又は帯状の金属の融点付近まで加熱して焼結してもよい。この時の雰囲気としては大気、窒素やアルゴン等の不活性雰囲気、真空雰囲気を利用できるが、不活性雰囲気や真空雰囲気であることが好ましい。
(K) Rolling step In the composite porous metal, the mixed powder of the metal powder and the supporting powder is placed on a plate-shaped or strip-shaped metal and is rolled cold or hot. Rolling is in the state of a two-layer structure in which the mixed powder is in contact with one side of a plate-shaped or band-shaped metal, or in the state of a three-layer structure in which the mixed powder is sandwiched between two plate-shaped or band-shaped metals. Alternatively, it is carried out in a state of a multilayer structure in which a plurality of layers of mixed powder and plate-like or strip-like metal are alternately stacked. When the metal powder and the plate-shaped or band-shaped metal are plastically deformed by rolling, the respective oxide films are broken and a new metal surface appears, and the metal powders and the metal powder and the plate-shaped or band-shaped metal are bonded. At this time, the support powder is also deformed together with the metal powder, and a space that becomes a void later is maintained. The rolling is performed so that the ratio of the bulk specific gravity to the theoretical specific gravity of the rolled product (bulk specific gravity / theoretical specific gravity) is 80% or more, preferably 85% or more. Any known rolling technique can be used as the rolling technique. A lubricant is preferably used during rolling, and the type thereof is not particularly limited. However, when a water-soluble salt is used as the support powder, an aqueous lubricant cannot be used.
As in the present invention, it is possible to use a green compact that has been pressure-molded in advance instead of the mixed powder, and to roll the green compacts in layers. In addition, a plate-like or strip-shaped metal is fed to the rolling mill together with the powder and rolled by passing a hopper that supplies the powder to the rolling mill to form a multilayer structure in which the plate-shaped or strip-shaped metal is sandwiched between the powders. You can also. Furthermore, in order to promote the bonding between the metal powders constituting the rolled body, after the rolling, the rolled body may be heated and sintered to the vicinity of the melting point of the raw metal powder or the plate-shaped or strip-shaped metal. As the atmosphere at this time, air, an inert atmosphere such as nitrogen or argon, or a vacuum atmosphere can be used, but an inert atmosphere or a vacuum atmosphere is preferable.

(l)予熱工程
該複合多孔質金属においても、圧延を熱間で実施する場合には、圧延前に混合粉末及び/又は板状又は帯状の金属を予め加熱しておくことが好ましい。第1の実施態様と同様に、予熱は必ずしも必要ではなく、金属粉末同士に十分な結合を生じさせられるのであれば冷間でも構わない。但し、温度が高いほど一般的には金属粉末、支持粉末及び板状又は帯状の金属の変形が容易になると共に、金属結合が進行し易いため予熱するのが好ましい。加熱ロールを用いて圧延し、圧延時に混合粉末又は圧粉体を加熱する方法でも同様の効果を得ることができる。予熱温度は、使用する支持粉末の融点未満であり、かつ、金属粉末及び板状又は帯状の金属の再結晶温度以上融点未満である。圧延時にこのような温度範囲に達するように、予熱温度を調整する。例えば金属粉末として純アルミニウム、支持粉末として塩化ナトリウム、帯状金属として純アルミニウムを使用する場合には、予熱温度としては300〜500℃が好ましい。加熱ロールを用いる場合には加熱ロールの温度が支持粉末、金属粉末及び板状又は帯状の金属の融点を越えてはならない。
(L) Preheating process Also in this composite porous metal, when rolling is carried out hot, it is preferable to preheat the mixed powder and / or the plate-like or strip-like metal before rolling. Similar to the first embodiment, preheating is not necessarily required, and may be cold as long as sufficient bonding can be generated between the metal powders. However, it is generally preferable to preheat the metal powder, the supporting powder, and the plate-shaped or strip-shaped metal as the temperature is higher, and the metal bonding is more likely to proceed. The same effect can be obtained by rolling using a heating roll and heating the mixed powder or green compact during rolling. The preheating temperature is lower than the melting point of the supporting powder to be used, and is equal to or higher than the recrystallization temperature of the metal powder and the plate-like or strip-like metal and lower than the melting point. The preheating temperature is adjusted to reach such a temperature range during rolling. For example, when using pure aluminum as the metal powder, sodium chloride as the support powder, and pure aluminum as the strip metal, the preheating temperature is preferably 300 to 500 ° C. When a heating roll is used, the temperature of the heating roll must not exceed the melting point of the support powder, metal powder and plate or strip metal.

(m)多孔質金属
次に本発明の第2の実施態様によって製造される多孔質金属は、第1の実施態様に係る発明によって製造される多孔質金属において、結合金属粉末壁の表面に酸化皮膜が形成されたものである。この第2の実施態様に係る発明によって製造される多孔質金属(以下、「表面処理多孔質金属」と記す)では、用いる金属粉末及び支持粉末、ならびに、これらの混合方法、圧延方法、加圧成形方法、予熱方法、支持粉末の除去方法については、第1の実施態様に係る発明によって製造される多孔質金属と同じであり、以下においてはこれと異なる点についてのみ説明する。
(M) Porous metal Next, the porous metal produced by the second embodiment of the present invention is oxidized on the surface of the bonded metal powder wall in the porous metal produced by the invention according to the first embodiment. A film is formed. In the porous metal produced by the invention according to the second embodiment (hereinafter referred to as “surface-treated porous metal”), the metal powder and supporting powder used, and the mixing method, rolling method, and pressurization thereof are used. The forming method, the preheating method, and the removal method of the support powder are the same as those of the porous metal produced by the invention according to the first embodiment, and only different points will be described below.

(n)酸化皮膜
結合金属粉末壁の表面に形成される酸化皮膜としては、金属粉末の無水酸化皮膜と水和酸化皮膜の少なくとも一方が含まれる。以下において、「酸化皮膜」という場合には、特に断らない限り、無水酸化皮膜と水和酸化皮膜の両方を指すものとする。無水酸化皮膜としてはAl等が挙げられる。水和酸化皮膜は、一般にAl(nHO)で表されるが、具体的にはAlOOH等が挙げられる。これら酸化皮膜には、クロム、ニッケル、コバルト、燐、フッ素等の元素を含む化合物が含有されてもよい。
(N) Oxide film The oxide film formed on the surface of the bonded metal powder wall includes at least one of an anhydrous oxide film and a hydrated oxide film of metal powder. Hereinafter, the term “oxide film” refers to both an anhydrous oxide film and a hydrated oxide film unless otherwise specified. Examples of the non-hydration film include Al 2 O 3 . The hydrated oxide film is generally represented by Al 2 O 3 (nH 2 O), and specific examples thereof include AlOOH. These oxide films may contain a compound containing an element such as chromium, nickel, cobalt, phosphorus, or fluorine.

(o)表面処理方法
多孔質体の表面処理は、水、アルカリ溶液、酸溶液及び水蒸気を用いた少なくともいずれか一の処理あるいは複数の処理を組み合わせて施すものである。溶液系処理では、水、アルカリ溶液又は酸溶液に多孔質金属を浸漬する。蒸気系処理では、水蒸気中に多孔質金属を曝すことによって行われる。溶液系処理では、水による処理、酸溶液による処理、アルカリ溶液による処理を単独で、或いは、複数組み合わせてもよい。更に、これらの溶液系処理と水蒸気系処理を組み合わせて行ってもよい。
(O) Surface Treatment Method The surface treatment of the porous body is performed by combining at least any one treatment using water, an alkaline solution, an acid solution and water vapor, or a combination of a plurality of treatments. In the solution system treatment, the porous metal is immersed in water, an alkaline solution or an acid solution. In the steam system treatment, the porous metal is exposed to water vapor. In the solution system treatment, treatment with water, treatment with an acid solution, treatment with an alkaline solution may be used alone or in combination. Furthermore, you may perform combining these solution type | system | group processes and water vapor type | system | group processes.

溶液系処理に用いる水としては、イオン交換水、蒸留水、超純水などの所謂純水が好適に用いられる。酸溶液としては、珪フッ化ナトリウム、クロム酸、リン酸、炭酸等の溶液が好適に用いられる。これら酸溶液としては、水溶液が好ましい。アルカリ溶液としては、クロム酸塩、過マンガン酸塩、リン酸塩、炭酸塩、アンモニア等の溶液が好適に用いられる。これらアルカリ溶液としては、水溶液が好ましい。酸とアルカリの水溶液では、上記純水の水溶液を用いるのがより好ましい。酸溶液やアルカリ溶液には、亜鉛、ニッケル、コバルト、銅等の重金属塩を添加してもよい。処理液としては、上記溶液の他に人工海水を含めた海水も用いることが出来る。一方、蒸気系処理では水蒸気を用いる。水蒸気としては、純水などの水から発生させた蒸気が用いられる。なお、上述のアルカリ溶液、酸溶液から発生させたアルカリ成分や酸成分を含有する蒸気を用いてもよい。また、溶液系処理を行った場合、孔内に処理液が残留することで腐食の促進や、使用時の不具合に繋がることが懸念されることから、洗浄及び乾燥を行うことが好ましい。   As water used for the solution system treatment, so-called pure water such as ion-exchanged water, distilled water, or ultrapure water is preferably used. As the acid solution, a solution of sodium silicofluoride, chromic acid, phosphoric acid, carbonic acid or the like is preferably used. These acid solutions are preferably aqueous solutions. As the alkaline solution, a solution of chromate, permanganate, phosphate, carbonate, ammonia or the like is preferably used. As these alkaline solutions, aqueous solutions are preferred. As the acid and alkali aqueous solution, it is more preferable to use the above pure water solution. You may add heavy metal salts, such as zinc, nickel, cobalt, copper, to an acid solution or an alkali solution. As the treatment liquid, seawater including artificial seawater can be used in addition to the above solution. On the other hand, steam is used in the steam processing. As the water vapor, steam generated from water such as pure water is used. In addition, you may use the vapor | steam containing the alkali component and acid component which were generated from the above-mentioned alkali solution and acid solution. Further, when solution processing is performed, washing and drying are preferably performed because there is a concern that the treatment liquid may remain in the pores, thereby promoting corrosion and causing problems during use.

溶液系処理の処理温度は、50℃以上100℃以下とするのが好ましい。処理温度が50℃未満では、酸化皮膜の形成に時間が掛かり、十分な耐食性を発揮できない場合がある。一方、100℃を超えると、温度を維持するために余分なエネルギーを消費することになると共に、蒸気の発生が著しく作業環境が過酷になる場合がある。溶液系処理の処理時間は、1分以上60分以下とするのが好ましい。処理時間が1分未満であると十分な酸化皮膜が形成されず、耐食性が劣る場合がある。一方、60分を超えると、それ以上処理を行っても効果が飽和してしまう場合がある。溶液系処理を行った場合は、処理液を除去するために水洗等の洗浄を行うことが好ましい。   The processing temperature of the solution processing is preferably 50 ° C. or higher and 100 ° C. or lower. When the treatment temperature is less than 50 ° C., it takes time to form an oxide film, and sufficient corrosion resistance may not be exhibited. On the other hand, when the temperature exceeds 100 ° C., excessive energy is consumed to maintain the temperature, and the generation of steam may be remarkably severe and the working environment may be severe. The treatment time of the solution treatment is preferably 1 minute or more and 60 minutes or less. If the treatment time is less than 1 minute, a sufficient oxide film may not be formed, and the corrosion resistance may be inferior. On the other hand, if it exceeds 60 minutes, the effect may be saturated even if the treatment is further performed. When the solution system treatment is performed, it is preferable to perform washing such as washing in order to remove the treatment liquid.

水蒸気系処理の処理温度は、100℃以上300℃以下とするのが好ましく、実施の容易さから110℃以上200℃以下とするのが更に好ましい。処理温度が100℃未満では、多孔質金属の外面における水蒸気の凝集によって内部まで酸化皮膜が形成されない場合がある。水蒸気の温度が300℃を超えると、温度を高くする効果が飽和してしまう場合がある。水蒸気系処理の処理時間は、10分以上180分以下とするのが好ましい。処理時間が10分未満では、十分な酸化皮膜が形成されず、耐食性が劣る場合がある。一方、180分を超えると、それ以上処理を行っても効果が飽和してしまう場合がある。   The treatment temperature for the water vapor treatment is preferably 100 ° C. or more and 300 ° C. or less, and more preferably 110 ° C. or more and 200 ° C. or less for ease of implementation. When the treatment temperature is less than 100 ° C., an oxide film may not be formed up to the inside due to aggregation of water vapor on the outer surface of the porous metal. When the temperature of water vapor exceeds 300 ° C., the effect of increasing the temperature may be saturated. The treatment time for the water vapor treatment is preferably 10 minutes or more and 180 minutes or less. When the treatment time is less than 10 minutes, a sufficient oxide film may not be formed, and the corrosion resistance may be inferior. On the other hand, if it exceeds 180 minutes, the effect may be saturated even if the treatment is further performed.

溶液系処理による表面処理多孔質金属の製造においては、通常、上記に詳述した多孔質金属の表面処理と共に支持粉末を除去することもできるので、支持粉末の除去工程を設けなくてもよい。一方、溶液処理において表面処理と共に支持粉末を十分に除去することができない場合や水蒸気処理の場合には、別途、支持粉末を除去する必要があるので、金属粉末の圧延後であって表面処理前に支持粉末を除去して空隙を形成する工程を設けなければならない。   In the production of the surface-treated porous metal by the solution system treatment, the supporting powder can be usually removed together with the surface treatment of the porous metal described in detail above, and therefore the supporting powder removing step need not be provided. On the other hand, if the support powder cannot be sufficiently removed together with the surface treatment in the solution treatment or in the case of the steam treatment, it is necessary to remove the support powder separately. The step of removing the supporting powder to form voids must be provided.

上記表面処理に先立って、効率的に皮膜を形成させるために金属表面の酸化皮膜や油分を除去することを目的として水酸化ナトリウム水溶液等のアルカリ溶液や硝酸等の酸溶液で、脱脂処理や洗浄処理を行ってもよい。これら脱脂処理や洗浄処理には、市販の脱脂剤や洗浄剤を用いることができる。   Prior to the above surface treatment, degreasing and washing with an alkaline solution such as an aqueous sodium hydroxide solution or an acid solution such as nitric acid for the purpose of removing an oxide film or oil on the metal surface in order to form a film efficiently. Processing may be performed. Commercially available degreasing agents and cleaning agents can be used for these degreasing treatments and cleaning treatments.

以下に実施例及び比較例に基づいて、本発明の第1の実施態様を具体的に説明する。
実施例1〜14及び比較例1〜4
金属粉末として、粒径の異なる下記純アルミニウム粉末(A1〜A3)を用いた。支持粉末として、ふるい目開きの中央値による粒径の異なる塩化ナトリウム粉末(B1〜B3)、ならびに、粒径がふるい目開きの中央値で550μmの塩化カリウム(B4)を用いた。表1及び表2に示すように、純アルミニウム粉末と支持粉末を所定の混合体積比で混合した混合物を調製した。調製した混合物を表1及び表2に記載の温度に予め加熱又は加熱しないで圧延し、厚さ1.5〜4mmの圧延体試料を作製した。なお、実施例1、2、4、7、8、11、12〜14及び比較例1、2、4では、混合物を加圧成形してこれを圧延した。
The first embodiment of the present invention will be specifically described below based on examples and comparative examples.
Examples 1-14 and Comparative Examples 1-4
The following pure aluminum powders (A1 to A3) having different particle diameters were used as the metal powder. As the supporting powder, sodium chloride powders (B1 to B3) having different particle sizes depending on the median sieve opening, and potassium chloride (B4) having a median particle size of 550 μm in the median sieve aperture were used. As shown in Table 1 and Table 2, a mixture in which pure aluminum powder and support powder were mixed at a predetermined mixing volume ratio was prepared. The prepared mixture was rolled without being heated or heated in advance to the temperatures shown in Tables 1 and 2 to prepare rolled body samples having a thickness of 1.5 to 4 mm. In Examples 1, 2, 4, 7, 8, 11, 12 to 14 and Comparative Examples 1, 2, and 4, the mixture was pressure-molded and rolled.

Figure 2012001808
Figure 2012001808

Figure 2012001808
Figure 2012001808

<純アルミニウム粉末A(アルミニウム純度99.7%以上)>
A1:粒径3μm
A2:粒径20μm
A3:粒径30μm
<Pure aluminum powder A (aluminum purity 99.7% or more)>
A1: Particle size 3μm
A2: Particle size 20 μm
A3: Particle size 30 μm

<塩化ナトリウム粉末B>
B1:粒径120μm
B2:粒径550μm
B3:粒径780μm
<塩化カリウム粉末B>
C1:粒径550μm
<Sodium chloride powder B>
B1: Particle size 120 μm
B2: Particle size 550 μm
B3: Particle size 780 μm
<Potassium chloride powder B>
C1: Particle size 550 μm

上記のようにして作製した圧延体試料を用いて、以下の評価を行った。
(a)形状維持性
20mm×20mmに切り出した圧延体試料を20℃の流水(水道水)中に24時間浸漬し支持粉末を溶出させ多孔質金属とした。溶出前後の体積減少割合を形状維持の指標とし、下記基準で評価した。
○:体積減少割合<10%
×:10%≦体積減少割合
○を合格とし、×を不合格とした。
The following evaluation was performed using the rolled body sample produced as described above.
(A) Shape maintenance property The rolled body sample cut out to 20 mm x 20 mm was immersed in flowing water (tap water) at 20 ° C for 24 hours to elute the supporting powder to obtain a porous metal. The volume reduction ratio before and after the elution was used as an index for maintaining the shape, and evaluated according to the following criteria.
○: Volume reduction ratio <10%
×: 10% ≦ Volume reduction ratio ○ was accepted and x was rejected.

(b)支持粉末除去性
支持粉末の除去性を調査するために、上記溶出後の多孔質金属中の塩化ナトリウム又は塩化カリウムの残留量を測定し、下記基準で評価した。
○:残留量<0.5%
△:0.5%≦残留量<1%
×:1%≦残留量
○、△を合格とし、×を不合格とした。
(B) Support powder removability In order to investigate the removability of the support powder, the residual amount of sodium chloride or potassium chloride in the porous metal after the elution was measured and evaluated according to the following criteria.
○: Residual amount <0.5%
Δ: 0.5% ≦ residue amount <1%
×: 1% ≦ residual amount ○ and Δ were acceptable, and x was unacceptable.

評価結果を、表1及び表2に示す。表1及び表2に示すように、実施例1〜14ではいずれも、形状維持性及び支持粉末除去性が合格であった。ここで、実施例2において作製した多孔質金属の断面SEM写真を図1の(a)〜(c)に示す。(a)は、図2の断面1のSEM写真である。断面1は圧粉体4の圧延面に平行な断面を表し、断面2は、圧延方向Lに垂直な断面を表し、断面3は圧延方向Lに平行な断面を表す。また、図1において、Aは支持粉末が除去された空隙を、Bは結合金属粉末壁を示す。   The evaluation results are shown in Tables 1 and 2. As shown in Table 1 and Table 2, in each of Examples 1 to 14, the shape maintenance property and the support powder removability were acceptable. Here, the cross-sectional SEM photograph of the porous metal produced in Example 2 is shown to (a)-(c) of FIG. (A) is the SEM photograph of the cross section 1 of FIG. Cross section 1 represents a cross section parallel to the rolling surface of green compact 4, cross section 2 represents a cross section perpendicular to rolling direction L, and cross section 3 represents a cross section parallel to rolling direction L. Moreover, in FIG. 1, A shows the space | gap from which the support powder was removed, B shows a joint metal powder wall.

比較例1及び比較例2では、支持粉末である塩化ナトリウム粉末の粒径が小さ過ぎたため金属粉末が支持粉末を十分に覆うことができず、金属粉末同士の結合が途切れて形状の崩れが発生した。
比較例3では、支持粉末の混合割合が少な過ぎたため、圧延体中に独立して存在した支持粉末が水洗後も残留した。
比較例4では、支持粉末の混合割合が多過ぎたため金属粉末同士の結合頻度が少なく、形状の崩れが発生した。
In Comparative Example 1 and Comparative Example 2, the metal powder cannot sufficiently cover the support powder because the particle size of the sodium chloride powder that is the support powder is too small, and the bonding between the metal powders is interrupted and the shape collapses. did.
In Comparative Example 3, since the mixing ratio of the supporting powder was too small, the supporting powder that existed independently in the rolled body remained after washing with water.
In Comparative Example 4, since the mixing ratio of the support powder was too large, the bonding frequency of the metal powders was low, and the shape collapsed.

次に、実施例及び比較例に基づいて、本発明の第2の実施態様を具体的に説明する。
実施例15〜29及び比較例5〜7
表面処理を施す前の多孔質アルミニウム試料として、実施例13において作製した試料を用いた。すなわち、上記Alのアルミニウム粉末と、上記B2の塩化ナトリウム粉末を用い、アルミニウム粉末:塩化ナトリウム粉末=1:9の体積比で混合して多孔質アルミニウム試料を作製した。混合粉末は50MPaで加圧成形して板状圧粉体とし、予熱工程において500℃に加熱してから圧延した。塩化ナトリウムの溶出は20℃の流水(水道水)中に24時間浸漬して行った。
Next, based on an Example and a comparative example, the 2nd embodiment of this invention is described concretely.
Examples 15-29 and Comparative Examples 5-7
The sample produced in Example 13 was used as the porous aluminum sample before the surface treatment. That is, the aluminum powder of Al and the sodium chloride powder of B2 were mixed at a volume ratio of aluminum powder: sodium chloride powder = 1: 9 to prepare a porous aluminum sample. The mixed powder was pressure-molded at 50 MPa to form a plate-like green compact, heated to 500 ° C. in the preheating step, and then rolled. Elution of sodium chloride was performed by immersing in flowing water (tap water) at 20 ° C. for 24 hours.

このようにして作製した多孔質アルミニウム試料に対して、表3、4に示す処理液又は蒸気を用い、処理温度と処理時間を変えて表面処理を行った。処理液の溶媒にはイオン交換水を用いた。実施例24、25では、処理液として人工海水(ASTM D1141準拠)を用いた。また、実施例25では、支持粉末を溶出する工程を行わずに表面処理を行った。   The porous aluminum sample thus produced was subjected to a surface treatment using the treatment liquids or vapors shown in Tables 3 and 4 at different treatment temperatures and treatment times. Ion exchange water was used as a solvent for the treatment liquid. In Examples 24 and 25, artificial seawater (according to ASTM D1141) was used as the treatment liquid. In Example 25, the surface treatment was performed without performing the step of eluting the support powder.

Figure 2012001808
Figure 2012001808

Figure 2012001808
Figure 2012001808

上記のようにして作製した多孔質アルミニウム試料を用いて、以下の評価を行った。   The following evaluation was performed using the porous aluminum sample produced as described above.

(c)耐食性
表面処理を施した多孔質アルミニウム試料に20%塩酸100mlを流通させ、多孔質アルミニウムを通過した塩酸中のAl濃度を測定し、下記基準で評価した。
◎:3mg/L>Al濃度
○:10mg/L>Al濃度≧3mg/L
△:18mg/L>Al濃度≧10mg/L
×:Al濃度≧18mg/L
◎、○、△を合格とし、×を不合格とした。
(C) Corrosion resistance 100 ml of 20% hydrochloric acid was passed through the surface-treated porous aluminum sample, and the Al concentration in hydrochloric acid that passed through the porous aluminum was measured and evaluated according to the following criteria.
A: 3 mg / L> Al concentration O: 10 mg / L> Al concentration ≧ 3 mg / L
Δ: 18 mg / L> Al concentration ≧ 10 mg / L
×: Al concentration ≧ 18 mg / L
◎, ○ and △ were accepted, and x was rejected.

評価結果を表3及び4に示す。表3及び4に示すように、実施例15〜29ではいずれも耐食性が合格であった。しかしながら、実施例26、27、28では処理温度が低く、実施例29では処理時間が短かったため、他の実施例に比べて耐食性が劣った。   The evaluation results are shown in Tables 3 and 4. As shown in Tables 3 and 4, in Examples 15 to 29, the corrosion resistance was acceptable. However, in Examples 26, 27, and 28, the treatment temperature was low, and in Example 29, the treatment time was short. Therefore, the corrosion resistance was inferior to the other examples.

比較例5では、表面処理を施さなかったために耐食性が不合格であった。
比較例6では、有機溶剤であるヘキサンで処理を行っても皮膜は形成されず、耐食性が不合格であった。
比較例7では、大気雰囲気で熱処理しただけなので、表面に耐食性の皮膜が形成されず耐食性が不合格であった。
In Comparative Example 5, since the surface treatment was not performed, the corrosion resistance was unacceptable.
In Comparative Example 6, a film was not formed even when the treatment was performed with hexane, which is an organic solvent, and the corrosion resistance was unacceptable.
In Comparative Example 7, since it was only heat-treated in the air atmosphere, a corrosion-resistant film was not formed on the surface, and the corrosion resistance was unacceptable.

本発明による多孔質金属は気孔率が高く連通孔で表面積が大きいことから、吸着剤、触媒、吸音材、電池電極、電磁波吸収体、光吸収体などに利用した際に、優れた性能を発揮する。また、多孔質金属と帯状又は板状の金属との複合多孔質金属は、吸着性など多孔質金属が有する特性に加えて、帯状又は板状の金属の構造材としての特性を併せもつ。更に、表面処理多孔質金属では、流体成分などによる腐食についても表面の酸化皮膜によって優れた耐食性を有する。   Since the porous metal according to the present invention has a high porosity and a large pore surface area, it exhibits excellent performance when used in adsorbents, catalysts, sound absorbing materials, battery electrodes, electromagnetic wave absorbers, light absorbers, etc. To do. Moreover, the composite porous metal of a porous metal and a strip | belt-shaped or plate-shaped metal has the characteristic as a structural material of a strip | belt-shaped or plate-shaped metal in addition to the characteristics which porous metal has, such as adsorption property. Furthermore, the surface-treated porous metal has excellent corrosion resistance due to the oxide film on the surface, even when corroded by fluid components.

1,2,3‥‥‥断面、4‥‥‥圧粉体、A‥‥‥空隙、B‥‥‥結合金属粉末壁、L‥‥‥圧延方向   1, 2, 3 ... Cross section, 4 ... Green compact, A ... Air gap, B ... Bonded metal powder wall, L ... Roll direction

Claims (11)

金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合する混合工程と、混合した混合粉末を圧延する圧延工程と、前記支持粉末を除去して空隙を形成する支持粉末除去工程と、を含むことを特徴とする多孔質金属の製造方法。   A mixing step of mixing a metal powder and a support powder having a particle size of 10 times or more of the metal powder in a volume ratio of metal powder: support powder = 3: 7 to 1:19, and rolling to roll the mixed powder A method for producing a porous metal, comprising: a step; and a support powder removing step of removing the support powder to form voids. 金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合する混合工程と、混合した混合粉末を加圧成形して圧粉体とする加圧成形工程と、当該圧粉体を圧延する圧延工程と、前記支持粉末を除去して空隙を形成する支持粉末除去工程と、を含むことを特徴とする多孔質金属の製造方法。   A mixing step of mixing a metal powder and a support powder having a particle size of 10 times or more that of the metal powder in a volume ratio of metal powder: support powder = 3: 7 to 1:19, and press-molding the mixed powder And a pressure forming step for forming a green compact, a rolling step for rolling the green compact, and a support powder removing step for removing the support powder to form voids. Metal manufacturing method. 前記金属粉末が純アルミニウム及びアルミニウム合金の少なくとも一方から成り、前記支持粉末が水溶性塩である、請求項1又は2に記載の多孔質金属の製造方法。   The method for producing a porous metal according to claim 1 or 2, wherein the metal powder is composed of at least one of pure aluminum and an aluminum alloy, and the support powder is a water-soluble salt. 前記圧延工程の前に、前記混合粉末又は圧粉体を、前記支持粉末の融点未満で、かつ、前記金属粉末の再結晶温度以上融点未満の温度に予め加熱する予熱工程を備える、請求項1〜3のいずれか一項に記載の多孔質金属の製造方法。   2. A preheating step of preheating the mixed powder or the green compact before the rolling step to a temperature lower than the melting point of the support powder and higher than the recrystallization temperature of the metal powder and lower than the melting point. The manufacturing method of the porous metal as described in any one of -3. 金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合して混合粉末とし、この混合粉末を圧延して圧延体とし、次いで、この圧延体に、水、アルカリ溶液及び酸溶液を用いた少なくともいずれか一の表面処理を施すことを特徴とする多孔質金属の製造方法。   A metal powder and a support powder having a particle size of 10 times or more than the metal powder are mixed at a volume ratio of metal powder: support powder = 3: 7 to 1:19 to obtain a mixed powder, and the mixed powder is rolled. A method for producing a porous metal, characterized in that the rolled body is subjected to at least one surface treatment using water, an alkaline solution and an acid solution. 金属粉末と、粒径が金属粉末の10倍以上の支持粉末とを、金属粉末:支持粉末=3:7〜1:19の体積比で混合して混合粉末とし、この混合粉末を圧延して圧延体とし、次いで、この圧延体から前記支持粉末を除去して空隙を形成し、水、アルカリ溶液、酸溶液及び水蒸気を用いた少なくともいずれか一の表面処理を施すことを特徴とする多孔質金属の製造方法。   A metal powder and a support powder having a particle size of 10 times or more than the metal powder are mixed at a volume ratio of metal powder: support powder = 3: 7 to 1:19 to obtain a mixed powder, and the mixed powder is rolled. A porous body characterized by forming a rolled body, and then removing the support powder from the rolled body to form voids, and performing at least one surface treatment using water, an alkaline solution, an acid solution, and water vapor. Metal manufacturing method. 前記金属粉末が純アルミニウム及びアルミニウム合金の少なくとも一方から成り、前記支持粉末が水溶性塩である、請求項5又は6に記載の多孔質金属の製造方法。   The method for producing a porous metal according to claim 5 or 6, wherein the metal powder is composed of at least one of pure aluminum and an aluminum alloy, and the support powder is a water-soluble salt. 前記圧延工程の前に、前記混合粉末を加圧成形して圧粉体とする、請求項5〜7のいずれか一項に記載の多孔質金属の製造方法。   The method for producing a porous metal according to any one of claims 5 to 7, wherein the mixed powder is pressed to form a green compact before the rolling step. 前記圧延工程の前に、前記混合粉末又は圧粉体を、前記支持粉末の融点未満で、かつ、前記金属粉末の再結晶温度以上融点未満の温度に予め加熱する予熱工程を備える、請求項5〜8のいずれか一項に記載の多孔質金属の製造方法。   6. A preheating step of preheating the mixed powder or green compact before the rolling step to a temperature below the melting point of the support powder and above the recrystallization temperature of the metal powder and below the melting point. The manufacturing method of the porous metal as described in any one of -8. 前記表面処理が、前記圧延体を50℃以上100℃以下の水、アルカリ溶液及び酸溶液のいずれかに1分以上60分以下浸漬させる、請求項5〜9のいずれか一項に記載の多孔質金属の製造方法。   The porous according to any one of claims 5 to 9, wherein the surface treatment immerses the rolled body in water, an alkali solution or an acid solution at 50 ° C or higher and 100 ° C or lower for 1 minute or longer and 60 minutes or shorter. A method for producing a solid metal. 前記表面処理が、前記圧延体を100℃以上300℃以下の水蒸気に10分以上180分以下曝す、請求項6〜9のいずれか一項に記載の多孔質金属の製造方法。   The method for producing a porous metal according to any one of claims 6 to 9, wherein the surface treatment exposes the rolled body to water vapor of 100 ° C or higher and 300 ° C or lower for 10 minutes or longer and 180 minutes or shorter.
JP2011107484A 2010-05-20 2011-05-12 Method for producing porous metal Pending JP2012001808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107484A JP2012001808A (en) 2010-05-20 2011-05-12 Method for producing porous metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010116168 2010-05-20
JP2010116168 2010-05-20
JP2011107484A JP2012001808A (en) 2010-05-20 2011-05-12 Method for producing porous metal

Publications (1)

Publication Number Publication Date
JP2012001808A true JP2012001808A (en) 2012-01-05

Family

ID=45534121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107484A Pending JP2012001808A (en) 2010-05-20 2011-05-12 Method for producing porous metal

Country Status (1)

Country Link
JP (1) JP2012001808A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103043A1 (en) * 2012-01-06 2013-07-11 古河スカイ株式会社 Method for manufacturing porous aluminum
JP2013140745A (en) * 2012-01-06 2013-07-18 Furukawa Sky Kk Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
JP2013237882A (en) * 2012-05-14 2013-11-28 Furukawa-Sky Aluminum Corp Method for manufacturing porous aluminum
JP2013243063A (en) * 2012-05-22 2013-12-05 Furukawa Sky Kk Method of manufacturing electrode using porous metal collector
JP2013246945A (en) * 2012-05-25 2013-12-09 Uacj Corp Method for manufacturing electrode using porous metal collector
JP2014062317A (en) * 2012-08-30 2014-04-10 Saga Univ Production method of porous metal foil and porous metal foil
CN104117675A (en) * 2014-07-03 2014-10-29 昆明理工大学 Preparation method for composite material based on porous aluminum or aluminum alloy
JP2016060934A (en) * 2014-09-17 2016-04-25 日立金属株式会社 Porous aluminum sintered compact, production method thereof, and production method of electrode
JP2020084312A (en) * 2018-11-30 2020-06-04 地方独立行政法人鳥取県産業技術センター Porous magnesium production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129204A (en) * 2000-10-24 2002-05-09 Future Metal Co Ltd Method for manufacturing porous metal
JP2002285204A (en) * 2001-03-23 2002-10-03 National Institute Of Advanced Industrial & Technology Method for manufacturing high-strength porous body
JP2004156092A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Porous metal having excellent energy absorbability, and production method therefor
WO2006087973A1 (en) * 2005-02-18 2006-08-24 The University Of Tokushima Process for producing porous metal, porous metal, and porous metallic structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129204A (en) * 2000-10-24 2002-05-09 Future Metal Co Ltd Method for manufacturing porous metal
JP2002285204A (en) * 2001-03-23 2002-10-03 National Institute Of Advanced Industrial & Technology Method for manufacturing high-strength porous body
JP2004156092A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Porous metal having excellent energy absorbability, and production method therefor
WO2006087973A1 (en) * 2005-02-18 2006-08-24 The University Of Tokushima Process for producing porous metal, porous metal, and porous metallic structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801425A4 (en) * 2012-01-06 2015-11-18 Uacj Corp Method for manufacturing porous aluminum
CN104023879A (en) * 2012-01-06 2014-09-03 株式会社Uacj Method for manufacturing porous aluminum
CN104023879B (en) * 2012-01-06 2016-03-09 株式会社Uacj The manufacture method of porous aluminum
WO2013103043A1 (en) * 2012-01-06 2013-07-11 古河スカイ株式会社 Method for manufacturing porous aluminum
JP2013140745A (en) * 2012-01-06 2013-07-18 Furukawa Sky Kk Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
JPWO2013103043A1 (en) * 2012-01-06 2015-05-11 株式会社Uacj Method for producing porous aluminum
JP2013237882A (en) * 2012-05-14 2013-11-28 Furukawa-Sky Aluminum Corp Method for manufacturing porous aluminum
JP2013243063A (en) * 2012-05-22 2013-12-05 Furukawa Sky Kk Method of manufacturing electrode using porous metal collector
JP2013246945A (en) * 2012-05-25 2013-12-09 Uacj Corp Method for manufacturing electrode using porous metal collector
JP2014062317A (en) * 2012-08-30 2014-04-10 Saga Univ Production method of porous metal foil and porous metal foil
CN104117675B (en) * 2014-07-03 2016-01-13 昆明理工大学 The preparation method of a kind of porous aluminum or Al-alloy based composite
CN104117675A (en) * 2014-07-03 2014-10-29 昆明理工大学 Preparation method for composite material based on porous aluminum or aluminum alloy
JP2016060934A (en) * 2014-09-17 2016-04-25 日立金属株式会社 Porous aluminum sintered compact, production method thereof, and production method of electrode
JP2020084312A (en) * 2018-11-30 2020-06-04 地方独立行政法人鳥取県産業技術センター Porous magnesium production method
JP7281164B2 (en) 2018-11-30 2023-05-25 地方独立行政法人鳥取県産業技術センター Porous magnesium manufacturing method

Similar Documents

Publication Publication Date Title
JP2012001808A (en) Method for producing porous metal
US8012598B2 (en) Metal foam body having an open-porous structure as well as a method for the production thereof
JP5754569B2 (en) Functionally gradient material precursor, method of producing functionally gradient material, functionally gradient material precursor and functionally gradient material
Naseri et al. Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite
Jamaati et al. High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes
CN101104325A (en) Magnesium-base layer-shaped composite material and its composite casting preparation method
TWI637065B (en) Titanium composite and titanium for hot work
CN106102978A (en) The manufacture method of metallic laminate
JP2000073152A (en) Production of superfine structure high strength metallic sheet by repeated lap joint rolling
TWI632959B (en) Titanium composite and titanium for hot rolling
TWI605130B (en) Titanium composites and titanium materials for hot rolling
CN103691834B (en) Manufacturing method of metallic material by which press forming was carried out, and manufacturing method of component for heat exchangers
Liu et al. The synergetic tensile deformation behavior of Cu/Al laminated composites prepared by twin-roll casting technology
US4323395A (en) Powder metallurgy process and product
JP5657275B2 (en) Porous metal and method for producing the same
CN113145645A (en) Metal-based layered composite material with interlayer and preparation method thereof
TWI627285B (en) Titanium composite and titanium for hot rolling
JP2022515736A (en) Large area copper nanofoam with a hierarchical structure for use as an electrode
TWI626093B (en) Titanium composite and titanium for hot rolling
CN103273270A (en) Copper-based composite material for shaped charge liner and preparation method
JP4460355B2 (en) Titanium sintered filter and manufacturing method thereof
Hajizamani et al. Role of melt percentage on characteristics of Al-Zn-Mg/3 wt.% Al2O3 nanostructured composite modified through semi-solid thermomechanical processing
JP2013237882A (en) Method for manufacturing porous aluminum
JP2007284767A (en) Porous metal material and manufacturing method therefor
Sun et al. Fabrication of bulk metallic glass sheet in Cu-47 at% Zr alloys by ARB and heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630