JP2013246945A - Method for manufacturing electrode using porous metal collector - Google Patents

Method for manufacturing electrode using porous metal collector Download PDF

Info

Publication number
JP2013246945A
JP2013246945A JP2012119110A JP2012119110A JP2013246945A JP 2013246945 A JP2013246945 A JP 2013246945A JP 2012119110 A JP2012119110 A JP 2012119110A JP 2012119110 A JP2012119110 A JP 2012119110A JP 2013246945 A JP2013246945 A JP 2013246945A
Authority
JP
Japan
Prior art keywords
porous metal
electrode
slurry
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012119110A
Other languages
Japanese (ja)
Other versions
JP6122580B2 (en
Inventor
Yuichi Tanaka
田中祐一
Yoichi Kojima
兒島洋一
Sachio Motokawa
本川幸翁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2012119110A priority Critical patent/JP6122580B2/en
Publication of JP2013246945A publication Critical patent/JP2013246945A/en
Application granted granted Critical
Publication of JP6122580B2 publication Critical patent/JP6122580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode using a porous metal collector capable of filling electrode mixtures containing active material into an empty hole of a collector made of a porous metal with high density.SOLUTION: In the method or manufacturing an electrode having an electrode mixture containing active material, an electrode using a porous metal collector is manufactured by mounting a porous metal collector having an empty hole filled with electrode mixtures on a filter for causing a solvent of slurry with the electrode mixtures scattered to permeate, injecting the slurry to a high pressure side while pressure of a side with porous metal mounted through the filter is higher than that of the opposite side, accumulating a residue of the slurry in the empty hole made of the porous metal by filtering the slurry with the filer while permeating the slurry into the porous metal, drying the porous metal with the residue accumulated in the empty hole to scatter and evaporate the solvent and filling the electrode mixtures into the empty hole.

Description

本発明は、多孔質金属の空孔内に活物質を含む電極合材を高充填密度で充填可能な、多孔質金属集電体を用いた電極の製造方法に関する。   The present invention relates to a method for producing an electrode using a porous metal current collector, which can be filled with an electrode mixture containing an active material in pores of the porous metal at a high packing density.

正極材料や負極材料を担持する電極集電体(支持体)としては、アルミニウム箔や銅箔のような金属箔が一般的に用いられる。このような金属箔に替わる、大容量化を目的とした電極集電体として、多孔質アルミニウム集電体が提案されている。   A metal foil such as an aluminum foil or a copper foil is generally used as an electrode current collector (support) that carries the positive electrode material or the negative electrode material. A porous aluminum current collector has been proposed as an electrode current collector for the purpose of increasing the capacity instead of such a metal foil.

特許文献1には、特徴的な金属骨格断面形状を有する多孔質アルミニウムに活物質を充填した高エネルギー密度の電極が記載されている。この多孔質アルミニウムは、アルミニウムと低融点の共晶合金を形成する金属皮膜を発泡樹脂の骨格に形成し、その上にアルミニウム粉末を付着させた後に、発泡樹脂を焼失させると共に金属同士を焼結させることによって得られる。
また、特許文献2には、チタンを焼結助剤とし、スラリー発泡法により作製した多孔質アルミニウムに活物質を充填した高エネルギー密度の集電体が記載されている。
Patent Document 1 describes a high energy density electrode in which porous aluminum having a characteristic metal skeleton cross-sectional shape is filled with an active material. This porous aluminum forms a metal film that forms a low-melting eutectic alloy with aluminum on the skeleton of foamed resin, and after depositing aluminum powder on it, the foamed resin is burned off and the metals are sintered together To obtain.
Patent Document 2 describes a high energy density current collector in which titanium is used as a sintering aid and porous aluminum produced by a slurry foaming method is filled with an active material.

しかしながら、従来の多孔質アルミニウム集電体を利用した電極では、多孔質アルミニウムの空孔内に充填される活物質量が十分とはいえず、所望の電極容量が得られない問題があった。   However, the conventional electrode using the porous aluminum current collector has a problem that the amount of the active material filled in the pores of the porous aluminum is not sufficient, and a desired electrode capacity cannot be obtained.

特開平8−170126号公報JP-A-8-170126 特開2010−236082号公報JP 2010-236082 A

本発明の目的は、多孔質金属から成る集電体の空孔内に活物質を含む電極合材を高密度で充填可能な、多孔質金属集電体を用いた電極の製造方法を提供することである。   An object of the present invention is to provide a method for producing an electrode using a porous metal current collector that can be filled with an electrode mixture containing an active material at high density in the pores of the current collector made of the porous metal. That is.

多孔質金属の空孔内に電極合材を充填するには、通常、多孔質金属に電極合材を含有するスラリーをヘラ等で押し込む方式が採用される。このような方式では、空孔内に存在するスラリーの構成が押し込む前と同じで、最終的に空孔内に溶媒と共に残存する少量の電極合材成分しか空孔内に充填することができない。また、スラリー中に多孔質金属を浸漬することによって、多孔質金属の空孔内に電極合材成分を拡散させる浸漬方式も採用されている。しかしながら、この方式においても、空孔内に溶媒と共に拡散した少量の電極合材成分しか空孔内に充填することができない。   In order to fill the electrode mixture in the pores of the porous metal, a method of pushing the slurry containing the electrode mixture into the porous metal with a spatula or the like is usually employed. In such a system, the composition of the slurry existing in the pores is the same as before the pushing, and finally, only a small amount of the electrode mixture component remaining together with the solvent in the pores can be filled in the pores. In addition, a dipping method is also employed in which the electrode mixture component is diffused into the pores of the porous metal by dipping the porous metal in the slurry. However, even in this method, only a small amount of the electrode mixture component diffused with the solvent in the pores can be filled in the pores.

本発明者らは上記課題を解決すべく鋭意検討の結果、前記電極合材を分散したスラリー中の溶媒を透過させるフィルター上に多孔質金属を載置し、多孔質金属を介してフィルターによってスラリーを濾過する方式を採用することにより、スラリーの溶媒をフィルター透過させて透過を阻止された多量の電極合材成分を空孔内に留めることができることを見出した。これにより、活物質を含む電極合材を多孔質金属の空孔内に高密度に充填可能となり、高電極容量の電極を得ることができる。   As a result of intensive studies to solve the above-mentioned problems, the inventors have placed a porous metal on a filter that allows the solvent in the slurry in which the electrode mixture is dispersed to pass through the porous metal, and the slurry is passed through the filter. It was found that a large amount of the electrode mixture component blocked by permeation of the slurry solvent through the filter can be retained in the pores by adopting a method of filtering the slurry. Thereby, the electrode mixture containing the active material can be filled into the pores of the porous metal with high density, and an electrode having a high electrode capacity can be obtained.

すなわち、本発明は請求項1において、活物質を含む電極合材を含有する電極の製造方法であって、前記電極合材を分散したスラリー中の溶媒を透過させるフィルター上に、電極合材が充填される空孔を有する多孔質金属の集電体を載置し、前記フィルターを介して多孔質金属を載置した側の圧力がその反対側より高い状態で、前記スラリーを高圧側に注入し、当該スラリーを多孔質金属の内部に浸透させつつフィルターによって濾過することによってスラリーの濾過物を多孔質金属の空孔内に堆積させ、当該濾過物が空孔内に堆積した多孔質金属を乾燥して溶媒を飛散・蒸発させることにより電極合材を前記空孔中に充填することを特徴とする多孔質金属集電体を用いた電極の製造方法とした。   That is, the present invention provides a method for producing an electrode containing an electrode mixture containing an active material according to claim 1, wherein the electrode mixture is on a filter that allows the solvent in the slurry in which the electrode mixture is dispersed to pass therethrough. Place the porous metal current collector with pores to be filled, and inject the slurry into the high pressure side with the pressure on the side where the porous metal is placed through the filter higher than the opposite side Then, the slurry filtrate is filtered through a filter while penetrating the slurry inside the porous metal, thereby depositing the filtrate of the slurry in the pores of the porous metal, and the porous metal in which the filtrate is deposited in the pores. A method for producing an electrode using a porous metal current collector is characterized in that the pores are filled with the electrode mixture by drying and scattering and evaporating the solvent.

本発明は請求項2では請求項1において、前記フィルターの孔径が活物質の粒径よりも小さいもの用いることとした。   In the second aspect of the present invention, in the first aspect, the filter has a pore size smaller than the particle size of the active material.

本発明は請求項3では請求項1又は2において、前記スラリーの濾過物によって多孔質金属の表面が覆われるまでスラリーをフィルターによって濾過し、前記多孔質金属を乾燥前にその表面を覆っている余分な濾過物を除去するものとした。更に、本発明は請求項4では請求項1又は2において、前記スラリーの濾過物によって多孔質金属の表面が覆われるまでスラリーをフィルターによって濾過し、前記多孔質金属を乾燥後にその表面を覆っている余分な電極合材を除去するものとした。   According to a third aspect of the present invention, in the first or second aspect, the slurry is filtered with a filter until the surface of the porous metal is covered with the filtrate of the slurry, and the surface of the porous metal is covered before drying. Excess filtrate was removed. Furthermore, in the present invention, the present invention is the fourth aspect, wherein the slurry is filtered by a filter until the surface of the porous metal is covered with the filtrate of the slurry, and the surface of the porous metal is covered after drying. It was assumed that the excess electrode mixture was removed.

本発明は請求項4では請求項1〜4のいずれか一項において、前記電極合材の充填工程の後に、空孔中に電極合材が充填された多孔質金属をプレス処理する工程を更に備えるものとした。   According to a fourth aspect of the present invention, the method according to any one of the first to fourth aspects of the present invention further comprises a step of pressing a porous metal in which pores are filled with the electrode composite material after the electrode composite material filling step. It was supposed to be prepared.

本発明に係る多孔質金属集電体を用いた電極の製造方法により、多孔質金属集電体の空孔内に活物質を含む電極合材を高密度に充填した電極が得られ、これにより高エネルギー密度のリチウムイオン二次電池やキャパシタが製造可能となる。   By the electrode manufacturing method using the porous metal current collector according to the present invention, an electrode in which the electrode mixture containing the active material is filled in the pores of the porous metal current collector with high density is obtained. High energy density lithium ion secondary batteries and capacitors can be manufactured.

本発明に用いる多孔質アルミニウム集電体の断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the porous aluminum electrical power collector used for this invention. 本発明に係る多孔質金属集電体を用いた電極の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the electrode using the porous metal electrical power collector which concerns on this invention.

本発明に係る活物質を含む電極合材を含有する、多孔質金属集電体を用いた電極の製造方法においては、電極合材を分散したスラリー中の溶媒を透過させるフィルター上に、電極合材が充填される空孔を有する多孔質金属を載置する。そして、フィルターを介して多孔質金属を載置した側の圧力がその反対側より高い状態とし、電極合材を溶媒に分散したスラリーを高圧側に注入し、このスラリーを多孔質金属内部に浸透させつつフィルターによって濾過する。これにより、スラリーの濾過物を多量に多孔質金属の空孔内に堆積できる。このように濾過物を空孔内に堆積した多孔質金属を乾燥して溶媒を飛散・蒸発させることにより電極合材を空孔中に充填する。また、スラリーの濾過物によって多孔質金属の表面が覆われるまでスラリーをフィルターによって濾過し、多孔質金属の表面を覆う余分な濾過物又は電極合材を除去することが好ましい。これにより、多孔質金属の全体の空孔内に電極合材を高密度に充填することができる。なお、電極合材を空孔中に充填した多孔質金属を更にプレス処理することにより、電極合材の充填密度を調整するのが好ましい。   In the method for producing an electrode using a porous metal current collector that contains an electrode mixture containing an active material according to the present invention, the electrode composite is placed on a filter that allows the solvent in the slurry in which the electrode mixture is dispersed to pass through. A porous metal having pores filled with a material is placed. Then, the pressure on the side where the porous metal is placed through the filter is higher than that on the opposite side, and the slurry in which the electrode mixture is dispersed in the solvent is injected into the high pressure side, and this slurry penetrates into the porous metal. And filter through a filter. Thereby, a large amount of the slurry filtrate can be deposited in the pores of the porous metal. Thus, the porous metal in which the filtrate is deposited in the pores is dried, and the solvent is scattered and evaporated to fill the pores with the electrode mixture. Moreover, it is preferable to filter the slurry with a filter until the surface of the porous metal is covered with the filtrate of the slurry, and to remove excess filtrate or the electrode mixture covering the surface of the porous metal. Thereby, the electrode mixture can be filled with high density in the entire pores of the porous metal. In addition, it is preferable to adjust the filling density of the electrode mixture by further pressing the porous metal in which the electrode mixture is filled in the pores.

1.多孔質金属
1−1.構造と形状
図1に示すように、本発明に用いる多孔質金属は、金属粉末が焼結してできた金属壁2を骨格とする多孔質焼結体である。多孔質金属には多数の空孔1が形成されており、空孔1同士は金属壁2によって画成されている。そして、金属壁2には小孔3が開いており、この小孔3を介して空孔1同士が連通している。空孔1内に充填される活物質を含む電極合材は、空孔1を取囲む金属壁2によって包み込まれるように保持される。
1. Porous metal 1-1. Structure and Shape As shown in FIG. 1, the porous metal used in the present invention is a porous sintered body having a metal wall 2 formed by sintering metal powder as a skeleton. A number of pores 1 are formed in the porous metal, and the pores 1 are defined by metal walls 2. A small hole 3 is opened in the metal wall 2, and the holes 1 communicate with each other through the small hole 3. The electrode mixture containing the active material filled in the holes 1 is held so as to be enclosed by the metal wall 2 surrounding the holes 1.

多孔質金属の形状は、電極形状によってシート状や筒状などの任意の形状とすることができる。厚さは200μm〜1mm程度が好ましく、空孔径は10〜1000μm程度が好ましい。ここで、空孔径とは、空孔の最大内径をいうものとする。また、金属壁2に形成される小孔3は、円形、楕円形、矩形など様々な形状を成す。   The shape of the porous metal can be an arbitrary shape such as a sheet shape or a cylindrical shape depending on the electrode shape. The thickness is preferably about 200 μm to 1 mm, and the pore diameter is preferably about 10 to 1000 μm. Here, the hole diameter means the maximum inner diameter of the hole. The small holes 3 formed in the metal wall 2 have various shapes such as a circle, an ellipse, and a rectangle.

1−2.気孔率
多孔質金属の多孔性は、気孔率によって規定される。本発明に用いる多孔質金属の気孔率は、80〜95%とするのが好ましい。80%未満では、空孔1内に多量の電極合材成分を充填できない場合がある。一方、95%を超えると、多孔質金属自体の強度が不足し、集電体としての作用を果たせない場合がある。
1-2. Porosity The porosity of a porous metal is defined by the porosity. The porosity of the porous metal used in the present invention is preferably 80 to 95%. If it is less than 80%, the pores 1 may not be filled with a large amount of the electrode mixture component. On the other hand, if it exceeds 95%, the strength of the porous metal itself may be insufficient and the function as a current collector may not be achieved.

多孔質金属の気孔率p(%)は、下記式(1)によって算出される。
p=[{hv−(hw/d)}/hv]×100 (1)
ここで、hv:多孔質金属の全体積(cm
hw:多孔質金属の質量(g)
d:金属材の密度(g/cm)である。
The porosity p (%) of the porous metal is calculated by the following formula (1).
p = [{hv− (hw / d)} / hv] × 100 (1)
Here, hv: the total volume of the porous metal (cm 3 )
hw: Mass of porous metal (g)
d: Density (g / cm 3 ) of the metal material.

2.電極合材
用いる電極合材は、多孔質金属の空孔中に充填された状態で担持されている。電極合材は、活物質に加えて導電助剤と結着剤とを含んでいてもよい。
2. Electrode mixture The electrode mixture to be used is supported in a state filled in the pores of the porous metal. The electrode mixture may contain a conductive additive and a binder in addition to the active material.

2−1.活物質
用いる活物質は、電極が用いられる電池に適合したものが用いられる。本発明に係る電極を、例えば非水電解質二次電池用正極に用いる場合には、正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム等のリチウム金属酸化物等を用いることができる。非水電解質二次電池用負極に用いる場合には、負極活物質としては、天然黒鉛や人造黒鉛、メソカーボンマイクロビーズ(MCMB)、ハードカーボンやソフトカーボンなどの炭素材料;Al、Si、Sn等のリチウムと化合することができる金属材料や合金材料;チタン酸リチウム(LiTi12)などの酸化物材料;を用いることができる。
2-1. Active material The active material used is suitable for the battery in which the electrode is used. When the electrode according to the present invention is used, for example, as a positive electrode for a nonaqueous electrolyte secondary battery, the positive electrode active material may be a lithium metal oxide such as lithium cobaltate, lithium manganate, lithium nickelate, or lithium iron phosphate. Etc. can be used. When used for a negative electrode for non-aqueous electrolyte secondary batteries, the negative electrode active material includes natural graphite, artificial graphite, mesocarbon microbeads (MCMB), carbon materials such as hard carbon and soft carbon; Al, Si, Sn, etc. Metal materials and alloy materials that can be combined with lithium; oxide materials such as lithium titanate (Li 4 Ti 5 O 12 ) can be used.

2−2.導電助剤
電極合材に導電助剤を加えることにより、電極合材における導電性が向上する。用いる導電助剤としては、炭素粉末、金属粉末などが用いられるが、その中でも炭素粉末が好適に用いられる。炭素粉末としては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ等が挙げられる。これらの中でも、集合体としての長さが比較的長く、添加量が少量でも導電性を向上させることが可能なアセチレンブラックを用いるのが好ましい。
2-2. Conductive aid By adding a conductive aid to the electrode mixture, the conductivity of the electrode mixture is improved. As the conductive aid used, carbon powder, metal powder, and the like are used, and among these, carbon powder is preferably used. Examples of the carbon powder include acetylene black, ketjen black, furnace black, and carbon nanotube. Among these, it is preferable to use acetylene black that has a relatively long length as an aggregate and can improve conductivity even when the addition amount is small.

2−3.結着剤
電極合材に結着剤を加えることにより、結着剤を介しての成分の結合、すなわち活物質同士、導電助剤同士、活物質と導電助剤との結合が強固になって、集電体からの活物質の脱落が起こり難くなる。用いる結着剤としては特に限定されるものではなく、公知又は市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)等が挙げられる。
2-3. Binder By adding a binder to the electrode mixture, the binding of components via the binder, that is, the bonding between the active materials, the conductive assistants, and the active material and the conductive assistant is strengthened. This makes it difficult for the active material to fall off the current collector. It does not specifically limit as a binder to be used, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and the like.

電極合材に導電助剤と結着剤とを加える場合には、全電極合材(活物質+導電助剤+結着剤)に対する活物質の割合は、85〜95質量%とするのが好ましい。この割合が85質量%未満では活物質が不足して、高電極容量化が達成できない場合がある。一方、この割合が95質量%を超えると、電極全体としての導電性が低下し、また各成分同士や成分間における十分な結合が得られず、これまた高電極容量化が達成できない。   When a conductive additive and a binder are added to the electrode mixture, the ratio of the active material to the total electrode mixture (active material + conductive additive + binder) is 85 to 95% by mass. preferable. If this ratio is less than 85% by mass, the active material may be insufficient and high electrode capacity may not be achieved. On the other hand, if this ratio exceeds 95% by mass, the conductivity of the entire electrode is reduced, and sufficient coupling between components and between components cannot be obtained, and this also makes it impossible to achieve high electrode capacity.

2−4.電極合材の充填密度
活物質を含む電極合材の充填密度は、多孔質金属における空孔の単位体積当たりに充填される電極合材の質量として規定される。具体的には、次のようにして求める。まず、電極の全体積から、多孔質金属の質量を多孔質金属を構成する金属材の密度で割って求めた金属材の体積を差し引いて、電極中の空孔体積(cm)を求める。次に、電極合材を充填する前の多孔質金属の質量を、充填後の多孔質金属の全質量から差し引いて電極合材の質量(g)を求める。最後に、電極合材の質量(g)を空孔体積(cm)で割り算し、単位体積当たりの空孔中に充填される電極合材量(g/cm)を求めて充填密度とするものである。
2-4. Packing density of electrode mixture The packing density of an electrode mixture containing an active material is defined as the mass of the electrode mixture filled per unit volume of pores in the porous metal. Specifically, it calculates | requires as follows. First, from the total volume of the electrode, the volume of the metal material obtained by dividing the mass of the porous metal by the density of the metal material constituting the porous metal is subtracted to obtain the void volume (cm 3 ) in the electrode. Next, the mass (g) of the electrode mixture is obtained by subtracting the mass of the porous metal before filling the electrode mixture from the total mass of the porous metal after filling. Finally, the mass (g) of the electrode mixture is divided by the pore volume (cm 3 ), and the amount of electrode mixture (g / cm 3 ) filled in the pores per unit volume is obtained to determine the packing density and To do.

このような充填密度は、合材密度の50%を超えるものとするのが好ましい。ここで、合材密度とは、合材スラリーをアルミニウム箔に合材層を設ける要領で塗工し、乾燥することで得られる合材層の密度を指す。合材密度は合材スラリーを塗布したアルミニウム箔全体の質量(g)からアルミニウム箔の質量(g)を差し引いた値を、合材スラリーを塗布したアルミニウム箔全体の体積(cm)からアルミニウム箔の体積(cm)を差し引いた値で割ったものである。充填密度が、合材密度の50%以下の場合には、電極に含有される活物質量が少なく十分な電極容量が得られない。一方、充填密度の上限は特に限定されるものではないが、プレス処理後の充填密度が合材密度の250%を超えると、電極内部に電解液が染み込み難くなり、リチウムイオンなどの荷電成分の拡散が阻害されて電池特性が低下する場合がある。 Such a filling density is preferably more than 50% of the composite density. Here, the composite material density refers to the density of the composite material layer obtained by applying the composite material slurry to the aluminum foil in the manner of providing the composite material layer and drying it. The composite density is the value obtained by subtracting the mass (g) of the aluminum foil from the total mass (g) of the aluminum foil coated with the composite slurry, and the aluminum foil from the total volume (cm 3 ) of the aluminum foil coated with the composite slurry. Divided by the value obtained by subtracting the volume (cm 3 ). When the packing density is 50% or less of the composite material density, the amount of active material contained in the electrode is small and sufficient electrode capacity cannot be obtained. On the other hand, the upper limit of the packing density is not particularly limited. However, when the packing density after the press treatment exceeds 250% of the composite material density, it becomes difficult for the electrolyte solution to penetrate into the electrode, and the charged component such as lithium ion does not reach In some cases, diffusion is hindered and battery characteristics are deteriorated.

3.電極の製造方法
3−1.多孔質金属の製造方法
金属粉末と支持粉末の混合粉末を所定の圧力で加圧成形した後、この加圧成形体を不活性雰囲気中で金属粉末の融点の0.5倍以上の温度で、かつ、金属粉末の融点の1.05倍の温度を超えない範囲での熱処理により焼結させ、その後、支持粉末を除去することにより、多孔質金属を製造する。
3. Manufacturing method of electrode 3-1. Method for producing porous metal After pressure-molding a mixed powder of metal powder and support powder at a predetermined pressure, the pressure-molded body in an inert atmosphere at a temperature not less than 0.5 times the melting point of the metal powder, And it sinters by the heat processing in the range which does not exceed 1.05 times the melting | fusing point of metal powder, and a porous metal is manufactured by removing a support powder after that.

(a)金属粉末
本発明で用いる金属粉末には、純アルミニウム粉末、アルミニウム合金粉末又はこれらの混合物であるアルミニウム粉末;ならびに、チタン粉末、銅粉末、ニッケル粉末、SUS粉末などの金属粉末、合金粉末及びこれらの混合粉末;が用いられる。軽量性や耐食性などの観点から、アルミニウム粉末を用いるのが好ましい。
(A) Metal powder The metal powder used in the present invention includes pure aluminum powder, aluminum alloy powder or an aluminum powder which is a mixture thereof; and metal powder such as titanium powder, copper powder, nickel powder and SUS powder, and alloy powder. And mixed powders thereof are used. From the viewpoints of lightness and corrosion resistance, it is preferable to use aluminum powder.

アルミニウム粉末を用いる際に、使用環境下において合金成分が耐食性劣化の原因となるような場合には、純アルミニウム粉末を用いるのが好ましい。純アルミニウムとは、純度99.0mass%以上のアルミニウムである。一方、より高い強度を得たいといった場合には、アルミニウム合金粉末又はこれと純アルミニウム粉末の混合物を用いるのが好ましい。アルミニウム合金としては、1000系、2000系、3000系、4000系、5000系、6000系、7000系のアルミニウム合金が用いられる。   When aluminum powder is used, it is preferable to use pure aluminum powder if the alloy components cause corrosion resistance deterioration under the usage environment. Pure aluminum is aluminum having a purity of 99.0 mass% or more. On the other hand, when it is desired to obtain higher strength, it is preferable to use aluminum alloy powder or a mixture of this and pure aluminum powder. As the aluminum alloy, 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, and 7000 series aluminum alloys are used.

アルミニウム粉末を用いる場合には、純アルミニウム粉末に添加元素粉末を加えた混合物を用いてもよい。このような添加元素には、マグネシウム、珪素、チタン、鉄、ニッケル、銅、亜鉛等から選択される単独又は二以上の任意の組み合わせからなる複数の元素が好適に用いられる。このような混合物は、熱処理によりアルミニウムと添加元素との合金を形成する。また、添加元素の種類によっては、アルミニウムと添加元素との金属間化合物が更に形成される。このようなアルミニウムの合金や金属間化合物の含有により、様々な効果が得られる。例えば、珪素や銅などの添加元素とアルミニウムとのアルミニウム合金では、アルミニウム粉末の融点が低下し、熱処理に必要な温度を下げることができるので製造に必要なエネルギーを削減できると共に、合金化によって強度が向上する。また、アルミニウムとニッケルなど添加元素との金属間化合物が形成される際に発熱が起こって焼結が促進されると共に、金属間化合物が分散した組織が形成されることで高強度化が図れる。   When aluminum powder is used, a mixture obtained by adding additive element powder to pure aluminum powder may be used. As such an additive element, a plurality of elements consisting of a single element selected from magnesium, silicon, titanium, iron, nickel, copper, zinc and the like or any combination of two or more are preferably used. Such a mixture forms an alloy of aluminum and an additive element by heat treatment. Depending on the type of additive element, an intermetallic compound of aluminum and the additive element is further formed. Various effects can be obtained by including such an aluminum alloy or an intermetallic compound. For example, in an aluminum alloy of aluminum and an additive element such as silicon or copper, the melting point of the aluminum powder is lowered and the temperature required for the heat treatment can be lowered, so that the energy required for production can be reduced and the strength by alloying can be reduced. Will improve. Further, when an intermetallic compound of aluminum and an additive element such as nickel is formed, heat is generated and sintering is promoted, and a structure in which the intermetallic compound is dispersed is formed, so that high strength can be achieved.

アルミニウム合金粉末に添加元素粉末を加えてもよく、アルミニウム合金粉末と純アルミニウム粉末との混合物に、添加元素粉末を加えてもよい。これらの場合には、新たな合金系や金属間化合物が形成される。更に、添加元素粉末として、複数の添加元素粉末同士を合金化した添加元素合金粉末を用いてもよい。アルミニウム合金粉末や純アルミニウム粉末に対する添加元素粉末や添加元素合金粉末の添加量は、形成される合金や金属間化合物の化学式量に基づいて適宜決定される。   The additive element powder may be added to the aluminum alloy powder, or the additive element powder may be added to a mixture of the aluminum alloy powder and the pure aluminum powder. In these cases, new alloy systems and intermetallic compounds are formed. Furthermore, an additive element alloy powder obtained by alloying a plurality of additive element powders may be used as the additive element powder. The addition amount of the additive element powder or additive element alloy powder to the aluminum alloy powder or pure aluminum powder is appropriately determined based on the chemical formula amount of the alloy or intermetallic compound to be formed.

金属粉末の粒径は1〜50μmが好ましい。多孔質金属集電体の製造において支持粉末の表面を満遍なく金属粉末で覆うためには、金属粉末の粒径はより小さい方が好ましく、1〜10μmが更に好ましい。金属粉末の粒径は、レーザー回折散乱法(マイクロトラック法)で測定したメジアン径で規定する。金属粉末としてアルミニウム粉末を用いる場合においても、純アルミニウム粉末、アルミニウム合金粉末、添加元素粉末及び添加元素合金粉末の粒径は、上述のように、1〜50μmが好ましく、1〜10μmが更に好ましい。   The particle size of the metal powder is preferably 1 to 50 μm. In order to uniformly cover the surface of the support powder with the metal powder in the production of the porous metal current collector, the metal powder preferably has a smaller particle size, more preferably 1 to 10 μm. The particle size of the metal powder is defined by the median diameter measured by the laser diffraction scattering method (microtrack method). Even when aluminum powder is used as the metal powder, the particle diameters of pure aluminum powder, aluminum alloy powder, additive element powder and additive element alloy powder are preferably 1 to 50 μm, and more preferably 1 to 10 μm, as described above.

(b)支持粉末
本発明では支持粉末としては、水溶性塩が好ましく、入手の容易性から塩化ナトリウムや塩化カリウムが好適に用いられる。支持粉末が除去されることで形成された空間が多孔質金属の空孔になることから、支持粉末の粒径が空孔径に反映される。そこで、本発明で用いる支持粉末の粒径は、10〜1000μmとするのが好ましい。支持粉末の粒径は、ふるいの目開きで規定する。従って、分級によって支持粉末の粒径を揃えることで、空孔径の揃った多孔質金属が得られる。
(B) Support powder In the present invention, the support powder is preferably a water-soluble salt, and sodium chloride or potassium chloride is preferably used because of its availability. Since the space formed by removing the supporting powder becomes pores of the porous metal, the particle size of the supporting powder is reflected in the pore diameter. Therefore, the particle size of the support powder used in the present invention is preferably 10 to 1000 μm. The particle size of the support powder is defined by the opening of the sieve. Therefore, a porous metal having a uniform pore diameter can be obtained by aligning the particle diameter of the support powder by classification.

(c)金属板
本発明においては、金属粉末と支持粉末との混合粉末を金属板と複合化した状態で用いてもよい。金属板とは無孔の板や箔及び、有孔の金網、エキスパンドメタル、パンチングメタル等の網状体である。金属板が支持体となり多孔質金属集電体の強度が向上し、更に導電性が向上する。金属板としては熱処理時に蒸発又は分解しない素材、具体的にはアルミニウム、チタン、鉄、ニッケル、銅等の金属やその合金製のものが好適に利用できる。
(C) Metal plate In this invention, you may use the mixed powder of a metal powder and support powder in the state compounded with the metal plate. The metal plate is a non-porous plate or foil, and a net-like body such as a perforated wire mesh, expanded metal, or punching metal. The metal plate serves as a support, and the strength of the porous metal current collector is improved and the conductivity is further improved. As the metal plate, a material that does not evaporate or decompose during heat treatment, specifically, a metal such as aluminum, titanium, iron, nickel, copper, or an alloy thereof can be suitably used.

混合粉末と金属板との複合化とは、例えば金属板に金網を用いた場合には、網目の中に混合粉末を充填しつつ網全体を混合粉末で覆うような一体化状態をいう。金属板の両側に結合金属粉末壁を設けた多孔質金属に例えば触媒や活物質を充填する場合、金属板が有孔の網状体であれば金属板で分けられる領域の片側からの充填であっても、もう一方の領域にまで充填することができるため、金属板は網状体であることが好ましい。ここで、有孔とは、金網の網目部分、パンチングメタルのパンチ部分、エキスパンドメタルの網目部分、金属繊維の繊維と繊維との隙間部分を言う。
網状体の有孔の孔径は、接合した混合粉末から支持粉末を除去して得られる空孔の径より大きくても、小さくてもよい。
網状体の有孔の開口率は、多孔質金属集電体の気孔率を損なわないためにも大きい方が好ましい。
The composite of the mixed powder and the metal plate refers to an integrated state in which, for example, when a metal mesh is used for the metal plate, the entire net is covered with the mixed powder while filling the mixed powder in the mesh. When, for example, a catalyst or an active material is filled in a porous metal provided with bonded metal powder walls on both sides of the metal plate, if the metal plate is a perforated network, the filling is from one side of the region divided by the metal plate. However, since the other region can be filled, the metal plate is preferably a net-like body. Here, the perforated means a mesh part of a metal mesh, a punch part of a punching metal, a mesh part of an expanded metal, and a gap part between fibers of metal fibers.
The pore diameter of the perforated body of the network may be larger or smaller than the diameter of the pores obtained by removing the supporting powder from the joined mixed powder.
The aperture ratio of the perforated holes in the network is preferably large so as not to impair the porosity of the porous metal current collector.

(d)混合方法
金属粉末と支持粉末の混合割合は、それぞれの体積をVal、Vsとして金属粉末の体積率であるVal/(Val+Vs)が5〜20%とするのが好ましく、より好ましくは5〜10%である。ここで体積Val、Vsはそれぞれの質量と比重から求めた値である。金属粉末の体積率が20%を超える場合には、支持粉末の含有率が少な過ぎるために支持粉末同士が接触することなく独立して存在することになり、支持粉末を十分に除去しきれない。除去しきれない支持粉末は、多孔質金属の腐食の原因となる。一方、金属粉末の体積率が5%未満の場合には、多孔質金属を構成する金属壁が薄くなり過ぎることで、多孔質金属の強度が不十分となり、取り扱いや形状維持が困難となる。
また、支持粉末を金属粉末で十分に覆れた状態を達成するために、金属粉末の粒径(dal)が支持粉末の粒径(ds)に比べて十分に小さいこと、例えば、dal/dsが0.1以下であることが好ましい。
(D) Mixing method The mixing ratio of the metal powder and the support powder is preferably such that Val / (Val + Vs), which is the volume ratio of the metal powder, is 5 to 20%, more preferably 5 with the respective volumes being Val and Vs. -10%. Here, the volumes Val and Vs are values obtained from the respective mass and specific gravity. When the volume ratio of the metal powder exceeds 20%, the support powder content is too small and the support powders exist independently without contacting each other, and the support powder cannot be removed sufficiently. . Support powder that cannot be removed causes corrosion of the porous metal. On the other hand, when the volume ratio of the metal powder is less than 5%, the metal wall constituting the porous metal becomes too thin, the strength of the porous metal becomes insufficient, and handling and shape maintenance become difficult.
Also, in order to achieve a state where the support powder is sufficiently covered with the metal powder, the particle size (dal) of the metal powder is sufficiently smaller than the particle size (ds) of the support powder, for example, dal / ds. Is preferably 0.1 or less.

なお、金属粉末を支持粉末と混合する混合手段としては、振動攪拌機、容器回転混合機といったものが用いられるが、十分な混合状態が得られるのであれば特に限定されるものではない。   In addition, as a mixing means for mixing the metal powder with the support powder, a vibration agitator, a container rotation mixer, or the like is used, but there is no particular limitation as long as a sufficient mixed state can be obtained.

(e)加圧成形方法
加圧成形時の圧力は、200MPa以上とするのが好ましい。十分な圧力を加えて成形することで金属粉末同士が擦れ合い、金属粉末同士の焼結を阻害する金属粉末表面の強固な酸化皮膜が破壊される。この酸化皮膜は融解した金属を閉じ込め、互いに接触することを妨げると共に、融解金属との濡れ性に劣り、液体状の金属を排斥する作用がある。そのため、加圧成形の圧力が200MPa未満の場合には金属粉末表面の酸化皮膜の破壊が不十分で、加熱時に融解した金属が成形体の外に滲み出し玉状の金属の塊が形成される場合がある。金属塊が存在する状態で電極を作製した場合、この玉状の金属塊がセパレータを突き破ってショートの原因となる点で弊害となる。成形圧力は使用する装置や金型が許容する限り大きい方が形成される多孔質金属の壁が強固になって好ましい。しかしながら、400MPaを超えると効果が飽和する傾向がある。加圧成形体の離型性を高める目的でステアリン酸等の脂肪酸、ステアリン酸亜鉛等の金属石鹸、各種ワックス、合成樹脂、オレフィン系合成炭化水素等の潤滑剤を使用することが好ましい。
(E) Pressure molding method The pressure during pressure molding is preferably 200 MPa or more. By forming by applying sufficient pressure, the metal powders rub against each other, and the strong oxide film on the surface of the metal powder that inhibits the sintering of the metal powders is destroyed. This oxide film confines molten metal, prevents contact with each other, and is inferior in wettability with molten metal, and has the effect of rejecting liquid metal. Therefore, when the pressure of pressure molding is less than 200 MPa, the destruction of the oxide film on the surface of the metal powder is insufficient, and the metal melted during heating oozes out of the molded body to form a ball-shaped metal lump. There is a case. When an electrode is produced in the presence of a metal lump, this ball-shaped metal lump breaks through the separator, causing a short circuit. It is preferable that the molding pressure is as large as the apparatus and mold used allow the porous metal wall to be formed to be strong. However, if it exceeds 400 MPa, the effect tends to be saturated. For the purpose of enhancing the releasability of the pressure-molded body, it is preferable to use a lubricant such as a fatty acid such as stearic acid, a metal soap such as zinc stearate, various waxes, synthetic resins, and olefinic synthetic hydrocarbons.

(f)複合化方法
混合粉末を加圧成形する際に、成形用金型に充填した混合粉末と金属板とを複合化してもよい。複合化の形態としては、混合粉末の間に金属板を挟んでも、混合粉末を金属板で挟んでも構わない。また、混合粉末と金属板の複合化を繰り返して多段にすることもできる。複合化の際には金属粉末や支持粉末の粒径、混合割合の異なる混合粉末や、種類の異なる複数の金属板を組み合わせることもできる。
(F) Compounding method When the mixed powder is pressure-molded, the mixed powder filled in the molding die and the metal plate may be compounded. As a composite form, a metal plate may be sandwiched between mixed powders, or a mixed powder may be sandwiched between metal plates. Further, the composite of the mixed powder and the metal plate can be repeated to make multiple stages. At the time of compounding, mixed powders having different particle sizes and mixing ratios of metal powder and support powder, and a plurality of different types of metal plates can be combined.

(g)熱処理方法
熱処理は使用する金属粉末の融点近傍、少なくとも融点の0.5倍以上の温度で、かつ、金属粉末の融点の1.05倍の温度を超えない範囲で行う。混合粉末を金属板と複合化する場合においても、金属粉末の融点近傍、少なくとも融点の0.5倍以上の温度で熱処理を行う。ここで、金属粉末の融点とは、単体の場合には液相が生じる温度であり、合金の場合には最も割合の多い成分単体の液相が生じる温度である。金属板の融点とは、同様に液相が生じる温度である。特に、金属粉末としてアルミニウム粉末を用いる場合には、その融点以上の温度で熱処理を行う。アルミニウム粉末と支持粉末の混合粉末を金属板と複合化する場合にも、アルミニウム粉末の融点以上の温度で熱処理を行う。アルミニウム粉末の表面には強固な酸化皮膜が存在するため、アルミニウム粉末の融点以上で液相が生じる温度まで加熱することで、アルミニウム粉末、或いは、これと金属板から液相が滲み出し、液相同士が接触することでアルミニウム粉末同士、アルミニウム粉末と金属板が金属的に強固に結合する。
(G) Heat treatment method The heat treatment is performed in the vicinity of the melting point of the metal powder to be used, at a temperature of at least 0.5 times the melting point and not exceeding 1.05 times the melting point of the metal powder. Even when the mixed powder is combined with a metal plate, heat treatment is performed at a temperature near the melting point of the metal powder, at least 0.5 times the melting point. Here, the melting point of the metal powder is a temperature at which a liquid phase is generated in the case of a single substance, and a temperature at which a liquid phase of a single component having the highest proportion is generated in the case of an alloy. Similarly, the melting point of the metal plate is a temperature at which a liquid phase is generated. In particular, when aluminum powder is used as the metal powder, heat treatment is performed at a temperature equal to or higher than its melting point. Even when the mixed powder of the aluminum powder and the supporting powder is combined with the metal plate, heat treatment is performed at a temperature equal to or higher than the melting point of the aluminum powder. Since a strong oxide film exists on the surface of the aluminum powder, the liquid phase oozes out of the aluminum powder or this and the metal plate by heating to a temperature at which the liquid phase is generated above the melting point of the aluminum powder. By contacting each other, the aluminum powders, and the aluminum powder and the metal plate are firmly bonded metallically.

熱処理温度が金属粉末の融点の0.5倍未満の場合には、金属粉末同士、金属粉末と金属板との焼結が不十分となる。アルミニウム粉末の場合には、その融点を超えないとアルミニウム粉末から液相が生じないために、アルミニウム粉末同士、アルミニウム粉末と金属板との結合が不十分となる。金属粉末の融点の0.5倍以上に加熱することで、焼結体の最表面に位置する支持粉末の表面を覆っていた金属粉末が除去され、開口率が大きな表面を有する焼結体が形成される。焼結体の開口率が大きいと、集電体に適用した際に活物質を充填するのに有利である。   When the heat treatment temperature is less than 0.5 times the melting point of the metal powder, the sintering between the metal powders and between the metal powder and the metal plate becomes insufficient. In the case of aluminum powder, a liquid phase is not generated from the aluminum powder unless its melting point is exceeded, so that the bonding between the aluminum powder and the aluminum powder and the metal plate becomes insufficient. By heating the metal powder to a melting point of 0.5 times or more of the melting point of the metal powder, the metal powder covering the surface of the support powder located on the outermost surface of the sintered body is removed, and a sintered body having a surface with a large aperture ratio is obtained. It is formed. A large aperture ratio of the sintered body is advantageous for filling the active material when applied to the current collector.

加熱温度が金属粉末の融点の1.05倍を超える場合には、融解した金属の粘度が低下し、加圧成形体の外側にまで融解した金属が滲み出て、凸状の金属塊が形成される。金属塊が存在する状態で電極を作製した場合、この凸状の部分がセパレータを突き破ってショートを起こす原因となる点で弊害となる。熱処理における加熱保持時間は、1〜60分程度が好ましい。また、熱処理時に加圧成形体に荷重を掛け、加圧成形体の圧縮を行なったり、加熱と冷却の繰り返しを複数回行ってもよい。   When the heating temperature exceeds 1.05 times the melting point of the metal powder, the viscosity of the molten metal decreases, and the molten metal oozes out to the outside of the pressure-formed body, forming a convex metal lump. Is done. When an electrode is produced in the presence of a metal block, this convex portion breaks the separator and causes a short circuit, which is a harmful effect. The heat holding time in the heat treatment is preferably about 1 to 60 minutes. Further, a load may be applied to the pressure-formed body during the heat treatment to compress the pressure-formed body, or heating and cooling may be repeated a plurality of times.

熱処理を行う不活性雰囲気は金属の酸化を抑制する雰囲気であり、真空;窒素、アルゴン、水素、分解アンモニア及びこれらの混合ガス;の雰囲気が好適に用いられ、真空雰囲気が好ましい。真空雰囲気は、好ましくは2×10−2Pa以下、更に好ましくは1×10−2Pa以下である。2×10−2Paを超える場合、金属粉末表面に吸着した水分の除去が不十分となり、熱処理時に金属表面の酸化が進行する。前述のとおり金属表面の酸化皮膜は液体状の金属との濡れ性に劣り、その結果、融解した金属が滲み出し玉状の塊が形成される。窒素等の不活性ガス雰囲気の場合は、酸素濃度を200ppm以下、露点を−35℃以下にすることが好ましい。 The inert atmosphere in which the heat treatment is performed is an atmosphere that suppresses metal oxidation, and an atmosphere of vacuum; nitrogen, argon, hydrogen, decomposed ammonia, and a mixed gas thereof is preferably used, and a vacuum atmosphere is preferable. The vacuum atmosphere is preferably 2 × 10 −2 Pa or less, more preferably 1 × 10 −2 Pa or less. When it exceeds 2 × 10 −2 Pa, removal of moisture adsorbed on the surface of the metal powder becomes insufficient, and oxidation of the metal surface proceeds during heat treatment. As described above, the oxide film on the metal surface is inferior in wettability with the liquid metal, and as a result, the molten metal exudes and a ball-like lump is formed. In the case of an inert gas atmosphere such as nitrogen, it is preferable that the oxygen concentration is 200 ppm or less and the dew point is −35 ° C. or less.

(h)支持粉末の除去方法
焼結体中の支持粉末の除去は、支持粉末を水に溶出させて行う方法が好適に用いられる。焼結体を十分な量の水浴または流水浴に浸漬する等の方法により、支持粉末を容易に溶出することができる。支持粉末として水溶性塩を用いる場合には、これを溶出させる水は、イオン交換水や蒸留水等、不純物の少ない方が好ましいが、水道水でも特に問題は無い。浸漬時間は、通常、数時間〜24時間程度の範囲で適宜選択される。浸漬中に超音波等によって振動を与えることにより、溶出を促進することもできる。
(H) Support powder removal method The support powder in the sintered body is preferably removed by eluting the support powder into water. The supporting powder can be easily eluted by a method such as immersing the sintered body in a sufficient amount of water bath or flowing water bath. When a water-soluble salt is used as the support powder, the water for eluting it is preferably free from impurities such as ion exchange water or distilled water, but tap water is not particularly problematic. The immersion time is usually appropriately selected within the range of several hours to 24 hours. Elution can be promoted by applying vibration by ultrasonic waves or the like during the immersion.

3−2.電極合材の充填方法
(a)充填用スラリーの調製
上記のようにして作製した多孔質金属の空孔内に、電極合材を充填する。電極合材は活物質を含み、導電助剤及び結着剤を更に含有しているのが好ましい。活物質、導電助剤、結着剤のスラリー中の濃度は限定されるものではなく、例えば、スラリーの粘度が濾過に適した粘度となるように濃度を選択すれば良い。また、粘度調整に増粘剤を加えても良く、良好な分散状態とするために分散剤を加えても良い。スラリーの溶媒も特に限定されるものではないが、例えば、N‐メチル‐2‐ピロリドン、水等が好適に用いられる。結着剤としてポリフッ化ビニリデンを用いる場合には、N‐メチル‐2‐ピロリドンを溶媒に用いるのが好ましく、結着剤としてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)等を用いる場合は、水を溶媒に用いるのが好ましい。
3-2. Method for filling electrode mixture (a) Preparation of filling slurry The electrode mixture is filled into the pores of the porous metal produced as described above. The electrode mixture preferably contains an active material, and further contains a conductive additive and a binder. The concentration of the active material, the conductive additive, and the binder in the slurry is not limited. For example, the concentration may be selected so that the viscosity of the slurry becomes a viscosity suitable for filtration. Further, a thickener may be added to adjust the viscosity, and a dispersant may be added to obtain a good dispersion state. The solvent for the slurry is not particularly limited, and for example, N-methyl-2-pyrrolidone, water and the like are preferably used. When using polyvinylidene fluoride as a binder, it is preferable to use N-methyl-2-pyrrolidone as a solvent. When using polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose (CMC), etc. as a binder, Preferably, water is used as a solvent.

(b)スラリーの濾過
活物質、必要に応じて導電助剤及び/又は結着剤、更に必要に応じて増粘剤及び/又は分散剤などの電極合材成分を溶媒に分散又は溶解したスラリーは、多孔質金属を介してフィルターによって濾過される。本発明では、電極合材成分中の主に活物質をフィルターによって濾過物とすることにより、これを多孔質金属の空孔内に堆積させることが重要である。スラリー中の活物質は堆積した濾過物によってケーク濾過されるが、活物質をより多量に濾過するために、フィルターの孔径は活物質の粒径よりも小さいのが好ましい。なお、活物質以外の電極合材成分の中で導電助剤のように活物質よりも小さな粒径を有するものは、活物質に比べてフィルターを透過し易い。また、活物質以外の電極合材成分の中で結着剤のように溶媒に溶解するものは、溶媒と共にフィルターを透過する。
(B) Slurry filtration Slurry in which an active material, conductive auxiliary agent and / or binder as necessary, and electrode mixture components such as thickener and / or dispersant as necessary are dispersed or dissolved in a solvent. Is filtered by a filter through a porous metal. In the present invention, it is important to mainly deposit the active material in the electrode mixture component into pores of the porous metal by using a filter as a filtered material. The active material in the slurry is subjected to cake filtration by the deposited filtrate, but in order to filter the active material in a larger amount, the pore size of the filter is preferably smaller than the particle size of the active material. Of the electrode mixture components other than the active material, those having a particle size smaller than that of the active material, such as a conductive additive, are more easily transmitted through the filter than the active material. Further, among the electrode mixture components other than the active material, those that dissolve in a solvent such as a binder pass through the filter together with the solvent.

濾過工程について説明する。図2に示すように、漏斗9にフィルター4をセットし、その上に、上記の多孔質金属5を載置する。フィルター4を介して多孔質金属5を載置した側の圧力を反対側より高い状態にする。このような圧力差は、多孔質金属5を載置した側の反対側を減圧してもよく、これに代えて、多孔質金属5を載置した側を加圧してもよい。減圧する場合は、大気圧から0.01〜0.1MPa分減圧するのが好ましい。一方、加圧する場合は、0.01〜0.5MPa加圧するのが好ましい。   The filtration process will be described. As shown in FIG. 2, the filter 4 is set in the funnel 9, and the porous metal 5 is placed thereon. The pressure on the side on which the porous metal 5 is placed is set higher than that on the opposite side through the filter 4. Such a pressure difference may depressurize the side opposite to the side on which the porous metal 5 is placed, or pressurize the side on which the porous metal 5 is placed instead. When reducing the pressure, it is preferable to reduce the pressure by 0.01 to 0.1 MPa from atmospheric pressure. On the other hand, when pressurizing, it is preferable to pressurize 0.01 to 0.5 MPa.

このようにフィルター4と多孔質金属5をセットした漏斗9の高圧側に、電極合材10を溶媒6に分散したスラリー8を注入する。このスラリー8は、圧力差によって多孔質金属5の内部に浸透しつつフィルター4によって濾過される。スラリーの溶媒6はフィルターを透過し、スラリーの濾過物7は多孔質金属5の空孔(図1の1で示す)を埋め尽くすように空孔内に徐々に堆積する。濾過物7が多孔質金属5の空孔内に堆積した後には、空孔内に堆積しきれなくなった余分な濾過物7が多孔質金属5の表面を覆うように堆積する。本発明では、このような状態になるまでスラリー8の濾過を続けるのが好ましい。全ての空孔内に濾過物7を堆積させて、電極合材の充填密度を高めるためである。ここで、濾過物7とは、スラリー8中の溶媒が減少して流動性を殆ど有さないペースト状のものである。   In this way, the slurry 8 in which the electrode mixture 10 is dispersed in the solvent 6 is injected into the high pressure side of the funnel 9 in which the filter 4 and the porous metal 5 are set. The slurry 8 is filtered by the filter 4 while penetrating into the porous metal 5 due to the pressure difference. The slurry solvent 6 permeates the filter, and the slurry filtrate 7 is gradually deposited in the pores so as to fill the pores (indicated by 1 in FIG. 1) of the porous metal 5. After the filtrate 7 is deposited in the pores of the porous metal 5, excess filtrate 7 that cannot be deposited in the pores is deposited so as to cover the surface of the porous metal 5. In the present invention, it is preferable to continue filtering the slurry 8 until such a state is reached. This is because the filtrate 7 is deposited in all the holes to increase the packing density of the electrode mixture. Here, the filtered product 7 is a paste-like material in which the solvent in the slurry 8 is reduced and hardly has fluidity.

多孔質金属5の表面を覆うように堆積した余分な濾過物7は、ヘラなどを用いて多孔質金属5の表面から剥ぎ取って除去する。このような除去は、濾過の直後に行ってもよく、後述する乾燥の後に行ってもよい。   The excess filtrate 7 deposited so as to cover the surface of the porous metal 5 is peeled off from the surface of the porous metal 5 using a spatula or the like. Such removal may be performed immediately after filtration or after drying described later.

(c)溶媒の飛散・蒸発
以上のようにしてスラリーが堆積した多孔質金属は溶媒を飛散・蒸発させて乾燥されるが、乾燥条件としては、溶媒を十分に飛散・蒸発させるものであれば特に限定されるものではない。具体的な乾燥条件としては、50〜200℃で1〜60分間保持するのが好ましい。
(C) Scattering / evaporation of solvent The porous metal on which the slurry is deposited as described above is dried by scattering / evaporating the solvent. The drying conditions are as long as the solvent can be sufficiently scattered / evaporated. It is not particularly limited. As specific drying conditions, it is preferable to hold at 50 to 200 ° C. for 1 to 60 minutes.

3−3.プレス処理
このようにして作製される多孔質金属集電体に、ロールプレス機や平板プレス機等を用いて加圧するプレス処理を施すことによって、活物質を含む電極合材の充填密度を調整するのが好ましい。プレス処理方法としては、平板プレス機を用いるのが望ましい。プレス処理の圧力は、上述のように充填密度が合材密度の50%超え、好ましくは60%以上、更に好ましくは80〜250%となるように適宜選定すればよい。
3-3. Press treatment The packing density of the electrode mixture containing the active material is adjusted by subjecting the porous metal current collector thus produced to press treatment using a roll press or a flat plate press. Is preferred. As a pressing method, it is desirable to use a flat plate press. The pressure of the press treatment may be appropriately selected so that the filling density exceeds 50% of the composite density as described above, preferably 60% or more, and more preferably 80 to 250%.

4.電池
本発明に係る電極を、例えば上述のような非水電解質二次電池用の正極と負極とし、これら電極に、正負極間に配置されたセパレータと、非水電解質とを用いて組み合わせることによって、非水電解質二次電池が得られる。セパレータとしては、一般的に用いられているポリエチレン(PE)、ポリプロピレン(PP)などの高分子膜が用いられる。また、非水電解質としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)などの有機溶媒に溶解させた六フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)を用いることができる。
4). Battery The electrode according to the present invention is, for example, a positive electrode and a negative electrode for a non-aqueous electrolyte secondary battery as described above, and these electrodes are combined using a separator disposed between the positive and negative electrodes and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery is obtained. As the separator, generally used polymer films such as polyethylene (PE) and polypropylene (PP) are used. As the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) or lithium perchlorate (LiClO 4 ) dissolved in an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used. it can.

以下に発明例及び比較例により、本発明を具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。   The present invention will be specifically described below with reference to invention examples and comparative examples. The present invention is not limited to the following examples.

1.発明例1
(多孔質アルミニウムの作製)
まず、本発明に用いる多孔質金属集電体として多孔質アルミニウムを以下のようにして作製した。
アルミニウム粉末として下記純アルミニウム粉末(A1)を、支持粉末として下記塩化ナトリウム粉末(B1)を用いた。これら粉末を、A1:B1=1:9の体積割合で混合し、混合粉末を調製した。
1. Invention Example 1
(Preparation of porous aluminum)
First, porous aluminum was produced as follows as a porous metal current collector used in the present invention.
The following pure aluminum powder (A1) was used as the aluminum powder, and the following sodium chloride powder (B1) was used as the support powder. These powders were mixed at a volume ratio of A1: B1 = 1: 9 to prepare a mixed powder.

A1:純アルミニウム粉末(アルミニウム純度99.9mass%)、メジアン径3μm(融点:660℃)
B1:粒径400μm(ふるい目開き中央値)(融点:800℃)
A1: Pure aluminum powder (aluminum purity 99.9 mass%), median diameter 3 μm (melting point: 660 ° C.)
B1: Particle size 400 μm (median sieve opening) (melting point: 800 ° C.)

上記混合粉末をφ13mmの穴を有する金型に充填し、400MPaの圧力で加圧成形した。混合粉末の充填量は加圧成形体の厚さが1mmとなる質量とした。この加圧成形体を最大到達圧力が1×10−2Pa以下の雰囲気下において、670℃の温度で5分間熱処理することで焼結体を作製した。次いで、得られた焼結体を20℃の流水(水道水)中に6時間浸漬して支持粉末を溶出させた。さらに、焼結体を105℃で1時間乾燥した。このようにして、気孔率90%の多孔質アルミニウム試料(φ13mm×厚さ1mm)を作製した。 The mixed powder was filled in a mold having a hole with a diameter of 13 mm, and pressure-molded at a pressure of 400 MPa. The filling amount of the mixed powder was set to a mass at which the thickness of the pressure molded body was 1 mm. This press-molded body was heat-treated at a temperature of 670 ° C. for 5 minutes in an atmosphere having a maximum ultimate pressure of 1 × 10 −2 Pa or less to produce a sintered body. Next, the obtained sintered body was immersed in flowing water (tap water) at 20 ° C. for 6 hours to elute the supporting powder. Further, the sintered body was dried at 105 ° C. for 1 hour. In this way, a porous aluminum sample (φ13 mm × thickness 1 mm) having a porosity of 90% was produced.

(電極合材の充填)
正極活物質としてリン酸鉄リチウム(LiFePO、粒径3μm)89.5重量部、導電助剤としてアセチレンブラック(粒径48nm)5.0重量部、結着剤としてPVDF(目開き355μm篩下)5.5重量部を用い、これらを溶媒であるNMP200質量部に分散して電極合材のスラリー1を調製した。
(Filling electrode mixture)
Lithium iron phosphate (LiFePO 4 , particle size 3 μm) 89.5 parts by weight as a positive electrode active material, acetylene black (particle size 48 nm) 5.0 parts by weight as a conductive assistant, PVDF (mesh opening 355 μm below sieve) ) Using 5.5 parts by weight, these were dispersed in 200 parts by mass of NMP as a solvent to prepare slurry 1 of electrode mixture.

孔径1μmの濾紙上に上記多孔質アルミニウム試料を載置し、濾紙を介して多孔質アルミニウム試料とは反対側をロータリーポンプで減圧した。濾紙を介して高圧側となる多孔質アルミニウム試料側にスラリー1を供給し、スラリー1を多孔質アルミニウム試料内部に浸透させつつ濾紙によってスラリー1を濾過した。スラリー1の濾過物によって多孔質アルミニウム試料の表面が完全に覆われるまでスラリー1の濾過を続けた。その後、多孔質アルミニウム試料表面の余分な濾過物をヘラで剥ぎ取って除去した。更に、この多孔質アルミニウム試料を120℃×1時間で乾燥させた。電極合材の充填密度は0.92g/cmであった。スラリー1をアルミニウム箔に塗工し、乾燥して得られた合材層の密度は1.50g/cmであったので、前記充填密度はこの合材密度の61%であった。充填密度が合材密度の50%を超える場合を合格とし、50%以下の場合を不合格とする。 The porous aluminum sample was placed on a filter paper having a pore diameter of 1 μm, and the side opposite to the porous aluminum sample was decompressed with a rotary pump through the filter paper. Slurry 1 was supplied to the porous aluminum sample side, which is on the high pressure side, through the filter paper, and the slurry 1 was filtered through the filter paper while allowing the slurry 1 to penetrate into the porous aluminum sample. The filtration of slurry 1 was continued until the surface of the porous aluminum sample was completely covered with the filtrate of slurry 1. Thereafter, excess filtrate on the surface of the porous aluminum sample was removed by removing with a spatula. Furthermore, this porous aluminum sample was dried at 120 ° C. for 1 hour. The packing density of the electrode mixture was 0.92 g / cm 3 . Since the density of the mixture layer obtained by applying slurry 1 on aluminum foil and drying was 1.50 g / cm 3 , the packing density was 61% of this mixture density. The case where the filling density exceeds 50% of the composite material density is accepted, and the case where it is 50% or less is rejected.

電極全体に占める多孔質アルミニウム試料の質量割合は、電極合剤充填前の多孔質アルミニウム試料の質量を、電極合剤を充填・乾燥した後の質量で割って求めた。この質量割合は、22%であった。   The mass ratio of the porous aluminum sample to the entire electrode was obtained by dividing the mass of the porous aluminum sample before filling with the electrode mixture by the mass after filling and drying the electrode mixture. This mass proportion was 22%.

2.発明例2
発明例1において、濾紙を介して多孔質アルミニウム試料の反対側を減圧するのに代えて、多孔質アルミニウム試料側を加圧し(0.2MPa)、濾過後に多孔質アルミニウム試料表面の余分な濾過物を除去するのに代えて、多孔質アルミニウム試料表面の余分な電極合材を乾燥後にヘラで剥ぎ取って除去した。これら以外は発明例1と同様にして、電極合材を多孔質アルミニウム試料に充填した。電極合材の充填密度は0.95g/cmとなり、合材密度の63%であった。また、多孔質アルミニウムの質量割合は22%であった。
2. Invention Example 2
In Invention Example 1, instead of depressurizing the opposite side of the porous aluminum sample through the filter paper, the porous aluminum sample side was pressurized (0.2 MPa), and after filtration, excess filtrate on the surface of the porous aluminum sample Instead of removing, the excess electrode mixture on the surface of the porous aluminum sample was removed by drying and peeling off with a spatula. Except for these, the electrode mixture was filled in a porous aluminum sample in the same manner as in Invention Example 1. The filling density of the electrode mixture was 0.95 g / cm 3 , which was 63% of the mixture density. Moreover, the mass ratio of porous aluminum was 22%.

3.発明例3
孔径6μmの濾紙を用いた以外は発明例1と同じ方法で濾紙を介して高圧側となる多孔質アルミニウム試料側にスラリー1を供給し、スラリー1を多孔質アルミニウム試料内部に浸透させつつ濾紙によってスラリー1を濾過した。スラリー1の濾過物によって多孔質アルミニウム試料の表面が完全に覆われるまでスラリー1の濾過を続けた。その後、多孔質アルミニウム試料表面の余分な濾過物をヘラで剥ぎ取って除去した。発明例1に比べて、フィルターを通り抜ける活物質の量が多く、スラリー1の濾過物によって多孔質アルミニウム試料の表面が完全に覆われるまでの時間が長かった。更に、この多孔質アルミニウム試料を120℃×1時間で乾燥させた。電極合材の充填密度は0.90g/cmとなり、合材密度の60%であった。また、多孔質アルミニウムの質量割合は23%であった。
3. Invention Example 3
Except for using a filter paper having a pore diameter of 6 μm, slurry 1 is supplied to the porous aluminum sample side, which is the high pressure side, through the filter paper in the same manner as in Invention Example 1, and the filter paper is used to penetrate the slurry 1 into the porous aluminum sample. Slurry 1 was filtered. The filtration of slurry 1 was continued until the surface of the porous aluminum sample was completely covered with the filtrate of slurry 1. Thereafter, excess filtrate on the surface of the porous aluminum sample was removed by removing with a spatula. Compared with Invention Example 1, the amount of active material passing through the filter was large, and it took a long time until the surface of the porous aluminum sample was completely covered with the filtrate of the slurry 1. Furthermore, this porous aluminum sample was dried at 120 ° C. for 1 hour. The filling density of the electrode mixture was 0.90 g / cm 3 , which was 60% of the mixture density. Moreover, the mass ratio of porous aluminum was 23%.

4.比較例1
(多孔質アルミニウムの作製)
多孔質アルミニウム試料には、発明例1と同じものを用いた。
(電極合材の充填)
正極活物質としてリン酸鉄リチウム(LiFePO、粒径3μm)89.5重量部、導電助剤としてアセチレンブラック(粒径48nm)5.0重量部、結着剤としてPVDF(目開き355μm篩下)5.5重量部を用い、これらを溶媒であるNMP150質量部に分散して電極合材のスラリー2を調製した。なお、発明例1、2に比べて、スラリーにおける溶媒量を減らした。その理由は、発明例1、2と同程度のスラリー粘度とした場合、多孔質アルミニウム試料の空孔内に充填されたスラリーが空孔内に留まらず、容易に外部に漏洩してしまうからである。
4). Comparative Example 1
(Preparation of porous aluminum)
The same porous aluminum sample as in Invention Example 1 was used.
(Filling electrode mixture)
Lithium iron phosphate (LiFePO 4 , particle size 3 μm) 89.5 parts by weight as a positive electrode active material, acetylene black (particle size 48 nm) 5.0 parts by weight as a conductive assistant, PVDF (mesh opening 355 μm below sieve) ) Using 5.5 parts by weight, these were dispersed in 150 parts by mass of NMP as a solvent to prepare slurry 2 of an electrode mixture. The amount of solvent in the slurry was reduced as compared with Invention Examples 1 and 2. The reason is that when the slurry viscosity is about the same as that of Invention Examples 1 and 2, the slurry filled in the pores of the porous aluminum sample does not stay in the pores and easily leaks to the outside. is there.

上述の浸漬方式を用いて、スラリー2中に上記多孔質アルミニウム試料を浸漬し、ロータリーポンプで5分間減圧した。次いで、大気圧に戻した後、多孔質アルミニウム試料の表面に付着した余分な付着物を、ヘラを用いて剥ぎ取って除去した。その後、多孔質アルミニウム試料を120℃×1時間で乾燥した。電極合材の充填密度は0.49g/cmであった。スラリー2をアルミニウム箔に塗工し、乾燥して得られた合材層の密度は1.49g/cmであったので、充填密度はこの合材密度の33%であった。また、多孔質アルミニウムの質量割合は36%であった。 Using the above immersion method, the porous aluminum sample was immersed in the slurry 2, and the pressure was reduced by a rotary pump for 5 minutes. Next, after returning to atmospheric pressure, excess deposits adhered to the surface of the porous aluminum sample were removed by removing with a spatula. Thereafter, the porous aluminum sample was dried at 120 ° C. for 1 hour. The packing density of the electrode mixture was 0.49 g / cm 3 . Since the density of the mixture layer obtained by applying slurry 2 on aluminum foil and drying was 1.49 g / cm 3 , the packing density was 33% of this mixture density. The mass proportion of porous aluminum was 36%.

5.比較例2
(電極合材の充填)
正極活物質としてリン酸鉄リチウム(LiFePO、粒径3μm)89.5重量部、導電助剤としてアセチレンブラック(粒径48nm)5.0重量部、結着剤としてPVDF(目開き355μm篩下)5.5重量部を用い、これらを125質量部のNMPに分散して電極合材のスラリー3を調製した。比較例1において、スラリー2に代えてスラリー3を用い、浸漬後に多孔質アルミニウム試料表面の余分な付着物を除去するのに代えて、多孔質アルミニウム試料表面の余分な電極合材を乾燥後にヘラで剥ぎ取って除去した。これら以外は比較例1と同様にして、電極合材を多孔質アルミニウム試料に充填した。電極合材の充填密度は0.73g/cmであった。スラリー3をアルミニウム箔に塗工し、乾燥して得られた合材層の密度は1.47g/cmであったので、充填密度はこの合材密度の50%であった。多孔質アルミニウムの質量割合は26%であった。
5. Comparative Example 2
(Filling electrode mixture)
Lithium iron phosphate (LiFePO 4 , particle size 3 μm) 89.5 parts by weight as a positive electrode active material, acetylene black (particle size 48 nm) 5.0 parts by weight as a conductive assistant, PVDF (mesh opening 355 μm below sieve) ) Using 5.5 parts by weight, these were dispersed in 125 parts by weight of NMP to prepare slurry 3 of an electrode mixture. In Comparative Example 1, the slurry 3 was used in place of the slurry 2, and instead of removing excess deposits on the surface of the porous aluminum sample after immersion, the excess electrode mixture on the surface of the porous aluminum sample was dried and then spatulated. And then removed. Except these, it carried out similarly to the comparative example 1, and filled the electrode compound material in the porous aluminum sample. The filling density of the electrode mixture was 0.73 g / cm 3 . Since the density of the mixture layer obtained by applying slurry 3 on aluminum foil and drying was 1.47 g / cm 3 , the packing density was 50% of this mixture density. The mass proportion of porous aluminum was 26%.

発明例1〜3ではいずれも、電極合材の充填密度が合材密度の50%を超え、多孔質アルミニウム試料の質量割合も少なく、多孔質アルミニウム試料の空孔中に電極合材を高密度に充填することができた。これに対して、比較例1、2では、フィルターによるスラリー濾過を行わなかったため、電極合材の充填密度が合材密度の50%以下となり、多孔質アルミニウム試料の質量割合も多く、多孔質アルミニウム試料の空孔中に電極合材を高密度に充填することができなかった。   In each of Invention Examples 1 to 3, the filling density of the electrode mixture exceeds 50% of the mixture density, the mass ratio of the porous aluminum sample is small, and the electrode mixture is dense in the pores of the porous aluminum sample. Could be filled. On the other hand, in Comparative Examples 1 and 2, since the slurry was not filtered by the filter, the filling density of the electrode mixture was 50% or less of the mixture density, and the mass ratio of the porous aluminum sample was large. The electrode mixture could not be filled with high density into the pores of the sample.

本発明に係る電極の製造方法により、多孔質金属から成る集電体の空孔内に活物質を含む電極合材を高密度で充填可能な電極が得られる。   By the electrode manufacturing method according to the present invention, an electrode capable of being filled with an electrode mixture containing an active material at high density in the pores of a current collector made of a porous metal is obtained.

1・・空孔
2・・金属壁
3・・小孔
4・・フィルター
5・・多孔質金属
6・・溶媒
7・・濾過物
8・・スラリー
9・・漏斗
10・・電極合材
1 .... Hole 2 .... Metal wall 3 .... Small hole 4 .... Filter 5 .... Porous metal 6 .... Solvent 7 ... Filtrate 8 .... Slurry 9 .... Fun funnel 10 .... Electrode composite

Claims (5)

活物質を含む電極合材を含有する電極の製造方法であって、前記電極合材を分散したスラリー中の溶媒を透過させるフィルター上に、電極合材が充填される空孔を有する多孔質金属の集電体を載置し、前記フィルターを介して多孔質金属を載置した側の圧力がその反対側より高い状態で、前記スラリーを高圧側に注入し、当該スラリーを多孔質金属の内部に浸透させつつフィルターによって濾過することによってスラリーの濾過物を多孔質金属の空孔内に堆積させ、当該濾過物が空孔内に堆積した多孔質金属を乾燥して溶媒を飛散・蒸発させることにより電極合材を前記空孔中に充填することを特徴とする多孔質金属集電体を用いた電極の製造方法。   A method for producing an electrode containing an electrode mixture containing an active material, the porous metal having pores filled with the electrode mixture on a filter that allows the solvent in the slurry in which the electrode mixture is dispersed to permeate In the state where the pressure on the side where the porous metal is placed through the filter is higher than the opposite side, the slurry is injected into the high pressure side, and the slurry is placed inside the porous metal. The slurry filtrate is deposited in the pores of the porous metal by filtering through a filter while infiltrating into the pores, the porous metal deposited in the pores is dried, and the solvent is scattered and evaporated. A method for producing an electrode using a porous metal current collector, wherein the pores are filled with an electrode mixture. 前記フィルターの孔径が活物質の粒径よりも小さい、請求項1に記載の多孔質金属集電体を用いた電極の製造方法。   The method for producing an electrode using the porous metal current collector according to claim 1, wherein the pore size of the filter is smaller than the particle size of the active material. 前記スラリーの濾過物によって多孔質金属の表面が覆われるまでスラリーをフィルターによって濾過し、前記多孔質金属を乾燥前にその表面を覆っている余分な濾過物を除去する、請求項1又は2に記載の多孔質金属集電体を用いた電極の製造方法。   The slurry is filtered through a filter until the surface of the porous metal is covered with the filtrate of the slurry, and the excess filtrate covering the surface of the porous metal before drying is removed. The manufacturing method of the electrode using the porous metal electrical power collector of description. 前記スラリーの濾過物によって多孔質金属の表面が覆われるまでスラリーをフィルターによって濾過し、前記多孔質金属を乾燥後にその表面を覆っている余分な電極合材を除去する、請求項1又は2に記載の多孔質金属集電体を用いた電極の製造方法。   The slurry is filtered through a filter until the surface of the porous metal is covered with the filtrate of the slurry, and the excess electrode mixture covering the surface of the porous metal is removed after the porous metal is dried. The manufacturing method of the electrode using the porous metal electrical power collector of description. 前記電極合材の充填後に、空孔中に電極合材が充填された多孔質金属をプレス処理する、請求項1〜4のいずれか一項に記載の多孔質金属集電体を用いた電極の製造方法。   The electrode using the porous metal current collector according to any one of claims 1 to 4, wherein after the filling of the electrode mixture, the porous metal filled with the electrode mixture is pressed. Manufacturing method.
JP2012119110A 2012-05-25 2012-05-25 Method for producing electrode using porous metal current collector Active JP6122580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119110A JP6122580B2 (en) 2012-05-25 2012-05-25 Method for producing electrode using porous metal current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119110A JP6122580B2 (en) 2012-05-25 2012-05-25 Method for producing electrode using porous metal current collector

Publications (2)

Publication Number Publication Date
JP2013246945A true JP2013246945A (en) 2013-12-09
JP6122580B2 JP6122580B2 (en) 2017-04-26

Family

ID=49846566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119110A Active JP6122580B2 (en) 2012-05-25 2012-05-25 Method for producing electrode using porous metal current collector

Country Status (1)

Country Link
JP (1) JP6122580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235851A (en) * 2013-05-31 2014-12-15 住友電気工業株式会社 Aluminum porous body, collector, electrode and electrochemical device
WO2015093411A1 (en) * 2013-12-20 2015-06-25 三洋化成工業株式会社 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240079898A (en) * 2022-11-29 2024-06-05 한국기술교육대학교 산학협력단 Anode-free Lithium Secondary Battery, Lithium Metal Secondary Battery Using Metal Powder Sintered Body And Manufacturing Method of Anode-free Lithium Secondary Battery by Using Metal Powder Sintered Body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310832A (en) * 1976-07-16 1978-01-31 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for battery
JPS5482631A (en) * 1977-12-14 1979-07-02 Matsushita Electric Ind Co Ltd Method of producing anode plate for alkaline storage battery
JPH10144310A (en) * 1996-11-05 1998-05-29 Toyota Motor Corp Filling method of active material for electrode, and its device
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310832A (en) * 1976-07-16 1978-01-31 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for battery
JPS5482631A (en) * 1977-12-14 1979-07-02 Matsushita Electric Ind Co Ltd Method of producing anode plate for alkaline storage battery
JPH10144310A (en) * 1996-11-05 1998-05-29 Toyota Motor Corp Filling method of active material for electrode, and its device
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235851A (en) * 2013-05-31 2014-12-15 住友電気工業株式会社 Aluminum porous body, collector, electrode and electrochemical device
WO2015093411A1 (en) * 2013-12-20 2015-06-25 三洋化成工業株式会社 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
JPWO2015093411A1 (en) * 2013-12-20 2017-03-16 三洋化成工業株式会社 Lithium ion battery electrode, lithium ion battery, and method for producing lithium ion battery electrode
US10276858B2 (en) 2013-12-20 2019-04-30 Sanyo Chemical Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US10727476B2 (en) 2013-12-20 2020-07-28 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US11233229B2 (en) 2013-12-20 2022-01-25 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US11322732B2 (en) 2013-12-20 2022-05-03 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell

Also Published As

Publication number Publication date
JP6122580B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US9242297B2 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
US9589732B2 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
CN117154031A (en) Pre-lithiated energy storage device
US8691328B2 (en) Process for production of aluminum complex comprising sintered porous aluminum body
JP5338485B2 (en) ELECTRIC DOUBLE LAYER CAPACITOR ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
CN115224253A (en) Elemental metal and carbon mixtures for energy storage devices
US20150004041A1 (en) Method for manufacturing porous aluminum
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
CN107771363B (en) Composite material
WO2011152304A1 (en) Capacitor and process for producing same
KR101630559B1 (en) Electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP2011077269A (en) Current collector for non-aqueous electrochemical cell and electrode employing the same
JP5893410B2 (en) Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery
JP6122580B2 (en) Method for producing electrode using porous metal current collector
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP5142264B2 (en) Non-aqueous electrolyte secondary battery current collector and method for producing the same, and positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2013243063A (en) Method of manufacturing electrode using porous metal collector
JP6071241B2 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JP2017091673A (en) Lithium ion battery
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP5961067B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6071407B2 (en) Al-Si alloy current collector used for positive electrode for nonaqueous electrolyte secondary battery and method for producing the same, positive electrode for nonaqueous electrolyte secondary battery using the current collector and method for producing the same, and non-electrode using the positive electrode Water electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6122580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150