JP5893410B2 - Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery - Google Patents

Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5893410B2
JP5893410B2 JP2012000985A JP2012000985A JP5893410B2 JP 5893410 B2 JP5893410 B2 JP 5893410B2 JP 2012000985 A JP2012000985 A JP 2012000985A JP 2012000985 A JP2012000985 A JP 2012000985A JP 5893410 B2 JP5893410 B2 JP 5893410B2
Authority
JP
Japan
Prior art keywords
aluminum
powder
electrolyte secondary
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012000985A
Other languages
Japanese (ja)
Other versions
JP2013140745A (en
Inventor
田中祐一
兒島洋一
瀬川翠
阿部英俊
久保田昌明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
UACJ Corp
Original Assignee
Furukawa Battery Co Ltd
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, UACJ Corp filed Critical Furukawa Battery Co Ltd
Priority to JP2012000985A priority Critical patent/JP5893410B2/en
Publication of JP2013140745A publication Critical patent/JP2013140745A/en
Application granted granted Critical
Publication of JP5893410B2 publication Critical patent/JP5893410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高気孔率で高強度の多孔質アルミニウム集電体を含む非水電解質二次電池用多孔質アルミニウム集電体の製造方法、非水電解質二次電池用正極の製造方法、ならびに、当該正極を用いた非水電解質二次電池に関する。   The present invention provides a method for producing a porous aluminum current collector for a non-aqueous electrolyte secondary battery including a porous aluminum current collector having a high porosity and high strength, a method for producing a positive electrode for a non-aqueous electrolyte secondary battery, and The present invention relates to a non-aqueous electrolyte secondary battery using the positive electrode.

近年、非水電解質二次電池は、高エネルギー密度を有する等の理由から、広く普及している。このような非水電解質二次電池には、正極‐負極間にリチウムイオンを移動させて充放電を行う原理が利用されている。非水電解質二次電池は、正極としてリチウム金属酸化物であるコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム系等が、実用化され又は商品化を目指している。負極としては、炭素、特に黒鉛を主とする電極や一部合金電極が用いられている。セパレータとして微孔性薄膜を、電解質として有機溶媒にリチウム塩を溶解した非水電解液を使用するのが一般的である。その他の電解質としては、ゲル状電解液や固体電解質系を使用するものも注目されている。   In recent years, non-aqueous electrolyte secondary batteries have become widespread for reasons such as having a high energy density. Such a nonaqueous electrolyte secondary battery utilizes the principle of charging and discharging by moving lithium ions between the positive electrode and the negative electrode. As for the nonaqueous electrolyte secondary battery, lithium metal oxides such as lithium cobalt oxide, lithium manganate, lithium nickelate, and lithium iron phosphate as a positive electrode have been put to practical use or commercialized. As the negative electrode, an electrode mainly composed of carbon, particularly graphite, or a partial alloy electrode is used. In general, a microporous thin film is used as a separator, and a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used as an electrolyte. As other electrolytes, those using a gel electrolyte or a solid electrolyte system are also attracting attention.

正極材料や負極材料を担持する集電体(支持体)としては、アルミニウム箔や銅箔のような金属箔が一般的に用いられる。高出力、高容量、長寿命化等を目的として、集電体を発泡体や不織布状などの三次元多孔質体等の形状とすることも数多く提案されている。   A metal foil such as an aluminum foil or a copper foil is generally used as a current collector (support) that supports the positive electrode material or the negative electrode material. Many proposals have been made to make the current collector into a shape such as a three-dimensional porous material such as a foam or a non-woven fabric for the purpose of high output, high capacity and long life.

例えば、特許文献1には、樹脂製の不織布と該不織布の表面に形成された導電層と、非水系溶媒にアルミニウム塩を溶解した浴を用いて該導電層の表面に形成されたアルミニウム電解めっき層とからなる三次元多孔体が記載されている。特許文献2には、不織布状ニッケルをクロマイジング処理しクロム含有率を25質量%以上とした不織布状ニッケルクロムの多孔質集電体が記載されている。   For example, Patent Document 1 discloses a resin-made nonwoven fabric, a conductive layer formed on the surface of the nonwoven fabric, and an aluminum electrolytic plating formed on the surface of the conductive layer using a bath in which an aluminum salt is dissolved in a non-aqueous solvent. A three-dimensional porous body consisting of layers is described. Patent Document 2 describes a non-woven nickel-chrome porous current collector in which non-woven nickel is chromized to have a chromium content of 25% by mass or more.

また、多孔質金属の製造方法としては、溶融した金属中に水素化チタン等の発泡剤を混合し、発生したガスを含んだ状態で凝固させる溶湯発泡法(特許文献3)や、金属粉末と塩化ナトリウム等のスペーサー材を混合、圧縮成形した後に金属粉末を通電加熱し、スペーサー材を除去するスペーサー法(特許文献4)などが知られている。   In addition, as a method for producing a porous metal, a molten metal foaming method (Patent Document 3) in which a foaming agent such as titanium hydride is mixed in a molten metal and solidified in a state containing the generated gas, or metal powder and A spacer method (Patent Document 4) is known in which a spacer material such as sodium chloride is mixed and compression-molded, and then the metal powder is heated by energization to remove the spacer material.

特開2010−9905号公報JP 2010-9905 A 特開2009−176517号公報JP 2009-176517 A 特開平11−302765号公報JP-A-11-302765 特開2004−156092号公報JP 2004-156092 A

本発明は、高気孔率で高強度の多孔質アルミニウムを集電体として用いて得られる大容量の非水電解質二次電池用多孔質アルミニウム集電体の製造方法、非水電解質二次電池用正極の製造方法ならびに、当該正極を用いた非水電解質二次電池の提供を目的とする。   The present invention relates to a method for producing a large-capacity porous aluminum current collector for a nonaqueous electrolyte secondary battery obtained by using porous aluminum having a high porosity and high strength as a current collector, and for a nonaqueous electrolyte secondary battery. It aims at providing the manufacturing method of a positive electrode, and the nonaqueous electrolyte secondary battery using the said positive electrode.

本発明者等は従来技術を鋭意検討した結果、従来技術には以下の問題点があることを見出した。上記のように集電体に金属箔を用いた場合、金属箔は二次元構造であり活物質の担持の点で多孔体に比べて劣っている。すなわち、金属箔は、活物質を包み込むように保持することができないため、活物質の膨張収縮を抑制することができず塗膜量を少なくしなければ長寿命が維持できない。また、塗膜量が多いと集電体と活物質の距離が長くなるため、集電体から離れたところでの活物質の利用率が低くなり容量密度も低下する。   As a result of intensive studies on the prior art, the present inventors have found that the prior art has the following problems. As described above, when the metal foil is used for the current collector, the metal foil has a two-dimensional structure and is inferior to the porous body in terms of carrying the active material. That is, since the metal foil cannot be held so as to enclose the active material, the expansion and shrinkage of the active material cannot be suppressed, and the long life cannot be maintained unless the coating amount is reduced. Further, since the distance between the current collector and the active material becomes long when the amount of the coating film is large, the utilization factor of the active material at a position away from the current collector is lowered and the capacity density is also lowered.

また、上記先行技術文献1、2に記載されている多孔質集電体はいずれも、耐酸化性及び耐電解液性を有し多孔度を向上させ、これにより工業的生産に適し、さらに電極群を捲回しても短絡の支障が発生しない正極及び電池を提供することを目的としたものである。しかしながら、これら先行技術文献に記載されている製造方法は前述のように耐酸化性、耐電解液性、高多孔性を目的とするのみで、高気孔率で高強度の多孔質金属を集電体とした正極を製造するものではない。また、特許文献3で作製できる多孔質アルミニウムは孔同士が独立したクローズドセル型で、活物質の充填や電解液の侵入が不可能であるために電極として使用することは出来ない。特許文献4に記載の通電加熱を利用して焼結させる従来のスペーサー法では大電流を必要とするためにサイズが制限され、実用的な多孔質金属を製造することが困難であった。   In addition, the porous current collectors described in the above-mentioned prior art documents 1 and 2 both have oxidation resistance and electrolytic solution resistance, improve the porosity, and thus are suitable for industrial production, and further have electrodes An object of the present invention is to provide a positive electrode and a battery that do not cause a short circuit even when the group is wound. However, the production methods described in these prior art documents are only for the purpose of oxidation resistance, electrolyte resistance, and high porosity as described above, and collect high porosity and high strength porous metals. It does not produce a positive electrode in the form of a body. Further, the porous aluminum that can be produced in Patent Document 3 is a closed cell type in which pores are independent, and cannot be used as an electrode because it cannot be filled with an active material or infiltrated with an electrolyte. In the conventional spacer method in which electric current heating described in Patent Document 4 is used for sintering, a large current is required, so that the size is limited and it is difficult to produce a practical porous metal.

そこで、本発明者等はこのような問題点について鋭意検討した結果、従来の多孔質金属の製造方法とも相違した、アルミニウム粉末及び水溶性の支持粉末からなる混合物とアルミニウム板とを複合化した加圧成形体を、不活性雰囲気中においてアルミニウム粉末とアルミニウム板の低い方の融点以上の温度で、かつ、支持粉末の融点未満の温度で熱処理し、支持粉末を除去して得られる多孔質アルミニウムを集電体として用いることにより、この問題点を解決できることを見出した。   Therefore, as a result of intensive investigations on such problems, the present inventors have added a composite of a mixture of an aluminum powder and a water-soluble support powder and an aluminum plate, which is different from the conventional method for producing a porous metal. A porous aluminum obtained by heat-treating the green compact at a temperature not lower than the lower melting point of the aluminum powder and the aluminum plate in an inert atmosphere and lower than the melting point of the supporting powder, and removing the supporting powder. It has been found that this problem can be solved by using it as a current collector.

すなわち本発明は請求項1において、アルミニウム粉末と支持粉末の混合粉末であって、当該混合粉末の全体に対するアルミニウム粉末の体積割合が5〜20%の混合粉末を、アルミニウム板と複合化した状態で200MPa以上の圧力で加圧成形した後、この加圧成形体を不活性雰囲気中でアルミニウム粉末又はアルミニウム板の低い方の融点以上で、かつ、支持粉末の融点未満の温度域で熱処理することにより、加圧成形体のアルミニウム粉末同士及びアルミニウム粉末とアルミニウム板とを接合させ、その後、支持粉末を除去することによって製造されることを特徴とする非水電解質二次電池用多孔質アルミニウム集電体の製造方法とした。 That is, the present invention is the mixed powder of the aluminum powder and the supporting powder according to claim 1, wherein the mixed powder having a volume ratio of 5 to 20% of the aluminum powder with respect to the whole mixed powder is combined with the aluminum plate. After pressure molding at a pressure of 200 MPa or higher, the pressure molded body is heat-treated in an inert atmosphere at a temperature higher than the lower melting point of the aluminum powder or aluminum plate and lower than the melting point of the support powder. A porous aluminum current collector for a non-aqueous electrolyte secondary battery manufactured by joining aluminum powders of a pressure-formed body and aluminum powder and an aluminum plate and then removing the supporting powder. It was set as the manufacturing method of this.

本発明は請求項2では請求項1において、前記アルミニウム粉末の粒径と体積をそれぞれdal、Valとし、前記支持粉末の粒径と体積をそれぞれds、Vsとして規定されるアルミニウ粉末に覆われる支持粉末表面の被覆面積割合C=(Val×ds)/(4Vs×dal)×100を70%以上とした。 In the present invention of claim 2, claim 1, wherein and aluminum powder of particle size and volume respectively dal, and Val, covered the particle size and volume of the support powder aluminum powder defined ds, as Vs, respectively The coverage area ratio C = (Val × ds) / (4Vs × dal) × 100 on the surface of the supporting powder was set to 70% or more.

本発明は請求項3では請求項1又は2において、前記支持粉末を、塩化ナトリウム、塩化カリウム又はこれらの混合物とした。   According to a third aspect of the present invention, in the first or second aspect, the support powder is sodium chloride, potassium chloride, or a mixture thereof.

本発明は請求項4では請求項1〜3のいずれか一項において、前記多孔質アルミニウム集電体の空孔率を80%以上、95%以下とした。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the porosity of the porous aluminum current collector is 80% or more and 95% or less.

本発明は請求項5において、請求項1〜4のいずれか一項に記載の方法で製造された非水電解質二次電池用多孔質アルミニウム集電体にリチウムの吸蔵放出が可能な少なくとも活物質を溶媒に分散したスラリーを充填し、加圧して電極密度向上率を110〜500%としたことを特徴とする非水電解質二次電池用正極の製造方法とした。   The present invention according to claim 5, wherein at least the active material capable of occluding and releasing lithium in the porous aluminum current collector for a non-aqueous electrolyte secondary battery produced by the method according to any one of claims 1 to 4. A method for producing a positive electrode for a non-aqueous electrolyte secondary battery, characterized in that the slurry was filled with a slurry dispersed in a solvent and pressed to increase the electrode density improvement rate to 110 to 500%.

本発明は請求項6では請求項5において、前記スラリーを充填した非水電解質二次電池用多孔質アルミニウム集電体を、平板プレス処理によって加圧するものとした。   According to a sixth aspect of the present invention, in the fifth aspect, the porous aluminum current collector for a non-aqueous electrolyte secondary battery filled with the slurry is pressurized by flat plate pressing.

本発明は、多孔質アルミニウム集電体におけるアルミニウム粉末と支持粉末の粒径及び体積割合を調整することでアルミニウム粉末同士の接触を確実にさせる。更に、十分な圧力を加えることでアルミニウム粉末表面の酸化皮膜を破って新生面を露出させ、不活性雰囲気中において融点以上の温度で熱処理することでアルミニウム粉末同士を強固に結合させる。その結果、オープンセル型で気孔率の高い、高強度の非水電解質二次電池の正極に用いられる多孔質アルミニウム集電体が得られる。更に、アルミニウム粉末と支持粉末との混合粉末をアルミニウム板と複合化することにより、多孔質アルミニウムの強度が向上する。   The present invention ensures contact between aluminum powders by adjusting the particle size and volume ratio of the aluminum powder and the support powder in the porous aluminum current collector. Further, by applying sufficient pressure, the oxide film on the surface of the aluminum powder is broken to expose the new surface, and the aluminum powder is firmly bonded to each other by heat treatment at a temperature equal to or higher than the melting point in an inert atmosphere. As a result, a porous aluminum current collector used for the positive electrode of a high-strength nonaqueous electrolyte secondary battery with an open cell type and high porosity can be obtained. Furthermore, the strength of the porous aluminum is improved by combining the mixed powder of the aluminum powder and the supporting powder with the aluminum plate.

リチウムイオン電池の電池容量は活物質の量によって決定されるため、高い気孔率の多孔質アルミニウム集電体には多量の活物質を充填することができる。アルミニウム箔を用いた塗布電極では、多量の活物質層を塗布した場合、電極の乾燥工程やプレス工程において集電体から活物質が脱落してしまうが、多孔質アルミニウム集電体を用いればこれを抑制できる。このように、本発明で用いる多孔質アルミニウム集電体を用いることで、高強度で高容量の非水電解質二次電池用正極、ならびに、当該正極を用いた高容量の非水電解質二次電池を提供することができる。   Since the battery capacity of a lithium ion battery is determined by the amount of active material, a porous aluminum current collector having a high porosity can be filled with a large amount of active material. In a coated electrode using aluminum foil, when a large amount of active material layer is applied, the active material falls off from the current collector in the electrode drying process or pressing process. However, if a porous aluminum current collector is used, Can be suppressed. Thus, by using the porous aluminum current collector used in the present invention, a high-strength and high-capacity positive electrode for a non-aqueous electrolyte secondary battery, and a high-capacity non-aqueous electrolyte secondary battery using the positive electrode Can be provided.

荷重維持性の測定に用いた強度測定用治具の正面図である。It is a front view of the jig | tool for intensity | strength measurement used for the measurement of load maintenance property. 非水電解質二次電池の充放電曲線を表わすグラフである。It is a graph showing the charging / discharging curve of a nonaqueous electrolyte secondary battery. 非水電解質二次電池の充放電曲線を表わすグラフである。It is a graph showing the charging / discharging curve of a nonaqueous electrolyte secondary battery.

本発明に係る非水電解質二次電池用正極に用いる多孔質アルミニウム集電体は、次のようにして製造することができる。   The porous aluminum current collector used for the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention can be produced as follows.

(a)多孔質アルミニウム集電体
本発明に用いる多孔質アルミニウム集電体は、所定の体積割合で混合したアルミニウム粉末と支持粉末の混合粉末をアルミニウム板と複合化して加圧成形した後に、その成形体を不活性雰囲気中で熱処理してアルミニウム粉末又はアルミニウム板から液相を生じさせ、アルミニウム粉末同士及びアルミニウム粉末とアルミニウム板とを接合し、最終的に支持粉末を除去することで得られる。多孔質アルミニウム集電体は、支持粉末が除去された空隙と、その空隙の周囲を形成する接合したアルミニウム粉末の結合金属粉末壁とによって構成される。結合金属粉末壁には多くの微細な孔が形成されており、空隙同士がこれら微細孔によって連結したオープンセル型の構造となっている。
多孔質アルミニウム集電体の空孔率は80%以上、95%以下あり、好ましくは85%以上である。この範囲にすることより、電極としての強度を保ちつつ、集電体の孔内に所望量の活物質スラリーを充填することができ、かつ、電池の高出力化、高容量化が可能となる。
(A) Porous aluminum current collector The porous aluminum current collector used in the present invention is formed by compressing a mixed powder of an aluminum powder and a supporting powder mixed at a predetermined volume ratio with an aluminum plate, The compact is heat-treated in an inert atmosphere to form a liquid phase from the aluminum powder or the aluminum plate, the aluminum powder is bonded to each other, the aluminum powder and the aluminum plate are joined, and finally the support powder is removed. The porous aluminum current collector is composed of a void from which the support powder has been removed and a bonded metal powder wall of the joined aluminum powder that forms the periphery of the void. Many fine holes are formed in the bonded metal powder wall, and an open cell structure is formed in which voids are connected by these fine holes.
The porosity of the porous aluminum current collector is 80% or more and 95% or less, preferably 85% or more. By making it within this range, it is possible to fill the pores of the current collector with a desired amount of active material slurry while maintaining the strength as an electrode, and it is possible to increase the output and capacity of the battery. .

(b)アルミニウム粉末
本発明で用いるアルミニウム粉末には、純アルミニウム粉末が用いられる。純アルミニウムとは、純度99.0mass%以上のアルミニウムである。アルミニウム粉末の粒径は1〜50μmが好ましい。多孔質アルミニウムの製造において支持粉末の表面を満遍なくアルミニウム粉末で覆うためには、アルミニウム粉末の粒径はより小さい方が好ましく、1〜10μmが更に好ましい。アルミニウム粉末の粒径は、レーザー回折散乱法(マイクロトラック法)で測定したメジアン径で規定する。
(B) Aluminum powder Pure aluminum powder is used for the aluminum powder used in the present invention. Pure aluminum is aluminum having a purity of 99.0 mass% or more. The particle size of the aluminum powder is preferably 1 to 50 μm. In order to uniformly cover the surface of the support powder with the aluminum powder in the production of porous aluminum, the particle size of the aluminum powder is preferably smaller, and more preferably 1 to 10 μm. The particle size of the aluminum powder is defined by the median diameter measured by the laser diffraction scattering method (microtrack method).

(c)支持粉末
本発明では支持粉末としては、アルミニウム粉末の融点よりも高い融点を有するものを用いる。また、混合粉末をアルミニウム板と複合化する場合には、アルミニウム粉末とアルミニウム板の低い方の融点よりも高い融点を有するものを用いる。このような支持粉末としては水溶性塩が好ましく、入手の容易性から塩化ナトリウムや塩化カリウムが好適に用いられる。支持粉末が除去されることで形成された空間が多孔質アルミニウムの孔になることから、支持粉末の粒径が孔径に反映される。そこで、本発明で用いる支持粉末の粒径は、100〜1000μmとするのが好ましい。支持粉末の粒径は、ふるいの目開きで規定する。従って、分級によって支持粉末の粒径を揃えることで、孔径の揃った多孔質アルミニウム集電体が得られる。
(C) Support powder In this invention, as support powder, what has melting | fusing point higher than melting | fusing point of aluminum powder is used. When the mixed powder is combined with an aluminum plate, a powder having a melting point higher than the lower melting point of the aluminum powder and the aluminum plate is used. As such a supporting powder, a water-soluble salt is preferable, and sodium chloride and potassium chloride are preferably used from the viewpoint of availability. Since the space formed by removing the support powder becomes pores of porous aluminum, the particle size of the support powder is reflected in the pore diameter. Therefore, the particle size of the support powder used in the present invention is preferably 100 to 1000 μm. The particle size of the support powder is defined by the opening of the sieve. Therefore, a porous aluminum current collector having a uniform pore diameter can be obtained by aligning the particle diameter of the support powder by classification.

(d)アルミニウム板
本発明においては、混合粉末をアルミニウム板と複合化した状態で用いる。アルミニウム板とは無孔の板や箔及び、有孔の金網、エキスパンドメタル、パンチングメタル等の網状体である。アルミニウム板が支持体となり多孔質アルミニウム集電体の強度が向上し、更に導電性が向上する。多孔質アルミニウム集電体の強度が高いほど、電極作製工程において多孔質アルミニウムが欠落することはなく、十分な電池機能を発揮することができ、また外部刺激からの衝撃に強い電池の作製が可能となる。アルミニウム板の材質は、純アルミニウム又はアルミニウム合金が用いられ、アルミニウム合金としては、アルミニウム−チタン合金、アルミニウム−マンガン合金、アルミニウム−鉄合金、アルミニウム−ニッケル合金などが好適に用いられる。
(D) Aluminum plate In this invention, mixed powder is used in the state compounded with the aluminum plate. The aluminum plate is a non-porous plate or foil, and a net-like body such as a perforated wire mesh, expanded metal, or punching metal. The aluminum plate serves as a support, and the strength of the porous aluminum current collector is improved and the conductivity is further improved. The higher the strength of the porous aluminum current collector, the more the porous aluminum will not be lost in the electrode manufacturing process, so that sufficient battery functions can be demonstrated, and the battery can be made resistant to impact from external stimuli. It becomes. As the material of the aluminum plate, pure aluminum or an aluminum alloy is used. As the aluminum alloy, an aluminum-titanium alloy, an aluminum-manganese alloy, an aluminum-iron alloy, an aluminum-nickel alloy, or the like is preferably used.

混合粉末とアルミニウム板との複合化とは、例えばアルミニウム板に金網を用いた場合には、網目の中に混合粉末を充填しつつ網全体を混合粉末で覆うような一体化状態をいう。アルミニウム板の両側に結合金属粉末壁を設けた多孔質アルミニウムに正極活物質を充填する場合、アルミニウム板が有孔の網状体であればアルミニウム板で分けられる領域の片側からの充填であっても、もう一方の領域にまで充填することができるため、アルミニウム板は網状体であることが好ましい。また、上記のような構成の多孔質アルミニウムに活物質を充填して正極とし、これをアルミニウム板によって隔てられるそれぞれの領域がセパレータを介して負極と対面した、即ち正極が負極で挟まれた構成の電池を組み上げた場合、アルミニウム板が網状体であればアルミニウム板によってリチウムイオンの移動が遮られることがないため、両領域共に対面していない側の負極との電池反応に寄与できる。もし、何らかの理由で一方の負極からのリチウムイオンの移動が途絶えた場合でも、もう一方の負極とリチウムイオンのやり取りを行うことで電極として働くことができる。この点からもアルミニウム板が有孔の網状体であることが好ましい。ここで、有孔とは、金網の網目部分、パンチングメタルのパンチ部分、エキスパンドメタルの網目部分、金属繊維の繊維と繊維との隙間部分を言う。網状体の有孔の孔径は、接合した混合粉末から支持粉末を除去して得られる孔の径より大きくても、小さくてもよいが、多孔質アルミニウム集電体の気孔率を損なわないためにも、アルミニウム板の開孔率は小さい方が好ましい。   The compounding of the mixed powder and the aluminum plate refers to an integrated state in which, for example, when a metal mesh is used for the aluminum plate, the mesh is covered with the mixed powder while the mixed powder is filled in the mesh. When filling positive electrode active material into porous aluminum provided with bonded metal powder walls on both sides of the aluminum plate, even if the aluminum plate is a perforated network, it may be filled from one side of the area separated by the aluminum plate Since the other region can be filled, the aluminum plate is preferably a net-like body. In addition, the porous aluminum having the above structure is filled with an active material to form a positive electrode, and each region separated by an aluminum plate faces the negative electrode through a separator, that is, the positive electrode is sandwiched between the negative electrode When the battery is assembled, since the movement of lithium ions is not blocked by the aluminum plate if the aluminum plate is a net-like body, it can contribute to the battery reaction with the negative electrode on the side not facing both regions. Even if the movement of lithium ions from one negative electrode is interrupted for some reason, it can function as an electrode by exchanging lithium ions with the other negative electrode. Also in this respect, the aluminum plate is preferably a perforated mesh. Here, the perforated means a mesh part of a metal mesh, a punch part of a punching metal, a mesh part of an expanded metal, and a gap part between fibers of metal fibers. The pore diameter of the pores of the mesh body may be larger or smaller than the diameter of the pores obtained by removing the supporting powder from the joined mixed powder, but in order not to impair the porosity of the porous aluminum current collector However, it is preferable that the aluminum plate has a smaller hole area ratio.

(e)混合方法
アルミニウム粉末と支持粉末の混合割合は、それぞれの体積をVal、Vsとしてアルミニウム粉末の体積率であるVal/(Val+Vs)が5〜20%、好ましくは5〜10%である。ここで体積Val、Vsはそれぞれの重量と比重から求めた値である。アルミニウム粉末の体積率が20%を超える場合には、支持粉末の含有率が少な過ぎるために支持粉末同士が接触することなく独立して存在することになり、支持粉末を十分に除去しきれない。除去しきれない支持粉末は、多孔質アルミニウム集電体の腐食の原因となる。一方、アルミニウム粉末の体積率が5%未満の場合には、多孔質アルミニウムを構成する壁が薄くなり過ぎることで、多孔質アルミニウム集電体の強度が不十分となり、取り扱いや形状維持が困難となる。
(E) Mixing method The mixing ratio of the aluminum powder and the support powder is such that Val / (Val + Vs), which is the volume ratio of the aluminum powder, is 5 to 20%, preferably 5 to 10%. Here, the volumes Val and Vs are values obtained from the respective weights and specific gravity. When the volume ratio of the aluminum powder exceeds 20%, the support powder content is too small and the support powders exist independently without contacting each other, and the support powder cannot be removed sufficiently. . The support powder that cannot be removed causes corrosion of the porous aluminum current collector. On the other hand, when the volume ratio of the aluminum powder is less than 5%, the wall constituting the porous aluminum becomes too thin, the strength of the porous aluminum current collector becomes insufficient, and handling and shape maintenance are difficult. Become.

アルミニウム粉末及び支持粉末の粒径をそれぞれdal、dsとした時に、(Val×ds)/(4Vs×dal)×100で表わされるアルミニウ粉末に覆われる支持粉末表面の被覆面積割合C(%)が、70%以上、好ましくは100%以上となることが好ましく、そのようなdal、ds、Val、Vsを選択する。   When the particle diameters of the aluminum powder and the support powder are dal and ds, respectively, the coverage area ratio C (%) of the surface of the support powder covered with the aluminum powder represented by (Val × ds) / (4Vs × dal) × 100 is 70% or more, preferably 100% or more, and such dal, ds, Val and Vs are selected.

被覆面積割合Cの求め方は以下のとおりである。アルミニウム粉末及び支持粉末がそれぞれに、直径としての粒径dal、dsの単一分散の球体であると仮定する。この時、アルミニウム粉末の最大断面積はAal=(π/4)dal、支持粉末の表面積はAs=πdsである。また、アルミニウム粉末及び支持粉末の個数はそれぞれna1=(Va1)/{(4/3π)×(dal/2)}={6(Va1)}/{π(dal)}、ns=(Vs)/{(4/3π)×(ds/2)}={6(Vs)}/{π(ds)}である。以上より、アルミニウム粉末によって占められる支持粉末の凡その被覆面積割合はC={(Aal×na1)/(As×ns)}×100={(Va1×ds)/(4Vs×da1)}×100となる。 The method for obtaining the covering area ratio C is as follows. Assume that the aluminum powder and the supporting powder are monodisperse spheres with particle diameters dal and ds as diameters, respectively. At this time, the maximum cross-sectional area of the aluminum powder is Aal = (π / 4) dal 2 , and the surface area of the support powder is As = πds 2 . The numbers of aluminum powder and support powder are na1 = (Va1) / {(4 / 3π) × (dal / 2) 3 } = {6 (Va1)} / {π (dal) 3 }, ns = ( Vs) / {(4 / 3π) × (ds / 2) 3 } = {6 (Vs)} / {π (ds) 3 }. From the above, the approximate coverage area ratio of the support powder occupied by the aluminum powder is C = {(Aal × na1) / (As × ns)} × 100 = {(Va1 × ds) / (4Vs × da1)} × 100. It becomes.

上記の式を利用することで、例えば作製したい多孔質アルミニウムの結合金属粉末壁からなる部分の空隙の大きさ及び気孔率を決めた場合、使用できるアルミニウム粉末の粒径の上限値を求めることが可能である。即ちds、Vs、Valが決まった際に、被覆面積割合Cが70%以上になるようにdalを求めることで、dal≦{(Val×ds)/(4Vs)}×{100/70}から使用できるアルミニウム粉末の粒径の上限値を求めることが出来る。C=(Va1×ds)/(4Vs×da1)×100が70%未満の場合には、支持粉末がアルミニウム粉末で十分に覆われず、加圧成型した状態においてアルミニウム粉末同士の連結が途切れ易く、支持粉末を除去した際に結合金属粉末壁が崩壊するおそれがある。   By using the above formula, for example, when the size of the voids and the porosity of the portion made of the bonded metal powder wall of porous aluminum to be produced are determined, the upper limit value of the particle size of the usable aluminum powder can be obtained. Is possible. That is, when ds, Vs, and Val are determined, dal is determined so that the covering area ratio C is 70% or more, so that dal ≦ {(Val × ds) / (4Vs)} × {100/70}. The upper limit of the particle size of the aluminum powder that can be used can be determined. When C = (Va1 × ds) / (4Vs × da1) × 100 is less than 70%, the support powder is not sufficiently covered with the aluminum powder, and the connection between the aluminum powders is easily interrupted in the pressure-molded state. When the support powder is removed, the bonded metal powder wall may collapse.

なお、アルミニウムを支持粉末と混合する混合手段としては、振動攪拌機、容器回転混合機といったものが用いられるが、十分な混合状態が得られるのであれば特に限定されるものではない。   The mixing means for mixing aluminum with the support powder may be a vibration stirrer or a container rotating mixer, but is not particularly limited as long as a sufficient mixing state can be obtained.

(f)複合化方法
混合粉末を成形用金型に充填する際に、混合粉末とアルミニウム板とを複合化する。複合化の形態としては、混合粉末の間にアルミニウム板を挟んでも、混合粉末をアルミニウム板で挟んでも構わない。また、混合粉末とアルミニウム板の複合化を繰り返して多段にすることもできる。複合化の際にはアルミニウム粉末や支持粉末の粒径、混合割合の異なる混合粉末や、種類の異なる複数のアルミニウム板を組み合わせることもできる。
(F) Compounding method When the mixed powder is filled in a molding die, the mixed powder and the aluminum plate are compounded. As a form of compounding, an aluminum plate may be sandwiched between mixed powders, or a mixed powder may be sandwiched between aluminum plates. Further, the mixed powder and the aluminum plate can be combined to be multistage. At the time of compounding, mixed powders having different particle sizes and mixing ratios of aluminum powder and support powder, and a plurality of different types of aluminum plates can be combined.

(g)加圧成形方法
加圧成形時の圧力は、200MPa以上とする必要がある。十分な圧力を加えて成形することでアルミニウム粉末同士が擦れ合い、アルミニウム粉末同士の接合を阻害するアルミニウム粉末表面の強固な酸化皮膜が破壊される。この酸化皮膜は融解したアルミニウムを閉じ込め、互いに接触することを妨げると共に、融解アルミニウムとの濡れ性に劣り、液体状のアルミニウムを排斥する作用がある。そのため、加圧成形の圧力が200MPa未満の場合にはアルミニウム粉末表面の酸化皮膜の破壊が不十分で、加熱時に融解したアルミニウムが成形体の外に滲み出し玉状のアルミニウムの塊が形成される。アルミニウム塊が存在する状態で電極を作製した場合、この凸状の部分がセパレータを突き破ってショートの原因となる点で弊害となる。成形圧力は使用する装置や金型が許容する限り大きい方が形成される多孔質アルミニウム壁が強固になって好ましい。しかしながら、400MPaを超えると効果が飽和する傾向がある。加圧成形体の離型性を高める目的でステアリン酸等の脂肪酸、ステアリン酸亜鉛等の金属石鹸、各種ワックス、合成樹脂、オレフィン系合成炭化水素等の潤滑剤を使用することが好ましい。
(G) Pressure molding method The pressure at the time of pressure molding needs to be 200 MPa or more. By forming by applying sufficient pressure, the aluminum powders rub against each other, and the strong oxide film on the surface of the aluminum powder that inhibits the bonding between the aluminum powders is destroyed. This oxide film confines molten aluminum and prevents it from coming into contact with each other, and is inferior in wettability with molten aluminum and has the effect of rejecting liquid aluminum. Therefore, when the pressure of pressure molding is less than 200 MPa, the destruction of the oxide film on the surface of the aluminum powder is insufficient, and the aluminum melted during heating oozes out of the molded body to form a ball-shaped aluminum lump. . When an electrode is produced in the presence of an aluminum lump, this convex portion breaks through the separator and causes a short circuit. The porous aluminum wall on which the molding pressure is as large as the apparatus and mold used allow is strong, which is preferable. However, if it exceeds 400 MPa, the effect tends to be saturated. For the purpose of enhancing the releasability of the pressure-molded body, it is preferable to use a lubricant such as a fatty acid such as stearic acid, a metal soap such as zinc stearate, various waxes, synthetic resins, and olefinic synthetic hydrocarbons.

(h)熱処理方法
熱処理は使用するアルミニウム粉末の融点以上で、かつ、支持粉末の融点未満の温度で行う。混合粉末をアルミニウム板と複合化する場合には、アルミニウム粉末とアルミニウム板の低い方の融点以上で、かつ、支持粉末の融点未満の温度で熱処理を行う。また、アルミニウム粉末の融点とは、純アルミニウム又はアルミニウム合金の液相が生じる温度であり、アルミニウム板の融点とは、金属材料の場合には同様に液相が生じる温度である。液相が生じる温度まで加熱することで、アルミニウム粉末又はアルミニウム板から液相が滲み出し、アルミニウム粉末同士およびアルミニウム粉末とアルミニウム板とが金属的に結合する。
(H) Heat treatment method The heat treatment is carried out at a temperature not lower than the melting point of the aluminum powder to be used and lower than the melting point of the supporting powder. When the mixed powder is combined with the aluminum plate, heat treatment is performed at a temperature that is equal to or higher than the lower melting point of the aluminum powder and the aluminum plate and lower than the melting point of the support powder. The melting point of the aluminum powder is a temperature at which a liquid phase of pure aluminum or an aluminum alloy is generated. The melting point of the aluminum plate is a temperature at which a liquid phase is similarly generated in the case of a metal material. By heating to a temperature at which the liquid phase is generated, the liquid phase oozes out from the aluminum powder or the aluminum plate, and the aluminum powders and the aluminum powder and the aluminum plate are metallicly bonded.

熱処理温度が上記融点未満の場合には、アルミニウムが溶融しないためにアルミニウム粉末同士、アルミニウム粉末とアルミニウム板との結合が不十分となる。また、上記融点以上に加熱すると、接合体の最表面に位置する支持粉末の表面を覆っていたアルミニウムが除去され、開口率が大きな表面を有する接合体が形成される。接合体の開口率が大きいと、集電体に適用した際に活物質を充填するのに有利である。   When the heat treatment temperature is lower than the above melting point, aluminum does not melt, so that bonding between the aluminum powders and between the aluminum powder and the aluminum plate becomes insufficient. Moreover, when heated above the melting point, the aluminum covering the surface of the support powder located on the outermost surface of the joined body is removed, and a joined body having a surface with a large aperture ratio is formed. When the aperture ratio of the joined body is large, it is advantageous for filling the active material when applied to the current collector.

加熱温度が支持粉末の融点以上では支持粉末が溶融してしまうため、加熱は支持粉末の融点未満の温度で行う。支持粉末として塩化ナトリウムや塩化カリウムなどの水溶性塩を用いる場合には、好ましくは700℃未満、更に好ましくは680℃未満で熱処理を行う。支持粉末の融点以上の温度で加熱した場合には、支持粉末の融解に伴い有孔体の形状を維持できない。また、温度が高くなるほど融解したアルミニウムの粘度が低下し、加圧成形体の外側にまで融解したアルミニウムが滲み出て、凸状のアルミニウム塊が形成される。アルミニウム塊が存在する状態で電極を作製した場合、この凸状の部分がセパレータを突き破ってショートを起こす原因となる点で弊害となる。
熱処理における加熱保持時間は、1〜60分程度が好ましい。また、熱処理時に加圧成形体に荷重を掛け、加圧成形体の圧縮を行ったり、加熱と冷却の繰り返しを複数回行ってもよい。
When the heating temperature is equal to or higher than the melting point of the support powder, the support powder is melted. Therefore, heating is performed at a temperature lower than the melting point of the support powder. When a water-soluble salt such as sodium chloride or potassium chloride is used as the support powder, the heat treatment is preferably performed at a temperature lower than 700 ° C., more preferably lower than 680 ° C. When heated at a temperature equal to or higher than the melting point of the support powder, the shape of the porous body cannot be maintained as the support powder melts. In addition, the higher the temperature, the lower the viscosity of the molten aluminum, and the molten aluminum oozes out to the outside of the pressure-molded body, forming a convex aluminum lump. When an electrode is produced in the presence of an aluminum lump, this convex portion breaks the separator and causes a short circuit, which is a harmful effect.
The heat holding time in the heat treatment is preferably about 1 to 60 minutes. Further, a load may be applied to the pressure-formed body during the heat treatment to compress the pressure-formed body, or heating and cooling may be repeated a plurality of times.

熱処理を行う不活性雰囲気はアルミニウムの酸化を抑制する雰囲気であり、真空;窒素、アルゴン、水素、分解アンモニア及びこれらの混合ガス;の雰囲気が好適に用いられ、真空雰囲気が好ましい。真空雰囲気は、好ましくは2×10−2Pa以下、更に好ましくは1×10−2Pa以下である。2×10−2Paを超える場合、アルミニウム粉末表面に吸着した水分の除去が不十分となり、熱処理時にアルミニウム表面の酸化が進行する。前述のとおりアルミニウム表面の酸化皮膜は液体状のアルミニウムとの濡れ性に劣り、その結果、融解したアルミニウムが滲み出し玉状の塊が形成される。窒素等の不活性ガス雰囲気の場合は、酸素濃度を200ppm以下、露点を−35℃以下にすることが好ましい。 The inert atmosphere for performing the heat treatment is an atmosphere for suppressing oxidation of aluminum, and an atmosphere of vacuum; nitrogen, argon, hydrogen, decomposed ammonia and a mixed gas thereof is preferably used, and a vacuum atmosphere is preferable. The vacuum atmosphere is preferably 2 × 10 −2 Pa or less, more preferably 1 × 10 −2 Pa or less. When it exceeds 2 × 10 −2 Pa, removal of moisture adsorbed on the surface of the aluminum powder becomes insufficient, and oxidation of the aluminum surface proceeds during heat treatment. As described above, the oxide film on the aluminum surface is inferior in wettability with liquid aluminum, and as a result, molten aluminum oozes out to form a ball-like lump. In the case of an inert gas atmosphere such as nitrogen, it is preferable that the oxygen concentration is 200 ppm or less and the dew point is −35 ° C. or less.

(i)支持粉末の除去方法
接合体中の支持粉末の除去は、支持粉末を水に溶出させて行う方法が好適に用いられる。接合体を十分な量の水浴または流水浴に浸漬する等の方法により、支持粉末を容易に溶出することができる。支持粉末として水溶性塩を用いる場合には、これを溶出させる水は、イオン交換水や蒸留水等、不純物の少ない方が好ましいが、水道水でも特に問題は無い。浸漬時間は、通常、数時間〜24時間程度の範囲で適宜選択される。浸漬中に超音波等によって振動を与えることにより、溶出を促進することもできる。
(I) Method for removing support powder A method in which the support powder in the joined body is removed by eluting the support powder into water is suitably used. The supporting powder can be easily eluted by immersing the joined body in a sufficient amount of water bath or flowing water bath. When a water-soluble salt is used as the support powder, the water for eluting it is preferably free from impurities such as ion exchange water or distilled water, but tap water is not particularly problematic. The immersion time is usually appropriately selected within the range of several hours to 24 hours. Elution can be promoted by applying vibration by ultrasonic waves or the like during the immersion.

(j)正極
本発明に係る非水電解質二次電池用正極は上述の多孔質アルミニウム集電体に、少なくとも正極活物質を溶媒に分散したスラリーを充填することにより得られ、導電助剤、結着剤及び増粘剤を更に加えても良い。
(J) Positive electrode A positive electrode for a non-aqueous electrolyte secondary battery according to the present invention is obtained by filling the above-described porous aluminum current collector with a slurry in which at least a positive electrode active material is dispersed in a solvent. Adhesives and thickeners may be further added.

正極活物質としては、非水電解質二次電池に使用できるものであれば特に制限されるものではなく、例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム等のリチウム金属酸化物を挙げることができる。   The positive electrode active material is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. For example, lithium metal oxide such as lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, etc. You can list things.

本発明に用いる導電助剤は特に限定されるものではなく、公知または市販のものを使用することができる。例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛等を挙げることができる。   The conductive auxiliary agent used for this invention is not specifically limited, A well-known or commercially available thing can be used. Examples thereof include carbon black such as acetylene black and ketjen black, activated carbon, graphite and the like.

本発明に用いる結着剤としては特に限定されるものではなく、公知または市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)等が挙げられる。   It does not specifically limit as a binder used for this invention, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and the like.

正極活物質、導電助剤及び結着剤は溶媒に分散したスラリー状態として、多孔質アルミニウム集電体中に充填される。正極活物質、導電助剤及び結着剤の配合割合は、所望の作用効果が得られるように適宜選択される。また、これら各成分のスラリー中の濃度も限定されるものではない。スラリーの溶媒も特に限定されるものではないが、例えば、N‐メチル‐2‐ピロリドン、水等が好適に用いられる。結着剤としてポリフッ化ビニリデンを用いる場合には、N‐メチル‐2‐ピロリドンを溶媒に用いるのが好ましく、結着剤としてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース等を用いる場合は、水を溶媒に用いるのが好ましい。   The positive electrode active material, the conductive additive and the binder are filled in a porous aluminum current collector in a slurry state dispersed in a solvent. The mixing ratio of the positive electrode active material, the conductive additive and the binder is appropriately selected so as to obtain a desired effect. Further, the concentration of these components in the slurry is not limited. The solvent for the slurry is not particularly limited, and for example, N-methyl-2-pyrrolidone, water and the like are preferably used. When using polyvinylidene fluoride as a binder, it is preferable to use N-methyl-2-pyrrolidone as a solvent. When using polytetrafluoroethylene, polyvinyl alcohol, carboxymethylcellulose, or the like as a binder, water is used. It is preferable to use it as a solvent.

正極活物質、導電助剤及び結着剤を溶媒に分散したスラリーは、例えば、圧入法などの公知の方法により多孔質アルミニウム集電体中に充填される。圧入法としては、多孔質アルミニウム集電体を隔膜として一方側にスラリーを配置し、他方側はスラリーの透過側とするものである。そして、他方側の透過側を減圧にしてスラリーを透過させにことによって、多孔質アルミニウム集電体の孔中に正極活物質、導電助剤、結着剤を充填するものである。これに替わって、一方側に配置したスラリーを加圧することにより、多孔質アルミニウム集電体の孔中に正極活物質、導電助剤、結着剤を充填してもよい。
また、圧入法に替えて、正極活物質、導電助剤及び結着剤を溶媒に分散したスラリー中に多孔質アルミニウム集電体を浸漬し、正極活物質、導電助剤、結着剤を多孔質アルミニウム集電体の孔中に拡散させる方法(以下、浸漬法と称する)を採用してもよい。
以上のようにして正極活物質、導電助剤及び結着剤が充填された正極は、50〜200℃で溶媒を飛散させて乾燥される。
A slurry in which a positive electrode active material, a conductive additive and a binder are dispersed in a solvent is filled into a porous aluminum current collector by a known method such as a press-fitting method. In the press-fitting method, a slurry is disposed on one side using a porous aluminum current collector as a diaphragm, and the other side is a slurry permeation side. Then, the positive electrode active material, the conductive auxiliary agent, and the binder are filled into the pores of the porous aluminum current collector by reducing the pressure on the other permeate side and allowing the slurry to permeate. Alternatively, the positive electrode active material, the conductive assistant, and the binder may be filled in the pores of the porous aluminum current collector by pressurizing the slurry disposed on one side.
In place of the press-fitting method, a porous aluminum current collector is immersed in a slurry in which a positive electrode active material, a conductive auxiliary agent and a binder are dispersed in a solvent, and the positive electrode active material, the conductive auxiliary agent and the binder are made porous. A method of diffusing into the pores of the porous aluminum current collector (hereinafter referred to as an immersion method) may be employed.
The positive electrode filled with the positive electrode active material, the conductive additive and the binder as described above is dried by scattering the solvent at 50 to 200 ° C.

このようにして得られる正極は、ロールプレス機や平板プレス機等を用いて加圧するプレス処理によって活物質の電極密度を向上させることが好ましい。特に、平板プレス機によりプレス処理が望ましい。ロールプレス機を用いたプレス処理では、多孔質アルミニウム集電体が歪曲して電極が崩落するおそれがあるためである。   It is preferable that the positive electrode obtained in this way improves the electrode density of the active material by press treatment using a roll press or a flat plate press. In particular, it is desirable to perform press processing using a flat plate press. This is because, in the press treatment using a roll press, the porous aluminum current collector may be distorted and the electrode may collapse.

このようなプレス処理により、正極の電極密度向上率を110〜500%とする。電極密度向上率が110%未満では、プレス処理が不十分であり活物質と集電体との十分な接触が図れず電気抵抗が増大する場合がある。一方、電極密度向上率が500%を超えると、過剰なプレス処理により電極内部に電解液が染み込み難くなり、リチウムイオンの拡散が阻害されて電池特性が低下する場合がある。   By such a press treatment, the electrode density improvement rate of the positive electrode is set to 110 to 500%. If the electrode density improvement rate is less than 110%, the press treatment is insufficient, and sufficient contact between the active material and the current collector cannot be achieved, and the electrical resistance may increase. On the other hand, when the electrode density improvement rate exceeds 500%, it becomes difficult for the electrolytic solution to permeate into the electrode due to excessive press treatment, and the diffusion of lithium ions may be hindered to deteriorate the battery characteristics.

ここで、電極密度とは、電極において活物質、導電助剤及び結着剤が占める体積をVacbとし、これらの重量を加えたものをWacbとした際に、(Wacb/Vacb)で表わされるものとする。また、電極密度向上率とは、正極活物質、導電助剤及び結着剤が充填された直後の電極密度(Wacb/Vacb)beに対する、プレス処理等により緻密にした後の電極密度(Wacb/Vacb)afの比を%で表わしたもの、すなわち、
{(Wacb/Vacb)be/(Wacb/Vacb)af}×100(%)である。
Here, the electrode density is represented by (Wacb / Vacb) when the volume occupied by the active material, the conductive auxiliary agent, and the binder in the electrode is Vacb and the weight of these is Wacb. And Further, the electrode density improvement rate is the electrode density (Wacb / Vacb) after being densified by pressing or the like with respect to the electrode density (Wacb / Vacb) be immediately after being filled with the positive electrode active material, the conductive additive and the binder. Vacb) af ratio in%, ie,
{(Wacb / Vacb) be / (Wacb / Vacb) af} × 100 (%).

(k)負極
負極としては、リチウムの吸蔵放出が可能であって、負極集電体と、負極集電体上に少なくとも負極活物質を溶媒に分散したスラリーを塗布することにより得られ、導電助剤、結着剤及び増粘剤を更に加えても良い。
負極活物質としては非水電解質二次電池に使用できるものであれば特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛、メソカーボンマイクロビーズ(MCMB)、ハードカーボンやソフトカーボンなどの炭素材料、Al、Si、Sn等のリチウムと化合することができる金属材料や合金材料、チタン酸リチウム(LiTi12)などの酸化物材料を用いることができる。
(K) Negative electrode The negative electrode is capable of occluding and releasing lithium, and is obtained by applying a negative electrode current collector and a slurry in which at least a negative electrode active material is dispersed in a solvent on the negative electrode current collector. An agent, a binder and a thickener may be further added.
The negative electrode active material is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. For example, natural graphite, artificial graphite, mesocarbon microbeads (MCMB), carbon such as hard carbon and soft carbon Materials, metal materials that can be combined with lithium such as Al, Si, and Sn, alloy materials, and oxide materials such as lithium titanate (Li 4 Ti 5 O 12 ) can be used.

結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム、コアシェルバインダー、ポリイミドやポリアミドイミドなどのイミド系樹脂などが用いられる。
また、導電助剤としては正極に用いるのと同様のもの、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛等を挙げることができる。更に、増粘剤としては、カルボキシメチルセルロース(CMC)の水溶液等を用いることができる。
As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene butadiene rubber, core shell binder, imide resin such as polyimide and polyamideimide, and the like are used.
Moreover, as a conductive support agent, the thing similar to what is used for a positive electrode, for example, carbon black, such as acetylene black and ketjen black, activated carbon, graphite, etc. can be mentioned. Furthermore, as the thickener, an aqueous solution of carboxymethyl cellulose (CMC) or the like can be used.

(l)セパレータと非水電解質
正極と負極のセパレータとしては、一般的に用いられているポリエチレン(PE)、ポリプロピレン(PP)などの高分子膜が用いられる。また、非水電解質としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)などの有機溶媒に溶解させた六フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)を用いることができる。
(L) Separator and Nonaqueous Electrolyte As a separator for the positive electrode and the negative electrode, generally used polymer films such as polyethylene (PE) and polypropylene (PP) are used. As the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) or lithium perchlorate (LiClO 4 ) dissolved in an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used. it can.

以下に発明例及び比較例により、本発明を具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。   The present invention will be specifically described below with reference to invention examples and comparative examples. The present invention is not limited to the following examples.

(実施例1<発明例1〜10及び比較例1〜8>)
この実施例は、本発明に係る非水電解質二次電池用正極に用いる多孔質アルミニウム集電体に関するものである。
アルミニウム粉末として、粒径の異なる下記純アルミニウム粉末(A1〜A3)を用いた。支持粉末として、粒径の異なる塩化ナトリウム粉末(B1〜B3)、ならびに、粒径605μmの塩化カリウム(C1)を用いた。表1、2に示すように各粉末を混合し、混合粉末を調製した。
(Example 1 <Invention Examples 1 to 10 and Comparative Examples 1 to 8>)
This example relates to a porous aluminum current collector used for the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention.
The following pure aluminum powders (A1 to A3) having different particle diameters were used as the aluminum powder. As the supporting powder, sodium chloride powders (B1 to B3) having different particle diameters and potassium chloride (C1) having a particle diameter of 605 μm were used. Each powder was mixed as shown in Tables 1 and 2 to prepare a mixed powder.

Figure 0005893410
Figure 0005893410

Figure 0005893410
Figure 0005893410

<純アルミニウム粉末(アルミニウム純度99.7mass%以上)
A1:メジアン径3μm(融点:660℃)
A2:メジアン径7μm(融点:660℃)
A3:メジアン径17μm(融点:660℃)
<Pure aluminum powder (aluminum purity 99.7 mass% or more)
A1: Median diameter 3 μm (melting point: 660 ° C.)
A2: Median diameter 7 μm (melting point: 660 ° C.)
A3: Median diameter 17 μm (melting point: 660 ° C.)

<塩化ナトリウム粉末>
B1:粒径605μm(ふるい目開き中央値)(融点:800℃)
B2:粒径400μm(ふるい目開き中央値)(融点:800℃)
B3:粒径120μm(ふるい目開き中央値)(融点:800℃)
<塩化カリウム粉末>
C1:粒径605μm(ふるい目開き中央値)(融点:776℃)
<Sodium chloride powder>
B1: Particle size 605 μm (medium value of sieve opening) (melting point: 800 ° C.)
B2: Particle size 400 μm (median sieve opening) (melting point: 800 ° C.)
B3: Particle size 120 μm (medium value of sieve opening) (melting point: 800 ° C.)
<Potassium chloride powder>
C1: Particle size 605 μm (medium value of sieve opening) (melting point: 776 ° C.)

アルミニウム板として太陽金網株式会社製精密エキスパンドメタル(4AL8−4/0)を用いて、混合粉末と複合化した。混合粉末を12mm×30mmの穴を有する金型に充填し、混合粉末の厚さ方向の中央にエキスパンドメタルが位置するように配置して混合粉末とアルミニウム板を複合化した。表1、2に示す成形圧力で加圧成形した。混合物の充填量は加圧成形体の厚さが1mmとなる重量とした。この加圧成形体を最大到達圧力が1×10−2Pa以下の雰囲気下において表1、2に示す温度と時間で熱処理することで接合体を作製し、得られた接合体を20℃の流水(水道水)中に6時間浸漬して支持粉末を溶出させ、多孔質アルミニウム集電体試料(幅12mm×長さ30mm×厚さ1mm)を作製した。なお、比較例1及び2では、混合粉末のみでエキスパンドメタルを使用せずに多孔質アルミニウム集電体試料作製した。作製した多孔質アルミニウム集電体試料については、支持粉末除去後の重量と寸法から気孔率を求めた。 A precision expanded metal (4AL8-4 / 0) manufactured by Taiyo Wire Mesh Co., Ltd. was used as the aluminum plate and composited with the mixed powder. The mixed powder was filled in a mold having a 12 mm × 30 mm hole, and the mixed powder and the aluminum plate were combined by placing the expanded powder in the center in the thickness direction of the mixed powder. Pressure molding was performed at the molding pressure shown in Tables 1 and 2. The filling amount of the mixture was set to a weight at which the thickness of the pressure-molded body was 1 mm. A joined body was produced by heat-treating the pressure-formed body at a temperature and time shown in Tables 1 and 2 in an atmosphere having a maximum ultimate pressure of 1 × 10 −2 Pa or less, and the obtained joined body was heated to 20 ° C. The support powder was eluted by immersing in running water (tap water) for 6 hours to prepare a porous aluminum current collector sample (width 12 mm × length 30 mm × thickness 1 mm). In Comparative Examples 1 and 2, a porous aluminum current collector sample was produced using only the mixed powder and no expanded metal. About the produced porous aluminum electrical power collector sample, the porosity was calculated | required from the weight and dimension after support powder removal.

上記のようにして作製した多孔質アルミニウム試料を用いて、以下の評価を行った。
(支持粉末の残留性)
支持粉末を除去した後の重量を測定し、この重量が原料として使用したアルミニウム粉末とエキスパンドメタルの重量の合計より重い場合は支持粉末が残留しているとして不合格(×)とした。一方、軽い場合には支持粉末の残留が無いものとして合格(○)とした。支持粉末の残留が無い多孔質アルミニウムは、全ての孔が外部と連通を持ったオープンセル型の多孔体であることが分かる。
The following evaluation was performed using the porous aluminum sample produced as described above.
(Support powder persistence)
The weight after removing the supporting powder was measured, and when this weight was heavier than the sum of the weights of the aluminum powder and the expanded metal used as raw materials, the supporting powder remained and it was judged as rejected (x). On the other hand, when it was light, it was determined to be acceptable (◯) because there was no residual support powder. It can be seen that the porous aluminum having no supporting powder remains is an open cell type porous body in which all pores communicate with the outside.

(外観性)
熱処理時において、融解したアルミニウムの滲み出しの有無を目視観察により評価した。滲み出しが生じなかったものを合格(○)、生じたものを不合格(×)とした。
(Appearance)
At the time of heat treatment, the presence or absence of leaching of molten aluminum was evaluated by visual observation. Those in which exudation did not occur were determined to be acceptable (◯), and those that occurred were determined to be unacceptable (x).

(形状性)
支持粉末を除去した際に結合金属粉末壁が崩壊したか否かを、多孔質アルミニウム集電体試料の形状変化の目視観察により評価した。形状が変化しなかったものを合格(○)、変化したものを不合格(×)とした。
(Shape)
Whether or not the bonded metal powder wall collapsed when the support powder was removed was evaluated by visual observation of the shape change of the porous aluminum current collector sample. Those in which the shape did not change were determined to be acceptable (◯), and those in which the shape was changed were determined to be unacceptable (x).

(荷重維持性)
上記支持粉末の残留性、外観性及び形状性の評価に合格した多孔質アルミニウム試料に対し、図1に示す強度測定用治具を用いてその荷重維持性を調べた。図に示すように、支持用ローラ2、2(ローラ間の長さL=25.0±0.2mm)上に載置した多孔質アルミニウム試料3の上に、荷重用ローラ1を押し付けて一定速度で降下させた際の荷重を測定した。折れ易い試料は、荷重が最大値に達した後に急激に荷重が低下する。そこで、最大荷重に達した点から更に荷重用ローラ1を2mm降下させた時点における荷重が最大荷重の80%以上だったものを合格(○)、80%未満であったものを不合格(×)とした。荷重用ローラ1の降下速度は1mm/minとした。
(Load maintenance)
With respect to the porous aluminum sample that passed the evaluation of the persistence, appearance, and shape of the support powder, the load maintainability was examined using the strength measuring jig shown in FIG. As shown in the figure, the load roller 1 is pressed against the porous aluminum sample 3 placed on the supporting rollers 2 and 2 (length L = 25.0 ± 0.2 mm between the rollers) to be constant. The load when lowered at a speed was measured. In the case of a sample that is easy to break, the load rapidly decreases after the load reaches the maximum value. Therefore, when the load roller 1 is further lowered by 2 mm from the point where the maximum load is reached, the load is 80% or more of the maximum load (◯), and the load is less than 80% (× ). The descending speed of the load roller 1 was 1 mm / min.

評価結果を、表1及び2に示す。表1及び2に示すように、発明例1〜10ではいずれの評価も合格であった。   The evaluation results are shown in Tables 1 and 2. As shown in Tables 1 and 2, in the inventive examples 1 to 10, all evaluations were acceptable.

比較例1、2では、エキスパンドメタルを使用しなかったために、荷重維持性が不合格であった。
比較例3では、アルミニウム粉末の体積割合が多過ぎたために独立して存在する支持粉末が生じて除去が困難となり、支持粉末の残留性が不合格であった。
比較例4では、アルミニウム粉末の体積割合が少な過ぎたために多孔質アルミニウムの結合金属粉末壁が非常に薄くなって崩壊し、形状性が不合格であった。
比較例5では、アルミニウム粉末の体積割合が少な過ぎたと共に被覆面積割合Cの値が低かったために多孔質アルミニウムの結合金属粉末壁が非常に薄くなって崩壊し、形状性が不合格であった。
比較例6では、加圧成形圧力が低過ぎたためにアルミニウム粉末の新生面の露出が不十分となり、熱処理時に融解アルミニウムの滲み出しが生じて外観性が不合格であった。
比較例7では、熱処理温度が高過ぎたために、融解アルミニウムの滲み出しが生じて外観性が不合格であった。
比較例8では、熱処理温度が低過ぎたためアルミニウム粉末同士およびアルミニウム粉末とエキスパンドメタルとの接合が十分に進行せず、荷重維持性が不合格であった。
In Comparative Examples 1 and 2, since the expanded metal was not used, the load maintainability was unacceptable.
In Comparative Example 3, since the volume ratio of the aluminum powder was too large, a support powder that was present independently was generated, making it difficult to remove, and the persistence of the support powder was unacceptable.
In Comparative Example 4, since the volume ratio of the aluminum powder was too small, the bonded metal powder wall of porous aluminum became very thin and collapsed, and the shape was unacceptable.
In Comparative Example 5, since the volume ratio of the aluminum powder was too small and the value of the covering area ratio C was low, the bonded metal powder wall of the porous aluminum was very thin and collapsed, and the shape was not acceptable. .
In Comparative Example 6, since the pressure forming pressure was too low, the exposure of the new surface of the aluminum powder was insufficient, and the molten aluminum oozed out during the heat treatment, resulting in an unacceptable appearance.
In Comparative Example 7, since the heat treatment temperature was too high, the molten aluminum oozed out and the appearance was unacceptable.
In Comparative Example 8, since the heat treatment temperature was too low, the joining between the aluminum powders and between the aluminum powder and the expanded metal did not proceed sufficiently, and the load maintainability was unacceptable.

(実施例2<発明例11〜15及び比較例9〜12>)
この実施例は、本発明に係る非水電解質二次電池用正極及びこれを用いた非水電解質二次電池に関するものである。
(Example 2 <Invention Examples 11-15 and Comparative Examples 9-12>)
This example relates to a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention and a non-aqueous electrolyte secondary battery using the same.

<発明例11>
(正極の作製)
正極活物質として炭素被覆リン酸鉄リチウム100重量部;導電助剤としてアセチレンブラック6.8重量部;結着剤として、水分散バインダである固形分濃度40質量%のアクリル系共重合体3重量部(固形分として)、ならびに、分散剤として;水溶液中の固形分濃度2質量%のカルボキシメチルセルロース2重量部(固形分として)を、溶媒であるイオン交換水5gに分散してスラリーを調製した。
<Invention Example 11>
(Preparation of positive electrode)
100 parts by weight of carbon-coated lithium iron phosphate as a positive electrode active material; 6.8 parts by weight of acetylene black as a conductive additive; 3% by weight of an acrylic copolymer having a solid content concentration of 40% by mass as a binder Parts (as solids) and as a dispersing agent; 2 parts by weight (as solids) of carboxymethylcellulose having a solid content concentration of 2% by mass in an aqueous solution was dispersed in 5 g of ion-exchanged water as a solvent to prepare a slurry. .

前記浸漬法を用いて、正極活物質、導電助剤及び結着剤を溶媒に分散したスラリー中に実施例1の発明例1で作製した多孔質アルミニウム集電体を浸漬し、減圧した(−0.1MPa)。浸漬後、多孔質アルミニウム集電体表裏面に付着した余剰スラリーをヘラを用いて擦り切り落とした。   Using the dipping method, the porous aluminum current collector prepared in Invention Example 1 of Example 1 was immersed in a slurry in which a positive electrode active material, a conductive additive and a binder were dispersed in a solvent, and the pressure was reduced (- 0.1 MPa). After immersion, surplus slurry adhering to the front and back surfaces of the porous aluminum current collector was scraped off with a spatula.

次いで、スラリーを充填した多孔質アルミニウム集電体を乾燥装置内に配置し、80℃で2時間乾燥させ、正極試料を作製した。乾燥後の電極密度は、0.56g/cmであった。次いで、これを平板プレス機により圧力0.50トン/cmでプレス処理した。プレス処理後の電極密度は1.80g/cmであり、電極密度向上率は321%であった。プレス前後の電極密度と電極密度向上率、ならびに、塗工量を表3に示す。ここで、塗工量とは、多孔質アルミニウム集電体の1m当たりに充填された活物質、導電助剤及び結着剤の合計重量(乾燥状態)を示す。 Next, the porous aluminum current collector filled with the slurry was placed in a drying apparatus and dried at 80 ° C. for 2 hours to prepare a positive electrode sample. The electrode density after drying was 0.56 g / cm 3 . Subsequently, this was pressed with a flat plate press at a pressure of 0.50 ton / cm 2 . The electrode density after the press treatment was 1.80 g / cm 3 , and the electrode density improvement rate was 321%. Table 3 shows the electrode density before and after pressing, the electrode density improvement rate, and the coating amount. Here, the coating amount indicates the total weight (dried state) of the active material, the conductive additive and the binder filled per 1 m 2 of the porous aluminum current collector.

Figure 0005893410
Figure 0005893410

(評価セルの作製)
上記のプレス処理した正極試料を作用極に用いた3極式評価セルを作製した。対極及び参照極にはリチウム金属を用いた。電解液として、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートとの混合溶媒(体積比で2:5:3)にLiPFを1.3mol/L溶解させた非水電解液を用い、セパレータとして、微多孔質ポリエチレン膜を用いた。外装体には、ポリプロピレンブロックを加工した樹脂製容器を用い、作用極、対極及び参照極に設けた各端子の開放端部が外部露出するように電極群を収納封口した。
(Production of evaluation cell)
A tripolar evaluation cell using the positive electrode sample subjected to the press treatment as a working electrode was produced. Lithium metal was used for the counter electrode and the reference electrode. As the electrolytic solution, a nonaqueous electrolytic solution in which 1.3 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (volume ratio 2: 5: 3) was used. A porous polyethylene membrane was used. A resin container in which a polypropylene block was processed was used for the exterior body, and the electrode group was housed and sealed so that the open ends of the terminals provided on the working electrode, the counter electrode, and the reference electrode were exposed to the outside.

(電池試験)
上述のように作製した電池を用いて、充放電特性の評価試験を行った。充放電試験は0.1Cの電流で4.2Vまで充電し、0.1Cの電流で2.0Vまで放電させ、このときの充放電効率を求めた。電極容量、放電容量及び充放電効率の結果を、表3に示す。また、充放電曲線を図2、3に示す。表3及び図2、3から、発明例11はいずれの比較例よりも高い放電容量及び充放電効率を示しており、良好な電池特性である。
(Battery test)
Using the battery prepared as described above, an evaluation test of charge / discharge characteristics was performed. In the charge / discharge test, the battery was charged to 4.2 V with a current of 0.1 C and discharged to 2.0 V with a current of 0.1 C, and the charge / discharge efficiency at this time was determined. Table 3 shows the results of electrode capacity, discharge capacity, and charge / discharge efficiency. The charge / discharge curves are shown in FIGS. From Table 3 and FIGS. 2 and 3, Invention Example 11 shows a higher discharge capacity and charge / discharge efficiency than any of the comparative examples, and has good battery characteristics.

(500サイクル後の活物質の脱落の観察)
前記充放電試験500サイクル後に多孔質アルミニウム集電体から電極活物質が脱落したか否かを目視観察により評価し、その結果を表3に示した。電極活物質の脱落がなかったものを○、電極活物質の脱落が若干見られたものを△、電極活物質の脱落が顕著に見られたものを×とした。発明例11では、充放電試験500サイクル後の電極に活物質の脱落は見られなかった。
(Observation of falling off of active material after 500 cycles)
Whether or not the electrode active material was removed from the porous aluminum current collector after 500 cycles of the charge / discharge test was evaluated by visual observation, and the results are shown in Table 3. The case where the electrode active material did not fall off was marked with ◯, the case where the electrode active material was slightly dropped was marked with Δ, and the case where the electrode active material was markedly dropped was marked with X. In Invention Example 11, the active material did not fall off in the electrode after 500 cycles of the charge / discharge test.

<発明例12>
発明例11で作製した乾燥後の正極試料を、平板プレス機により圧力0.17トン/cmでプレス処理した。プレス処理後の電極密度は0.62g/cmであり、電極密度向上率は111%であった。表3に示すように、良好な電池特性である。充放電試験500サイクル後の電極に活物質の脱落は見られなかった。
<Invention Example 12>
The dried positive electrode sample produced in Invention Example 11 was pressed with a flat plate press at a pressure of 0.17 ton / cm 2 . The electrode density after the press treatment was 0.62 g / cm 3 , and the electrode density improvement rate was 111%. As shown in Table 3, the battery characteristics are good. The active material did not fall off in the electrode after 500 cycles of the charge / discharge test.

<発明例13>
発明例11で作製した乾燥後の正極試料を、平板プレス機により圧力0.78トン/cmでプレス処理した。プレス処理後の電極密度は2.80g/cmであり、電極密度向上率は500%であった。表3に示すように、良好な電池特性である。充放電試験500サイクル後の電極に活物質の脱落は見られなかった。
<Invention Example 13>
The dried positive electrode sample produced in Invention Example 11 was pressed with a pressure of 0.78 ton / cm 2 using a flat plate press. The electrode density after the press treatment was 2.80 g / cm 3 , and the electrode density improvement rate was 500%. As shown in Table 3, the battery characteristics are good. The active material did not fall off in the electrode after 500 cycles of the charge / discharge test.

<比較例9>
実施例1の比較例1で作製した、エキスパンドメタルを使用しない多孔質アルミニウム集電体を用いた。発明例11と同じ条件で正極試料を作製した。乾燥後の電極密度は0.57g/cmであった。これを平板プレス機により圧力0.52トン/cmでプレス処理した。プレス処理後の電極密度は1.87g/cmであり、電極密度向上率は328%であった。エキスパンドメタルを使用しない多孔質アルミニウム集電体を用いたため、発明例11に比べて、放電容量が3.2mAh/g、充放電効率が0.06%低下した。また、エキスパンドメタルを使用していないため、強度が不十分であり、電極作製工程で多孔質アルミニウム集電体の一部が欠落した。このため、充放電試験500サイクル後の電極に活物質の脱落が顕著に見られた。
電極容量、放電容量及び充放電効率の結果を表3に、充放電曲線を図2に示す。
<Comparative Example 9>
The porous aluminum current collector produced in Comparative Example 1 of Example 1 and using no expanded metal was used. A positive electrode sample was produced under the same conditions as in Invention Example 11. The electrode density after drying was 0.57 g / cm 3 . This was pressed with a flat plate press at a pressure of 0.52 ton / cm 2 . The electrode density after the press treatment was 1.87 g / cm 3 , and the electrode density improvement rate was 328%. Since a porous aluminum current collector that does not use expanded metal was used, the discharge capacity was 3.2 mAh / g and the charge / discharge efficiency was 0.06% lower than that of Invention Example 11. Moreover, since no expanded metal was used, the strength was insufficient, and a part of the porous aluminum current collector was missing in the electrode manufacturing process. For this reason, dropping of the active material was significantly observed in the electrode after 500 cycles of the charge / discharge test.
The results of electrode capacity, discharge capacity and charge / discharge efficiency are shown in Table 3, and the charge / discharge curve is shown in FIG.

<比較例10>
発明例11で作製した乾燥後の正極試料を用いたが、プレス処理を行わなかった。従って、電極密度向上率は100%であった。正極試料にプレス処理を実施しなかったため、発明例11に比べて、放電容量が1.6mAh/g、充放電効率が0.52%低下した。また、この比較例では充電カーブが緩やかであり、分極が見られた。これは、プレス処理をしていないため、集電体と活物質との接触が不十分であることから、電気抵抗が大きくなったと考えられる。充放電試験500サイクル後の電極に活物質の脱落が顕著に見られた。これは、プレス処理をしなかったためと考えられる。
電極容量、放電容量及び充放電効率の結果を表3に、充放電曲線を図2に示す。
<Comparative Example 10>
The dried positive electrode sample produced in Invention Example 11 was used, but no press treatment was performed. Therefore, the electrode density improvement rate was 100%. Since the positive electrode sample was not pressed, the discharge capacity was 1.6 mAh / g and the charge / discharge efficiency was reduced by 0.52% as compared with Invention Example 11. In this comparative example, the charging curve was gentle and polarization was observed. This is probably because the electrical resistance increased because the contact between the current collector and the active material was insufficient because no press treatment was performed. The active material was significantly removed from the electrode after 500 cycles of the charge / discharge test. This is presumably because no press treatment was performed.
The results of electrode capacity, discharge capacity and charge / discharge efficiency are shown in Table 3, and the charge / discharge curve is shown in FIG.

<発明例14>
発明例11で作製した乾燥後の正極試料を、平板プレス機により圧力0.16トン/cmでプレス処理した。プレス処理後の電極密度は0.59g/cmであり、電極密度向上率は105%であった。正極試料の電極密度向上率が低過ぎたため、発明例11に比べて、放電容量が1.3mAh/g、充放電効率が0.43%低下した。また、この発明例では充電カーブが緩やかであり、分極が見られた。これは、プレス処理が過小であるため、集電体と活物質との接触が不十分であることから、電気抵抗が大きくなったと考えられる。充放電試験500サイクル後の電極に活物質の脱落が若干見られた。これは、プレス処理による電極密度向上率が過小であったためと考えられる。
電極容量、放電容量及び充放電効率の結果を表3に示す。
<Invention Example 14>
The dried positive electrode sample produced in Invention Example 11 was pressed with a flat plate press at a pressure of 0.16 ton / cm 2 . The electrode density after the press treatment was 0.59 g / cm 3 , and the electrode density improvement rate was 105%. Since the electrode density improvement rate of the positive electrode sample was too low, the discharge capacity was 1.3 mAh / g and the charge / discharge efficiency was 0.43% lower than that of Invention Example 11. Moreover, in this invention example, the charge curve was gentle and polarization was observed. This is presumably because the electrical resistance was increased because the press treatment was too small and the contact between the current collector and the active material was insufficient. Some loss of the active material was observed on the electrode after 500 cycles of the charge / discharge test. This is considered because the electrode density improvement rate by press processing was too small.
Table 3 shows the results of electrode capacity, discharge capacity, and charge / discharge efficiency.

<発明例15>
発明例11で作製した乾燥後の正極試料を、平板プレス機により圧力0.79トン/cmでプレス処理した。プレス処理後の電極密度は2.85g/cmであり、電極密度向上率は509%であった。正極試料の電極密度向上率が高過ぎたため、発明例11に比べて、放電容量が2.2mAh/g、充放電効率が0.45%低下した。放電試験500サイクル後の電極に活物質の脱落が若干見られた。これは、プレス処理による電極密度向上率が過大であったため考えられる。
電極容量、放電容量及び充放電効率の結果を表3に示す。
<Invention Example 15>
The dried positive electrode sample produced in Invention Example 11 was pressed with a pressure of 0.79 ton / cm 2 using a flat plate press. The electrode density after the press treatment was 2.85 g / cm 3 , and the electrode density improvement rate was 509%. Since the electrode density improvement rate of the positive electrode sample was too high, the discharge capacity was 2.2 mAh / g and the charge / discharge efficiency was reduced by 0.45% compared to Example 11. Some loss of the active material was observed on the electrode after 500 cycles of the discharge test. This is considered because the electrode density improvement rate by press treatment was excessive.
Table 3 shows the results of electrode capacity, discharge capacity, and charge / discharge efficiency.

<比較例11>
発明例11において、多孔質アルミニウム集電体に代えて厚さ20μmのアルミニウム箔を集電体に用い、この集電体上にスラリーを塗布して乾燥させた。アルミニウム箔の1m当たりに塗布した活物質、導電助剤及び結着剤の合計重量は、乾燥状態で600g/mであった。
この比較例では、正極試料に多孔質アルミニウム集電体を用いなかったため、乾燥後の集電体表面がひび割れてアルミニウム箔から剥離してしまい電池特性の評価ができなかった。そのため、放電試験500サイクル後の電極状態を観察できなかった。
<Comparative Example 11>
In Invention Example 11, an aluminum foil having a thickness of 20 μm was used as the current collector instead of the porous aluminum current collector, and the slurry was applied onto the current collector and dried. The total weight of the active material, the conductive additive and the binder applied per 1 m 2 of the aluminum foil was 600 g / m 2 in a dry state.
In this comparative example, since the porous aluminum current collector was not used for the positive electrode sample, the surface of the current collector after drying was cracked and peeled off from the aluminum foil, and the battery characteristics could not be evaluated. Therefore, the electrode state after 500 cycles of the discharge test could not be observed.

<比較例12>
発明例11において、多孔質アルミニウム集電体に代えて厚さ20μmのアルミニウム箔を集電体に用い、この集電体上にスラリーを塗布して乾燥させた。アルミニウム箔の1m当たりに塗布した活物質、導電助剤及び結着剤の合計重量は、乾燥状態においてひび割れや剥離が生じない154g/mとした。
このようにして作製した乾燥後の正極試料の電極密度は1.20g/cmであった。次いで、これを平板プレス機により圧力0.24トン/cmでプレス処理した。プレス処理後の電極密度は1.81g/cmであり、電極密度向上率は151%であった。この比較例では、正極試料に多孔質アルミニウム集電体を用いなかったため、発明例11に比べて、放電容量が2.0mAh/g、充放電効率が1.17%低下した。充放電試験500サイクル後の電極に活物質の脱落は見られなかった。
電極容量、放電容量及び充放電効率の結果を表3に、充放電曲線を図3に示す。
<Comparative Example 12>
In Invention Example 11, an aluminum foil having a thickness of 20 μm was used as the current collector instead of the porous aluminum current collector, and the slurry was applied onto the current collector and dried. The total weight of the active material, the conductive additive and the binder applied per 1 m 2 of the aluminum foil was 154 g / m 2 where no cracks or peeling occurred in the dry state.
The electrode density of the positive electrode sample thus produced after drying was 1.20 g / cm 3 . Next, this was pressed by a flat plate press at a pressure of 0.24 ton / cm 2 . The electrode density after the press treatment was 1.81 g / cm 3 , and the electrode density improvement rate was 151%. In this comparative example, since the porous aluminum current collector was not used for the positive electrode sample, the discharge capacity was 2.0 mAh / g and the charge / discharge efficiency was 1.17% lower than that of Invention Example 11. The active material did not fall off in the electrode after 500 cycles of the charge / discharge test.
The results of electrode capacity, discharge capacity and charge / discharge efficiency are shown in Table 3, and the charge / discharge curve is shown in FIG.

表3及び図2、3の結果から明らかなように、本発明11〜15に係る非水電解質二次電池は、アルミニウム箔を用いたいずれの比較例11、比較例12の電池よりも、電極容量、放電容量及び充放電効率に優れているまた、本発明11〜15はエキスパンドメタルを使用していない比較例9、プレス処理を行っていない比較例10の電池と電極容量、放電容量及び充放電効率においては大差ないものの、500サイクル後の活物質脱落が少なく、良好であった。
更に、本発明の電池は電極作製工程において多孔質アルミニウム集電体が欠落することはなく、十分な電池機能を発揮できる強度を有している。このように、本発明に係る非水電解質二次電池用正極を用いることにより、高強度かつ高容量の非水電解質二次電池が得られる。
As is clear from the results of Table 3 and FIGS. 2 and 3, the nonaqueous electrolyte secondary battery according to the present invention 11 to 15 is more electrode than the batteries of any of Comparative Examples 11 and 12 using aluminum foil. It is excellent in capacity, discharge capacity and charge / discharge efficiency. In addition, the present inventions 11 to 15 are the battery and electrode capacity, discharge capacity and charge capacity of Comparative Example 9 in which no expanded metal is used and Comparative Example 10 in which no press treatment is performed. Although there was not much difference in the discharge efficiency, the active material did not fall off after 500 cycles and was good.
Furthermore, the battery of the present invention does not lose the porous aluminum current collector in the electrode manufacturing process, and has a strength capable of exhibiting a sufficient battery function. Thus, by using the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention, a non-aqueous electrolyte secondary battery with high strength and high capacity can be obtained.

本発明に係る非水電解質二次電池において、電極容量及び放電容量が大きい理由は、本発明において多孔質のアルミニウム集電体を用いることで正極活物質が充填され易くなるためである。更に、多孔質アルミニウム集電体を混合粉末とアルミニウム板との複合体とすることにより、正極材料(正極活物質、導電助剤及び結着剤)の膨張や脱落が抑制されるためである。比較例9の電池のように、アルミニウム板を用いない場合には、電極強度が劣り十分な電池機能が発揮できない。   In the nonaqueous electrolyte secondary battery according to the present invention, the reason why the electrode capacity and the discharge capacity are large is that the positive electrode active material is easily filled by using a porous aluminum current collector in the present invention. Furthermore, by making the porous aluminum current collector a composite of a mixed powder and an aluminum plate, the positive electrode material (positive electrode active material, conductive additive and binder) is prevented from expanding or falling off. When an aluminum plate is not used as in the battery of Comparative Example 9, the electrode strength is inferior and a sufficient battery function cannot be exhibited.

なお、本発明に用いた正極スラリーは正極活物質、導電助剤、結着剤及び分散剤を溶媒に分散したスラリーであるが、少なくとも正極活物質を溶媒に分散したスラリーを用いても電極作製は可能である。この場合、プレス処理を通常よりも過度に行うことにより、多孔質アルミニウム集電体との接着性を向上させ、活物質の脱落を防止する。   The positive electrode slurry used in the present invention is a slurry in which a positive electrode active material, a conductive additive, a binder, and a dispersant are dispersed in a solvent. However, at least a slurry in which a positive electrode active material is dispersed in a solvent is used. Is possible. In this case, the press treatment is performed more excessively than usual, thereby improving the adhesion with the porous aluminum current collector and preventing the active material from falling off.

本発明により、オープンセル型で気孔率の高い、高強度の、非水電解質二次電池の正極に用いられる多孔質アルミニウム集電体が得られる。そして、このような多孔質アルミニウム集電体を用いることで、高強度で高容量の非水電解質二次電池用正極、ならびに、当該正極を用いた高容量の非水電解質二次電池が得られる。   According to the present invention, a porous aluminum current collector used for a positive electrode of a non-aqueous electrolyte secondary battery having an open cell type and a high porosity is obtained. By using such a porous aluminum current collector, a high-strength and high-capacity non-aqueous electrolyte secondary battery positive electrode and a high-capacity non-aqueous electrolyte secondary battery using the positive electrode can be obtained. .

1・・荷重用ローラ
2・・支持用ローラ
3・・多孔質アルミニウム試料
L・・支持用ローラ間の長さ
1 .... Load roller 2 .... Support roller 3 .... Porous aluminum sample L ... Length between support rollers

Claims (6)

アルミニウム粉末と支持粉末の混合粉末であって、当該混合粉末の全体に対するアルミニウム粉末の体積割合が5〜20%の混合粉末を、アルミニウム板と複合化した状態で200MPa以上の圧力で加圧成形した後、この加圧成形体を不活性雰囲気中でアルミニウム粉末又はアルミニウム板の低い方の融点以上で、かつ、支持粉末の融点未満の温度域で熱処理することにより、加圧成形体のアルミニウム粉末同士及びアルミニウム粉末とアルミニウム板とを接合させ、その後、支持粉末を除去することによって製造されることを特徴とする非水電解質二次電池用多孔質アルミニウム集電体の製造方法。 A mixed powder of aluminum powder and support powder, in which the volume ratio of the aluminum powder to the whole of the mixed powder is 5 to 20%, and pressure-molded at a pressure of 200 MPa or more in a state where it is combined with the aluminum plate. After that, this pressure-molded body is heat treated in an inert atmosphere at a temperature higher than or equal to the lower melting point of the aluminum powder or aluminum plate and lower than the melting point of the support powder. And a method for producing a porous aluminum current collector for a non-aqueous electrolyte secondary battery, comprising: joining an aluminum powder and an aluminum plate, and then removing the supporting powder. 前記アルミニウム粉末の粒径と体積をそれぞれdal、Valとし、前記支持粉末の粒径と体積をそれぞれds、Vsとして規定されるアルミニウ粉末に覆われる支持粉末表面の被覆面積割合C=(Val×ds)/(4Vs×dal)×100が70%以上である、請求項1に記載の非水電解質二次電池用多孔質アルミニウム集電体の製造方法。 The aluminum powder particle size and volume respectively dal, and Val, the ds particle size and volume of the support powder, respectively, the coating area ratio C = (Val × support powder surface to be covered with aluminum powder, which is defined as Vs The manufacturing method of the porous aluminum electrical power collector for nonaqueous electrolyte secondary batteries of Claim 1 whose ds) / (4Vsxdal) x100 is 70% or more. 前記支持粉末が、塩化ナトリウム、塩化カリウム又はこれらの混合物である、請求項1又は2に記載の非水電解質二次電池用多孔質アルミニウム集電体の製造方法。   The manufacturing method of the porous aluminum electrical power collector for nonaqueous electrolyte secondary batteries of Claim 1 or 2 whose said support powder is sodium chloride, potassium chloride, or a mixture thereof. 前記多孔質アルミニウム集電体の空孔率を80%以上、95%以下とした、請求項1〜3のいずれか一項に記載の非水電解質二次電池用多孔質アルミニウム集電体の製造方法。   The production of the porous aluminum current collector for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the porosity of the porous aluminum current collector is 80% or more and 95% or less. Method. 請求項1〜4のいずれか一項に記載の方法で製造された非水電解質二次電池用多孔質アルミニウム集電体にリチウムの吸蔵放出が可能な少なくとも活物質を溶媒に分散したスラリーを充填し、加圧して電極密度向上率を110〜500%としたことを特徴とする非水電解質二次電池用正極の製造方法。   A slurry in which at least an active material capable of occluding and releasing lithium is dispersed in a solvent is filled in the porous aluminum current collector for a non-aqueous electrolyte secondary battery manufactured by the method according to any one of claims 1 to 4. And producing a positive electrode for a non-aqueous electrolyte secondary battery, wherein the electrode density improvement rate is 110 to 500% by pressurization. 前記スラリーを充填した非水電解質二次電池用多孔質アルミニウム集電体を、平板プレス処理によって加圧する、請求項5に記載の非水電解質二次電池用正極の製造方法。   The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 5 which pressurizes the porous aluminum electrical power collector for nonaqueous electrolyte secondary batteries with which the said slurry was filled by flat plate press process.
JP2012000985A 2012-01-06 2012-01-06 Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery Active JP5893410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000985A JP5893410B2 (en) 2012-01-06 2012-01-06 Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000985A JP5893410B2 (en) 2012-01-06 2012-01-06 Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013140745A JP2013140745A (en) 2013-07-18
JP5893410B2 true JP5893410B2 (en) 2016-03-23

Family

ID=49038012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000985A Active JP5893410B2 (en) 2012-01-06 2012-01-06 Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5893410B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151609A (en) * 2014-02-18 2015-08-24 三菱マテリアル株式会社 Porous aluminum sintered body
JP6443725B2 (en) * 2014-09-17 2018-12-26 日立金属株式会社 Porous aluminum sintered body, method for producing the same, and method for producing an electrode
WO2017002234A1 (en) * 2015-07-01 2017-01-05 株式会社日立製作所 Underground resource searching device and underground resource searching system
JP6988584B2 (en) * 2018-03-06 2022-01-05 トヨタ自動車株式会社 Manufacturing method of positive electrode, non-aqueous electrolyte secondary battery, and positive electrode
JP2021530847A (en) * 2018-07-19 2021-11-11 セルモビリティ・インコーポレイテッドCellmobility, Inc. Lithium-ion battery with metal foam anode and cathode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196169A (en) * 1992-06-30 1994-07-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP3004246B2 (en) * 1997-03-24 2000-01-31 片山特殊工業株式会社 Method for producing metal sheet, metal sheet produced by the method, method for producing electrode for battery, and electrode for battery
JP4514265B2 (en) * 1999-12-28 2010-07-28 三洋電機株式会社 Electrode and non-aqueous electrolyte secondary battery
JP2004156092A (en) * 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology Porous metal having excellent energy absorbability, and production method therefor
JP4048251B2 (en) * 2005-02-18 2008-02-20 国立大学法人徳島大学 Method for producing porous metal body, porous metal body and porous metal body structure
JP5428546B2 (en) * 2009-06-04 2014-02-26 三菱マテリアル株式会社 Method for producing aluminum composite having porous aluminum sintered body
JP2012001808A (en) * 2010-05-20 2012-01-05 Furukawa-Sky Aluminum Corp Method for producing porous metal

Also Published As

Publication number Publication date
JP2013140745A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP3568052B2 (en) Porous metal body, method for producing the same, and battery electrode plate using the same
CN110635109B (en) Lithium metal electrode prepared by 3D printing technology and preparation method thereof
JP6149031B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP2019185897A (en) All-solid battery
JP5893410B2 (en) Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery
KR20110060900A (en) Binder composition for secondary battery electrode and method for producing same
JP2010009905A (en) Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it
JP6573254B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP5509786B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP5142264B2 (en) Non-aqueous electrolyte secondary battery current collector and method for producing the same, and positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2009176517A (en) Nonwoven fabric-like nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JP5515724B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2017091673A (en) Lithium ion battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JP6071241B2 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode
JP6122580B2 (en) Method for producing electrode using porous metal current collector
JP2013243063A (en) Method of manufacturing electrode using porous metal collector
JP5196392B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JP5961067B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250