JP5196392B2 - Positive electrode for non-aqueous electrolyte secondary battery - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery

Info

Publication number
JP5196392B2
JP5196392B2 JP2007066864A JP2007066864A JP5196392B2 JP 5196392 B2 JP5196392 B2 JP 5196392B2 JP 2007066864 A JP2007066864 A JP 2007066864A JP 2007066864 A JP2007066864 A JP 2007066864A JP 5196392 B2 JP5196392 B2 JP 5196392B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
active material
nickel
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066864A
Other languages
Japanese (ja)
Other versions
JP2008226765A (en
Inventor
勉 岩城
勝 八尾
哲男 境
一樹 奥野
真博 加藤
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007066864A priority Critical patent/JP5196392B2/en
Publication of JP2008226765A publication Critical patent/JP2008226765A/en
Application granted granted Critical
Publication of JP5196392B2 publication Critical patent/JP5196392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、新規な非水電解質二次電池用正極に関する。   The present invention relates to a novel positive electrode for a nonaqueous electrolyte secondary battery.

近年、リチウムイオン電池に代表される非水電解質二次電池が、高エネルギー密度を有する等の理由から、広く普及している。このようなリチウムイオン電池には、正極−負極間にリチウムイオンを移動させて充放電を行う原理が利用されており、正極材料にLiCoO2、LiMn2O4等が、負極材料にリチウムイオンの吸蔵及び放出が可能な炭素材料が、セパレータに微孔性薄膜が、電解液にLiBF4、LiPF6等のリチウム塩を溶解した有機溶媒が使用されている。 In recent years, non-aqueous electrolyte secondary batteries typified by lithium ion batteries have become widespread for reasons such as high energy density. In such a lithium ion battery, the principle of charging and discharging is performed by moving lithium ions between the positive electrode and the negative electrode. LiCoO 2 , LiMn 2 O 4 and the like are used as the positive electrode material, and lithium ions are used as the negative electrode material. A carbon material that can be occluded and released uses a microporous thin film as a separator and an organic solvent in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved in an electrolyte.

特に正極材料に関しては、LiCoO2が主流であり、広く実用化されている。また、LiMn2O4についても、資源枯渇問題や価格問題が大きく解決できるため、その実用化が始まっている。 In particular, for positive electrode materials, LiCoO 2 is the mainstream and widely used. LiMn 2 O 4 has also been put to practical use because it can greatly solve the resource depletion problem and the price problem.

しかし、これらの材料においても、今後の課題として、さらなる放電容量の向上が求められている。また、LiMn2O4においては、電池温度の上昇によりMnが電解質中に溶解するという問題もある。さらに、これらの材料の他に、LiNiO2なども開発されているが、放電容量及び電圧ともに低く、より一層の改良が必要である。 However, even in these materials, further improvement in discharge capacity is required as a future problem. In addition, LiMn 2 O 4 has a problem that Mn dissolves in the electrolyte due to an increase in battery temperature. In addition to these materials, LiNiO 2 and the like have also been developed, but both the discharge capacity and voltage are low, and further improvement is necessary.

ところで、リチウムイオン電池において、正極材料や負極材料を付着させる集電体(支持体)として、一般的に金属箔が用いられている。このような集電体は、高出力、高容量、高寿命化等を目的として、パンチングメタル、スクリーン、エキスパンドメタル等の多孔体、さらに発泡体や不織布状などの三次元多孔質体等が数多く提案されている(特許文献1〜4)。例えば、特許文献1には、正極集電体として、表面がアルミニウム、合金又はステンレススチールからなる三次元網状多孔体が開示されている。特許文献2には、アルミニウム、銅、亜鉛、鉄等の金属、又はポリピロール、ポリアニリン等の導電性ポリマー、或いはこれらの混合物からなるシート、孔を持つシート又は三次元多孔体等の集電体が開示されている。特許文献3には、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンの単体若しくは合金、ステンレス合金等の集電体が開示されている。特許文献4には、正極集電体として、発泡アルミニウム、発泡ニッケル等が開示されている。
特開平11-233151 特開2000-195522 特開2005-078991 特開2006-032144
Incidentally, in a lithium ion battery, a metal foil is generally used as a current collector (support) to which a positive electrode material or a negative electrode material is attached. Such current collectors have many porous bodies such as punching metal, screen, and expanded metal, as well as three-dimensional porous bodies such as foam and nonwoven fabric, for the purpose of high output, high capacity, and long life. It has been proposed (Patent Documents 1 to 4). For example, Patent Document 1 discloses a three-dimensional network porous body whose surface is made of aluminum, an alloy, or stainless steel as a positive electrode current collector. Patent Document 2 discloses a current collector such as a sheet made of a metal such as aluminum, copper, zinc, or iron, or a conductive polymer such as polypyrrole or polyaniline, or a mixture thereof, a sheet having holes, or a three-dimensional porous body. It is disclosed. Patent Document 3 discloses a current collector such as aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony alone or an alloy, and a stainless alloy. Patent Document 4 discloses foamed aluminum, foamed nickel, and the like as the positive electrode current collector.
JP-A-11-233151 JP2000-195522 JP2005-078991 JP2006-032144

ところで、二次電池全般として、高出力化及び高容量化させるために、集電体は、二次元構造体よりも多孔度が大きい三次元構造体を採用することが望まれている。特に正極集電体については、高い充放電電圧のもとでは電解質により酸化されやすくなるため、耐酸化性及び耐電解液性も求められている。   By the way, in order to increase the output and capacity of the secondary battery as a whole, it is desired that the current collector adopts a three-dimensional structure having a higher porosity than the two-dimensional structure. In particular, the positive electrode current collector is easily oxidized by the electrolyte under a high charge / discharge voltage, so that oxidation resistance and electrolyte resistance are also required.

しかし、下記のような理由で、リチウム系非水電解質二次電池については、耐酸化性及び耐電解液性を有し、多孔度が大きく、さらには、工業的生産に適した正極集電体は提供されていない。   However, for the following reasons, the lithium-based non-aqueous electrolyte secondary battery has an oxidation resistance and an electrolyte resistance, a large porosity, and a positive electrode current collector suitable for industrial production. Is not provided.

集電体の多孔度を大きくするためには、一般的にニッケル多孔体に代表されるように、多孔質の有機樹脂表面にめっき処理し、必要に応じて有機樹脂を焼却除去させることが行われる。   In order to increase the porosity of the current collector, the surface of the porous organic resin is generally plated, as represented by a nickel porous body, and the organic resin is removed by incineration if necessary. Is called.

しかし、ニッケル多孔体は、リチウム系非水電解質二次電池では、酸化されやすく、電解質液中に溶解してしまい、長期の充放電で十分な充電ができなくなる。   However, the nickel porous body is easily oxidized in the lithium non-aqueous electrolyte secondary battery, and is dissolved in the electrolyte solution, so that sufficient charging cannot be performed by long-term charge / discharge.

一方、現在の正極集電体の主材料であるアルミニウムにおいては、めっき処理には、非常に高温の溶融塩状態で処理する必要があるため、有機樹脂を被めっき体として使用することができず、有機樹脂表面にめっき処理することは困難である。よって、アルミニウムからなる多孔体集電体は現在提供されていない。   On the other hand, in aluminum, which is the main material of the current positive electrode current collector, it is necessary to process in a very high temperature molten salt state for the plating process, so organic resin cannot be used as the object to be plated. It is difficult to plate the surface of the organic resin. Therefore, a porous current collector made of aluminum is not currently provided.

ステンレススチールも正極集電体の材料として広く使用されているが、このステンレススチールもアルミニウムと同様の理由から、有機樹脂表面にめっき処理することにより、多孔度の大きい集電体とすることは困難である。   Stainless steel is also widely used as a material for the positive electrode current collector, but for the same reason as stainless steel, it is difficult to obtain a highly porous current collector by plating the organic resin surface. It is.

なお、ステンレススチールについては、粉末状にして有機樹脂多孔体に塗着して焼結することにより、多孔体を得る方法が提供されている。   As for stainless steel, there is provided a method for obtaining a porous body by making it into a powder form, applying it to an organic resin porous body and sintering it.

しかしながら、ステンレススチール粉末は非常に高価である。また、粉末が付着した有機樹脂多孔体は焼却除去されるため、強度が衰えてしまい使用に耐えないという問題がある。   However, stainless steel powder is very expensive. Moreover, since the organic resin porous body to which the powder adheres is removed by incineration, there is a problem that the strength is reduced and it cannot be used.

したがって、耐酸化性及び耐電解液性を有し、多孔度が大きく、工業的生産に適した集電体、さらには、この集電体を用いて得られる正極の提供が望まれている。   Therefore, it is desired to provide a current collector that has oxidation resistance and electrolytic solution resistance, has a high porosity, and is suitable for industrial production, and further provides a positive electrode obtained by using this current collector.

本発明者らは、上記問題点に鑑み、鋭意研究を重ねた結果、特定の構造を有する集電体を採用することにより、上記問題点を解決するに至った。すなわち、本発明は、下記の非水電解質二次電池用正極にかかる。   In view of the above problems, the present inventors have intensively researched and, as a result, have adopted the current collector having a specific structure and have solved the above problems. That is, the present invention relates to the following positive electrode for a nonaqueous electrolyte secondary battery.

項1.集電体に正極活物質が充填されてなる非水電解質二次電池用正極であって、当該集電体が、発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる、ことを特徴とする非水電解質二次電池用正極。   Item 1. A positive electrode for a non-aqueous electrolyte secondary battery in which a current collector is filled with a positive electrode active material, and the current collector sequentially performs a conductive treatment, an electrolytic nickel plating treatment, and a chromium plating treatment on a foamed resin, A positive electrode for a nonaqueous electrolyte secondary battery, which is obtained by removing the foamed resin and annealing in a reducing atmosphere.

項2.前記正極活物質がオリビン型リン酸リチウムである、項1に記載の正極。   Item 2. Item 2. The positive electrode according to Item 1, wherein the positive electrode active material is olivine type lithium phosphate.

項3.前記オリビン型リン酸リチウムがリン酸鉄リチウムを含む、項2に記載の正極。   Item 3. Item 3. The positive electrode according to Item 2, wherein the olivine-type lithium phosphate contains lithium iron phosphate.

項4.前記正極活物質がリチウム金属酸化物である、項1に記載の正極。   Item 4. Item 2. The positive electrode according to Item 1, wherein the positive electrode active material is a lithium metal oxide.

項5.前記リチウム金属酸化物が、コバルト、マンガン及びニッケルからなる群から選択された少なくとも1種の金属の酸化物を含む、項4に記載の正極。   Item 5. Item 5. The positive electrode according to Item 4, wherein the lithium metal oxide includes an oxide of at least one metal selected from the group consisting of cobalt, manganese, and nickel.

項6.前記発泡状樹脂の平均孔径が30〜80μmである、項1〜5のいずれかに記載の正極。   Item 6. Item 6. The positive electrode according to any one of Items 1 to 5, wherein the foamed resin has an average pore diameter of 30 to 80 µm.

項7.前記発泡状樹脂の多孔度が85〜97%である、項1〜6のいずれかに記載の正極。   Item 7. Item 7. The positive electrode according to any one of Items 1 to 6, wherein the porosity of the foamed resin is 85 to 97%.

項8.前記処理によって形成されるニッケルめっき層の目付量が150〜300g/m2である項1〜7のいずれかに記載の正極。 Item 8. Item 8. The positive electrode according to any one of Items 1 to 7, wherein the basis weight of the nickel plating layer formed by the treatment is 150 to 300 g / m 2 .

項9.前記クロムめっき処理によって形成されるクロムめっき層の目付量が50〜250g/m2である、項1〜8のいずれかに記載の正極。 Item 9. Item 9. The positive electrode according to any one of Items 1 to 8, wherein the basis weight of the chromium plating layer formed by the chromium plating treatment is 50 to 250 g / m 2 .

本発明の非水電解質二次電池用正極は、集電体に正極活物質が充填されてなる正極であって、当該集電体が、発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られることを特徴とする。この特徴を有することにより、本発明の非水電解質二次電池は高出力、高容量及び高寿命といった良好な電池性能を有する。以下、本発明を詳述する。   The positive electrode for a non-aqueous electrolyte secondary battery of the present invention is a positive electrode in which a current collector is filled with a positive electrode active material, and the current collector is a conductive resin, electrolytic nickel plating treatment and chromium in a foamed resin. It is characterized by being obtained by sequentially performing plating treatment, removing the foamed resin, and annealing in a reducing atmosphere. By having this feature, the nonaqueous electrolyte secondary battery of the present invention has good battery performance such as high output, high capacity and long life. The present invention is described in detail below.

集電体
本発明で用いる集電体は、発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる。
Current collector The current collector used in the present invention is obtained by sequentially conducting a conductive treatment, electrolytic nickel plating treatment and chromium plating treatment on a foamed resin, removing the foamed resin, and annealing in a reducing atmosphere. It is done.

発泡状樹脂は、多孔性のものであればよく公知又は市販のものを使用でき、例えば、発泡ウレタン、発泡スチレン等が挙げられる。これらの中でも、特に多孔度が大きい観点から、発泡ウレタンが好ましい。   As the foamed resin, any known or commercially available one can be used as long as it is porous, and examples thereof include foamed urethane and foamed styrene. Among these, urethane foam is preferable from the viewpoint of particularly high porosity.

発泡状樹脂の多孔度は、通常85〜97vol%程度、好ましくは90〜96vol%程度である。   The porosity of the foamed resin is usually about 85 to 97 vol%, preferably about 90 to 96 vol%.

発泡状樹脂の平均孔径は、通常20μm〜200μm程度、好ましくは30μm〜80μm程度である。なお、本発明の平均粒径は、バブルポイント法で測定することにより求められる。   The average pore diameter of the foamed resin is usually about 20 μm to 200 μm, preferably about 30 μm to 80 μm. In addition, the average particle diameter of this invention is calculated | required by measuring by the bubble point method.

正極活物質充填前の多孔体の厚みは限定的でなく、非水電解質二次電極の用途等に応じて適宜決定されるが、通常200μm〜900μm、好ましくは400μm〜800μm程度とすればよい。   The thickness of the porous body before filling with the positive electrode active material is not limited and is appropriately determined according to the use of the non-aqueous electrolyte secondary electrode, etc., but is usually about 200 μm to 900 μm, preferably about 400 μm to 800 μm.

上記発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次施す。   The foamed resin is sequentially subjected to conductive treatment, electrolytic nickel plating treatment and chromium plating treatment.

導電性処理とは、導電性を有する層を設けることができる限り限定的でない。導電性を有する層(導電めっき層)を構成する材料としては、例えば、ニッケル、チタン、ステンレススチール等の金属の他、黒鉛等が挙げられる。これらの中でも特にニッケルが好ましい。   The conductive treatment is not limited as long as a conductive layer can be provided. Examples of a material constituting the conductive layer (conductive plating layer) include graphite, in addition to metals such as nickel, titanium, and stainless steel. Among these, nickel is particularly preferable.

導電性処理の具体例としては、例えば、ニッケルを用いる場合は、無電解めっき処理、スパッタリング処理等が好ましく挙げられる。例えば、チタン、ステンレススチール等の金属、黒鉛などの材料を用いる場合は、これら材料の微粉末にバインダを加えて得られる混合物を、発泡状樹脂に塗着する処理が好ましく挙げられる。この場合のバインダとしては、後述する活物質ペーストと同じものが採用できる。   As specific examples of the conductive treatment, for example, when nickel is used, electroless plating treatment, sputtering treatment, and the like are preferably exemplified. For example, in the case of using a material such as titanium, stainless steel, or a material such as graphite, a treatment obtained by applying a mixture obtained by adding a binder to fine powder of these materials to a foamed resin is preferable. As the binder in this case, the same material as the active material paste described later can be used.

ニッケルを用いた無電解めっき処理(無電解ニッケルめっき処理)としては、例えば、還元剤として次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に発泡状樹脂を浸漬すればよい。必要に応じて、めっき浴浸漬前に、発泡状樹脂を微量のパラジウムイオンを含む活性化液(カニゼン社製)等に浸漬し、洗浄してもよい。   As an electroless plating treatment using nickel (electroless nickel plating treatment), for example, a foamed resin is immersed in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. That's fine. If necessary, before immersion in the plating bath, the foamed resin may be immersed in an activation solution containing a small amount of palladium ions (manufactured by Kanisen Co., Ltd.) and washed.

ニッケルを用いたスパッタリング処理(ニッケルスパッタリング処理)としては、ニッケルをターゲットとする限り限定的でなく、常法に従って行えばよい。例えば、基板ホルダーに発泡状樹脂を取り付けた後、不活性ガスを導入しながら、ホルダーとターゲット(ニッケル)との間に直流電圧を印加することにより、イオン化した不活性ガス(アルゴン等)をニッケルに衝突させて、吹き飛ばしたニッケル粒子を発泡状樹脂表面に堆積すればよい。   The sputtering process using nickel (nickel sputtering process) is not limited as long as nickel is used as a target, and may be performed according to a conventional method. For example, after attaching a foamed resin to the substrate holder, while introducing an inert gas, a DC voltage is applied between the holder and the target (nickel) to remove the ionized inert gas (such as argon) from nickel. The nickel particles blown off by the collision may be deposited on the foamed resin surface.

次いで、導電めっき層形成発泡状樹脂に電解ニッケルめっき処理を施す。電解ニッケルめっき処理は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。   Next, electrolytic nickel plating is applied to the foamed resin for forming a conductive plating layer. What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method. As the plating bath used for the electrolytic nickel plating treatment, a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.

次いで、導電めっき層/ニッケルめっき層形成発泡状樹脂に、クロムめっき処理を施す。クロムめっき処理は、常法に従って行えばよく、クロムめっき処理としては限定的でなく、例えば、電解めっき法、無電解めっき法、スパッタリング法等が挙げられる。本発明においては、電解めっき法で形成されたクロムめっき層が好ましい。   Next, a chromium plating treatment is applied to the conductive plating layer / nickel plating layer forming foamed resin. The chromium plating process may be performed according to a conventional method, and the chromium plating process is not limited, and examples thereof include an electrolytic plating method, an electroless plating method, and a sputtering method. In the present invention, a chromium plating layer formed by an electrolytic plating method is preferable.

電解めっき法に用いる電解めっき浴としては公知又は市販のものを使用でき、例えば、サージェント浴(代表的な組成として、クロム酸CrO3:250g/l及び硫酸H2SO4:2.5g/l)、フッ化浴(代表的な組成として、クロム酸CrO3:250g/l、及びフッ素成分F:0.6g/l(又はSiF6:2.5g/l))等が挙げられる。 As the electroplating bath used in the electroplating method, a known or commercially available bath can be used. For example, a sergeant bath (typical composition is CrO 3 : 250 g / l and sulfuric acid H 2 SO 4 : 2.5 g / l). And a fluorination bath (typical composition is CrO 3 : 250 g / l and fluorine component F: 0.6 g / l (or SiF 6 : 2.5 g / l)).

これらの各めっき層の目付量(付着量)は特に制限されない。本発明においては、導電めっき層は発泡状樹脂表面に連続的に形成されていればよく、電解ニッケルめっき層は導電めっき層が露出しない程度に当該導電めっき層上に形成されていればよく、クロムめっき層は電解ニッケルめっき層が露出しない程度に当該電解ニッケルめっき層上に形成されていればよい。なお、導電めっき層がニッケル層である場合は、当該導電めっき層(ニッケル層)及び電解ニッケルめっき層が露出しないように、クロムめっき層が形成されていればよい。   The basis weight (adhesion amount) of each of these plating layers is not particularly limited. In the present invention, the conductive plating layer only needs to be formed continuously on the foamed resin surface, and the electrolytic nickel plating layer only needs to be formed on the conductive plating layer to the extent that the conductive plating layer is not exposed. The chromium plating layer should just be formed on the said electrolytic nickel plating layer to such an extent that an electrolytic nickel plating layer is not exposed. In addition, when a conductive plating layer is a nickel layer, the chromium plating layer should just be formed so that the said conductive plating layer (nickel layer) and an electrolytic nickel plating layer may not be exposed.

導電めっき層の目付量は限定的でなく、通常5g/m2〜12g/m2程度、好ましくは6g/m2〜10g/m2程度とすればよい。 Basis weight of the conductive plating layer is not limited, usually 5g / m 2 ~12g / m 2, preferably about may be set to 6g / m 2 ~10g / m 2 approximately.

電解ニッケルめっき層の目付量は限定的でなく、通常100g/m2〜300g/m2程度、好ましくは150g/m2〜250g/m2程度とすればよい。なお、導電性処理がニッケルを用いる場合、当該導電性処理及び電解ニッケル処理によって形成されるニッケルめっき層の総目付量は150〜300g/m2程度が好ましい。 Basis weight of the electrolytic nickel plating layer is not limited, usually 100g / m 2 ~300g / m 2, preferably about may be set to 150g / m 2 ~250g / m 2 approximately. When nickel is used for the conductive treatment, the total basis weight of the nickel plating layer formed by the conductive treatment and the electrolytic nickel treatment is preferably about 150 to 300 g / m 2 .

クロムめっき層の目付量は限定的でなく、通常50g/m2〜250g/m2程度、好ましくは70g/m2〜200g/m2程度とすればよい。 Basis weight of the chromium plating layer is not limited, usually 50g / m 2 ~250g / m 2, preferably about may be set to 70g / m 2 ~200g / m 2 approximately.

これら導電めっき層、電解ニッケルめっき層及びクロムめっき層の目付量の合計量としては、好ましくは250g/m2〜450g/m2程度、より好ましくは300g/m2〜400g/m2程度である。合計量がこの範囲を下回ると、集電体の強度が低下するおそれがある。また、合計量がこの範囲を上回ると、正極活物質の充填量が減少したり、コスト面で不利となる。 These conductive plating layer, the total amount of the basis weight of the electroless nickel plating layer and the chromium plating layer is preferably 250g / m 2 ~450g / m 2, more preferably about 300g / m 2 ~400g / m 2 about . If the total amount is below this range, the strength of the current collector may be reduced. On the other hand, if the total amount exceeds this range, the filling amount of the positive electrode active material is reduced or the cost is disadvantageous.

次いで、上記により得られた導電めっき層/ニッケルめっき層/クロムめっき層形成発泡状樹脂中の発泡状樹脂成分を除去する。除去方法は限定的でないが、好ましくは焼却により除去すればよい。具体的には、例えば600℃程度以上の大気等の酸化性雰囲気下で加熱すればよい。また、水素等の還元性雰囲気中750℃程度以上で加熱してもよい。これらにより、導電めっき層、ニッケルめっき層及びクロムめっき層からなる多孔体が得られる。   Next, the foamed resin component in the conductive plating layer / nickel plating layer / chromium plating layer forming foamed resin obtained as described above is removed. Although the removal method is not limited, it may be removed by incineration. Specifically, the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher. Moreover, you may heat at about 750 degreeC or more in reducing atmosphere, such as hydrogen. By these, the porous body which consists of a conductive plating layer, a nickel plating layer, and a chromium plating layer is obtained.

次いで、この多孔体を還元性雰囲気下で焼鈍を行うことにより、本発明の集電体を製造できる。この集電体は、多孔度の大きい三次元構造体である。なお、この焼鈍処理により、上記導電層、ニッケルめっき及びクロムめっきからなる多孔体を還元することができ、この還元作用により、ニッケル及びクロムが合金化し、耐電解液性及び耐酸化性をより一層向上させることができる。   Next, the current collector of the present invention can be produced by annealing the porous body in a reducing atmosphere. This current collector is a three-dimensional structure having a large porosity. By this annealing treatment, the porous body made of the conductive layer, nickel plating and chrome plating can be reduced. By this reduction action, nickel and chromium are alloyed, and the resistance to electrolytic solution and oxidation is further improved. Can be improved.

還元性雰囲気としては特に限定されないが、好ましくは分解アンモニア等の窒素と水素との混合ガスなどが挙げられる。   Although it does not specifically limit as reducing atmosphere, Preferably the mixed gas of nitrogen and hydrogen, such as decomposition | disassembly ammonia, etc. are mentioned.

加熱温度は、上記クロム及びニッケルが還元される温度であれば限定されないが、通常600〜1100℃程度、好ましくは700〜950℃程度である。また、常圧で行ってもよく、減圧下で行ってもよい。   The heating temperature is not limited as long as it is a temperature at which the chromium and nickel are reduced, but is usually about 600 to 1100 ° C, preferably about 700 to 950 ° C. Moreover, you may carry out by a normal pressure and you may carry out under reduced pressure.

正極
本発明の正極は、上記集電体に、正極活物質が充填されてなる。本発明の正極は、上記集電体が大きな多孔度を有しているため、より多くの正極活物質を充填することが可能となる。また、多孔体中の空隙に正極活物質を包み込める構造であるため、正極活物質と集電体とを結合させるためのバインダ等(絶縁体)の含量を少なくすることができる。これらにより、電池を高出力化・高容量化させることができる。また、上記集電体は耐電解液性及び耐酸化性をも有しているため、電池を高寿命化させることもできる。
Positive electrode The positive electrode of the present invention is formed by filling the current collector with a positive electrode active material. In the positive electrode of the present invention, since the current collector has a large porosity, it becomes possible to fill more positive electrode active material. Further, since the positive electrode active material is enclosed in the voids in the porous body, the content of a binder or the like (insulator) for bonding the positive electrode active material and the current collector can be reduced. Accordingly, it is possible to increase the output and capacity of the battery. In addition, since the current collector has resistance to electrolytic solution and oxidation, the life of the battery can be extended.

正極活物質としては、非水電解質二次電池に使用できるものであれば特に制限されないが、本発明では、特にオリビン型リン酸リチウム(LiMPO4)等が好ましい。オリビン型リン酸リチウムを構成する金属成分Mとしては、例えば、鉄(Fe)、マンガン(Mn)、クロム(Cr)、銅(Cu)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)等からなる群から選ばれた少なくとも1種が挙げられる。これらの中でも、特に鉄等が好ましい、すなわち、オリビン型リン酸鉄リチウム等が好ましい。なお、このオリビン型リン酸鉄リチウムは、鉄の一部がMn、Cr、Cu、Ni、Zn、Al等の他の金属で置換されていてもよい。 The positive electrode active material is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. In the present invention, olivine type lithium phosphate (LiMPO 4 ) is particularly preferable. Examples of the metal component M constituting the olivine-type lithium phosphate include iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), and aluminum (Al). And at least one selected from the group consisting of and the like. Among these, iron and the like are particularly preferable, that is, olivine type lithium iron phosphate and the like are preferable. In this olivine type lithium iron phosphate, a part of iron may be substituted with other metals such as Mn, Cr, Cu, Ni, Zn, Al.

また、本発明では、正極活物質として、公知又は市販のリチウム金属酸化物(LiM’Ox) (但し、1≦x≦4である。)も使用できる。このようなリチウム金属酸化物M’としては、例えば、Co、Mn及びNi等からなる群から選択された少なくとも1種の金属が挙げられる。   In the present invention, a known or commercially available lithium metal oxide (LiM′Ox) (where 1 ≦ x ≦ 4) can also be used as the positive electrode active material. Examples of such a lithium metal oxide M ′ include at least one metal selected from the group consisting of Co, Mn, Ni, and the like.

正極活物質の充填量は限定的でなく、製造する非水電解質二次電池の用途、目的等に応じて適宜決定すればよいが、集電体1cm2当たり、通常40mg〜150mg程度、好ましくは50mg〜100mg程度とすればよい。 The filling amount of the positive electrode active material is not limited, and may be appropriately determined according to the use, purpose, etc. of the non-aqueous electrolyte secondary battery to be manufactured, but is usually about 40 mg to 150 mg per 1 cm 2 of the current collector, preferably What is necessary is just about 50 mg-100 mg.

集電体に充填する物質として、正極活物質の他、例えば、導電助剤、バインダ等の公知の添加剤を含んでいてもよい。   In addition to the positive electrode active material, the material to be filled in the current collector may contain, for example, known additives such as a conductive additive and a binder.

導電助剤としては、公知又は市販のものを使用できるが、例えば、アセチレンブラック、ケッチェンブラック、黒鉛等が好ましい。導電助剤の含有量は、上記正極活物質100重量部に対して、通常5重量部以下であり、好ましくは0.5〜2重量部程度である。これにより、電池の放電容量等を向上させることができる。   As the conductive assistant, known or commercially available ones can be used. For example, acetylene black, ketjen black, graphite and the like are preferable. The content of the conductive assistant is usually 5 parts by weight or less, preferably about 0.5 to 2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Thereby, the discharge capacity etc. of a battery can be improved.

バインダとしては、公知又は市販のものを使用できる。例えば、ポリフッ化ビニリデン(PVdf)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの中でも、PVdf等が好ましい。これにより、正極活物質と集電体との結着強度を向上させることができる。   A known or commercially available binder can be used. For example, polyvinylidene fluoride (PVdf), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and the like. Among these, PVdf is preferable. Thereby, the binding strength between the positive electrode active material and the current collector can be improved.

バインダの添加量は、バインダの種類等に応じて適宜決定されるが、正極活物質100重量部に対して、通常、0.1〜5重量部程度である。この範囲とすることにより、電気抵抗の増加及び放電容量の低下を防ぎながら、結着強度を向上させることができる。   The addition amount of the binder is appropriately determined according to the kind of the binder and the like, but is usually about 0.1 to 5 parts by weight with respect to 100 parts by weight of the positive electrode active material. By setting it as this range, it is possible to improve the binding strength while preventing an increase in electrical resistance and a decrease in discharge capacity.

本発明の正極は、上記集電体に正極活物質が充填されてなるものであり、例えば、正極活物質を含むペーストを圧入法等の公知の方法により、上記集電体に充填すればよい。   The positive electrode of the present invention is obtained by filling the current collector with a positive electrode active material. For example, the current collector may be filled with a paste containing the positive electrode active material by a known method such as a press-fitting method. .

圧入法としては、例えば、正極活物質ペースト中に上記集電体を浸漬し、必要に応じて減圧する方法、正極活物質ペーストを集電体の一方面からポンプで加圧しながら充填する方法等が挙げられる。   Examples of the press-fitting method include a method of immersing the current collector in a positive electrode active material paste and reducing the pressure as necessary, a method of filling the positive electrode active material paste while pressing with a pump from one side of the current collector, etc. Is mentioned.

正極活物質ペーストは、正極活物質及び溶媒を含有していればよく、その配合割合は限定的でない。溶媒としては限定的でなく、例えば、N−メチル−2−ピロリドン、水等が挙げられる。特に、バインダとしてポリフッ化ビニリデンを用いる場合は溶媒としてN−メチル−2−ピロリドンを用いればよく、バインダとしてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース等を用いる場合は溶媒として水を用いればよい。   The positive electrode active material paste only needs to contain a positive electrode active material and a solvent, and the blending ratio thereof is not limited. The solvent is not limited, and examples thereof include N-methyl-2-pyrrolidone and water. In particular, when polyvinylidene fluoride is used as a binder, N-methyl-2-pyrrolidone may be used as a solvent. When polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, or the like is used as a binder, water may be used as a solvent.

本発明の正極は、必要に応じて、正極活物質ペーストを充填後に乾燥処理を施すことにより、ペースト中の溶媒が除去されていてもよい。   In the positive electrode of the present invention, the solvent in the paste may be removed by performing a drying treatment after filling the positive electrode active material paste, if necessary.

本発明の正極は、さらに必要に応じて、上記ペーストを充填後ローラプレス機等により加圧することにより、圧縮成形されていてもよい。圧縮前後の厚さは限定的でないが、圧縮前の厚さは通常250μm〜800μm、好ましくは300μm〜700μmとすればよく、圧縮成形後の厚みは通常150μm〜600μm程度、より好ましくは200μm〜550μm程度とすればよい。   If necessary, the positive electrode of the present invention may be compression molded by pressurizing the paste with a roller press after filling. The thickness before and after compression is not limited, but the thickness before compression is usually 250 μm to 800 μm, preferably 300 μm to 700 μm, and the thickness after compression molding is usually about 150 μm to 600 μm, more preferably 200 μm to 550 μm. It should be about.

本発明の正極によれば、集電体が耐酸化性、耐電解質性、多孔性を有し、さらに高強度であるため、リチウムイオン電池等の非水電解質二次電池を高出力化・高容量化及び高寿命化させることができる。また、材料が安価であり、製造も容易であるため、工業的生産に適している。   According to the positive electrode of the present invention, the current collector has oxidation resistance, electrolyte resistance, porosity, and high strength. Therefore, the non-aqueous electrolyte secondary battery such as a lithium ion battery has high output and high power. Capacitance and long life can be achieved. Further, since the material is inexpensive and easy to manufacture, it is suitable for industrial production.

以下に実施例及び比較例を挙げて本発明をより一層詳述する。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

(集電体の作製)
発泡状樹脂として、発泡ウレタン樹脂(市販品、平均孔径80μm、厚さ1.2mm、多孔度95%)を用いた。
(Preparation of current collector)
As the foamed resin, a urethane foam resin (commercially available product, average pore diameter 80 μm, thickness 1.2 mm, porosity 95%) was used.

この発泡ウレタン樹脂にターゲットとしてニッケルを用いてスパッタリング処理を行うことにより、発泡ウレタン樹脂表面に導電めっき層(ニッケル層)を形成させた。導電めっき層の目付量は8g/m2であった。 By performing sputtering treatment using nickel as a target for the foamed urethane resin, a conductive plating layer (nickel layer) was formed on the surface of the foamed urethane resin. The basis weight of the conductive plating layer was 8 g / m 2 .

次いで、得られた導電めっき層形成発泡ウレタン樹脂に電解めっき処理を施した。電解ニッケルめっき浴としては、ワット浴(硫酸ニッケル330g/L、塩化ニッケル50g/L、硼酸40g/L)を用いた。対極には、ニッケル片を入れたチタンバスケットを使用した。電着条件は浴温60℃、電流密度30A/dm2とした。電解ニッケルめっき層の目付量は192g/m2であった。これにより、導電めっき層及び電解ニッケルめっき層によって形成されためっき層の合計量は200g/m2となった。 Subsequently, the electroplating process was performed to the obtained electroconductive plating layer formation foaming urethane resin. As an electrolytic nickel plating bath, a Watt bath (nickel sulfate 330 g / L, nickel chloride 50 g / L, boric acid 40 g / L) was used. A titanium basket containing nickel pieces was used as the counter electrode. The electrodeposition conditions were a bath temperature of 60 ° C. and a current density of 30 A / dm 2 . The basis weight of the electrolytic nickel plating layer was 192 g / m 2 . As a result, the total amount of plating layers formed by the conductive plating layer and the electrolytic nickel plating layer was 200 g / m 2 .

次いで、電解クロムめっき処理を行った。めっき浴は、サージェント浴(クロム酸250g/l及び硫酸2.5g/l)を使用した。対極には、銅を芯として鉛合金を被覆した電極を使用した。電着条件は浴温50℃、電流密度40A/dm2とした。クロムめっき層の目付量は110g/m2とした。このときの集電体の厚さは平均800μmであった。 Next, electrolytic chrome plating was performed. As the plating bath, a Sargent bath (chromic acid 250 g / l and sulfuric acid 2.5 g / l) was used. As the counter electrode, an electrode coated with a lead alloy with copper as a core was used. The electrodeposition conditions were a bath temperature of 50 ° C. and a current density of 40 A / dm 2 . The basis weight of the chromium plating layer was 110 g / m 2 . At this time, the current collector had an average thickness of 800 μm.

次いで、この導電めっき層/電解ニッケルめっき層/クロムめっき層形成発泡ウレタン樹脂を水洗及び乾燥した後、空気中600℃程度に加熱して、ウレタン樹脂を焼却除去した。さらに、分解アンモニア雰囲気中750℃程度で20分間還元及び焼鈍を行うことにより、三次元構造の集電体を作製した。   Next, this conductive plating layer / electrolytic nickel plating layer / chromium plating layer-forming foamed urethane resin was washed with water and dried, and then heated to about 600 ° C. in air to incinerate and remove the urethane resin. Furthermore, a current collector having a three-dimensional structure was prepared by performing reduction and annealing in a decomposed ammonia atmosphere at about 750 ° C. for 20 minutes.

このようにして得られた多孔体をそれぞれ350μm、430μm及び520μmの3種の厚さに調厚し、それぞれを本発明の集電体a、b、cとした。   The porous bodies thus obtained were adjusted to three thicknesses of 350 μm, 430 μm, and 520 μm, respectively, and were designated as current collectors a, b, and c of the present invention.

・正極の作製
正極活物質としてLiFePO4粉末100重量部に、導電助剤としてケッチェンブラックを2.5重量部、バインダとしてポリフッ化ビニリデンを5重量部になるように加えて混合し、バインダの溶媒としてN−メチル−2−ピロリドン25重量部を加えて正極活物質ペーストを作製した。
・ Production of positive electrode 100 parts by weight of LiFePO 4 powder as a positive electrode active material, 2.5 parts by weight of ketjen black as a conductive additive, and 5 parts by weight of polyvinylidene fluoride as a binder are mixed and mixed as a solvent for the binder A positive electrode active material paste was prepared by adding 25 parts by weight of N-methyl-2-pyrrolidone.

このペーストをポンプを用いた圧入法を利用して、集電体a,b,c中に充填した。正極活物質の充填量は、集電体aでは40mg/cm2、集電体bでは52mg/cm2、集電体cでは69mg/cm2であった。 This paste was filled into current collectors a, b, and c using a press-fitting method using a pump. Filling amount of the positive electrode active material, a current collector a At 40 mg / cm 2, current collectors b At 52 mg / cm 2, was the current collector c 69mg / cm 2.

次いで、これら3種の集電体を、乾燥機で90℃、1時間乾燥させた後、ローラの直径500ミリのローラプレス機(スリット:100μm)で加圧した。加圧後の厚さは、それぞれ170μm、260μm、310μmであった。その後に、さらに減圧下150℃で3時間乾燥することにより、実施例1〜3の正極A,B,Cを得た。   Next, these three kinds of current collectors were dried at 90 ° C. for 1 hour with a dryer, and then pressed with a roller press machine (slit: 100 μm) having a roller diameter of 500 mm. The thickness after pressing was 170 μm, 260 μm, and 310 μm, respectively. Thereafter, it was further dried at 150 ° C. under reduced pressure for 3 hours to obtain positive electrodes A, B and C of Examples 1 to 3.

比較例1〜3
集電体として、アルミニウム箔(市販品、厚さ25μm)を用いた。この場合に、実施例で作製した正極活物質ペーストをドクターブレード法により両面合計が30mg/cm2となるように塗着したが、接着強度が不十分であるため、正極活質が十分にアルミニウム箔に接着できなかった。
Comparative Examples 1-3
As the current collector, an aluminum foil (commercial product, thickness 25 μm) was used. In this case, the positive electrode active material paste prepared in the example was applied by the doctor blade method so that the total on both sides was 30 mg / cm 2 , but the positive electrode active material was sufficiently aluminum because the adhesive strength was insufficient. Could not adhere to the foil.

そこで、ポリフッ化ビニリデンを10重量部にした以外は実施例で作製したのと同様の正極活物質ペーストを作製した。このペーストをドクターブレード法により、アルミニウム箔の両面に塗着し、乾燥及び加圧することにより、比較例1〜3の正極d,e,fを作製した。正極活物質の塗着量は、正極dで11mg/cm2、正極eで15mg/cm2、正極fでは19mg/cm2であった。これら正極の厚みは、それぞれ70μm、125μm、175μmであった。 Therefore, a positive electrode active material paste similar to that produced in the example was produced except that the polyvinylidene fluoride was changed to 10 parts by weight. The paste was applied to both surfaces of an aluminum foil by a doctor blade method, dried and pressed to produce positive electrodes d, e, and f of Comparative Examples 1 to 3. The coating amount of the positive electrode active material, 11 mg / cm 2 in the positive electrode d, 15mg / cm 2 in the positive electrode e, was the positive electrode f 19mg / cm 2. The thicknesses of these positive electrodes were 70 μm, 125 μm, and 175 μm, respectively.

比較例4
集電体として、発泡状ニッケル(市販品、多孔度96vol%、平均孔径150μm、厚さ550μm)を用いた。これに実施例1で作製した正極活物質を70 mg/cm2となるように実施例1と同様にして充填した後、さらに加圧及び乾燥することにより、比較例4の電極を作製した。
Comparative Example 4
As the current collector, foamed nickel (commercial product, porosity 96 vol%, average pore diameter 150 μm, thickness 550 μm) was used. The positive electrode active material produced in Example 1 was filled in the same manner as in Example 1 so as to be 70 mg / cm 2, and then further pressurized and dried to produce the electrode of Comparative Example 4.

電池の作製及び試験
実施例1〜3及び比較例1〜3の各正極を5cm×5cmに裁断して、電池A〜C(実施例の各集電体a〜cを使用)及び電池D〜F(比較例の各集電体d〜fを使用)を作製した。なお、負極として、正極に比べて十分容量が大きいリチウム金属を用い、電解液として、エチレンカーボネートとジエチルカーボネートとの混合溶媒(容量比で4:6)にLiPF6を1.0mol/l溶解させた非水系電解液を用い、セパレータとして、微多孔質ポリオレフィン膜(厚さ20μm、多孔度55%)を用い、電槽として、ラミネート膜を用いた。
Preparation of Battery and Test Examples 1-3 and Comparative Examples 1-3 were cut into 5 cm × 5 cm, and batteries A to C (using current collectors a to c of Examples) and batteries D to F (using the current collectors d to f of the comparative example) was prepared. As the negative electrode, lithium metal having a sufficiently large capacity compared to the positive electrode was used, and as the electrolyte, 1.0 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 4: 6). A non-aqueous electrolyte was used, a microporous polyolefin film (thickness 20 μm, porosity 55%) was used as a separator, and a laminate film was used as a battery case.

これら電池A〜Fを0.1Cの電流で4.1Vまで充電し、0.2Cの放電電流で2Vまで放電させる充放電サイクルを10回繰返して化成とした。次いで、各電池を周囲温度40℃として0.2Cで4.1Vまで充電し、0.5C、1C及び1.5Cで終止電圧2Vまでの放電を行った。実測値から求めた単位重量当たりの容量を表1に示す。   These batteries A to F were charged to 4.1 V with a current of 0.1 C, and charged / discharged to discharge to 2 V with a discharge current of 0.2 C was repeated 10 times for chemical conversion. Next, each battery was charged at ambient temperature of 40 ° C. to 4.1 V at 0.2 C, and discharged to 0.5 V, 1 C, and 1.5 C to a final voltage of 2 V. Table 1 shows the capacity per unit weight obtained from the measured values.

また、0.2Cで4.1Vまでの充電、0.5Cで2Vまでの放電を周囲温度25℃で行った。このときの初期容量に対する200サイクルでの容量維持率を表1に併記する。   Further, charging up to 4.1 V at 0.2 C and discharging up to 2 V at 0.5 C were performed at an ambient temperature of 25 ° C. Table 1 also shows the capacity retention rate at 200 cycles with respect to the initial capacity at this time.

比較例4の正極を用いて作製した電池についても、上記と同じ条件で化成及び充放電を繰返したが、わずか10サイクルで充電ができなくなった(表1に併記せず)。   The battery produced using the positive electrode of Comparative Example 4 was repeatedly formed and charged / discharged under the same conditions as above, but could not be charged in only 10 cycles (not shown in Table 1).

Figure 0005196392
Figure 0005196392

評価
表1から明らかなように、本発明の電池A〜Cは、比較例の電池D〜Fよりも容量密度及び容量維持率が優れていることが分かった。これにより、本発明の正極を使用すれば、非水電解質二次電池を高出力化・高容量化及び高寿命化できることが分かった。
As is clear from the evaluation table 1, it was found that the batteries A to C of the present invention were superior in capacity density and capacity retention rate than the batteries D to F of the comparative example. Thus, it was found that if the positive electrode of the present invention is used, the non-aqueous electrolyte secondary battery can be increased in output, capacity, and life.

なお、本発明の電池A〜Cにおいて、充放電サイクルの繰返しでも容量密度の低下が少ない理由は、本発明の正極活物質が、比較例の電池D〜Fのように二次元構造の集電体表面に塗着したものでなく、耐電解性及び耐酸化性に優れた集電体に包まれているためであり、これにより、正極材料(正極活物質、導電助剤及びバインダ)の膨れによる電気抵抗の増大を抑えていると考えられる。   In addition, in the batteries A to C of the present invention, the reason why the decrease in the capacity density is small even when the charge / discharge cycle is repeated is that the positive electrode active material of the present invention is a current collector having a two-dimensional structure like the batteries D to F of the comparative example. This is because it is not applied to the surface of the body but is encased in a current collector excellent in electrolytic resistance and oxidation resistance, and this causes swelling of the positive electrode material (positive electrode active material, conductive additive and binder). It is thought that the increase in electrical resistance due to the is suppressed.

以上から、本実施例1〜3において汎用のリチウム金属酸化物よりもやや充放電電位が低いオリビン型リン酸リチウムについて本発明の効果が発揮されることが明らかになった。   From the above, it has been clarified that the effects of the present invention are exhibited with respect to olivine-type lithium phosphate having a slightly lower charge / discharge potential than those of general-purpose lithium metal oxides in Examples 1-3.

また、その他の正極活物質として、コバルト、マンガン及びニッケル等からなる群から選ばれた少なくとも一種のリチウム金属酸化物を用いた場合も、同様に本発明の効果が発揮される。   Further, when at least one lithium metal oxide selected from the group consisting of cobalt, manganese, nickel and the like is used as the other positive electrode active material, the effects of the present invention are also exhibited.

Claims (9)

集電体に正極活物質が充填されてなる非水電解質二次電池用正極であって、
当該集電体が、発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる、
ことを特徴とする非水電解質二次電池用正極。
A positive electrode for a non-aqueous electrolyte secondary battery in which a current collector is filled with a positive electrode active material,
The current collector is obtained by sequentially conducting conductive treatment, electrolytic nickel plating treatment and chromium plating treatment on the foamed resin, removing the foamed resin, and annealing in a reducing atmosphere.
A positive electrode for a non-aqueous electrolyte secondary battery.
前記正極活物質がオリビン型リン酸リチウムである、請求項1に記載の正極。   The positive electrode according to claim 1, wherein the positive electrode active material is olivine type lithium phosphate. 前記オリビン型リン酸リチウムがリン酸鉄リチウムを含む、請求項2に記載の正極。   The positive electrode according to claim 2, wherein the olivine-type lithium phosphate includes lithium iron phosphate. 前記正極活物質がリチウム金属酸化物である、請求項1に記載の正極。   The positive electrode according to claim 1, wherein the positive electrode active material is a lithium metal oxide. 前記リチウム金属酸化物が、コバルト、マンガン及びニッケルからなる群から選択された少なくとも1種の金属の酸化物を含む、請求項4に記載の正極。   The positive electrode according to claim 4, wherein the lithium metal oxide includes an oxide of at least one metal selected from the group consisting of cobalt, manganese, and nickel. 前記発泡状樹脂の平均孔径が30〜80μmである、請求項1〜5のいずれかに記載の正極。   The positive electrode according to claim 1, wherein the foamed resin has an average pore diameter of 30 to 80 μm. 前記発泡状樹脂の多孔度が85〜97%である、請求項1〜6のいずれかに記載の正極。   The positive electrode according to claim 1, wherein the foamed resin has a porosity of 85 to 97%. 前記処理によって形成されるニッケルめっき層の目付量が150〜300g/m2である請求項1〜7のいずれかに記載の正極。 The positive electrode according to claim 1, wherein the basis weight of the nickel plating layer formed by the treatment is 150 to 300 g / m 2 . 前記クロムめっき処理によって形成されるクロムめっき層の目付量が50〜250g/m2である、請求項1〜8のいずれかに記載の正極。 The basis weight of the chromium plating chrome plating layer formed by it is 50 to 250 g / m 2, a positive electrode according to claim 1.
JP2007066864A 2007-03-15 2007-03-15 Positive electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP5196392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066864A JP5196392B2 (en) 2007-03-15 2007-03-15 Positive electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066864A JP5196392B2 (en) 2007-03-15 2007-03-15 Positive electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008226765A JP2008226765A (en) 2008-09-25
JP5196392B2 true JP5196392B2 (en) 2013-05-15

Family

ID=39845116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066864A Expired - Fee Related JP5196392B2 (en) 2007-03-15 2007-03-15 Positive electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5196392B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905267B2 (en) * 2007-06-21 2012-03-28 ソニー株式会社 Positive electrode mixture and non-aqueous electrolyte battery
JP2012186144A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Electrode for electrochemical element
JP2012174495A (en) * 2011-02-22 2012-09-10 Sumitomo Electric Ind Ltd Battery electrode and battery
JP7355106B2 (en) 2019-05-22 2023-10-03 住友電気工業株式会社 Porous body, fuel cell containing the same, and steam electrolysis device containing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPH0428163A (en) * 1990-05-22 1992-01-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH11154517A (en) * 1997-11-21 1999-06-08 Inoac Corporation:Kk Metallic porous body for secondary battery and its manufacture
JP4292564B2 (en) * 2001-09-14 2009-07-08 三菱マテリアル株式会社 Porous metal having excellent ductility and method for producing the same
JP4693372B2 (en) * 2004-07-16 2011-06-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2008226765A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP3568052B2 (en) Porous metal body, method for producing the same, and battery electrode plate using the same
KR101326623B1 (en) Positive Current Collector Coated with Primer and Magnesium Secondary Battery Comprising the Same
WO2013140942A1 (en) All-solid-state lithium secondary battery
JP5663938B2 (en) Aluminum structure manufacturing method and aluminum structure
JP2010009905A (en) Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JPH11283608A (en) Electrode for battery, manufacture thereof and battery
JP5142264B2 (en) Non-aqueous electrolyte secondary battery current collector and method for producing the same, and positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2009176517A (en) Nonwoven fabric-like nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP5196392B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP5893410B2 (en) Method for producing porous aluminum current collector for non-aqueous electrolyte secondary battery, and method for producing positive electrode for non-aqueous electrolyte secondary battery
JPH06260168A (en) Lithium secondary battery
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP2008181739A (en) Positive electrode for non-aqueous electrolyte secondary battery
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP4298578B2 (en) Porous metal foil with carrier foil and method for producing the same
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
WO2015026977A1 (en) Manganese and iron electrode cell
JP5488994B2 (en) Aluminum structure manufacturing method and aluminum structure
US20220393180A1 (en) Anode-free all-solid-state battery including solid electrolyte having high ion conductivity and surface-roughened anode current collector
CN108642533A (en) A kind of Sn-Cu electroplate liquids, lithium ion battery kamash alloy electrode and preparation method thereof and lithium ion battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP5488996B2 (en) Aluminum structure manufacturing method and aluminum structure

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees