JP4292564B2 - Porous metal having excellent ductility and method for producing the same - Google Patents

Porous metal having excellent ductility and method for producing the same Download PDF

Info

Publication number
JP4292564B2
JP4292564B2 JP2001279047A JP2001279047A JP4292564B2 JP 4292564 B2 JP4292564 B2 JP 4292564B2 JP 2001279047 A JP2001279047 A JP 2001279047A JP 2001279047 A JP2001279047 A JP 2001279047A JP 4292564 B2 JP4292564 B2 JP 4292564B2
Authority
JP
Japan
Prior art keywords
porous
electrolytic
plated
foamed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001279047A
Other languages
Japanese (ja)
Other versions
JP2003082405A (en
Inventor
正弘 和田
巧 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001279047A priority Critical patent/JP4292564B2/en
Publication of JP2003082405A publication Critical patent/JP2003082405A/en
Application granted granted Critical
Publication of JP4292564B2 publication Critical patent/JP4292564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、延性に優れた多孔質金属およびその製造方法に関するものであり、この延性に優れた多孔質金属は、高温用フィルター、空気清浄機用フィルター、アルカリ二次電池の電極基板を作製するための素材として使用されるものである。
【0002】
【従来の技術】
一般に、各種フィルター、アルカリ二次電池の電極基板などには、表面に開口し内部の空孔に連続している空孔(以下、連続空孔という)と骨格とで形成された三次元網目状構造を有する発泡多孔質金属板が使用されており、その気孔率は70〜99容量%を有すると言われている。
【0003】
この発泡多孔質金属板を製造するには、まず、原料粉末およびシンナーからなるスラリーに界面活性剤および発泡剤を添加して発泡スラリーを作製し、これをキャリアーシート上にドクターブレード法により薄板状に成形し、高温・高湿度槽において前記発泡スラリーに含まれる揮発性有機溶剤の蒸気圧および界面活性剤の起泡性を利用してスポンジ状に発泡させ、さらに乾燥槽において乾燥させてスポンジ状グリーン板を製造し、このスポンジ状グリーン板を脱脂装置および焼成炉を通すことにより脱脂、焼成し、これにより連続空孔および骨格からなる三次元網目状構造を有する発泡多孔質金属板を製造している。
【0004】
【発明が解決しようとする課題】
しかし、かかる発泡多孔質金属板は一般に延性が劣り、そのため伸びが少なくさらに発泡多孔質金属板に曲げ加工を施してフィルターやアルカリ二次電池の電極基板などを作製しようとすると、曲げ加工を施した部分の表面に割れが発生して不良品が発生することがある。そのために一層延性に優れた発泡多孔質金属板が求められていた。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、かかる課題を解決すべく研究を行った。その結果、
(a)従来の連続空孔と骨格とで形成された三次元網目状構造を有する発泡多孔質金属板に曲げ加工を施すと曲げ加工部分に割れが発生する理由の一つとして、発泡多孔質金属板の骨格表面の粗さが粗く、骨格表面の粗い部分から曲げ加工時に微細な亀裂が発生し、それが伝播して大きな割れとなる、
(b)発泡多孔質金属の少なくとも内部骨格の表面に金属メッキ層を形成して骨格表面の粗さを滑らかにすると延性が向上し、曲げ加工部分に割れが発生することはない、
(c)発泡多孔質金属の少なくとも内部骨格の表面に形成される金属メッキ層の表面粗さは小さいほど好ましく、中心線平均粗さ:0.05〜5μmの範囲内にあることが一層好ましい、などの知見を得たのである。
【0006】
この発明は、かかる知見に基づいて成されたものであって、
(1)連続空孔と骨格とで形成された三次元網目状構造を有する発泡多孔質金属の少なくとも内部骨格の表面に金属メッキ層を形成してなる延性に優れた多孔質金属、
(2)連続空孔と骨格とで形成された三次元網目状構造を有する発泡多孔質金属の少なくとも内部骨格の表面に金属メッキ層を形成してなり、前記少なくとも内部骨格の表面に形成された金属メッキ層の表面粗さは中心線平均粗さ:0.05〜5μmを有する延性に優れた多孔質金属、に特徴を有するものである。
【0007】
この発明の延性に優れた多孔質金属を製造するには、通常の連続空孔と骨格とで形成された三次元網目状構造を有する発泡多孔質金属を用意し、これを陰極として金属メッキを施すと、発泡多孔質金属の最表面および内部骨格の表面に金属メッキ層が形成されて作られる。金属メッキは、電解メッキで行なうのが好ましいが、無電解メッキでも良い。
このようにして得られた少なくとも内部骨格の表面に金属メッキ層が形成された多孔質金属に熱処理を施すと、金属メッキ層は焼鈍され、延性が一層向上する。内部骨格の表面に形成された金属メッキ層の表面粗さは、滑らかなほど良く、中心線平均粗さ:0.05〜5μmを有することが好ましい。少なくとも内部骨格の表面に形成された金属メッキ層の中心線平均粗さが5μmを越えると多孔質金属の延性が低下するので好ましくなく、中心線平均粗さが0.05μm未満に滑らかにするには技術的にコストがかかりすぎるので好ましくないからである。
【0008】
【発明の実施の形態】
平均粒径:5μmを有するNi粉末のフィラーに対して表1に示されるシンナーを配合し、密閉容器中で24時間混練したのち、表1に示される界面活性剤を添加して減圧下で15分間混練し、ついで表1に示される発泡剤を添加して大気圧下で5分間混練することにより表1に示される組成の発泡スラリーを作製した。
【0009】
【表1】

Figure 0004292564
【0010】
表1に示す組成の発泡スラリーをキャリアーシート上にブレードギャップ:0.5mmでスラリー層を形成し、このスラリー層を高温・高湿度槽に通して40℃、湿度:90%、20分間保持の条件で発泡させた後、温度:80℃、15分間保持の条件の温風乾燥させることによりグリーン板を作製し、このグリーン板を脱脂装置の中を通しながら、空気中温度:500℃、15分間保持の条件で脱脂し、続いて焼成炉の中を通しながら、N2−5%H2 雰囲気中、温度:1050℃、15分間保持の条件で焼成することにより気孔率:97容量%の通常の発泡多孔質Ni金属板を作製した。
【0011】
また、平均粒径5μmを有するSUS316Lステンレス鋼粉末のフィラーに対して表2に示されるシンナーを配合し、密閉容器中で24時間混練したのち、表2に示される界面活性剤を添加して減圧下で15分間混練し、ついで表2に示される発泡剤を添加して大気圧下で5分間混練することにより表2に示される組成の発泡スラリーを作製した。
【0012】
【表2】
Figure 0004292564
【0013】
表2に示す組成の発泡スラリーをキャリアーシート上にブレードギャップ0.5mmでスラリー層を形成し、このスラリー層を高温・高湿度槽に通して40℃、湿度:90%、20分間保持の条件で発泡させた後、温度:80℃、15分間保持の条件の温風乾燥させることによりグリーン板を作製し、このグリーン板を脱脂装置の中を通しながら、N2雰囲気中、温度:500℃、15分間保持の条件で脱脂し、続いて焼成炉の中を通しながら、100%H2 雰囲気中、温度:1200℃、30分間保持の条件で焼成することにより気孔率:95容量%の通常の発泡多孔質ステンレス鋼板を作製した。
【0014】
平均粒径5μmを有しNi−16%Cr−7%Feからなる組成を有するNi基合金粉末のフィラーに対して表3に示されるシンナーを配合し、密閉容器中で24時間混練したのち、表3に示される界面活性剤を添加して減圧下で15分間混練し、ついで表3に示される発泡剤を添加して大気圧下で5分間混練することにより表3に示される組成の発泡スラリーを作製した。
【0015】
【表3】
Figure 0004292564
【0016】
表3に示す組成の発泡スラリーをキャリアーシート上にブレードギャップ0.5mmでスラリー層を形成し、このスラリー層を高温・高湿度槽に通して40℃、湿度:90%、20分間保持の条件で発泡させた後、温度:80℃、15分間保持の条件の温風乾燥させることによりグリーン板を作製し、このグリーン板を脱脂装置の中を通しながら、N2雰囲気中、温度:500℃、15分間保持の条件で脱脂し、続いて焼成炉の中を通しながら、100%H2 雰囲気中、温度:1200℃、30分間保持の条件で焼成することにより気孔率:95容量%の通常の発泡多孔質Ni基合金板を作製し用意した。
このようにして得られた通常の発泡多孔質Ni金属板、発泡多孔質ステンレス鋼板および発泡多孔質Ni基合金板を使用して以下の実施例、比較例および従来例を実施した。
【0017】
実施例1
スルファミン酸ニッケル:300g/L、塩化ニッケル:30g/L、ホウ酸:35g/Lの浴組成を有し、PH:4に保持されたニッケルメッキ浴を用意し、前記発泡多孔質Ni金属板を陰極とし、Ni圧延板を陽極としてこれらをニッケルメッキ浴中に浸漬し、浴温度:50℃、電流密度:5A/dm2、30分間保持の条件で発泡多孔質Ni金属板に電解Niメッキを施したところ、発泡多孔質Ni金属板における板表面および内部骨格の表面にNiメッキ層が形成され、Niメッキ層が形成された発泡多孔質Ni金属板(以下、電解Niメッキ多孔質Ni金属板という)が得られた。
【0018】
この電解Niメッキ多孔質Ni金属板について、開口部を除く内部骨格表面に形成されたNiメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工性の評価を行ない、その結果を表4に示した。なお、表面粗さの測定、常温引張り伸びの測定、および曲げ加工性の評価は下記のようにして行なった。
【0019】
(イ)表面粗さ:
電解Niメッキ発泡Ni金属板を切断し、その断面の骨格表面に形成されているNiメッキを市販のレーザー顕微鏡を用いて測定し、表面形状の凹凸を数値化し、JIS B0601に準拠して中心線平均粗さ(Ra)を求めた。
(ロ)常温引張伸び:
電解Niメッキ発泡Ni金属板をレーザー加工機により切断してJIS Z2201に記載されている13B形状の試験片を作製した。この試験片を用い、JIS Z2241に準拠し、室温で破断するまでの伸びを測定した。
(ハ)曲げ加工性
直径:5mm、7.5mm、10mm、12.5mm、15mmの太さのステンレス製丸棒を準備し、電解Niメッキ発泡Ni金属板をこれら丸棒に押し付け、電解Niメッキ発泡Ni金属板の曲げ部分が丸棒の曲率半径になるように丸棒に沿って曲げ加工を行ない、曲げ加工による割れが発生しない丸棒の最小直径を示すことにより曲げ加工性を評価した。
【0020】
実施例2
硫酸ニッケル:30g/L、次亜リン酸ナトリウム:10g/L、クエン酸ナトリウム:10g/L、リンゴ酸:20g/Lの浴組成を有し、PH:5に保持されたニッケルメッキ浴を用意した。
このニッケルメッキ浴中に先に用意した発泡多孔質Ni金属板を浸漬し、浴温度:90℃、60分間保持の条件で無電解メッキを施したところ、発泡多孔質Ni金属板における板表面および内部の骨格表面に無電解Ni−Pメッキ層が形成され、無電解Ni−Pメッキ多孔質Ni金属板が得られた。この無電解Ni−Pメッキ層が形成された発泡多孔質金属板である無電解Ni−Pメッキ多孔質Ni金属板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定して曲げ加工性を評価し、その結果を表4に示した。
【0021】
実施例3
実施例1で得られた電解Niメッキ多孔質Ni金属板にさらに表4に示される条件の熱処理を施し、この熱処理を施した電解Niメッキ多孔質Ni金属板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定して曲げ加工性を評価し、その結果を表4に示した。
【0022】
実施例4
実施例2で得られた無電解Ni−Pメッキ多孔質Ni金属板にさらに表4に示される条件の熱処理を施し、この熱処理を施した無電解Ni−Pメッキ多孔質Ni金属板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定して曲げ加工性を評価し、その結果を表4に示した。
【0023】
比較例1
先に用意した発泡多孔質Ni金属板をニッケルメッキ浴中に浸漬し、浴温度:50℃、電流密度:5A/dm2、10分間保持の条件で発泡多孔質Ni金属板に電解Niメッキを施したところ、発泡多孔質Ni金属板における板表面および内部の骨格表面に電解Niメッキ層が形成され、この電解Niメッキ層が形成された発泡多孔質金属板である電解Niメッキ多孔質Ni金属板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表4に示した。
【0024】
従来例1
先に作製した通常の発泡多孔質Ni金属板について、開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表4に示した。
【0025】
【表4】
Figure 0004292564
【0026】
表4に示される結果から、内部の骨格表面にメッキ層が形成された実施例1の電解Niメッキ多孔質Ni金属板および実施例2の無電解Ni−Pメッキ多孔質Ni金属板、並びに実施例1の電解Niメッキ多孔質Ni金属板および実施例2の無電解Ni−Pメッキ多孔質Ni金属板にそれぞれ熱処理を施した実施例3の電解Niメッキ多孔質Ni金属板および実施例4の無電解Ni−Pメッキ多孔質Ni金属板は、いずれも内部の骨格表面にメッキ層が形成されない従来例1の通常の発泡多孔質Ni金属板に比べて伸びおよび曲げ加工性に優れていることが分かる。
しかし、内部の骨格表面にメッキ層が形成された電解Niメッキ多孔質Ni金属板であっても比較例1に示されるように、メッキ層の表面粗さRaが5μmを越えて粗くなると伸びおよび曲げ加工性が劣るようになることが分かる。
【0027】
実施例5
実施例1で用意したニッケルメッキ浴に、先に用意した発泡多孔質ステンレス鋼板を陰極とし、Ni圧延板を陽極としてこれらをニッケルメッキ浴中に浸漬し、浴温度:50℃、電流密度:6A/dm2、30分間保持の条件で発泡多孔質ステンレス鋼板に電解Niメッキを施したところ、発泡多孔質ステンレス鋼板の板表面および内部骨格の表面に電解Niメッキ層が形成され、この電解Niメッキ層が形成された発泡多孔質ステンレス鋼板(以下、電解Niメッキ多孔質ステンレス鋼板という)を作製した。
【0028】
この電解Niメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面に形成された電解Niメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0029】
実施例6
塩化第一鉄:400g/L、塩化カルシウム:150g/Lの浴組成を有し、PH:1に保持された鉄メッキ浴を用意した。
この鉄メッキ浴中に先に用意した発泡多孔質ステンレス鋼板を浸漬し、浴温度:95℃、電流密度:95A/dm2、30分間保持の条件で電解メッキを施したところ、発泡多孔質ステンレス鋼板の板表面および内部の骨格表面に電解Feメッキ層が形成され、電解Feメッキ多孔質ステンレス鋼板が得られた。この電解Feメッキ層が形成された発泡多孔質ステンレス鋼板である電解Feメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、曲げ加工による割れが発生することにない最小直径を測定し、その結果を表5に示した。
【0030】
実施例7
無水クロム酸:250g/L、硫酸:2.5g/Lの浴組成を有し、PH:2に保持されたCrメッキ浴を用意した。
このCrメッキ浴中に先に用意した発泡多孔質ステンレス鋼板を浸漬し、浴温度:50℃、浴温度:50℃、電流密度:50A/dm2、10分間保持の条件で電解メッキを施したところ、発泡多孔質ステンレス鋼板の板表面および内部の骨格表面に電解Crメッキ層が形成された電解Crメッキ多孔質ステンレス鋼板が得られた。このCrメッキ層が形成された発泡多孔質ステンレス鋼板である電解Crメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0031】
実施例8
硫酸ニッケル:300g/L、塩化ニッケル:50g/L、ホウ酸:35g/L、硫酸コバルト:15g/Lの浴組成を有し、PH:4に保持されたニッケル−コバルトメッキ浴を用意し、前記発泡多孔質ステンレス鋼板を陰極とし、Ni−Co圧延板を陽極としてこれらをニッケル−コバルトメッキ浴中に浸漬し、浴温度:60℃、電流密度:5A/dm2、30分間保持の条件で発泡多孔質ステンレス鋼板に電解Ni−Coメッキを施したところ、発泡多孔質ステンレス鋼板における板表面および内部骨格の表面にNi−Coメッキ層が形成された発泡多孔質ステンレス鋼板(以下、電解Ni−Coメッキ多孔質ステンレス鋼板という)が得られた。
この電解Ni−Coメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面に形成されたNi−Coメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0032】
実施例9
実施例5で作製した電解Niメッキ多孔質ステンレス鋼板にさらに表5に示される条件の熱処理を施し、この熱処理を施した電解Niメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面に形成された電解Niメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0033】
実施例10
実施例6で作製した電解Feメッキ多孔質ステンレス鋼板にさらに表5に示される条件の熱処理を施し、この熱処理を施した電解Feメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面に形成された電解Feメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0034】
実施例11
実施例7で作製した電解Crメッキ多孔質ステンレス鋼板にさらに表5に示される条件の熱処理を施し、この熱処理を施した電解Crメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面に形成された電解Crメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0035】
実施例12
実施例8で作製した電解Ni−Coメッキ多孔質ステンレス鋼板にさらに表5に示される条件の熱処理を施し、この熱処理を施した電解Ni−Coメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面に形成された電解Ni−Coメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0036】
比較例2
先に用意した発泡多孔質ステンレス鋼板をニッケルメッキ浴中に浸漬し、浴温度:50℃、電流密度:6A/dm2、10分間保持の条件で発泡多孔質ステンレス鋼板にNiメッキを施したところ、発泡多孔質Ni金属板の板表面および内部の骨格表面に電解Niメッキ層が形成され、この電解Niメッキ層が形成された発泡多孔質金属板である電解Niメッキ多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0037】
従来例2
先に用意した通常の発泡多孔質ステンレス鋼板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表5に示した。
【0038】
【表5】
Figure 0004292564
【0039】
表5に示される結果から、内部の骨格表面にメッキ層が形成された、
実施例5の電解Niメッキ多孔質ステンレス鋼板、
実施例6の電解Feメッキ多孔質ステンレス鋼板、
実施例7の電解Crメッキ多孔質ステンレス鋼板
実施例8の電解Ni−Coメッキ多孔質ステンレス鋼板、
実施例5の電解Niメッキ多孔質ステンレス鋼板に熱処理を施した実施例9の電解Niメッキ多孔質ステンレス鋼板、
実施例6の電解Feメッキ多孔質ステンレス鋼板に熱処理を施した実施例10の電解Feメッキ多孔質ステンレス鋼板、
実施例7の電解Crメッキ多孔質ステンレス鋼板に熱処理を施した実施例11の電解Crメッキ多孔質ステンレス鋼板および
実施例8の電解Ni−Coメッキ多孔質ステンレス鋼板に熱処理を施した実施例12の電解Ni−Coメッキ多孔質ステンレス鋼板は、いずれも内部の骨格表面にメッキ層が形成されない従来例2の通常の発泡多孔質ステンレス鋼板に比べて伸びおよび曲げ加工性に優れていることが分かる。
しかし、内部の骨格表面にメッキ層が形成された電解Niメッキ多孔質ステンレス鋼板であっても、比較例2に示されるように、メッキ層の表面粗さRaが5μmを越えて粗くなると伸びおよび曲げ加工性が劣るようになることが分かる。
【0040】
実施例13
実施例1で用意したニッケルメッキ浴に、先に用意した発泡多孔質Ni基合金板を陰極とし、Ni圧延板を陽極としてこれらをニッケルメッキ浴中に浸漬し、浴温度:50℃、電流密度:5A/dm2、30分間保持の条件で発泡多孔質Ni基合金板に電解Niメッキを施したところ、発泡多孔質Ni基合金板の板表面および内部骨格の表面に電解Niメッキ層が形成され、この電解Niメッキ層が形成された発泡多孔質Ni基合金板(以下、電解Niメッキ多孔質Ni基合金板という)を作製した。
この電解Niメッキ多孔質Ni基合金板について、実施例1と同様にして開口部を除く内部骨格表面に形成されたNiメッキ層の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表6に示した。
【0041】
実施例14
無水クロム酸:250g/L、硫酸:2.5g/Lの浴組成を有し、PH:2に保持されたCrメッキ浴を用意した。
このCrメッキ浴中に先に用意した発泡多孔質Ni基合金板を浸漬し、浴温度:50℃、電流密度:50A/dm2、10分間保持の条件で電解メッキを施したところ、発泡多孔質Ni基合金板の板表面および内部の骨格表面に電解Crメッキ層が形成された電解Crメッキ多孔質Ni基合金板が得られた。この電解Crメッキ層が形成された発泡多孔質Ni基合金板である電解Crメッキ多孔質Ni基合金板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表6に示した。
【0042】
実施例15
実施例13で得られた電解Niメッキ多孔質Ni基合金板にさらに表6に示される条件の熱処理を施し、この熱処理を施した電解Niメッキ多孔質Ni基合金板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定して曲げ加工性を評価し、その結果を表6に示した。
【0043】
実施例16
実施例14で得られた電解Crメッキ多孔質Ni基合金板にさらに表6に示される条件の熱処理を施し、この熱処理を施した電解Crメッキ多孔質Ni基合金板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定して曲げ加工性を評価し、その結果を表6に示した。
【0044】
比較例3
先に用意した発泡多孔質Ni基合金板をニッケルメッキ浴中に浸漬し、浴温度:50℃、電流密度:6A/dm2、10分間保持の条件で発泡多孔質Ni基合金板に電解Niメッキを施したところ、発泡多孔質Ni金属板の板表面および内部の骨格表面に電解Niメッキ層が形成され、この電解Niメッキ層が形成された発泡多孔質金属板である電解Niメッキ多孔質Ni基合金板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表6に示した。
【0045】
従来例3
先に用意した通常の発泡多孔質Ni基合金板について、実施例1と同様にして開口部を除く内部骨格表面の表面粗さを測定し、さらに常温引張り伸びを測定し、さらに曲げ加工による割れが発生することにない丸棒の最小直径を測定し、その結果を表6に示した。
【0046】
【表6】
Figure 0004292564
【0047】
表6に示される結果から、内部の骨格表面にメッキ層が形成された実施例13の電解Niメッキ多孔質Ni基合金板および実施例14の電解Crメッキ発泡Ni基合金板、並びに実施例13の電解Niメッキ多孔質Ni基合金板に熱処理を施した実施例15の電解Niメッキ多孔質Ni基合金板および実施例14の電解Crメッキ発泡Ni基合金板に熱処理を施した実施例16の電解Niメッキ多孔質Ni基合金板は、いずれも内部の骨格表面にメッキ層が形成されない従来例3の通常の発泡多孔質Ni基合金板に比べて伸びおよび曲げ加工性に優れていることが分かる。しかし、内部の骨格表面にメッキ層が形成された電解Niメッキ多孔質Ni基合金板であっても、比較例3に示されるように、メッキ層の表面粗さRaが2μmを越えて粗くなると伸びおよび曲げ加工性が劣るようになることが分かる。
【0048】
【発明の効果】
上述のように、この発明によると、延性に優れた高気孔率を有する多孔質金属層を提供することができ、この延性に優れた多孔質金属板を各種フィルターやアルカリ二次電池の電極基板を作製するために曲げ加工しても曲げ加工時に割れが発生することがなく、不良品の発生率が少なくなって、フィルター産業、アルカリ二次電池産業などの発展に大いに貢献し得るものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous metal having excellent ductility and a method for producing the same, and the porous metal having excellent ductility produces a high-temperature filter, an air purifier filter, and an electrode substrate for an alkaline secondary battery. It is used as a material for.
[0002]
[Prior art]
In general, various filters, electrode substrates of alkaline secondary batteries, etc., are three-dimensional meshes formed by vacancies (hereinafter referred to as continuous vacancies) that open to the surface and continue to the internal vacancies and skeletons. A foamed porous metal plate having a structure is used, and the porosity is said to be 70 to 99% by volume.
[0003]
In order to produce this foamed porous metal plate, first, a surfactant and a foaming agent are added to a slurry consisting of raw material powder and thinner to prepare a foamed slurry, which is then formed into a thin plate shape by a doctor blade method on a carrier sheet. And foamed into a sponge shape using the vapor pressure of the volatile organic solvent contained in the foamed slurry and the foaming property of the surfactant in a high-temperature / high-humidity bath, and further dried in a drying bath to form a sponge. A green plate is produced, and this sponge-like green plate is degreased and fired by passing through a degreasing device and a firing furnace, thereby producing a foamed porous metal plate having a three-dimensional network structure composed of continuous pores and a skeleton. ing.
[0004]
[Problems to be solved by the invention]
However, such a foamed porous metal plate generally has poor ductility. Therefore, when it is attempted to produce a filter, an electrode substrate for an alkaline secondary battery, etc. by bending the foamed porous metal plate, the bending process is not performed. A crack may occur on the surface of the damaged part and a defective product may be generated. Therefore, a foamed porous metal plate having further excellent ductility has been demanded.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research to solve such problems. as a result,
(A) As one of the reasons that cracking occurs in a bent part when bending a foamed porous metal plate having a three-dimensional network structure formed by conventional continuous pores and a skeleton, foamed porous The roughness of the skeleton surface of the metal plate is rough, a fine crack occurs during bending from the rough part of the skeleton surface, and it propagates into a large crack,
(B) When a metal plating layer is formed on at least the surface of the inner skeleton of the foamed porous metal to smoothen the roughness of the skeleton surface, the ductility is improved and no cracks occur in the bent portion.
(C) The surface roughness of the metal plating layer formed on the surface of at least the internal skeleton of the foamed porous metal is preferably as small as possible, and the center line average roughness is more preferably in the range of 0.05 to 5 μm. I got the knowledge such as.
[0006]
This invention was made based on such knowledge,
(1) A porous metal excellent in ductility formed by forming a metal plating layer on the surface of at least an internal skeleton of a foamed porous metal having a three-dimensional network structure formed by continuous pores and a skeleton;
(2) A metal plating layer is formed on the surface of at least the inner skeleton of the foamed porous metal having a three-dimensional network structure formed by continuous pores and the skeleton, and is formed on the surface of at least the inner skeleton. The surface roughness of the metal plating layer is characterized by a porous metal excellent in ductility having a center line average roughness of 0.05 to 5 μm.
[0007]
In order to produce a porous metal having excellent ductility according to the present invention, a foamed porous metal having a three-dimensional network structure formed of ordinary continuous pores and a skeleton is prepared, and this is used as a cathode for metal plating. When applied, a metal plating layer is formed on the outermost surface of the foamed porous metal and the surface of the internal skeleton. The metal plating is preferably performed by electrolytic plating, but may be electroless plating.
When heat treatment is performed on the porous metal having a metal plating layer formed on at least the surface of the internal skeleton thus obtained, the metal plating layer is annealed and the ductility is further improved. The surface roughness of the metal plating layer formed on the surface of the internal skeleton is preferably as smooth as possible, and preferably has a center line average roughness of 0.05 to 5 μm. If the center line average roughness of the metal plating layer formed on at least the surface of the inner skeleton exceeds 5 μm, the ductility of the porous metal is lowered, which is not preferable. To smooth the center line average roughness to less than 0.05 μm. This is because it is not preferable because it is technically expensive.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The thinner shown in Table 1 was blended with a filler of Ni powder having an average particle size of 5 μm and kneaded in a closed container for 24 hours. Then, the surfactant shown in Table 1 was added, and the mixture was added under the reduced pressure. The foaming slurry shown in Table 1 was prepared by kneading for 5 minutes and then adding the foaming agent shown in Table 1 and kneading for 5 minutes at atmospheric pressure.
[0009]
[Table 1]
Figure 0004292564
[0010]
A slurry layer having a composition shown in Table 1 is formed on a carrier sheet with a blade gap of 0.5 mm, and this slurry layer is passed through a high-temperature / high-humidity tank at 40 ° C., humidity: 90%, held for 20 minutes. After foaming under conditions, a green plate was produced by drying with warm air at a temperature of 80 ° C. for 15 minutes, and while passing through the degreasing device, the temperature in air: 500 ° C., 15 Degrease under the condition of holding for a minute, then pass through the firing furnace, N 2 -5% H 2 A normal foamed porous Ni metal plate having a porosity of 97% by volume was produced by firing in an atmosphere at a temperature of 1050 ° C. and holding for 15 minutes.
[0011]
Further, the thinner shown in Table 2 was blended with the filler of SUS316L stainless steel powder having an average particle size of 5 μm, kneaded in a closed container for 24 hours, and then the surfactant shown in Table 2 was added to reduce the pressure. The mixture was kneaded for 15 minutes, then the foaming agent shown in Table 2 was added, and the mixture was kneaded for 5 minutes at atmospheric pressure to prepare a foamed slurry having the composition shown in Table 2.
[0012]
[Table 2]
Figure 0004292564
[0013]
A slurry layer is formed from a foamed slurry having the composition shown in Table 2 on a carrier sheet with a blade gap of 0.5 mm, and this slurry layer is passed through a high-temperature / high-humidity tank at 40 ° C., humidity: 90%, and maintained for 20 minutes. After the foaming, a green plate was produced by drying with warm air at a temperature of 80 ° C. for 15 minutes, and while passing through the degreasing device, 2 Degreasing in atmosphere, temperature: 500 ° C., holding for 15 minutes, then passing through a firing furnace, 100% H 2 A normal foamed porous stainless steel sheet having a porosity of 95% by volume was produced by firing in an atmosphere at a temperature of 1200 ° C. for 30 minutes.
[0014]
After blending the thinner shown in Table 3 with a filler of Ni-based alloy powder having an average particle size of 5 μm and a composition consisting of Ni-16% Cr-7% Fe, and kneading in a closed container for 24 hours, The surfactant shown in Table 3 was added and kneaded for 15 minutes under reduced pressure, and then the foaming agent shown in Table 3 was added and kneaded for 5 minutes under atmospheric pressure for foaming with the composition shown in Table 3. A slurry was prepared.
[0015]
[Table 3]
Figure 0004292564
[0016]
A slurry layer having a composition shown in Table 3 is formed on a carrier sheet with a blade gap of 0.5 mm, and the slurry layer is passed through a high-temperature / high-humidity tank at 40 ° C., humidity: 90%, and maintained for 20 minutes. After foaming, a green plate is produced by drying with warm air at a temperature of 80 ° C. and holding for 15 minutes, and while passing this green plate through a degreasing apparatus, N 2 Degreasing in atmosphere, temperature: 500 ° C., holding for 15 minutes, then passing through a firing furnace, 100% H 2 An ordinary foamed porous Ni-based alloy plate having a porosity of 95% by volume was prepared by firing in an atmosphere at a temperature of 1200 ° C. for 30 minutes.
The following examples, comparative examples and conventional examples were carried out using the normal foamed porous Ni metal plate, the foamed porous stainless steel plate and the foamed porous Ni-based alloy plate thus obtained.
[0017]
Example 1
A nickel plating bath having a bath composition of nickel sulfamate: 300 g / L, nickel chloride: 30 g / L, boric acid: 35 g / L and maintained at PH: 4 is prepared. These were immersed in a nickel plating bath using a Ni rolled plate as an anode and a bath temperature: 50 ° C., current density: 5 A / dm. 2 When the foamed porous Ni metal plate is subjected to electrolytic Ni plating under the condition of holding for 30 minutes, a Ni plated layer is formed on the surface of the foamed porous Ni metal plate and the surface of the internal skeleton, and the Ni plated layer is formed. A foamed porous Ni metal plate (hereinafter referred to as electrolytic Ni-plated porous Ni metal plate) was obtained.
[0018]
For this electrolytic Ni-plated porous Ni metal plate, measure the surface roughness of the Ni plating layer formed on the surface of the internal skeleton excluding the opening, further measure the room temperature tensile elongation, and further evaluate the bending workability, The results are shown in Table 4. In addition, the measurement of surface roughness, the measurement of normal temperature tensile elongation, and evaluation of bending workability were performed as follows.
[0019]
(I) Surface roughness:
Electrolytic Ni plating Foamed Ni metal plate is cut, Ni plating formed on the skeleton surface of the cross section is measured using a commercially available laser microscope, the irregularities of the surface shape are quantified, and the center line conforms to JIS B0601 Average roughness (Ra) was determined.
(B) Room temperature tensile elongation:
An electrolytic Ni-plated foamed Ni metal plate was cut with a laser processing machine to prepare a 13B-shaped test piece described in JIS Z2201. Using this test piece, the elongation until breaking at room temperature was measured according to JIS Z2241.
(C) Bending workability
Stainless steel round bars with diameters of 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm were prepared, and electrolytic Ni-plated foamed Ni metal plates were pressed against these round bars to bend the electrolytic Ni-plated foamed Ni metal plates. Bending was performed along the round bar so that the portion had the radius of curvature of the round bar, and the bending workability was evaluated by showing the minimum diameter of the round bar where cracks did not occur due to bending.
[0020]
Example 2
A nickel plating bath having a bath composition of nickel sulfate: 30 g / L, sodium hypophosphite: 10 g / L, sodium citrate: 10 g / L, malic acid: 20 g / L and maintained at PH: 5 is prepared. did.
The foamed porous Ni metal plate prepared previously was immersed in this nickel plating bath, and electroless plating was performed under the conditions of bath temperature: 90 ° C. and 60 minutes, and the plate surface in the foamed porous Ni metal plate and An electroless Ni—P plating layer was formed on the inner skeleton surface, and an electroless Ni—P plated porous Ni metal plate was obtained. For the electroless Ni-P plated porous Ni metal plate, which is a foamed porous metal plate on which the electroless Ni-P plating layer is formed, the surface roughness of the surface of the internal skeleton except for the openings as in Example 1. Further, the tensile elongation at room temperature was measured, and the minimum diameter of the round bar that did not cause cracking by bending was measured to evaluate the bending workability. The results are shown in Table 4.
[0021]
Example 3
The electrolytic Ni-plated porous Ni metal plate obtained in Example 1 was further subjected to heat treatment under the conditions shown in Table 4, and the electrolytic Ni-plated porous Ni metal plate subjected to this heat treatment was treated in the same manner as in Example 1. Measure the surface roughness of the surface of the internal skeleton excluding the opening, measure the room temperature tensile elongation, measure the minimum diameter of the round bar that does not cause cracking due to bending, and evaluate bending workability, The results are shown in Table 4.
[0022]
Example 4
The electroless Ni—P plated porous Ni metal plate obtained in Example 2 was further subjected to heat treatment under the conditions shown in Table 4, and the electroless Ni—P plated porous Ni metal plate subjected to this heat treatment was subjected to the heat treatment. In the same manner as in Example 1, the surface roughness of the internal skeleton surface excluding the opening is measured, the room temperature tensile elongation is measured, and the minimum diameter of the round bar that does not cause cracking by bending is measured and bent. The workability was evaluated and the results are shown in Table 4.
[0023]
Comparative Example 1
The previously prepared porous porous Ni metal plate is immersed in a nickel plating bath, bath temperature: 50 ° C., current density: 5 A / dm. 2 When electrolytic Ni plating was applied to the foamed porous Ni metal plate under the condition of holding for 10 minutes, an electrolytic Ni plating layer was formed on the surface of the foamed porous Ni metal plate and the inner skeleton surface. For the electrolytic Ni-plated porous Ni metal plate, which is a foamed porous metal plate formed with the same method as in Example 1, the surface roughness of the internal skeleton surface excluding the openings is measured, and the room temperature tensile elongation is measured. Furthermore, the minimum diameter of the round bar that does not cause cracking due to bending was measured, and the results are shown in Table 4.
[0024]
Conventional Example 1
About the normal foamed porous Ni metal plate produced previously, the surface roughness of the internal skeleton surface excluding the opening is measured, the room temperature tensile elongation is further measured, and the round bar is free from cracks caused by bending. The minimum diameter was measured and the results are shown in Table 4.
[0025]
[Table 4]
Figure 0004292564
[0026]
From the results shown in Table 4, the electrolytic Ni-plated porous Ni metal plate of Example 1 and the electroless Ni-P plated porous Ni metal plate of Example 2 in which the plating layer was formed on the inner skeleton surface, and the implementation The electrolytic Ni-plated porous Ni metal plate of Example 1 and the electroless Ni-P plated porous Ni metal plate of Example 2 and heat-treated to the electroless Ni-P plated porous Ni metal plate of Example 2 and Example 4 The electroless Ni-P plated porous Ni metal plate has excellent elongation and bending workability compared to the normal foamed porous Ni metal plate of Conventional Example 1 in which no plating layer is formed on the inner skeleton surface. I understand.
However, even in the case of an electrolytic Ni-plated porous Ni metal plate in which a plating layer is formed on the inner skeleton surface, as shown in Comparative Example 1, when the surface roughness Ra of the plating layer becomes rougher than 5 μm, elongation and It turns out that bending workability becomes inferior.
[0027]
Example 5
The nickel-plated bath prepared in Example 1 was immersed in a nickel-plated bath using the previously prepared porous stainless steel plate as the cathode and the Ni rolled plate as the anode, bath temperature: 50 ° C., current density: 6A. / Dm 2 When electrolytic Ni plating was applied to the foamed porous stainless steel plate under the condition of holding for 30 minutes, an electrolytic Ni plated layer was formed on the surface of the foamed porous stainless steel plate and the surface of the internal skeleton, and this electrolytic Ni plated layer was formed. A foamed porous stainless steel plate (hereinafter referred to as electrolytic Ni-plated porous stainless steel plate) was produced.
[0028]
For this electrolytic Ni-plated porous stainless steel sheet, the surface roughness of the electrolytic Ni-plated layer formed on the surface of the internal skeleton excluding the openings was measured in the same manner as in Example 1, the room temperature tensile elongation was measured, and the bending was further performed. The minimum diameter of the round bar that did not cause cracks due to processing was measured, and the results are shown in Table 5.
[0029]
Example 6
An iron plating bath having a bath composition of ferrous chloride: 400 g / L and calcium chloride: 150 g / L and maintained at PH: 1 was prepared.
The foamed porous stainless steel plate prepared earlier is immersed in this iron plating bath, bath temperature: 95 ° C., current density: 95 A / dm. 2 When electrolytic plating was performed under the condition of holding for 30 minutes, an electrolytic Fe plating layer was formed on the surface of the foamed porous stainless steel plate and the inner skeleton surface, and an electrolytic Fe plated porous stainless steel plate was obtained. With respect to the electrolytic Fe-plated porous stainless steel plate, which is a foamed porous stainless steel plate on which this electrolytic Fe-plated layer is formed, the surface roughness of the surface of the internal skeleton excluding the openings is measured in the same manner as in Example 1, and the room temperature tensile is further performed The elongation was measured, and the minimum diameter at which cracking due to bending did not occur was measured. The results are shown in Table 5.
[0030]
Example 7
A Cr plating bath having a bath composition of chromic anhydride: 250 g / L, sulfuric acid: 2.5 g / L and maintained at PH: 2 was prepared.
The previously prepared porous stainless steel plate is immersed in this Cr plating bath, bath temperature: 50 ° C., bath temperature: 50 ° C., current density: 50 A / dm. 2 When electrolytic plating was performed under the condition of holding for 10 minutes, an electrolytic Cr plated porous stainless steel plate having an electrolytic Cr plated layer formed on the surface of the foamed porous stainless steel plate and the inner skeleton surface was obtained. With respect to the electrolytic Cr plated porous stainless steel plate, which is a foamed porous stainless steel plate on which the Cr plated layer is formed, the surface roughness of the internal skeleton surface excluding the openings is measured in the same manner as in Example 1, and the room temperature tensile elongation is further increased. Further, the minimum diameter of a round bar that does not cause cracking due to bending was measured, and the results are shown in Table 5.
[0031]
Example 8
A nickel-cobalt plating bath having a bath composition of nickel sulfate: 300 g / L, nickel chloride: 50 g / L, boric acid: 35 g / L, cobalt sulfate: 15 g / L and maintained at PH: 4, The foamed porous stainless steel plate is used as a cathode, and a Ni—Co rolled plate is used as an anode, and these are immersed in a nickel-cobalt plating bath, bath temperature: 60 ° C., current density: 5 A / dm. 2 When the foamed porous stainless steel plate is subjected to electrolytic Ni—Co plating under the condition of holding for 30 minutes, the foamed porous stainless steel has a Ni—Co plated layer formed on the surface of the plate and the inner skeleton of the foamed porous stainless steel plate. A steel plate (hereinafter referred to as an electrolytic Ni—Co plated porous stainless steel plate) was obtained.
For this electrolytic Ni—Co plated porous stainless steel plate, the surface roughness of the Ni—Co plating layer formed on the inner skeleton surface excluding the openings was measured in the same manner as in Example 1, and the room temperature tensile elongation was further measured. Further, the minimum diameter of the round bar that does not cause cracking by bending was measured, and the results are shown in Table 5.
[0032]
Example 9
The electrolytic Ni-plated porous stainless steel plate produced in Example 5 was further subjected to heat treatment under the conditions shown in Table 5, and the openings were formed in the same manner as in Example 1 for the electrolytic Ni-plated porous stainless steel plate subjected to this heat treatment. Measure the surface roughness of the electrolytic Ni plating layer formed on the surface of the internal skeleton, excluding the room temperature tensile elongation, and measure the minimum diameter of the round bar that does not cause cracking due to bending. Are shown in Table 5.
[0033]
Example 10
The electrolytic Fe-plated porous stainless steel plate produced in Example 6 was further subjected to heat treatment under the conditions shown in Table 5, and the openings were formed in the same manner as in Example 1 for the electrolytic Fe-plated porous stainless steel plate subjected to this heat treatment. Measure the surface roughness of the electrolytic Fe plating layer formed on the surface of the internal skeleton, excluding the room temperature tensile elongation, and measure the minimum diameter of the round bar without cracking due to bending. Are shown in Table 5.
[0034]
Example 11
The electrolytic Cr-plated porous stainless steel plate produced in Example 7 was further subjected to heat treatment under the conditions shown in Table 5, and the openings were formed in the same manner as in Example 1 for the electrolytic Cr-plated porous stainless steel plate subjected to this heat treatment. Measure the surface roughness of the electrolytic Cr plating layer formed on the surface of the internal skeleton, excluding the room temperature tensile elongation, and measure the minimum diameter of the round bar that does not cause cracking due to bending. Are shown in Table 5.
[0035]
Example 12
The electrolytic Ni—Co plated porous stainless steel plate produced in Example 8 was further subjected to heat treatment under the conditions shown in Table 5, and the electrolytic Ni—Co plated porous stainless steel plate subjected to this heat treatment was treated in the same manner as in Example 1. Measure the surface roughness of the electrolytic Ni-Co plating layer formed on the surface of the internal skeleton excluding the opening, measure the room temperature tensile elongation, and further reduce the minimum diameter of the round bar without cracking due to bending The results are shown in Table 5.
[0036]
Comparative Example 2
The previously prepared porous stainless steel plate is immersed in a nickel plating bath, bath temperature: 50 ° C., current density: 6 A / dm. 2 When Ni foam was applied to the foamed porous stainless steel plate for 10 minutes, an electrolytic Ni plating layer was formed on the surface of the foamed porous Ni metal plate and the internal skeleton surface, and this electrolytic Ni plating layer was formed. For the electrolytic Ni-plated porous stainless steel plate, which is a foamed porous metal plate, the surface roughness of the inner skeleton surface excluding the openings is measured in the same manner as in Example 1, the room temperature tensile elongation is measured, and further bending is performed. The minimum diameter of the round bar that did not cause cracks due to processing was measured, and the results are shown in Table 5.
[0037]
Conventional example 2
For the normal foamed porous stainless steel plate prepared earlier, the surface roughness of the internal skeleton surface excluding the openings was measured in the same manner as in Example 1, the tensile elongation at room temperature was further measured, and cracks due to bending were generated. The minimum diameter of the round bar that was not to be measured was measured, and the results are shown in Table 5.
[0038]
[Table 5]
Figure 0004292564
[0039]
From the results shown in Table 5, a plating layer was formed on the internal skeleton surface.
Electrolytic Ni-plated porous stainless steel sheet of Example 5,
Electrolytic Fe-plated porous stainless steel plate of Example 6,
Example 7 Electrolytic Cr Plated Porous Stainless Steel Sheet
Electrolytic Ni-Co plated porous stainless steel sheet of Example 8,
The electrolytic Ni-plated porous stainless steel plate of Example 9, which was subjected to heat treatment on the electrolytic Ni-plated porous stainless steel plate of Example 5,
The electrolytic Fe-plated porous stainless steel plate of Example 10, which was subjected to heat treatment on the electrolytic Fe-plated porous stainless steel plate of Example 6,
The electrolytic Cr-plated porous stainless steel plate of Example 11 and the electrolytic Cr-plated porous stainless steel plate of Example 7 subjected to heat treatment, and
The electrolytic Ni—Co plated porous stainless steel plate of Example 12 obtained by subjecting the electrolytic Ni—Co plated porous stainless steel plate of Example 8 to heat treatment has the usual conventional example 2 in which no plating layer is formed on the inner skeleton surface. It can be seen that the film is superior in elongation and bending workability compared to the foamed porous stainless steel plate.
However, even in the case of an electrolytic Ni-plated porous stainless steel sheet having a plating layer formed on the inner skeleton surface, as shown in Comparative Example 2, the surface roughness Ra of the plating layer becomes larger than 5 μm, and the elongation and It turns out that bending workability becomes inferior.
[0040]
Example 13
In the nickel plating bath prepared in Example 1, the previously prepared foamed porous Ni-based alloy plate was used as a cathode, the Ni rolled plate was used as an anode, and these were immersed in the nickel plating bath, bath temperature: 50 ° C., current density : 5A / dm 2 When the foamed porous Ni-based alloy plate was subjected to electrolytic Ni plating under the condition of holding for 30 minutes, an electrolytic Ni-plated layer was formed on the surface of the foamed porous Ni-based alloy plate and the surface of the internal skeleton. A foamed porous Ni-based alloy plate (hereinafter referred to as electrolytic Ni-plated porous Ni-based alloy plate) on which a plating layer was formed was produced.
For this electrolytic Ni-plated porous Ni-based alloy plate, the surface roughness of the Ni-plated layer formed on the inner skeleton surface excluding the openings was measured in the same manner as in Example 1, and the room temperature tensile elongation was further measured. The minimum diameter of the round bar that did not cause cracking due to bending was measured, and the results are shown in Table 6.
[0041]
Example 14
A Cr plating bath having a bath composition of chromic anhydride: 250 g / L, sulfuric acid: 2.5 g / L and maintained at PH: 2 was prepared.
The foamed porous Ni-based alloy plate prepared previously is immersed in this Cr plating bath, bath temperature: 50 ° C., current density: 50 A / dm. 2 When electrolytic plating was performed for 10 minutes, an electrolytic Cr-plated porous Ni-based alloy plate in which an electrolytic Cr-plated layer was formed on the surface of the foamed porous Ni-based alloy plate and the internal skeleton surface was obtained. It was. For the electrolytic Cr-plated porous Ni-based alloy plate, which is a foamed porous Ni-based alloy plate on which this electrolytic Cr-plated layer is formed, the surface roughness of the internal skeleton surface excluding the openings is measured in the same manner as in Example 1. Furthermore, the room temperature tensile elongation was measured, and the minimum diameter of a round bar that did not cause cracking by bending was measured. The results are shown in Table 6.
[0042]
Example 15
The electrolytic Ni-plated porous Ni-based alloy plate obtained in Example 13 was further subjected to heat treatment under the conditions shown in Table 6, and the electrolytic Ni-plated porous Ni-based alloy plate subjected to this heat treatment was the same as in Example 1. Measure the surface roughness of the internal skeleton surface excluding the opening, measure the room temperature tensile elongation, and measure the minimum diameter of a round bar that does not cause cracking due to bending to evaluate bending workability The results are shown in Table 6.
[0043]
Example 16
The electrolytic Cr plated porous Ni-based alloy plate obtained in Example 14 was further subjected to heat treatment under the conditions shown in Table 6, and the electrolytic Cr-plated porous Ni-based alloy plate subjected to this heat treatment was the same as in Example 1. Measure the surface roughness of the internal skeleton surface excluding the opening, measure the room temperature tensile elongation, and measure the minimum diameter of a round bar that does not cause cracking due to bending to evaluate bending workability The results are shown in Table 6.
[0044]
Comparative Example 3
The previously prepared foamed Ni-based alloy plate is immersed in a nickel plating bath, bath temperature: 50 ° C., current density: 6 A / dm. 2 When electrolytic Ni plating was applied to the foamed porous Ni-based alloy plate under the condition of holding for 10 minutes, an electrolytic Ni plating layer was formed on the surface of the foamed porous Ni metal plate and the internal skeleton surface. For the electrolytic Ni-plated porous Ni-based alloy plate, which is a foamed porous metal plate with a layer formed thereon, the surface roughness of the inner skeleton surface excluding the openings was measured in the same manner as in Example 1, and the room temperature tensile elongation was further increased. Further, the minimum diameter of the round bar that does not cause cracking due to bending was measured, and the results are shown in Table 6.
[0045]
Conventional example 3
For the normal foamed porous Ni-based alloy plate prepared in advance, the surface roughness of the internal skeleton surface excluding the openings was measured in the same manner as in Example 1, the room temperature tensile elongation was measured, and the cracks caused by bending were further measured. The minimum diameter of the round bar that does not cause the occurrence of the problem was measured, and the results are shown in Table 6.
[0046]
[Table 6]
Figure 0004292564
[0047]
From the results shown in Table 6, the electrolytic Ni-plated porous Ni-based alloy plate of Example 13 and the electrolytic Cr-plated foamed Ni-based alloy plate of Example 14 in which a plating layer was formed on the inner skeleton surface, and Example 13 The electrolytic Ni-plated porous Ni-based alloy plate of Example 15 subjected to heat treatment and the electrolytic Cr-plated foamed Ni-based alloy plate of Example 14 subjected to heat treatment and the electrolytic Cr-plated foamed Ni-based alloy plate of Example 14 were subjected to heat treatment. The electrolytic Ni-plated porous Ni-based alloy plate is excellent in elongation and bending workability compared with the normal foamed porous Ni-based alloy plate of Conventional Example 3 in which no plating layer is formed on the inner skeleton surface. I understand. However, even in the case of an electrolytic Ni-plated porous Ni-based alloy plate in which a plating layer is formed on the inner skeleton surface, as shown in Comparative Example 3, the surface roughness Ra of the plating layer becomes rougher than 2 μm. It can be seen that the elongation and bending workability become poor.
[0048]
【The invention's effect】
As described above, according to the present invention, a porous metal layer having a high porosity with excellent ductility can be provided, and the porous metal plate having excellent ductility can be used as an electrode substrate for various filters and alkaline secondary batteries. Even if it is bent to produce a crack, cracks do not occur during bending, and the incidence of defective products is reduced, which can greatly contribute to the development of the filter industry, alkaline secondary battery industry, etc. .

Claims (5)

表面に開口し内部の空孔に連続している連続空孔と骨格とで形成された三次元網目状構造を有する発泡多孔質金属の少なくとも内部骨格の表面に金属メッキ層を形成してなることを特徴とする延性に優れた多孔質金属。A metal plating layer is formed on the surface of at least the inner skeleton of a foamed porous metal having a three-dimensional network structure formed by continuous vacancies and skeletons open to the surface and continuing to the inner vacancies. Porous metal with excellent ductility characterized by 前記発泡多孔質金属の少なくとも内部骨格の表面に形成された金属メッキ層の表面の粗さは、中心線平均粗さ:0.05〜5μmを有することを特徴とする請求項1記載の延性に優れた多孔質金属。2. The ductility according to claim 1, wherein the surface roughness of the metal plating layer formed on at least the surface of the internal skeleton of the foamed porous metal has a center line average roughness of 0.05 to 5 μm. Excellent porous metal. 表面に開口し内部の空孔に連続している連続空孔と骨格とで形成された三次元網目状構造を有する発泡多孔質金属の少なくとも内部骨格の表面に金属メッキを施すことを特徴とする延性に優れた多孔質金属の製造方法。 A metal plating is performed on at least the surface of the inner skeleton of a porous porous metal having a three-dimensional network structure formed by continuous vacancies and skeletons that open to the surface and continue to the inner vacancies. A method for producing a porous metal having excellent ductility. 前記金属メッキは、電気メッキまたは無電解メッキであることを特徴とする請求項3記載の延性に優れた多孔質金属の製造方法。The method for producing a porous metal excellent in ductility according to claim 3, wherein the metal plating is electroplating or electroless plating. 金属メッキした後、さらに熱処理を施すことを特長とする請求項3または4記載の多孔質金属の製造方法。The method for producing a porous metal according to claim 3 or 4, wherein after the metal plating, further heat treatment is performed.
JP2001279047A 2001-09-14 2001-09-14 Porous metal having excellent ductility and method for producing the same Expired - Lifetime JP4292564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279047A JP4292564B2 (en) 2001-09-14 2001-09-14 Porous metal having excellent ductility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279047A JP4292564B2 (en) 2001-09-14 2001-09-14 Porous metal having excellent ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003082405A JP2003082405A (en) 2003-03-19
JP4292564B2 true JP4292564B2 (en) 2009-07-08

Family

ID=19103307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279047A Expired - Lifetime JP4292564B2 (en) 2001-09-14 2001-09-14 Porous metal having excellent ductility and method for producing the same

Country Status (1)

Country Link
JP (1) JP4292564B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196392B2 (en) * 2007-03-15 2013-05-15 住友電気工業株式会社 Positive electrode for non-aqueous electrolyte secondary battery
JPWO2012111605A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Three-dimensional network aluminum porous body for current collector, current collector using the aluminum porous body, electrode using the current collector, non-aqueous electrolyte battery using the electrode, capacitor, and lithium ion capacitor
WO2019176956A1 (en) 2018-03-12 2019-09-19 三菱マテリアル株式会社 Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device
US20220320530A1 (en) 2019-05-22 2022-10-06 Sumitomo Electric Industries, Ltd. Porous body, fuel cell including the same, and steam electrolysis apparatus including the same
WO2021193857A1 (en) 2020-03-26 2021-09-30 三菱マテリアル株式会社 Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis device
JP2022155900A (en) 2021-03-31 2022-10-14 三菱マテリアル株式会社 Titanium base material, water electrolysis electrode, and solid polymer type water electrolysis device

Also Published As

Publication number Publication date
JP2003082405A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3045612B2 (en) High corrosion resistant nickel-plated steel strip and its manufacturing method
US4116804A (en) Catalytically active porous nickel electrodes
JP5894721B2 (en) Surface-treated metal plate and method for producing molded product using the surface-treated metal plate
EP2479317B1 (en) Fuel supply pipe
WO2015133296A1 (en) Porous metal body and method for producing porous metal body
JP4292564B2 (en) Porous metal having excellent ductility and method for producing the same
JPH0317916B2 (en)
KR100247901B1 (en) Process for producing porous iron metal body
JP2762328B2 (en) Material for inner shield and its manufacturing method
JP3439912B2 (en) Battery can material excellent in deep drawability and method for producing the same
KR20100097575A (en) Iron foam and manufacturing method thereof
EP1052321B1 (en) Metallic non woven fabric and method for manufacturing the same
JP2004068113A (en) Ni-PLATED STEEL SHEET FOR BATTERY CAN AND ITS PRODUCTION PROCESS
JP4612572B2 (en) Manufacturing method of high purity Ni diffusion plated steel sheet
JP3664046B2 (en) Method for producing Ni-plated steel sheet for positive electrode can of alkaline manganese battery
JP2006522869A (en) In particular, an electrolytically coated cold-rolled plate used to manufacture a battery case and a method of manufacturing the cold-rolled plate.
JP4286427B2 (en) High strength alloy and metal coated with the high strength alloy
JP4079476B2 (en) Al-Ni coated stainless steel plate excellent in molten salt corrosion resistance and method for producing the same
JP7063432B1 (en) Surface-treated steel sheet
JP7401840B2 (en) surface treated steel plate
WO2022118770A1 (en) Surface-treated steel sheet
JP2005517085A (en) A method of heat-treating a cold-rolled sheet having a surface coating made of Ni and / or Co, a sheet metal that can be manufactured by the method, and a battery metal container that can be manufactured by the method
JPH06104918B2 (en) Cold-rolled steel sheet with excellent phosphatability and corrosion resistance
JP2023164192A (en) Surface treated steel foil, and method of producing the same
JP2005154793A (en) Surface-treated steel plate for stepping motor, method for manufacturing surface-treated steel plate for stepping motor, and stepping motor obtained by using the surface-treated steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4292564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

EXPY Cancellation because of completion of term