JP2004150776A - Absorption refrigerating machine and its operation method - Google Patents

Absorption refrigerating machine and its operation method Download PDF

Info

Publication number
JP2004150776A
JP2004150776A JP2002319522A JP2002319522A JP2004150776A JP 2004150776 A JP2004150776 A JP 2004150776A JP 2002319522 A JP2002319522 A JP 2002319522A JP 2002319522 A JP2002319522 A JP 2002319522A JP 2004150776 A JP2004150776 A JP 2004150776A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
liquid
refrigerant
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319522A
Other languages
Japanese (ja)
Other versions
JP4155797B2 (en
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002319522A priority Critical patent/JP4155797B2/en
Publication of JP2004150776A publication Critical patent/JP2004150776A/en
Application granted granted Critical
Publication of JP4155797B2 publication Critical patent/JP4155797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption refrigerating machine performing a minus temperature operation for ice storage heat at night and a plus temperature operation for air conditioning in the daytime and to provide its operation method. <P>SOLUTION: This absorption refrigerating machine is provided with a regenerator G, a condenser C, an absorber A and an evaporator E, adds solute to refrigerant liquid to be sprayed to a heat transmission part of the evaporator E and makes it to antifreeze solution. This absorption refrigerating machine is provided with a control mechanism LS retaining the fixed amount of the solute in the refrigerant liquid retained in the evaporator E, adjusting the refrigerant liquid amount retained in a liquid sump of the evaporator by a refrigerant liquid amount introduced from the condenser and controlling the solute concentration of the refrigerant liquid of the evaporator E. This absorption refrigerating machine is provided with an auxiliary absorber and an auxiliary regenerator enabling a two-stage concentration cycle and a cycle conversion mechanism converting the two-stage concentration cycle effective or ineffective. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機に係り、特に、排熱などを利用し、夜間は氷蓄熱をするためマイナス温度の運転をし、昼間は空調用途にプラス温度の運転をするような吸収冷凍機とその運転方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特公昭58−15703号公報
【特許文献2】特開平6−347126号公報
【特許文献3】特開平7−139844号公報
【特許文献4】特開平11−304275号公報
【特許文献5】特開平11−304276号公報
【特許文献6】特開平11−304277号公報
水を冷媒とする吸収冷凍機で、0℃以下のマイナス温度の冷媒温度とする場合、冷媒の凍結を防ぐため、蒸発器の冷媒に吸収剤を混入し、凍結温度を低下させることは、従来から公知である(特公昭58−15703号公報)。
また、特開平6−347126号公報には、蒸発器に保有する吸収剤を一定とし、液面を一定に保つことで、蒸発器濃度を一定に保つことが、特開平7−139844号公報には、蒸発器/吸収器を2組持ち、吸収剤を入れた蒸発器と組になる吸収器を、もう一方の蒸発器で冷却し、吸収器の結晶濃度を回避することが、さらに、特開平11−304275号、特開平11−304276号、特開平11−304277号各公報は、2台の単効用機で二重効用とし、一方の蒸発器で、吸収剤を入れた蒸発器と組になる吸収器を冷却し、吸収器の結晶濃度を回避することが、それぞれ記載されている。
しかし、これらの冷凍機では、マイナス温度取出し専用となっており、蒸発器の吸収剤濃度をほぼ一定として、凍結を防止しているので、マイナス温度が不要でプラス温度で運転する場合でも、マイナス温度取出時の悪い効率が若干改善される程度にとどまっている。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、蒸発器からのブラインの取出し温度に合わせて効率を改善し、特に、マイナス温度取出し運転からプラス温度取出し運転になったときに、効率を大幅に改善することができる吸収冷凍機とその運転方法を提供することをを課題とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明では、再生器、凝縮器、吸収器及び蒸発器を有し、該蒸発器の伝熱部に散布する冷媒液に溶質を添加して不凍液とした吸収冷凍機において、前記蒸発器に保有する冷媒液中の溶質の量を一定に保持すると共に、蒸発器の液溜め部に保有する冷媒液量を前記凝縮器から導入される冷媒液量により調節して、蒸発器の冷媒液の溶質濃度を制御する制御機構を有することを特徴とする吸収冷凍機としたものである。
前記吸収冷凍機において、二段濃縮サイクルを可能にする補助吸収器と補助再生器とを設けると共に、該二段濃縮サイクルを有効あるいは無効に変更するサイクル変更機構を備えることができる。
【0005】
また、本発明では、前記の吸収冷凍機の運転方法において、前記蒸発器で冷却するブラインの制御目標温度を、少なくとも2値以上有し、該制御目標温度に合わせて、蒸発器の液溜め部の冷媒液の溶質濃度を制御して運転することを特徴とする吸収冷凍機の運転方法としたものである。
前記吸収冷凍機の運転方法において、前記ブラインの制御目標温度が、前記蒸発器で冷却するブライン温度をマイナス温度とする運転モードと、該ブライン温度を空調に合わせた温度とする運転モードとを有し、前記運転モードにより蒸発器の液溜め部の冷媒液の溶質濃度を制御することができ、また、前記冷媒液の溶質濃度の制御は、前記蒸発器の液溜め部に液面を検知、調節する液面スイッチ又は液面スイッチの作動位置を少なくとも2個設けて行い、前記制御目標温度に合わせた運転モードによって、使用する液面スイッチ又は作動位置を選択することとできる。
【0006】
【発明の実施の形態】
次に、本発明を詳細に説明する。
本発明において、0℃以下の冷媒温度でも凍結しないように、蒸発器で冷媒液に添加して不凍液とする溶質には、吸収冷凍機で冷媒を吸収するために用いる吸収剤、あるいはエチレングリコール、プロピレングリコールなどを用いることができる。
そして、マイナス温度取出しの時は、冷媒中の不凍液の溶質濃度を、冷媒が凍結しない濃度まで上げ、また、プラス温度で取出す時は、その濃度を薄くすることとしている。
本発明では、蒸発器に保有する不凍液の溶質の量を一定とし、冷媒の量を増減することで溶質濃度を変化させている。具体的な例としては、蒸発器が保有する冷媒量を液面高さで管理することで溶質の濃度変化が可能となる。
【0007】
吸収冷凍機の効率と蒸発器の溶質濃度との関係は、蒸発器中の不凍液の溶質濃度が濃いときには、冷媒の粘性が上昇し、熱伝導率が低下するなど、伝熱は悪くなり、同一ブライン温度を取出すにも冷媒の温度は低くする必要がある。また、蒸気圧降下(沸点上昇)が大きくなるので、その飽和蒸気温度はますます低くなり、濃度の薄い冷媒のときよりも強い吸収器能力が必要で、吸収溶液側の濃度が濃くなる。吸収溶液の結晶限界のため、濃溶液の溶液濃度に制限があり、吸収溶液サイクルの濃度幅が小さくなり、効率はますます低下する。
プラス温度を取出す時は、伝熱係数が同じであるとしても冷媒温度が上昇するが、冷媒中の溶質濃度を薄くすることで、伝熱が改善されてさらに冷媒温度が上昇、また蒸気圧降下も少なくなるので、飽和蒸気温度がさらに上昇して、ますます吸収溶液側の濃度が低下し、サイクルの濃度幅を大きくすることができ、効率が上昇する。
【0008】
また、吸収冷凍機の効率とサイクル変更との関係は、マイナス温度取出しの時、吸収能力を大幅に上げる必要があり、吸収器の濃度が濃くなっており、プラス温度取出しのときと同一サイクルで吸収溶液の再生をしようとすると、熱源の必要温度が非常に高くなる。熱源温度に制限のあるとき、たとえば、熱源温度が100℃以下のとき、マイナス温度取出しには、二段濃縮サイクルが必要となり、低いCOPとなるが、プラス温度取出し時には、単効用サイクルにしてCOPを約二倍にすることができる。上記の蒸発器の濃度と併せて行うことで、さらに効率改善ができる。
また、同様に、二重効用サイクルと、二段吸収を組込んだ二重効用サイクルとの切替え等で改善ができる。
次に、本発明を図面を用いて説明する。
【0009】
図1は、単効用吸収冷凍機に本発明を適用した一例を示すフロー構成図である。
図1において、Gは再生器、Cは凝縮器、Aは吸収器、Eは蒸発器、XLは溶液熱交換器、SPは溶液ポンプ、RPは冷媒ポンプ、V1は調節弁、LSは液面検出器である。図1では、冷媒を吸収した希溶液は、吸収器Aから溶液熱交換器XLの被加熱側を通り、再生器Gに送られる。再生器Gで、温水あるいは蒸気などの熱源により加熱濃縮され、濃縮された濃溶液は溶液熱交換器XLの加熱側を通り、吸収器Aに戻る。一方、再生器Gで発生した冷媒蒸気は凝縮器Cに入り、冷却されて凝縮液となり、凝縮器下部の冷媒タンク(液溜め、別置きでも可)に溜まる。タンクに溜まった冷媒液は、蒸発器Eに設けた液面検出器LSの信号で、液面を目標値にするように、弁V1を調節し、蒸発器Eに導入される。蒸発器Eには、冷媒液を不凍液にする溶質が一定量入っており、液面を調節することで、冷媒量が調節され、目標の不凍液の溶質濃度となる。この冷媒は、蒸発器Eの上部から伝熱部に散水され、被冷却媒体であるブラインから熱を奪い、冷媒の一部は蒸発して、吸収器Aの吸収溶液に吸収される。
【0010】
マイナス温度取出しのときは、不凍液の溶質濃度を濃く、プラス温度のときは薄くすると効率のよい運転ができるので、濃度制御のため、この例では、マイナス温度取出しのときは、液面をL1位置で、プラス温度のときは液面をL2で制御するようにしている。
蒸発器Eには、冷媒中に一定量の溶質を保有させているが、長時間の運転を続ける内に保有量が変化することがあるので、冷媒液を蒸発器Eから吸収器Aあるいは吸収溶液を吸収器Aから蒸発器Eに(図示していないが)、出入する弁を有する配管を設けて、シーズン毎のメンテナンスによる調節を容易にしてもよい。
【0011】
図2は、図1の吸収冷凍機のサイクルをデューリング線図上に示したもので、図2(a)がマイナス温度時、図2(b)がプラス温度時のサイクル線図である。破線で示す結晶ラインは、溶質として用いる吸収剤にLiBrとCaClを2:1で混合したものである(LiBr単独の場合より、結晶濃度を数%〜10%程度濃い方にずらすことができる)。
マイナス温度を取り出すときは、結晶ラインに近づくので溶液循環量を増して、濃溶液濃度を少しでも薄くしようとしている。プラス温度のときは、結晶ラインまで余裕があるので、溶液循環量を少なくし、濃度幅を広く取ってサイクル効率をよくしている。溶液循環量の増減は、溶液ポンプSPの回転数をインバータによる電源の周波数調整で行っている。
【0012】
図3は、本発明の吸収冷凍機の他の例を示すフロー構成図で、サイクル切換えによる二段濃縮/単効用の混合機で、蒸発器E、吸収器A、再生器G、凝縮器C、補助吸収器AX、補助再生器GX及び低温側熱交換器XL、高温側熱交換器XHから構成されている。
図3では、弁V2と弁V3で、溶液のサイクルが変更できる。図3の実線の矢印は、マイナス温度取出しに対応する二段濃縮サイクルの場合を示す。
図3において、蒸発器でマイナス温度取出しのときは、蒸発器Eの上部から伝熱部に不凍液となっている冷媒が散水され、被冷却媒体であるブラインから熱を奪い、冷媒の一部が蒸発する。吸収器Aに導かれた濃溶液は、冷却水で冷却されながら、蒸発器Eからの冷媒蒸気を吸収し、希溶液となる。吸収器Aからの希溶液は、弁V2を通って補助再生器GXに送られ、温水などの熱源で加熱濃縮され濃溶液となり、吸収器Aに戻る。
【0013】
補助再生器GXで発生した冷媒蒸気は、補助吸収器AXで吸収溶液に吸収される。補助吸収器AXの希溶液は、溶液ポンプSPXで再生器Gに送られ、温水などの熱源で加熱減縮され濃溶液となり、弁V3を通って補助吸収器AXに戻る。再生器Gで発生した冷媒蒸気は、凝縮器Cに入り、冷却されて凝縮液となり凝縮器C下部の冷媒タンク(液溜め)に溜まる。タンクに溜まった冷媒液は、蒸発器Eに設けた液面検出器LSの信号で、液面を目標値にするように、弁V1を調節し蒸発器Eに導入される。蒸発器Eには、冷媒中に不凍液とすべき溶質が一定量入っており、液面を冷媒量の少ないL1に調節することで、不凍液濃度の濃い目標濃度となる。
【0014】
蒸発器Eでプラス温度取出しのときは、弁V2と弁V3を切り替え、溶液を破線の矢印方向に流し、補助吸収器AX、補助再生器GXをはずして、単効用サイクルを形成する。即ち、吸収器Aからの希溶液を低温溶液熱交換器XLを通した後、弁V2で高温熱交換器XHを経由して再生器Gに導く。再生器Gで加熱濃縮された濃溶液は、高温熱交換器XHの加熱側を通った後、弁V3で低温溶液熱交換器XL経由で吸収器Aに導く。
再生器Gで発生した冷媒蒸気は、凝縮器Cで冷却されて凝縮液となり、下部の冷媒タンクに溜まる。タンクに溜まった冷媒液は、蒸発器Eに設けた液面検出器LSの信号で、液面を目標値L2にするように、弁V1を調節し蒸発器Eに導入される。蒸発器の溶質濃度は、冷媒量が多いことで薄くなっている。この冷媒は、蒸発器Eの上部から伝熱部に散水され、被冷却媒体であるブラインから熱を奪い、冷媒の一部は蒸発して、吸収器Aの吸収溶液に吸収される。
【0015】
図4は、図3において、二段濃縮と単効用の混合機で連続的なサイクル変更を行うフロー構成図である。
図4においては、サイクル変更を弁V2’と弁V3’で行うようににしたものであり、弁V2’、弁V3’で溶液を矢印方向に流すことで、図3の弁V2、弁V3の矢印の場合と同じサイクルができる。また、弁V2’、弁V3’の切替えで、溶液を吸収器A→補助吸収器AX→再生器G→補助再生器GX→吸収器Aのサイクルとすることができ、弁V4の熱源投入変化で、単効用サイクル(V4全閉)から二段濃縮サイクル方向(V4開方向)とすることができる。
【0016】
図5は、サイクル切替えによる二段濃縮と二重効用の混合機のフロー構成図である。
図5では、二重効用サイクルに二段濃縮サイクルを組込んだ場合の例を示し、マイナス温度にするとき、弁V3’、弁V5で、実線の矢印方向に溶液を流し、二段濃縮サイクルを機能させ、溶液濃度が高濃度になっても、二重効用サイクルに必要な熱源温度が高くなり過ぎるのを防ぐ。
一方、プラス温度にするとき、弁V3’、弁V5で、破線の矢印方向に溶液を流し、二段濃縮機能を外し、完全な二重効用サイクルとして効率を上げる。
なお、図3に対する図4と同様な切替えを、図5に対しても設けることができる。
【0017】
【発明の効果】
本発明によれば、排熱などを利用し、夜間は氷蓄熱をするためマイナス温度の運転をし、昼間は空調用途にプラス温度の運転をするような吸収冷凍機において、マイナス温度取出し運転からプラス温度取出し運転になったときに、効率を大幅に改善することができた。
【図面の簡単な説明】
【図1】本発明の吸収冷凍機の一例を示すフロー構成図。
【図2】図1の吸収冷凍機の冷凍サイクルのデューリング線図で、(a)マイナス温度時、(b)プラス温度時。
【図3】本発明の吸収冷凍機の他の例を示すフロー構成図。
【図4】本発明の吸収冷凍機の他の例を示すフロー構成図。
【図5】本発明の吸収冷凍機の他の例を示すフロー構成図。
【符号の説明】
G:再生器、C:凝縮器、A:吸収器、E:蒸発器、GL:高温再生器、AX:補助吸収器、GX:補助再生器、XL:低温側熱交換器、XM:中温側熱交換器、XH:高温側熱交換器、SP、SPX:溶液ポンプ、RP:冷媒ポンプ、V1〜V5、V2’、V3’:調節弁、LS:液面検出器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption refrigerator, and particularly to an absorption refrigerator that uses negative heat to store ice heat during the night by using exhaust heat or the like, and to operate at a plus temperature during the daytime for air conditioning. It relates to the driving method.
[0002]
[Prior art]
[Patent Document 1] JP-B-58-15703 [Patent Document 2] JP-A-6-347126 [Patent Document 3] JP-A-7-139844 [Patent Document 4] JP-A-11-304275 [Patent] Reference 5: Japanese Patent Application Laid-Open No. H11-304276 Patent Document 6: Japanese Patent Application Laid-Open No. H11-304277 In an absorption refrigerator using water as a refrigerant, when the temperature of the refrigerant is 0 ° C. or less, the refrigerant is prevented from freezing. Therefore, it is conventionally known to lower the freezing temperature by mixing an absorbent into the refrigerant of the evaporator (Japanese Patent Publication No. 58-15703).
Japanese Patent Application Laid-Open No. Hei 6-347126 discloses that the concentration of the evaporator is kept constant by keeping the absorbent held in the evaporator constant and keeping the liquid level constant. In addition, it is particularly important to have two sets of evaporators / absorbers, and to cool the absorber paired with the evaporator containing the absorbent with the other evaporator to avoid the crystal concentration of the absorber. Japanese Unexamined Patent Publication Nos. Hei 11-304275, Hei 11-304276 and Hei 11-304277 each disclose a double effect with two single-effect machines and use one evaporator in combination with an evaporator containing an absorbent. It has been described respectively to cool the absorber which results in avoiding the crystal concentration of the absorber.
However, these refrigerators are exclusively for taking out minus temperature, and the concentration of the absorbent in the evaporator is kept almost constant to prevent freezing. The efficiency at the time of temperature removal is only slightly improved.
[0003]
[Problems to be solved by the invention]
In view of the above prior art, the present invention improves efficiency in accordance with the temperature at which brine is taken out from an evaporator, and in particular, significantly improves efficiency when a minus temperature taking out operation is changed to a plus temperature taking out operation. It is an object of the present invention to provide an absorption refrigerator capable of performing the above-mentioned method and an operation method thereof.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a refrigerating machine, a condenser, an absorbing machine, and an evaporator, in which a solute is added to a refrigerant liquid sprayed to a heat transfer section of the evaporator to form an antifreezing liquid. In the machine, while maintaining a constant amount of solute in the refrigerant liquid held in the evaporator, while adjusting the amount of refrigerant liquid held in the liquid reservoir of the evaporator by the amount of refrigerant liquid introduced from the condenser An absorption refrigerator having a control mechanism for controlling the solute concentration of the refrigerant liquid in the evaporator.
In the absorption refrigerator, an auxiliary absorber and an auxiliary regenerator that enable a two-stage concentration cycle can be provided, and a cycle change mechanism that changes the two-stage concentration cycle to valid or invalid can be provided.
[0005]
According to the present invention, in the method for operating an absorption refrigerator, the control target temperature of the brine to be cooled by the evaporator is at least two values, and the liquid reservoir of the evaporator is adjusted in accordance with the control target temperature. And controlling the solute concentration of the refrigerant liquid to operate the absorption refrigerator.
In the method of operating the absorption refrigerator, the control target temperature of the brine includes an operation mode in which the temperature of the brine cooled by the evaporator is a minus temperature, and an operation mode in which the brine temperature is adjusted to a temperature suitable for air conditioning. The solute concentration of the refrigerant liquid in the liquid reservoir of the evaporator can be controlled by the operation mode, and the control of the solute concentration of the refrigerant liquid detects the liquid level in the liquid reservoir of the evaporator. The liquid level switch or the operating position of the liquid level switch to be adjusted is provided and performed, and the liquid level switch or the operating position to be used can be selected by an operation mode corresponding to the control target temperature.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail.
In the present invention, to prevent freezing even at a refrigerant temperature of 0 ° C. or less, solutes added to the refrigerant liquid in the evaporator to form an antifreeze liquid include an absorbent used for absorbing the refrigerant in the absorption refrigerator, or ethylene glycol, Propylene glycol or the like can be used.
When taking out the minus temperature, the solute concentration of the antifreeze in the refrigerant is increased to a concentration at which the refrigerant does not freeze, and when taking out at the plus temperature, the concentration is made thin.
In the present invention, the solute concentration of the antifreeze held in the evaporator is kept constant, and the solute concentration is changed by increasing or decreasing the amount of the refrigerant. As a specific example, the concentration of the solute can be changed by controlling the amount of the refrigerant held by the evaporator by the liquid level.
[0007]
The relationship between the efficiency of the absorption refrigerator and the solute concentration of the evaporator is that when the solute concentration of the antifreeze in the evaporator is high, the heat transfer becomes worse, for example, the viscosity of the refrigerant increases, and the heat conductivity decreases. In order to extract the brine temperature, it is necessary to lower the temperature of the refrigerant. In addition, since the vapor pressure drop (boiling point rise) becomes large, the saturated vapor temperature becomes further lower, and a stronger absorbent capacity is required than in the case of a low concentration refrigerant, and the concentration on the absorption solution side becomes higher. Due to the crystal limit of the absorption solution, the solution concentration of the concentrated solution is limited, the concentration range of the absorption solution cycle is reduced, and the efficiency is further reduced.
When extracting the plus temperature, the refrigerant temperature rises even if the heat transfer coefficient is the same, but by reducing the solute concentration in the refrigerant, the heat transfer is improved, the refrigerant temperature further rises, and the vapor pressure drops Therefore, the saturated vapor temperature further increases, the concentration on the absorption solution side further decreases, the cycle width of the cycle can be increased, and the efficiency increases.
[0008]
Also, the relationship between the efficiency of the absorption refrigerator and the cycle change is that when taking out minus temperature, it is necessary to greatly increase the absorption capacity, the concentration of the absorber is high, and in the same cycle as when taking out plus temperature. When attempting to regenerate the absorbing solution, the required temperature of the heat source becomes very high. When the heat source temperature is limited, for example, when the heat source temperature is 100 ° C. or less, a two-stage concentration cycle is required to remove the negative temperature, and a low COP is obtained. Can be approximately doubled. Efficiency can be further improved by performing it in combination with the concentration of the above evaporator.
Similarly, improvement can be achieved by switching between a double-effect cycle and a double-effect cycle incorporating two-stage absorption.
Next, the present invention will be described with reference to the drawings.
[0009]
FIG. 1 is a flowchart showing an example in which the present invention is applied to a single-effect absorption refrigerator.
In FIG. 1, G is a regenerator, C is a condenser, A is an absorber, E is an evaporator, XL is a solution heat exchanger, SP is a solution pump, RP is a refrigerant pump, V1 is a control valve, and LS is a liquid level. It is a detector. In FIG. 1, the dilute solution that has absorbed the refrigerant is sent from the absorber A to the regenerator G through the heated side of the solution heat exchanger XL. In the regenerator G, the concentrated solution is heated and concentrated by a heat source such as hot water or steam, and the concentrated solution passes through the heating side of the solution heat exchanger XL and returns to the absorber A. On the other hand, the refrigerant vapor generated in the regenerator G enters the condenser C, is cooled and becomes a condensed liquid, and accumulates in a refrigerant tank (a liquid reservoir or a separate reservoir) below the condenser. The refrigerant liquid stored in the tank is introduced into the evaporator E by adjusting the valve V1 so that the liquid level becomes a target value by a signal of the liquid level detector LS provided in the evaporator E. The evaporator E contains a certain amount of solute that turns the refrigerant liquid into an antifreeze. By adjusting the liquid level, the amount of the refrigerant is adjusted, and the target solute concentration of the antifreeze is obtained. The refrigerant is sprinkled from the upper part of the evaporator E to the heat transfer portion, and takes heat from the brine to be cooled, and a part of the refrigerant evaporates and is absorbed by the absorbing solution of the absorber A.
[0010]
When taking out the minus temperature, the solute concentration of the antifreeze liquid is made high, and when it is taking out the minus temperature, the liquid level is set to the L1 position. When the temperature is positive, the liquid level is controlled by L2.
In the evaporator E, a certain amount of solute is retained in the refrigerant, but the retained amount may change during long-time operation. A pipe having a valve for entering and exiting the solution from the absorber A to the evaporator E (not shown) may be provided to facilitate seasonal maintenance adjustment.
[0011]
FIG. 2 shows a cycle of the absorption refrigerator of FIG. 1 on a During diagram. FIG. 2 (a) is a cycle diagram at a minus temperature, and FIG. 2 (b) is a cycle diagram at a plus temperature. The crystal line indicated by the broken line is a mixture of LiBr and CaCl 2 at a ratio of 2: 1 to the absorbent used as a solute (the crystal concentration can be shifted to be higher by several% to 10% than in the case of LiBr alone). ).
When taking out the minus temperature, it approaches the crystal line, so the circulation amount of the solution is increased, and the concentration of the concentrated solution is reduced even slightly. At the plus temperature, there is room for the crystal line, so the amount of circulating solution is reduced and the concentration range is widened to improve cycle efficiency. The increase and decrease of the solution circulation amount is performed by adjusting the number of rotations of the solution pump SP by adjusting the frequency of the power supply by the inverter.
[0012]
FIG. 3 is a flow configuration diagram showing another example of the absorption refrigerator of the present invention, which is a two-stage concentration / single-effect mixer by switching the cycle, and includes an evaporator E, an absorber A, a regenerator G, and a condenser C. , An auxiliary absorber AX, an auxiliary regenerator GX, a low-temperature heat exchanger XL, and a high-temperature heat exchanger XH.
In FIG. 3, the cycle of the solution can be changed by the valves V2 and V3. The solid arrow in FIG. 3 indicates the case of the two-stage concentration cycle corresponding to the minus temperature extraction.
In FIG. 3, when the minus temperature is taken out by the evaporator, the refrigerant which is the antifreeze liquid is sprinkled from the upper part of the evaporator E to the heat transfer portion, and the heat is taken from the brine as the medium to be cooled, and a part of the refrigerant is removed. Evaporate. The concentrated solution guided to the absorber A absorbs the refrigerant vapor from the evaporator E while being cooled by the cooling water, and becomes a dilute solution. The dilute solution from the absorber A is sent to the auxiliary regenerator GX through the valve V2, and is heated and concentrated by a heat source such as hot water to become a concentrated solution, and returns to the absorber A.
[0013]
The refrigerant vapor generated in the auxiliary regenerator GX is absorbed by the absorption solution in the auxiliary absorber AX. The dilute solution in the auxiliary absorber AX is sent to the regenerator G by the solution pump SPX, and reduced by heating with a heat source such as hot water to become a concentrated solution, and returns to the auxiliary absorber AX through the valve V3. The refrigerant vapor generated in the regenerator G enters the condenser C, is cooled and becomes condensed liquid, and is stored in a refrigerant tank (liquid reservoir) below the condenser C. The refrigerant liquid stored in the tank is introduced into the evaporator E by adjusting the valve V1 so that the liquid level becomes a target value in accordance with a signal from the liquid level detector LS provided in the evaporator E. The evaporator E contains a certain amount of solute to be made into an antifreeze in the refrigerant. By adjusting the liquid level to L1 with a small amount of the refrigerant, the target concentration of the antifreeze is increased.
[0014]
When the plus temperature is taken out by the evaporator E, the valves V2 and V3 are switched, the solution is flowed in the direction of the dashed arrow, and the auxiliary absorber AX and the auxiliary regenerator GX are removed to form a single effect cycle. That is, the dilute solution from the absorber A passes through the low-temperature solution heat exchanger XL, and is then guided to the regenerator G via the high-temperature heat exchanger XH by the valve V2. The concentrated solution heated and concentrated in the regenerator G passes through the heating side of the high-temperature heat exchanger XH, and is guided to the absorber A via the low-temperature solution heat exchanger XL by the valve V3.
The refrigerant vapor generated in the regenerator G is cooled in the condenser C to become a condensed liquid, and accumulates in the lower refrigerant tank. The refrigerant liquid stored in the tank is introduced into the evaporator E by adjusting the valve V1 so that the liquid level becomes the target value L2 based on a signal from the liquid level detector LS provided in the evaporator E. The solute concentration in the evaporator is reduced due to the large amount of refrigerant. The refrigerant is sprinkled from the upper part of the evaporator E to the heat transfer portion, and takes heat from the brine to be cooled, and a part of the refrigerant evaporates and is absorbed by the absorbing solution of the absorber A.
[0015]
FIG. 4 is a flow configuration diagram in FIG. 3 in which a continuous cycle change is performed by a two-stage concentration and single-effect mixer.
In FIG. 4, the cycle change is performed by the valves V2 ′ and V3 ′, and the solution is caused to flow in the arrow direction by the valves V2 ′ and V3 ′, so that the valves V2 and V3 of FIG. The same cycle as in the case of the arrow is performed. Further, by switching the valves V2 'and V3', the solution can be cycled from the absorber A → the auxiliary absorber AX → the regenerator G → the auxiliary regenerator GX → the absorber A, and the heat source input change of the valve V4. Thus, the direction can be changed from the single-effect cycle (V4 fully closed) to the two-stage concentration cycle direction (V4 open direction).
[0016]
FIG. 5 is a flow diagram of a mixer for two-stage concentration and double effect by cycle switching.
FIG. 5 shows an example in which a two-stage concentration cycle is incorporated in a double-effect cycle. When the temperature is lowered to minus temperature, the solution is flowed in the direction indicated by the solid line at valves V3 'and V5, and the two-stage concentration cycle is performed. To prevent the heat source temperature required for the double effect cycle from becoming too high even when the solution concentration becomes high.
On the other hand, when the temperature is increased, the solution is flowed in the direction of the dashed arrow at the valves V3 'and V5 to remove the two-stage concentration function and increase the efficiency as a complete double-effect cycle.
Note that the same switching as in FIG. 4 for FIG. 3 can be provided for FIG.
[0017]
【The invention's effect】
According to the present invention, using an exhaust heat or the like, a negative temperature operation is performed in order to store ice heat at night, and an absorption chiller that operates at a positive temperature for air conditioning in the daytime, from the negative temperature extraction operation. Efficiency could be greatly improved when the operation became positive temperature extraction operation.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of an absorption refrigerator of the present invention.
FIG. 2 is a During diagram of the refrigeration cycle of the absorption refrigerator of FIG. 1, where (a) is at minus temperature and (b) is at plus temperature.
FIG. 3 is a flow diagram showing another example of the absorption refrigerator of the present invention.
FIG. 4 is a flow diagram showing another example of the absorption refrigerator of the present invention.
FIG. 5 is a flow diagram showing another example of the absorption refrigerator of the present invention.
[Explanation of symbols]
G: regenerator, C: condenser, A: absorber, E: evaporator, GL: high temperature regenerator, AX: auxiliary absorber, GX: auxiliary regenerator, XL: low temperature side heat exchanger, XM: medium temperature side Heat exchanger, XH: High-temperature side heat exchanger, SP, SPX: Solution pump, RP: Refrigerant pump, V1-V5, V2 ', V3': Control valve, LS: Liquid level detector

Claims (5)

再生器、凝縮器、吸収器及び蒸発器を有し、該蒸発器の伝熱部に散布する冷媒液に溶質を添加して不凍液とした吸収冷凍機において、前記蒸発器に保有する冷媒液中の溶質の量を一定に保持すると共に、蒸発器の液溜め部に保有する冷媒液量を前記凝縮器から導入される冷媒液量により調節して、蒸発器の冷媒液の溶質濃度を制御する制御機構を有することを特徴とする吸収冷凍機。In an absorption refrigerator having a regenerator, a condenser, an absorber, and an evaporator, and a solute added to a refrigerant liquid sprayed to a heat transfer portion of the evaporator to make an antifreeze liquid, the refrigerant liquid held in the evaporator The amount of the solute is kept constant, and the amount of the refrigerant liquid held in the liquid reservoir of the evaporator is adjusted by the amount of the refrigerant liquid introduced from the condenser to control the solute concentration of the refrigerant liquid in the evaporator. An absorption refrigerator having a control mechanism. 請求項1記載の吸収冷凍機において、二段濃縮サイクルを可能にする補助吸収器と補助再生器とを設けると共に、該二段濃縮サイクルを有効あるいは無効に変更するサイクル変更機構を備えたことを特徴とする吸収冷凍機。The absorption refrigerator according to claim 1, further comprising an auxiliary absorber and an auxiliary regenerator that enable a two-stage enrichment cycle, and a cycle changing mechanism that changes the two-stage enrichment cycle to valid or invalid. Characteristic absorption refrigerator. 請求項1又は2記載の吸収冷凍機の運転方法において、前記蒸発器で冷却するブラインの制御目標温度を、少なくとも2値以上有し、該制御目標温度に合わせて、蒸発器の液溜め部の冷媒液の溶質濃度を制御して運転することを特徴とする吸収冷凍機の運転方法。3. The method for operating an absorption refrigerator according to claim 1, wherein the control target temperature of the brine cooled by the evaporator is at least two values, and the liquid storage portion of the evaporator is adjusted in accordance with the control target temperature. An operation method of an absorption refrigerator, wherein the operation is performed by controlling a solute concentration of a refrigerant liquid. 前記ブラインの制御目標温度が、前記蒸発器で冷却するブライン温度をマイナス温度とする運転モードと、該ブライン温度を空調に合わせた温度とする運転モードとを有し、前記運転モードにより蒸発器の液溜め部の冷媒液の溶質濃度を制御することを特徴とする請求項3に記載の吸収冷凍機の運転方法。The control target temperature of the brine has an operation mode in which the temperature of the brine cooled by the evaporator is a minus temperature, and an operation mode in which the temperature of the brine is adjusted to a temperature suitable for air conditioning. The method according to claim 3, wherein the solute concentration of the refrigerant liquid in the liquid reservoir is controlled. 前記冷媒液の溶質濃度の制御は、前記蒸発器の液溜め部に液面を検知、調節する液面スイッチ又は液面スイッチの作動位置を少なくとも2個設けて行い、前記制御目標温度に合わせた運転モードによって、使用する液面スイッチ又は作動位置を選択することを特徴とする請求項4に記載の吸収冷凍機の運転方法。The control of the solute concentration of the refrigerant liquid is performed by providing at least two operation positions of a liquid level switch or a liquid level switch for detecting and adjusting the liquid level in the liquid reservoir of the evaporator, and adjusting the temperature to the control target temperature. The method according to claim 4, wherein a liquid level switch or an operation position to be used is selected according to the operation mode.
JP2002319522A 2002-11-01 2002-11-01 Operation method of absorption refrigerator Expired - Fee Related JP4155797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319522A JP4155797B2 (en) 2002-11-01 2002-11-01 Operation method of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319522A JP4155797B2 (en) 2002-11-01 2002-11-01 Operation method of absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004150776A true JP2004150776A (en) 2004-05-27
JP4155797B2 JP4155797B2 (en) 2008-09-24

Family

ID=32462346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319522A Expired - Fee Related JP4155797B2 (en) 2002-11-01 2002-11-01 Operation method of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4155797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529652A (en) * 2006-03-10 2009-08-20 ヌトソス、ミカエル Method and arrangement for optimizing heat transfer characteristics in a heat exchange ventilation system
WO2014023033A1 (en) * 2012-08-06 2014-02-13 广州市华德工业有限公司 Anti-icing solution regeneration apparatus for use in air-conditioning system
JP2017048935A (en) * 2015-08-31 2017-03-09 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165458A (en) * 1974-12-03 1976-06-07 Daikin Ind Ltd
JPS5815703B2 (en) * 1979-04-23 1983-03-26 工業技術院長 absorption refrigerator
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPH06347126A (en) * 1993-06-08 1994-12-20 Ebara Corp Absorption freezer
JPH07139844A (en) * 1993-11-12 1995-06-02 Hitachi Ltd Absorption freezer
JPH11304276A (en) * 1998-04-24 1999-11-05 Ebara Corp Absorption refrigerating machine
JPH11304275A (en) * 1998-04-24 1999-11-05 Ebara Corp Absorption refrigerating machine
JPH11304277A (en) * 1998-04-24 1999-11-05 Ebara Corp Absorption refrigerating machine
JP2001065930A (en) * 1999-08-31 2001-03-16 Ishikawajima Harima Heavy Ind Co Ltd Heat storage type air conditioner
JP2002061983A (en) * 2000-08-23 2002-02-28 Takuma Co Ltd Absorption refrigerating machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165458A (en) * 1974-12-03 1976-06-07 Daikin Ind Ltd
JPS5815703B2 (en) * 1979-04-23 1983-03-26 工業技術院長 absorption refrigerator
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPH06347126A (en) * 1993-06-08 1994-12-20 Ebara Corp Absorption freezer
JPH07139844A (en) * 1993-11-12 1995-06-02 Hitachi Ltd Absorption freezer
JPH11304276A (en) * 1998-04-24 1999-11-05 Ebara Corp Absorption refrigerating machine
JPH11304275A (en) * 1998-04-24 1999-11-05 Ebara Corp Absorption refrigerating machine
JPH11304277A (en) * 1998-04-24 1999-11-05 Ebara Corp Absorption refrigerating machine
JP2001065930A (en) * 1999-08-31 2001-03-16 Ishikawajima Harima Heavy Ind Co Ltd Heat storage type air conditioner
JP2002061983A (en) * 2000-08-23 2002-02-28 Takuma Co Ltd Absorption refrigerating machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529652A (en) * 2006-03-10 2009-08-20 ヌトソス、ミカエル Method and arrangement for optimizing heat transfer characteristics in a heat exchange ventilation system
US8464783B2 (en) 2006-03-10 2013-06-18 Mikael Nutsos Method and arrangement for optimizing heat transfer properties in heat exchange ventilation systems
WO2014023033A1 (en) * 2012-08-06 2014-02-13 广州市华德工业有限公司 Anti-icing solution regeneration apparatus for use in air-conditioning system
JP2017048935A (en) * 2015-08-31 2017-03-09 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator

Also Published As

Publication number Publication date
JP4155797B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
CN105683684B (en) Absorption refrigeration system
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JP4155797B2 (en) Operation method of absorption refrigerator
JP6871015B2 (en) Absorption refrigeration system
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
KR101622045B1 (en) Absorption Heat Pump
KR102010832B1 (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP3732893B2 (en) Control method of absorption chiller / heater
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP5260895B2 (en) Absorption refrigerator
JP2012068019A (en) Absorption refrigerating machine
US20200172782A1 (en) Absorption cycle apparatus and related method
KR101531339B1 (en) Two stage absorption refrigerator of low temperature water for maintaining level of absorbent liquid and preventing crystal
JP3832191B2 (en) Absorption refrigerator
JP3146373B2 (en) Solution flow control method for absorption chiller / heater
JP4278315B2 (en) Absorption refrigerator
JP3213020B2 (en) Absorption refrigerator
JP2020046128A (en) Absorption refrigerator
JP2892519B2 (en) Absorption heat pump equipment
JP2004156815A (en) Absorption type energy storage refrigerating system
JPS6118368Y2 (en)
JPH07167465A (en) Ice heat-accumulating system utilizing absorption type heat pump
JPH0886531A (en) Dual-effect absorption refrigerator as well as hot and chilled water generator
JP2004116800A (en) Hybrid air-conditioning machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4155797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees