JP2012068019A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2012068019A
JP2012068019A JP2012002143A JP2012002143A JP2012068019A JP 2012068019 A JP2012068019 A JP 2012068019A JP 2012002143 A JP2012002143 A JP 2012002143A JP 2012002143 A JP2012002143 A JP 2012002143A JP 2012068019 A JP2012068019 A JP 2012068019A
Authority
JP
Japan
Prior art keywords
absorber
regenerator
absorbent
heat exchanger
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002143A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimoto
洋 藤本
Tsutomu Wakabayashi
努 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012002143A priority Critical patent/JP2012068019A/en
Publication of JP2012068019A publication Critical patent/JP2012068019A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption refrigerating machine that prevents supercooling of absorbing liquid in an absorber, to improve energy efficiency without reducing absorption capacity of the absorbing liquid, while preventing reduction in coefficient of performance (COP).SOLUTION: An absorption refrigerating machine 100 comprises an absorbing liquid circulation passage 7 where an absorbing liquid D circulates between an absorber 2 and a regenerator 3, and operates by generating a dilute absorbing solution D1 by absorbing refrigerants in the absorber 2 and generating a concentrated absorbing solution D2 by evaporating the refrigerants in the regenerator 3. The absorption refrigerating machine 100 also comprises, in the absorbing liquid circulation passage 7 located outside the absorber 2, an absorber heat exchanger 5 which cools the concentrated absorbing solution D2 which circulates from the regenerator 3 to the absorber 2 by heat exchange with a cooling medium C introduced from the outside, and a cooling medium flow path 13 configured to circulate the cooling medium C between the absorber heat exchanger 5 and a condenser heat exchanger 4a located in a condenser 4 and to discharge it to the outside.

Description

本発明は、吸収器内に吸収液を有する吸収式冷凍機、さらに詳しくは、冷媒液を蒸発させる蒸発器と、蒸発器で発生した冷媒蒸気を吸収液に吸収させて希吸収液を生成する吸収器と、吸収器で生成した希吸収液を加熱手段で加熱して冷媒蒸気と濃吸収液とに分離再生する再生器と、再生器で再生した冷媒蒸気を液化させる凝縮器とを備えた吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator having an absorption liquid in an absorber, more specifically, an evaporator for evaporating a refrigerant liquid, and a refrigerant vapor generated in the evaporator is absorbed into the absorption liquid to generate a diluted absorption liquid. An absorber, a regenerator that heats the dilute absorption liquid generated by the absorber with a heating means to separate and regenerate the refrigerant vapor and the concentrated absorption liquid, and a condenser that liquefies the refrigerant vapor regenerated by the regenerator It relates to an absorption refrigerator.

上記のような吸収式冷凍機は、冷媒液を蒸発器において蒸発させ、この蒸発による気化熱で蒸発器内の熱交換器を通流する冷却対象媒体を冷却し、冷房等の冷熱需要に対応することができる。
このような従来の吸収式冷凍機として、例えば、特許文献1が挙げられる。
特許文献1には、図3に示すように、冷媒液としての水を低圧力下で蒸発させる蒸発器50と、蒸発器50で発生した水蒸気を吸収液に吸収させて希吸収液を生成する吸収器51と、吸収器51で生成した希吸収液を加熱手段52で加熱して水蒸気と濃吸収液とに分離再生する再生器53と、再生器53で再生した水蒸気を液化させる凝縮器54とを備え、吸収器51と再生器53との間で吸収液が循環するように構成された吸収式冷凍機60が開示されている。
したがって、吸収液は、濃度を変化させられた状態で吸収器51と再生器53との間を循環し、冷媒は、相状態を変化させられた状態で蒸発器50、吸収器51、再生器53、蒸発器54の間を移流するサイクルを繰り返すこととなる。
ここで、上記サイクルでは、蒸発器50においては水蒸気の蒸発による気化熱で蒸発器50内の熱交換器55を流通する冷却対象媒体から熱を奪って冷却し、当該冷却対象媒体により回収した冷熱を有効に冷房等の冷熱需要に供給することができ、また、吸収器51においては濃吸収液が吸収器51内でスプレーされて水蒸気を吸収する際の吸収熱を、熱交換器56を流通する冷却媒体により回収して外部に捨てることにより、吸収器51内の吸収液の温度上昇を防止することができる。
The absorption refrigerator as described above evaporates the refrigerant liquid in the evaporator, cools the cooling target medium flowing through the heat exchanger in the evaporator with the heat of vaporization caused by this evaporation, and responds to cooling demand such as cooling. can do.
An example of such a conventional absorption refrigerator is Patent Document 1.
In Patent Document 1, as shown in FIG. 3, an evaporator 50 that evaporates water as a refrigerant liquid under a low pressure, and a water vapor generated in the evaporator 50 is absorbed by the absorbing liquid to generate a diluted absorbing liquid. An absorber 51, a regenerator 53 that heats the dilute absorption liquid generated by the absorber 51 by a heating means 52 to separate and regenerate the water vapor and a concentrated absorption liquid, and a condenser 54 that liquefies the water vapor regenerated by the regenerator 53. And an absorption refrigerator 60 configured to circulate the absorbing liquid between the absorber 51 and the regenerator 53 is disclosed.
Accordingly, the absorption liquid circulates between the absorber 51 and the regenerator 53 in a state where the concentration is changed, and the refrigerant is the evaporator 50, the absorber 51, and the regenerator in a state where the phase state is changed. 53, the cycle of advection between the evaporators 54 is repeated.
Here, in the above-described cycle, in the evaporator 50, heat is removed from the cooling target medium flowing through the heat exchanger 55 in the evaporator 50 by heat of vaporization due to evaporation of water vapor, and the cooling heat recovered by the cooling target medium is recovered. In the absorber 51, the concentrated absorption liquid is sprayed in the absorber 51 and the absorbed heat when absorbing water vapor is circulated through the heat exchanger 56. The temperature of the absorbing liquid in the absorber 51 can be prevented from being raised by collecting with the cooling medium and throwing it outside.

特開平1−219453号公報JP-A-1-219453

上記従来の吸収式冷凍機60では、熱交換器56により吸収器51内の吸収液の温度を作動に必要な適温に保つ。
しかしながら、このような従来の吸収式冷凍機60では、以下の現象が発生することが判明した。
吸収器51内の熱交換器56には比較的低温の冷却媒体(通常、冷却水)が流通しており、当該熱交換器56に再生器53で生成された濃吸収液をスプレーする際には、吸収により発生する吸収熱を系外に出すため冷却媒体で冷却し、冷媒の吸収を促進するが、当該濃吸収液が水蒸気を吸収して希吸収液となり、何らかの理由でこの希吸収液が多量に生成された場合等には、熱交換器56の一部がこの希吸収液に接触して、その熱交換部位で希吸収液を過冷却してしまうことがあった。冷媒の凝縮吸収温度は概ね冷却媒体の温度で決まるが、このような現象を起こしている状態では、過冷却分だけ当該冷媒の凝縮吸収温度が冷却媒体の温度より高くなることとなり、吸収式冷凍機60の成績係数(COP値)を低下させることとなっていた。
In the conventional absorption refrigerator 60, the temperature of the absorbent in the absorber 51 is maintained at an appropriate temperature necessary for operation by the heat exchanger 56.
However, it has been found that the following phenomenon occurs in such a conventional absorption refrigerator 60.
A relatively low-temperature cooling medium (usually cooling water) flows through the heat exchanger 56 in the absorber 51, and when the concentrated absorbent generated in the regenerator 53 is sprayed on the heat exchanger 56, Is cooled with a cooling medium to take out the heat of absorption generated by absorption and promotes absorption of the refrigerant, but the concentrated absorbent absorbs water vapor to become a rare absorbent, and for some reason this rare absorbent When a large amount of is generated, a part of the heat exchanger 56 may come into contact with the diluted absorbent, and the diluted absorbent may be supercooled at the heat exchange site. The condensation absorption temperature of the refrigerant is generally determined by the temperature of the cooling medium. In such a state, the condensation absorption temperature of the refrigerant becomes higher than the temperature of the cooling medium by the amount of supercooling. The coefficient of performance (COP value) of the machine 60 was to be reduced.

本発明は、かかる点に着目してなされたものであり、その目的は、吸収器における吸収液の過冷却を防止することにより、当該吸収液の吸収能力を低下させずに、エネルギー効率を向上させて、成績係数の低下を防止できる吸収式冷凍機を提供する点にある。   The present invention has been made paying attention to such points, and its purpose is to improve energy efficiency without reducing the absorption capacity of the absorption liquid by preventing overcooling of the absorption liquid in the absorber. And an absorption refrigerator that can prevent a decrease in the coefficient of performance.

この目的を達成するために、本発明にかかる吸収式冷凍機の第1特徴構成は、蒸発器、吸収器、再生器、凝縮器を備えるとともに、前記吸収器と前記再生器との間で、吸収液が循環する吸収液循環路を備え、前記吸収器において冷媒が吸収されて希吸収液が生成され、前記再生器において前記冷媒が蒸発して濃吸収液が生成されて作動する吸収式冷凍機であって、前記再生器から前記吸収器に流通する前記濃吸収液を外部から導入された冷却媒体との熱交換により冷却する吸収器用熱交換器を、当該吸収器の外部の前記吸収液循環路に備え、前記冷却媒体を、前記吸収器用熱交換器と前記凝縮器内の凝縮器用熱交換器とを流通させて外部に放出可能に構成された冷却媒体流通路を備えた点にある。   In order to achieve this object, the first characteristic configuration of the absorption refrigerator according to the present invention includes an evaporator, an absorber, a regenerator, and a condenser, and between the absorber and the regenerator, Absorption refrigeration comprising an absorption liquid circulation path through which absorption liquid circulates, wherein the refrigerant is absorbed in the absorber to generate a diluted absorption liquid, and the refrigerant is evaporated in the regenerator to generate a concentrated absorption liquid. An absorber heat exchanger that cools the concentrated absorbent flowing from the regenerator to the absorber by heat exchange with a cooling medium introduced from the outside, and the absorbent outside the absorber The cooling medium is provided in a circulation path, and the cooling medium is provided with a cooling medium flow path configured to allow the cooling medium to be circulated through the absorber heat exchanger and the condenser heat exchanger in the condenser to be discharged to the outside. .

上記第1特徴構成によれば、上記吸収器用熱交換器を吸収器の外部であって、吸収器と吸収器用熱交換器とを連通する吸収液循環路に配置するので、吸収器用熱交換器内において、吸収式冷凍機の外部から導入された比較的低温の冷却媒体と吸収液循環路を流通する濃吸収液との間で熱交換を行って、吸収式冷凍機の運転を良好に維持できる。また、吸収器内に熱交換器を設ける必要がないため、吸収器内に熱交換器が存在することにより、その近傍の希吸収液が過冷却となるという問題は起こり得ない。
したがって、過冷却部位の発生に伴う余分な冷媒の凝縮吸収温度の上昇を招くことがなくなり、成績係数(COP値)の低下を防止することができる。
さらに、冷却媒体Cを共用することにより、装置構成の簡略化を図るとともに、有効に熱を回収して外部に排出することができる。
According to the first characteristic configuration, the heat exchanger for an absorber is disposed outside the absorber and in an absorption liquid circulation path that communicates the absorber and the heat exchanger for the absorber. Heat exchange between the relatively low-temperature cooling medium introduced from the outside of the absorption chiller and the concentrated absorbent flowing through the absorption liquid circulation path to maintain the absorption chiller in good condition it can. Further, since it is not necessary to provide a heat exchanger in the absorber, there is no possibility that the dilute absorbing liquid in the vicinity thereof is supercooled due to the presence of the heat exchanger in the absorber.
Therefore, the increase in the condensation absorption temperature of the extra refrigerant due to the generation of the supercooled portion is not caused, and a decrease in the coefficient of performance (COP value) can be prevented.
Furthermore, by sharing the cooling medium C, it is possible to simplify the configuration of the apparatus and to effectively recover heat and discharge it to the outside.

本発明にかかる吸収式冷凍機の第2特徴構成は、上記第1特徴構成に加え、前記吸収液循環路が、前記吸収器から前記再生器に前記希吸収液を流通する往路と、前記再生器から前記吸収器に前記濃吸収液を流通する復路とを備えて構成され、前記往路と前記復路との間に、前記往路を流通する前記希吸収液の一部を前記復路における前記吸収器用熱交換器の上流側に直接導入するバイパス路を設けた点にある。   According to a second characteristic configuration of the absorption refrigerator according to the present invention, in addition to the first characteristic configuration, the absorption liquid circulation path includes a forward path through which the rare absorbent is circulated from the absorber to the regenerator, and the regeneration. And a return path through which the concentrated absorbent is circulated from the vessel to the absorber, and a part of the rare absorbent flowing through the forward path is used for the absorber in the return path between the forward path and the return path. It is in the point which provided the bypass route introduced directly in the upstream of a heat exchanger.

上記第2特徴構成によれば、上記吸収液循環路を流通する吸収器からの希吸収液の一部を、再生器を経由せずに吸収器用熱交換器を経由して直接吸収器に戻すバイパス路を設けているので、吸収器からの比較的低温の希吸収液の一部を、再生器において加熱されて比較的高温の濃吸収液と合流させて吸収器用熱交換器に流通させることによって、吸収器に戻る吸収液(希吸収液及び濃吸収液)の全てを充分に冷却して、吸収器内における吸収能力を向上させることができるとともに、比較的低温の希吸収液の一部が再生器において加熱されてしまうことを防止して、再生器内に投入するエネルギーを節約できる。この際、上記吸収液循環路の往路において、吸収器とバイパス路との間にポンプを設置しておけば、単一のポンプで上記作用効果を充分に発揮することができる。   According to the second characteristic configuration, a part of the diluted absorption liquid from the absorber flowing through the absorption liquid circulation path is directly returned to the absorber via the absorber heat exchanger without passing through the regenerator. Since a bypass path is provided, a part of the relatively low-temperature diluted absorbent from the absorber is heated in the regenerator and merged with the relatively high-temperature concentrated absorbent to be distributed to the heat exchanger for the absorber. Can sufficiently cool all of the absorption liquid (dilute absorption liquid and concentrated absorption liquid) returning to the absorber to improve the absorption capacity in the absorber, and a part of the relatively low temperature rare absorption liquid Can be prevented from being heated in the regenerator, and energy input into the regenerator can be saved. At this time, if the pump is installed between the absorber and the bypass path in the outward path of the absorption liquid circulation path, the above-described effects can be sufficiently exhibited with a single pump.

本願の実施形態に係る吸収式冷凍機の概略図Schematic of absorption refrigerator according to an embodiment of the present application 本願の参考形態に係る吸収式冷凍機の概略図Schematic of absorption refrigerator according to the reference form of the present application 従来の吸収式冷凍機の概略図Schematic diagram of a conventional absorption refrigerator

本発明に係る吸収式冷凍機100の実施形態について図面に基づいて説明する。
この吸収式冷凍機100は、図1に示すように、単効用吸収式冷凍機であり、冷媒液を蒸発させる蒸発器1、この蒸発器1で発生した冷媒蒸気を受け入れて、濃吸収液に吸収させ濃度の低い希吸収液を生成する吸収器2、この吸収器2で生成された希吸収液を受け入れて、濃度の高い濃吸収液として再生する再生器3、この再生器3で生成される冷媒蒸気を受け入れて、冷媒液として凝縮させて外部に熱を放出する凝縮器4、濃吸収液と冷却媒体とで熱交換させる吸収器用熱交換器5、希吸収液と濃吸収液とで熱交換させる再生濃吸収液熱交換器6、吸収器2と再生器3との間で吸収液を循環させる吸収液循環路7、再生器3、凝縮器4、蒸発器1、吸収器2の順で冷媒を流通させる冷媒流通路8、希吸収液を加熱して濃吸収液とする加熱手段10、濃吸収液をスプレーして冷媒蒸気と混合する混合手段としての噴霧器11を備えて構成されている。
この吸収式冷凍機100には、吸収液としての臭化リチウム水溶液、冷媒(冷媒液、冷媒蒸気)としての水が封入されている。
そして、蒸発器1には、冷却対象媒体Uが流通する蒸発器用熱交換器1aが設けられ、再生器3には、温水Hが流通する加熱手段10が設けられ、凝縮器4には、冷却媒体Cが流通する凝縮器用熱交換器4aが設けられている。
An embodiment of an absorption refrigerator 100 according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the absorption refrigerator 100 is a single-effect absorption refrigerator, and receives an evaporator 1 that evaporates refrigerant liquid and refrigerant vapor generated in the evaporator 1 to form a concentrated absorption liquid. Absorber 2 that absorbs and generates a dilute absorbent having a low concentration, regenerator 3 that accepts the dilute absorbent produced by this absorber 2 and regenerates it as a concentrated absorbent having a high concentration, and is produced by this regenerator 3. The condenser 4 accepts the refrigerant vapor, condenses it as a refrigerant liquid and releases the heat to the outside, the heat exchanger 5 for the absorber exchanges heat between the concentrated absorbent and the cooling medium, and the rare absorbent and the concentrated absorbent. Regenerated concentrated absorption liquid heat exchanger 6 for heat exchange, absorption liquid circulation path 7 for circulating the absorption liquid between absorber 2 and regenerator 3, regenerator 3, condenser 4, evaporator 1, absorber 2 Refrigerant flow passage 8 through which the refrigerant flows in order, a heating hand that heats the dilute absorbent and makes it a concentrated absorbent 10, is configured to include a sprayer 11 as a mixing means for mixing with the refrigerant vapor by spraying a concentrated absorption liquid.
The absorption refrigerator 100 is filled with an aqueous lithium bromide solution as an absorption liquid and water as a refrigerant (refrigerant liquid, refrigerant vapor).
The evaporator 1 is provided with an evaporator heat exchanger 1a through which the cooling target medium U flows, the regenerator 3 is provided with heating means 10 through which hot water H flows, and the condenser 4 is cooled. A condenser heat exchanger 4a through which the medium C flows is provided.

この吸収式冷凍機100を構成する各機器について、図1に基づいて説明する。   Each apparatus which comprises this absorption refrigerator 100 is demonstrated based on FIG.

蒸発器1は、冷媒液としての水Lを蒸発させる機器であり、蒸発した冷媒蒸気としての水蒸気Sを後述する吸収器2に導入することができるように当該吸収器2と連通されている。また、水蒸気Sの蒸発により、蒸発器用熱交換器1a内を流通する冷却対象媒体Uから気化熱を奪い、当該冷却対象媒体Uを冷却する。なお、水Lは、後述する凝縮器4から絞り弁T1を介して供給される。   The evaporator 1 is a device that evaporates the water L as the refrigerant liquid, and communicates with the absorber 2 so that the vapor S as the evaporated refrigerant vapor can be introduced into the absorber 2 described later. Further, by evaporating the water vapor S, heat of vaporization is taken from the cooling target medium U flowing through the evaporator heat exchanger 1a, and the cooling target medium U is cooled. The water L is supplied from a condenser 4 described later via a throttle valve T1.

吸収器2は、後述する再生器3から送り返されてくる濃度の高い濃吸収液D2に水蒸気Sを吸収させて希吸収液D1を生成する機器であり、蒸発器1にて発生した水蒸気Sを導入し、後述する再生器3から送り返される濃吸収液D2と混合して当該水蒸気Sを吸収させ希吸収液D1を生成する。吸収器2は、希吸収液D1を後述する再生器3に送り返すことができ、再生器3で生成した濃吸収液D2を吸収器2に送り返すことができるように、後述する吸収液循環路7により再生器3と連通されている。吸収器2には、濃吸収液D2と水蒸気Sとを混合する混合手段としての噴霧器11を備え、吸収器2内で当該濃吸収液D2を噴霧して、水蒸気Sと良好に混合することができるように構成されている。
なお、本願における吸収器2内には、従来設けられていた冷却媒体Cが流通する熱交換器は設けられていない。
The absorber 2 is a device that absorbs the water vapor S into the concentrated absorbent D2 having a high concentration sent back from the regenerator 3 to be described later to generate the diluted absorbent D1, and the water vapor S generated in the evaporator 1 is generated. It introduces and mixes with the concentrated absorbent D2 sent back from the regenerator 3 described later to absorb the water vapor S to produce the diluted absorbent D1. The absorber 2 can send the diluted absorbent D1 back to the regenerator 3 to be described later, and can absorb the concentrated absorbent D2 generated by the regenerator 3 back to the absorber 2 so that the absorbent liquid circulation path 7 to be described later. Is communicated with the regenerator 3. The absorber 2 is provided with a sprayer 11 as a mixing means for mixing the concentrated absorbent D2 and the water vapor S, and the concentrated absorbent D2 is sprayed in the absorber 2 to be mixed well with the water vapor S. It is configured to be able to.
In addition, in the absorber 2 in this application, the heat exchanger with which the conventionally provided cooling medium C distribute | circulates is not provided.

再生器3は、希吸収液D1を加熱手段10で加熱して水蒸気Sと濃吸収液D2とに分離再生する機器であり、吸収器2にて生成された希吸収液D1をポンプPを介して導入し、加熱手段10を流通する温水Hとの熱交換により当該希吸収液D1が、高濃度で高温の濃吸収液D2と高温の水蒸気Sとに分離再生される。再生器3は、この高温の濃吸収液D2を吸収器2に送り、一方、高温の水蒸気Sは後述する凝縮器4に送ることができるようにそれぞれと連通されている。   The regenerator 3 is a device that heats the rare absorbent D1 with the heating means 10 and separates and regenerates it into the water vapor S and the concentrated absorbent D2, and the rare absorbent D1 generated in the absorber 2 is passed through the pump P. The diluted absorbent D1 is separated and regenerated into a high-concentration and high-temperature concentrated absorbent D2 and a high-temperature steam S by heat exchange with the warm water H flowing through the heating means 10. The regenerator 3 is in communication with each other so that the high-temperature concentrated absorbent D2 can be sent to the absorber 2 while the high-temperature steam S can be sent to the condenser 4 described later.

凝縮器4は、水蒸気Sを凝縮させて液化する機器であり、再生器3にて分離再生された水蒸気Sを導入することができるように当該再生器3と連通されている。凝縮器4は、当該水蒸気Sを凝縮器用熱交換器4aを流通する冷却媒体Cとの熱交換により凝縮液化させる。凝縮器4は、凝縮液化されて生成される水Lを、絞り弁T1を介して蒸発器1に送ることができるように当該蒸発器1と連通されている。   The condenser 4 is a device that condenses and liquefies the water vapor S, and communicates with the regenerator 3 so that the water vapor S separated and regenerated by the regenerator 3 can be introduced. The condenser 4 condenses and liquefies the water vapor S by heat exchange with the cooling medium C flowing through the condenser heat exchanger 4a. The condenser 4 is in communication with the evaporator 1 so that the water L produced by being condensed and liquefied can be sent to the evaporator 1 via the throttle valve T1.

また、図1に示すように、これら蒸発器1、吸収器2、再生器3、凝縮器4間には、上記吸収液D(希吸収液D1、濃吸収液D2)、冷媒(水L、水蒸気S)をそれぞれ流通させることができる流通路が設けられている。   In addition, as shown in FIG. 1, between the evaporator 1, the absorber 2, the regenerator 3, and the condenser 4, the absorption liquid D (diluted absorption liquid D1, concentrated absorption liquid D2), refrigerant (water L, A flow passage is provided through which the water vapor S) can be circulated.

吸収器2と再生器3との間には、吸収液Dを、循環的に流通させることができる吸収液循環路7が形成されている。
吸収液循環路7は、吸収器2から希吸収液D1を、濃度変化を伴いながら、後述するポンプP、再生濃吸収液熱交換器6を介して再生器3に流通させ、再生器3にて再生された濃吸収液D2を再生濃吸収液熱交換器6、三方弁A、吸収器用熱交換器5、絞り弁T2を介して吸収器2に流通させて、吸収液D(希吸収液D1、濃吸収液D2)を吸収器2と再生器3との間で循環させることができる。
したがって、この吸収液循環路7は、吸収器2から再生器3に希吸収液D1を流通する往路7aと、再生器3から吸収器2に濃吸収液D2を流通する復路7bとを備えて構成されており、この往路7aと復路7bとの間に、往路7aを流通する希吸収液D1の一部を復路7bにおける吸収器用熱交換器5の上流側に直接導入可能なバイパス路9が設けられている。
バイパス路9は、吸収器2から再生器3に供給される比較的低温の希吸収液D1の一部と、再生器3から吸収器2に供給される比較的高温の濃吸収液D2とを合流させ、吸収器用熱交換器5を介して吸収器2に戻すことができるように構成されている。
Between the absorber 2 and the regenerator 3, an absorbing liquid circulation path 7 through which the absorbing liquid D can be circulated is formed.
The absorption liquid circulation path 7 circulates the rare absorption liquid D1 from the absorber 2 to the regenerator 3 through the pump P and the regenerated concentrated absorption liquid heat exchanger 6 which will be described later while changing the concentration. The concentrated absorbent D2 regenerated in this manner is circulated to the absorber 2 via the regenerated concentrated absorbent heat exchanger 6, the three-way valve A, the absorber heat exchanger 5, and the throttle valve T2. D1, concentrated absorbent D2) can be circulated between the absorber 2 and the regenerator 3.
Therefore, the absorption liquid circulation path 7 includes an outward path 7a through which the diluted absorbent D1 flows from the absorber 2 to the regenerator 3, and a return path 7b through which the concentrated absorption liquid D2 flows from the regenerator 3 to the absorber 2. Between the forward path 7a and the return path 7b, there is a bypass path 9 capable of directly introducing a part of the diluted absorbent D1 flowing through the forward path 7a to the upstream side of the absorber heat exchanger 5 in the return path 7b. Is provided.
The bypass path 9 includes a part of the relatively low temperature diluted absorbent D1 supplied from the absorber 2 to the regenerator 3 and a relatively high temperature concentrated absorbent D2 supplied from the regenerator 3 to the absorber 2. It is made to merge and to be able to return to the absorber 2 through the absorber heat exchanger 5.

再生器3、凝縮器4、蒸発器1、吸収器2の間には、冷媒(水L、水蒸気S)を、流通させることができる冷媒流通路8が設けられている。
冷媒流通路8は、再生器3において再生された高温の水蒸気Sを、相変化を伴いながら、再生器3、凝縮器4、絞り弁T1、蒸発器1、吸収器2の順で流通させることができるように構成されている。なお、上記冷媒(水L、水蒸気S)は吸収器2から再生器3へも移動するが、この場合は、吸収液Dに吸収された状態で当該吸収液とともに上記吸収液循環路7内を流通することとなる。したがって、実際には、上記冷媒(水L、水蒸気S)は吸収液循環路7及び冷媒流通路8により、蒸発器1、吸収器2、再生器3、凝縮器4の間を循環している。
Between the regenerator 3, the condenser 4, the evaporator 1, and the absorber 2, a refrigerant flow path 8 through which refrigerant (water L, water vapor S) can be circulated is provided.
The refrigerant flow passage 8 allows the high-temperature steam S regenerated in the regenerator 3 to flow in the order of the regenerator 3, the condenser 4, the throttle valve T1, the evaporator 1, and the absorber 2 while being accompanied by a phase change. It is configured to be able to. In addition, although the said refrigerant | coolant (water L, water vapor | steam S) also moves from the absorber 2 to the regenerator 3, the inside of the said absorption liquid circulation path 7 with the said absorption liquid in the state absorbed by the absorption liquid D in this case It will be distributed. Therefore, actually, the refrigerant (water L, water vapor S) is circulated between the evaporator 1, the absorber 2, the regenerator 3, and the condenser 4 through the absorbing liquid circulation path 7 and the refrigerant flow path 8. .

吸収器用熱交換器5は、伝熱管を備えた熱交換器から構成されており、吸収液循環路7の復路7bにおける絞り弁T2と三方弁Aとの間に設けられ、再生器3において再生された濃吸収液D2と冷却媒体Cとの間で熱交換を行うことができるように構成されている。当該冷却媒体Cは、吸収式冷凍機100の外部から供給する流体であり、本実施形態では、上記凝縮器4内の凝縮器用熱交換器4aを通流する冷却媒体Cと同一の流体とされている。このように冷却媒体Cを共用することにより、装置構成の簡略化を図るとともに、有効に熱を回収して外部に排出することができる。なお、当該冷却媒体Cを、吸収式冷凍機100の外部から導入して吸収器用熱交換器5、凝縮器用熱交換器4aを介して外部に放出可能に構成された冷却媒体流通路13が設けられている。   The absorber heat exchanger 5 is constituted by a heat exchanger provided with a heat transfer tube, and is provided between the throttle valve T2 and the three-way valve A in the return path 7b of the absorbing liquid circulation path 7, and is regenerated in the regenerator 3. Heat exchange is performed between the concentrated absorbent D2 and the cooling medium C. The cooling medium C is a fluid supplied from the outside of the absorption refrigeration machine 100. In this embodiment, the cooling medium C is the same fluid as the cooling medium C flowing through the condenser heat exchanger 4a in the condenser 4. ing. By sharing the cooling medium C in this way, the apparatus configuration can be simplified, and heat can be effectively recovered and discharged to the outside. In addition, a cooling medium flow passage 13 configured to be able to introduce the cooling medium C from the outside of the absorption refrigeration machine 100 and discharge the cooling medium C to the outside through the absorber heat exchanger 5 and the condenser heat exchanger 4a is provided. It has been.

再生濃吸収液熱交換器6は、伝熱管を備えた熱交換器から構成されており、吸収液循環路7の往路7aにおけるポンプP(バイパス路9と往路7aとの分岐点)と再生器3との間であって、復路7bにおける三方弁Aと再生器3との間に設けられ、吸収器2において水蒸気Sを吸収した希吸収液D1と再生器3において再生された濃吸収液D2とで熱交換を行うことができるように構成されている。   The regenerated concentrated absorbent liquid heat exchanger 6 is composed of a heat exchanger having a heat transfer tube, and a regenerator and a pump P in the forward path 7a of the absorbent circulation path 7 (a branch point between the bypass path 9 and the forward path 7a). 3, provided between the three-way valve A and the regenerator 3 in the return path 7 b, and the rare absorbent D 1 that has absorbed the water vapor S in the absorber 2 and the concentrated absorbent D 2 that has been regenerated in the regenerator 3. And so that heat exchange can be performed.

加熱手段10は、吸収器2から再生器3内に送られた希吸収液D1に熱を供給する機器であり、当該希吸収液D1に吸収された冷媒を水蒸気Sとして蒸発させて、濃吸収液D2と水蒸気Sとに分離再生することができる。例えば、伝熱管に温水Hを供給して希吸収液D1を加熱可能な熱交換器により構成する。   The heating means 10 is a device that supplies heat to the diluted absorbent D1 sent from the absorber 2 into the regenerator 3, and evaporates the refrigerant absorbed in the diluted absorbent D1 as water vapor S, thereby absorbing the concentrated absorption. The liquid D2 and the water vapor S can be separated and regenerated. For example, the heat exchanger tube is configured by a heat exchanger that can supply hot water H to heat the diluted absorbent D1.

噴霧器11は、濃吸収液D2を霧状にスプレーすることができる機器であり、再生器3において再生された濃吸収液D2を、吸収器2内の上部から霧状に噴霧し、蒸発器1から導入される水蒸気Sと良好に混合することができるように構成されている。   The nebulizer 11 is a device capable of spraying the concentrated absorbent D2 in a mist form. The concentrated absorbent D2 regenerated in the regenerator 3 is sprayed in the form of a mist from the upper part of the absorber 2, and the evaporator 1 is sprayed. It is comprised so that it can mix favorably with the water vapor | steam S introduce | transduced from.

三方弁Aは、吸収液循環路7の復路7bにおいて再生濃吸収液熱交換器6と吸収器用熱交換器5との間に設けられ、バイパス路9を介して吸収器2から送られてくる希吸収液D1と再生器3から送られてくる濃吸収液D2とを合流させて、吸収器用熱交換器5、絞り弁T2を介して吸収器2に流量を調整しつつ、戻すことができるように構成されている。
したがって、吸収液循環路7においては、吸収液Dを、濃度変化を伴いながら、吸収器2からポンプP、バイパス路9、三方弁A、吸収器用熱交換器5、絞り弁T2を介して吸収器2に循環できる循環路が形成されている。
The three-way valve A is provided between the regenerated concentrated absorbent liquid heat exchanger 6 and the absorber heat exchanger 5 in the return path 7b of the absorbent circulation path 7, and is sent from the absorber 2 via the bypass path 9. The dilute absorbing liquid D1 and the concentrated absorbing liquid D2 sent from the regenerator 3 can be combined and returned to the absorber 2 through the absorber heat exchanger 5 and the throttle valve T2, while adjusting the flow rate. It is configured as follows.
Therefore, in the absorption liquid circulation path 7, the absorption liquid D is absorbed from the absorber 2 through the pump P, the bypass path 9, the three-way valve A, the absorber heat exchanger 5, and the throttle valve T2 while changing the concentration. A circulation path that can circulate in the vessel 2 is formed.

絞り弁T1は、凝縮器4と蒸発器1との間に設けられ、凝縮器4において液化した水Lの圧力を開放して、水Lを蒸発器1へ供給できるように構成されている。
絞り弁T2は、吸収液循環路7の復路7bにおいて吸収器用熱交換器5と吸収器2との間に設けられ、吸収器用熱交換器5によって低温状態とされた濃吸収液D2の圧力を開放して、濃吸収液D2を吸収器2へ供給できるように構成されている。
したがって、これら2つの絞り弁T1、T2によって、再生器3及び凝縮器4の圧力と、蒸発器1及び吸収器2の圧力とを、適当な動作圧力状態に区分可能となっている。
The throttle valve T <b> 1 is provided between the condenser 4 and the evaporator 1, and is configured to release the pressure of the water L liquefied in the condenser 4 and supply the water L to the evaporator 1.
The throttle valve T <b> 2 is provided between the absorber heat exchanger 5 and the absorber 2 in the return path 7 b of the absorber circulation circuit 7, and reduces the pressure of the concentrated absorbent D <b> 2 brought to a low temperature state by the absorber heat exchanger 5. It is configured to be opened so that the concentrated absorbent D2 can be supplied to the absorber 2.
Accordingly, the pressures of the regenerator 3 and the condenser 4 and the pressures of the evaporator 1 and the absorber 2 can be divided into appropriate operating pressure states by these two throttle valves T1 and T2.

ポンプPは、吸収液循環路7の往路7aにおいて吸収器2と再生濃吸収液熱交換器6(バイパス路9と往路7aとの分岐点)との間に設けられ、三方弁Aの開度を調整することで、吸収器2からの希吸収液D1を再生濃吸収液熱交換器6を介して再生器3に供給するとともに、バイパス路9を介して吸収器2に希吸収液D1を供給することができ、これら供給流量をそれぞれ調整することが可能に構成されている。
したがって、ポンプPの出力に応じてそれぞれの供給流量を調整することにより、再生器3、吸収器2等における再生、吸収速度等を調整して、吸収式冷凍機100の運転状態を変化させることができ、最適な運転状態を実現することが可能である。
The pump P is provided between the absorber 2 and the regenerated concentrated absorbent heat exchanger 6 (a branch point between the bypass path 9 and the forward path 7a) in the forward path 7a of the absorbent circulation path 7, and the opening degree of the three-way valve A Is adjusted so that the rare absorbent D1 from the absorber 2 is supplied to the regenerator 3 through the regenerated concentrated absorbent heat exchanger 6 and the dilute absorbent D1 is supplied to the absorber 2 through the bypass 9. These supply flow rates can be adjusted, respectively.
Therefore, by adjusting the respective supply flow rates according to the output of the pump P, the regeneration in the regenerator 3, the absorber 2, etc., the absorption speed, etc. are adjusted, and the operating state of the absorption refrigerator 100 is changed. It is possible to realize an optimum operating state.

次に、本願に係る吸収式冷凍機100の動作について、図1に基づいて説明する。
本願の吸収式冷凍機100の蒸発器1、吸収器2、再生器3、凝縮器4は、上記の様に吸収液循環路7及び冷媒流通路8により連通されて閉鎖系を形成しており、この閉鎖系は低圧条件(数mmHgから数十mmHg程度)に保たれた条件下において動作をするものである。具体的には、蒸発器1及び吸収器2は、ほぼ圧力の等しい負圧状態とされ、再生器3及び凝縮器4は、それぞれ運転に適した負圧状態とされており、絞り弁T1、T2により、蒸発器1及び吸収器2の圧力は、再生器3及び凝縮器4の圧力よりも低い状態に保たれて、吸収式冷凍機100が動作するものである。
Next, operation | movement of the absorption refrigerator 100 which concerns on this application is demonstrated based on FIG.
The evaporator 1, the absorber 2, the regenerator 3, and the condenser 4 of the absorption refrigerator 100 of the present application are communicated by the absorbing liquid circulation path 7 and the refrigerant flow path 8 as described above to form a closed system. The closed system operates under conditions maintained under low pressure conditions (several mmHg to several tens mmHg). Specifically, the evaporator 1 and the absorber 2 are in a negative pressure state with substantially the same pressure, and the regenerator 3 and the condenser 4 are in a negative pressure state suitable for operation, respectively, and the throttle valve T1, By T2, the pressures of the evaporator 1 and the absorber 2 are kept lower than the pressures of the regenerator 3 and the condenser 4, and the absorption refrigerator 100 operates.

上記条件下において、まず、三方弁Aにおけるバイパス路9側の弁が閉じている場合について、図1に基づいて説明する。
蒸発器1内の蒸発器用熱交換器1aを流通する冷却対象媒体Uから、当該蒸発器1内に存在する水Lが熱を奪う(冷却する)と、当該水Lは蒸発して水蒸気Sとなり冷媒流通路8を流通して吸収器2側に移流する。この際、水蒸気Sは、再生器3から絞り弁T2を介して供給されて噴霧器11によりスプレーされた濃吸収液D2と良好に混合され、当該濃吸収液D2に効率よく吸収される。この濃吸収液D2は水蒸気Sを吸収することで、吸収熱により温度が上昇し、臭化リチウムの濃度が低下した希吸収液D1となり吸収器2の底部に貯留する。
この希吸収液D1は、ポンプPにより吸引されて吸収液循環路7の往路7aを流通して再生器3に供給されるが、上記吸収熱により温度が上昇しているとはいえ比較的温度が低いため、再生器3において加熱手段10により加熱されて高温となっている濃吸収液D2と再生濃吸収液熱交換器6内で熱交換して温度を上昇させ、一方、濃吸収液D2は、温度を低下させて冷却器用熱交換器5に流通してから吸収器2に送られることとなる。これにより、加熱手段10において希吸収液D1を加熱するためのエネルギー、吸収器用熱交換器5において濃吸収液D2を冷却するためのエネルギーを節約することができ、COP値の低下を防止することができる。
First, the case where the valve on the bypass path 9 side in the three-way valve A is closed under the above conditions will be described with reference to FIG.
When the water L existing in the evaporator 1 takes heat (cools) from the cooling target medium U flowing through the evaporator heat exchanger 1a in the evaporator 1, the water L evaporates to become water vapor S. It flows through the refrigerant flow passage 8 and moves to the absorber 2 side. At this time, the water vapor S is well mixed with the concentrated absorbent D2 supplied from the regenerator 3 through the throttle valve T2 and sprayed by the sprayer 11, and is efficiently absorbed by the concentrated absorbent D2. The concentrated absorbent D2 absorbs the water vapor S, so that the temperature rises due to the heat of absorption and becomes a rare absorbent D1 in which the concentration of lithium bromide is reduced, and is stored at the bottom of the absorber 2.
The dilute absorbent D1 is sucked by the pump P, flows through the forward path 7a of the absorbent circulation path 7, and is supplied to the regenerator 3. Although the temperature is increased by the absorbed heat, the temperature is relatively high. Therefore, the concentrated absorbent D2 heated by the heating means 10 in the regenerator 3 is heated to a high temperature in the regenerated concentrated absorbent heat exchanger 6 to increase the temperature. On the other hand, the concentrated absorbent D2 Is sent to the absorber 2 after the temperature is lowered and distributed to the cooler heat exchanger 5. Thereby, the energy for heating the diluted absorbent D1 in the heating means 10 and the energy for cooling the concentrated absorbent D2 in the absorber heat exchanger 5 can be saved, and the reduction of the COP value can be prevented. Can do.

再生器3に供給された希吸収液D1は、加熱手段10により加熱されて臭化リチウムの濃度が上昇した濃吸収液D2と水蒸気Sとに再生分離される。そして、この濃吸収液D2は、再生器3と吸収器2との圧力差により吸収器2に戻されるが、その過程で、上記のように再生濃吸収液熱交換器6で希吸収液D1と熱交換して温度が低下する。この温度が低下した濃吸収液D2は、吸収器用熱交換器5に流通させられ、吸収式冷凍機100の外部から供給される冷却媒体Cとの熱交換により、水蒸気Sを吸収するために冷却される。この濃吸収液D2の温度は、冷却媒体Cの温度に依存するが概ね32℃〜35℃程度とされ、上記温度付近にまで冷却された濃吸収液D2は、噴霧器11により吸収器2の上部から霧状にスプレーされて水蒸気Sと混合され、当該水蒸気Sを吸収し易い状態にされている。なお、この際には冷却媒体Cの温度が低くなる程、COP値は向上する。
したがって、濃吸収液D2の温度を冷却媒体Cで冷却できる限度まで冷却して濃吸収液D2の吸収能力の低下を防止しつつ、吸収器2内に存在する希吸収液D1の過冷却も防止することができ、濃吸収液D2の温度をより冷却媒体Cの温度に近づけて、COP値の低下を防止することができる。
また、再生器3において再生された水蒸気Sは、冷媒流通路8を流通して凝縮器4に移流し、凝縮器4内の凝縮器用熱交換器4aを流通する冷却媒体Cと熱交換して液化させられて水Lが生成され、凝縮熱を当該冷却媒体Cに放出して吸収式冷凍機100の外部に熱を捨てることができる。この水Lは、冷媒流通路8を流通し、絞り弁T1を通過して圧力が低下した状態で、蒸発器1に流入する。この蒸発器1内には、上述の通り、冷却対象媒体Uが流通する蒸発器用熱交換器1aが設けられており、蒸発器1内に流入した水Lは、冷却対象媒体Uとの熱交換により蒸発させられて水蒸気Sを発生し、冷却対象媒体Uを蒸発熱により冷却して吸収式冷凍機100の外部に冷熱を供給することができ、当該水蒸気Sは、吸収器2に移流して、上記動作が繰り返されることとなる。
The dilute absorbent D1 supplied to the regenerator 3 is regenerated and separated into the concentrated absorbent D2 and the water vapor S that are heated by the heating means 10 and have an increased lithium bromide concentration. The concentrated absorbent D2 is returned to the absorber 2 due to the pressure difference between the regenerator 3 and the absorber 2, and in the process, the diluted absorbent D1 is used in the regenerated concentrated absorbent heat exchanger 6 as described above. The temperature decreases due to heat exchange. The concentrated absorbent D2 whose temperature has been lowered is circulated through the absorber heat exchanger 5 and cooled to absorb the water vapor S by heat exchange with the cooling medium C supplied from the outside of the absorption refrigerator 100. Is done. The temperature of the concentrated absorbent D2 depends on the temperature of the cooling medium C, but is about 32 ° C. to 35 ° C. The concentrated absorbent D2 cooled to the vicinity of the above temperature is Sprayed in a mist form and mixed with the water vapor S so that the water vapor S is easily absorbed. At this time, the COP value increases as the temperature of the cooling medium C decreases.
Accordingly, the temperature of the concentrated absorbent D2 is cooled to the limit that can be cooled by the cooling medium C to prevent the absorption capacity of the concentrated absorbent D2 from being lowered, and the overcooling of the diluted absorbent D1 existing in the absorber 2 is also prevented. The temperature of the concentrated absorbent D2 can be made closer to the temperature of the cooling medium C, and the COP value can be prevented from decreasing.
Further, the water vapor S regenerated in the regenerator 3 flows through the refrigerant flow passage 8 and is transferred to the condenser 4, and exchanges heat with the cooling medium C flowing through the condenser heat exchanger 4 a in the condenser 4. Water L is generated by liquefaction, and the heat of condensation can be discharged to the outside of the absorption refrigerator 100 by releasing the condensation heat to the cooling medium C. This water L flows through the refrigerant flow passage 8, passes through the throttle valve T <b> 1, and flows into the evaporator 1 in a state where the pressure is reduced. As described above, the evaporator 1 is provided with the evaporator heat exchanger 1a through which the cooling target medium U flows, and the water L flowing into the evaporator 1 exchanges heat with the cooling target medium U. The vapor S is evaporated to generate the water vapor S, the cooling target medium U is cooled by the heat of evaporation, and the cold heat can be supplied to the outside of the absorption refrigeration machine 100, and the water vapor S is transferred to the absorber 2. The above operation is repeated.

次に、三方弁Aにおけるバイパス路9側の弁の開度が調整されている場合について説明する。
上述の通り、三方弁Aにおけるバイパス路9側の弁が閉じている場合には、吸収器用熱交換器5及び再生濃吸収液熱交換器6のみにより吸収器2に供給される濃吸収液D2を冷却していたが、冷却負荷によっては、三方弁Aにおけるバイパス路9側の弁の開度を調整して吸収器2から再生器3に供給される希吸収液D1の一部を、再生器3から吸収器2に供給される濃吸収液D2と直接合流させ、当該濃吸収液D2の温度を低下させて吸収器用熱交換器5、吸収器2に供給する。
具体的には、吸収液循環路7の往路7aを流通して吸収器2から再生器3へ供給される希吸収液D1の一部をバイパス路9に流通させ、このバイパス路9を流通してきた希吸収液D1と再生器3から流通してきた濃吸収液D2とを、復路7bにおける再生濃吸収液熱交換器6と吸収器用熱交換器5との間で合流させて、吸収器2側に供給できるように三方弁Aを開いて、希吸収液D1の吸収器2への流量及び再生器3への流量を調整する。
これにより、吸収器2から再生器3に供給される比較的低温の希吸収液D1と比較的高温の濃吸収液D2とを合流して混合し、この希吸収液D1が混合された濃吸収液D2を温度低下させた状態で吸収器用熱交換器5に供給することができ、この吸収器用熱交換器5内で熱交換する冷却媒体Cの流量を適切にすることができる。また、吸収器2から再生器3に供給される比較的低温の希吸収液D1の全てを再生器3に供給しなくても済むことから、再生器3内の加熱手段10において希吸収液D1を加熱するための熱を節約することができる。これにより、冷却負荷に従って好適な運転状態を確保し、COP値の低下を防止することができる。
上記三方弁Aの開度は、吸収器2内と再生器3内の温度、希吸収液D1と濃吸収液D2と冷却媒体Cと温水Hの温度、流量等に基づいて適宜調整することができ、上記ポンプPの出力をも調整することで、吸収式冷凍機100の運転状態を所望の状態にコントロールすることができる。
なお、吸収器用熱交換器5及び再生濃吸収液熱交換器6により、吸収器2に供給される濃吸収液D2を冷却できる点は、上記三方弁Aにおけるバイパス路9側の弁が閉じている場合と同様であるので、説明を省略する。
Next, the case where the opening degree of the valve on the bypass path 9 side in the three-way valve A is adjusted will be described.
As described above, when the valve on the bypass path 9 side in the three-way valve A is closed, the concentrated absorbent D2 supplied to the absorber 2 only by the absorber heat exchanger 5 and the regenerated concentrated absorbent heat exchanger 6. However, depending on the cooling load, the opening degree of the valve on the bypass path 9 side of the three-way valve A is adjusted to regenerate a part of the diluted absorbent D1 supplied from the absorber 2 to the regenerator 3 The concentrated absorbent D2 supplied from the vessel 3 to the absorber 2 is directly merged, and the temperature of the concentrated absorbent D2 is lowered and supplied to the absorber heat exchanger 5 and the absorber 2.
Specifically, a part of the diluted absorbent D1 that flows through the forward path 7a of the absorbent circulation path 7 and is supplied from the absorber 2 to the regenerator 3 is circulated to the bypass path 9, and the bypass path 9 is circulated. The diluted absorbent D1 and the concentrated absorbent D2 circulated from the regenerator 3 are merged between the regenerated concentrated absorbent heat exchanger 6 and the absorber heat exchanger 5 in the return path 7b, and the absorber 2 side The three-way valve A is opened so that the flow rate can be supplied to the absorber 2, and the flow rate of the rare absorbent D1 to the absorber 2 and the flow rate to the regenerator 3 are adjusted.
Thereby, the relatively low temperature diluted absorbent D1 and the relatively high temperature concentrated absorbent D2 supplied from the absorber 2 to the regenerator 3 are merged and mixed, and the concentrated absorption in which the diluted absorbent D1 is mixed. The liquid D2 can be supplied to the absorber heat exchanger 5 with the temperature lowered, and the flow rate of the cooling medium C for heat exchange in the absorber heat exchanger 5 can be made appropriate. Further, since it is not necessary to supply all of the relatively low temperature diluted absorbent D1 supplied from the absorber 2 to the regenerator 3 to the regenerator 3, the heating means 10 in the regenerator 3 uses the diluted absorbent D1. The heat for heating can be saved. Thereby, a suitable driving | running state can be ensured according to cooling load, and the fall of a COP value can be prevented.
The opening degree of the three-way valve A can be appropriately adjusted based on the temperatures in the absorber 2 and the regenerator 3, the temperatures of the rare absorbent D1, the concentrated absorbent D2, the cooling medium C, and the hot water H, the flow rate, and the like. In addition, by adjusting the output of the pump P, the operation state of the absorption chiller 100 can be controlled to a desired state.
The point that the concentrated absorbent D2 supplied to the absorber 2 can be cooled by the absorber heat exchanger 5 and the regenerated concentrated absorbent heat exchanger 6 is that the valve on the bypass path 9 side in the three-way valve A is closed. Since it is the same as the case where it exists, description is abbreviate | omitted.

〔参考形態〕
(1)上記実施形態では、吸収器2内に供給する濃吸収液D2と水蒸気Sとの混合を、混合手段としての噴霧器11を用いて行うように吸収式冷凍機100を構成したが、これに限らず、濃吸収液D2と水蒸気Sとを適切に混合することができる機器であれば特に制限なく用いることができ、例えば、図2に示すように、エゼクター12を用いた吸収式冷凍機200とすることができる。
具体的には、吸収液循環路7の復路7bにおいて吸収器2と吸収器用熱交換器5との間にエゼクター12を設け、当該復路7bを流通する吸収器用熱交換器5で冷却された濃吸収液D2をエゼクター12の駆動流体とし、水蒸気Sを吸入流体として混合することにより、濃吸収液D2と水蒸気Sとを細かな粒子とすることで混合状態がよく、確実な混合をすることができ、濃吸収液D2に水蒸気Sの吸収が容易な状態として、吸収効率を向上させることができる。これにより、水蒸気Sを混合する際に動力を必要とするポンプ等の駆動源を設けなくても濃吸収液D2の吸収能力の向上を図ることができるとともに、ポンプ等が消費するエネルギーを不要として、COP値を向上させることができる。
なお、上記実施形態では、吸収液循環路7の復路7bにおいて絞り弁T2を設けたが、本参考形態では、エゼクター12が絞り弁T2の役割を担っている。
その他の構成は、上記実施形態と同様であるため、説明を省略する。
[Reference form]
(1) In the above embodiment, the absorption refrigerator 100 is configured so that the concentrated absorbent D2 supplied into the absorber 2 and the water vapor S are mixed using the sprayer 11 as a mixing unit. Not limited to this, any device capable of appropriately mixing the concentrated absorbent D2 and the water vapor S can be used without any limitation. For example, as shown in FIG. 2, an absorption refrigerator using an ejector 12 200.
Specifically, an ejector 12 is provided between the absorber 2 and the absorber heat exchanger 5 in the return path 7b of the absorption liquid circulation path 7, and the concentrated refrigerant cooled by the absorber heat exchanger 5 flowing through the return path 7b. By mixing the absorbing liquid D2 as the driving fluid of the ejector 12 and mixing the water vapor S as the suction fluid, the concentrated absorbing liquid D2 and the water vapor S are made into fine particles so that the mixing state is good and reliable mixing is possible. The absorption efficiency can be improved by allowing the concentrated absorbent D2 to easily absorb the water vapor S. This makes it possible to improve the absorption capacity of the concentrated absorbent D2 without providing a drive source such as a pump that requires power when mixing the water vapor S, and eliminates the energy consumed by the pump and the like. , COP value can be improved.
In the above embodiment, the throttle valve T2 is provided in the return path 7b of the absorbing liquid circulation path 7. However, in this reference embodiment, the ejector 12 plays the role of the throttle valve T2.
Other configurations are the same as those in the above embodiment, and thus the description thereof is omitted.

〔別実施形態〕
(1)上記実施形態では、吸収液として臭化リチウム水溶液を用い、冷媒として水を用いたが、これに限らず、吸収式冷凍機における吸収、再生等を適切に行うことができる吸収液と冷媒の組み合わせであれば、特に制限なく用いることができ、例えば、吸収液としてアンモニア水溶液、冷媒としてアンモニアを用いて構成することもできる。
[Another embodiment]
(1) In the above embodiment, an aqueous solution of lithium bromide is used as an absorbent and water is used as a refrigerant. However, the present invention is not limited to this, and an absorbent that can appropriately perform absorption, regeneration, etc. in an absorption refrigerator Any combination of refrigerants can be used without particular limitation. For example, an aqueous ammonia solution can be used as the absorbing liquid and ammonia can be used as the refrigerant.

(2)上記実施形態では、吸収液循環路7の往路7aと復路7bとの間にバイパス路9を設けたが、吸収器2内の吸収液の過冷却を適切に防止できれば、このバイパス路9を設けない構成とすることもできる。 (2) In the above embodiment, the bypass path 9 is provided between the forward path 7a and the return path 7b of the absorption liquid circulation path 7. However, if the overcooling of the absorption liquid in the absorber 2 can be appropriately prevented, this bypass path A configuration without 9 is also possible.

(3)上記実施形態では、加熱手段10として伝熱管に温水Hを流通させて濃吸収液D1を加熱するように構成したが、濃吸収液D2を良好に加熱することができる機器であれば特に制限なく用いることができ、例えば、ガスバーナや蒸気式の加熱装置を用いることもできる。 (3) In the said embodiment, although it comprised so that the warm water H was distribute | circulated to the heat exchanger tube as the heating means 10 and the concentrated absorption liquid D1 was heated, if it is an apparatus which can heat the concentrated absorption liquid D2 favorably. For example, a gas burner or a steam heating device can be used.

(4)上記実施形態では、吸収式冷凍機100として単効用吸収式冷凍機について説明したが、COP値の低下を防止することができる構成であれば、特に制限なく採用することができ、例えば、二重効用、三重効用の吸収式冷凍機として構成することもできる。 (4) In the above-described embodiment, the single-effect absorption refrigerator has been described as the absorption refrigerator 100. However, the absorption refrigerator can be used without particular limitation as long as it can prevent a decrease in the COP value. It can also be configured as a double-effect or triple-effect absorption refrigerator.

(5)上記実施形態では、吸収液循環路7の復路7b上においてバイパス路9と合流する箇所に三方弁Aを設けたが、吸収液循環路7及びバイパス路9を流通する吸収液Dを再生器3及び吸収器2に適切な流量、温度で供給することができれば、三方弁Aを設けずに、吸収液循環路7の往路7a上においてバイパス路9と分岐する箇所に三方弁を設ける構成とすることも可能である。 (5) In the above embodiment, the three-way valve A is provided at a location where the bypass passage 9 is joined on the return path 7b of the absorption liquid circulation path 7, but the absorption liquid D flowing through the absorption liquid circulation path 7 and the bypass path 9 is used. If the regenerator 3 and the absorber 2 can be supplied at an appropriate flow rate and temperature, the three-way valve A is provided on the forward path 7a of the absorption liquid circulation path 7 at a location branched from the bypass path 9 without providing the three-way valve A. A configuration is also possible.

吸収器における吸収液の過冷却を防止することにより、当該吸収液の吸収能力を低下させずに、エネルギー効率を向上させて、成績係数(COP値)の低下を防止できる吸収式冷凍機を提供する。   Providing an absorption refrigeration machine that prevents energy absorption without reducing the absorption capacity of the absorption liquid and prevents a decrease in the coefficient of performance (COP value) by preventing overcooling of the absorption liquid in the absorber To do.

1 蒸発器
2 吸収器
3 再生器
4 凝縮器
5 吸収器用熱交換器
6 再生濃吸収液熱交換器
7 吸収液循環路
7a 往路
7b 復路
9 バイパス路
11 噴霧器(混合手段)
100、200 吸収式冷凍機
S 水蒸気(冷媒蒸気)
L 水(冷媒液)
D 吸収液
D1 希吸収液
D2 濃吸収液
C 冷却媒体
P ポンプ
A 三方弁
T1、T2 絞り弁
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 Regenerator 4 Condenser 5 Heat exchanger for absorber 6 Regenerated concentrated absorption liquid heat exchanger 7 Absorption liquid circulation path 7a Outbound path 7b Return path 9 Bypass path 11 Sprayer (mixing means)
100, 200 Absorption refrigerator S Water vapor (refrigerant vapor)
L Water (refrigerant liquid)
D Absorbing liquid D1 Diluted absorbing liquid D2 Concentrated absorbing liquid C Cooling medium P Pump A Three-way valve T1, T2 Throttle valve

Claims (2)

蒸発器、吸収器、再生器、凝縮器を備えるとともに、前記吸収器と前記再生器との間で、吸収液が循環する吸収液循環路を備え、
前記吸収器において冷媒が吸収されて希吸収液が生成され、
前記再生器において前記冷媒が蒸発して濃吸収液が生成されて作動する吸収式冷凍機であって、
前記再生器から前記吸収器に流通する前記濃吸収液を外部から導入された冷却媒体との熱交換により冷却する吸収器用熱交換器を、当該吸収器の外部の前記吸収液循環路に備え、
前記冷却媒体を、前記吸収器用熱交換器と前記凝縮器内の凝縮器用熱交換器とを流通させて外部に放出可能に構成された冷却媒体流通路を備える吸収式冷凍機。
An evaporator, an absorber, a regenerator, and a condenser, and an absorption liquid circulation path through which an absorption liquid circulates between the absorber and the regenerator,
Refrigerant is absorbed in the absorber to produce a diluted absorbent,
In the regenerator, the refrigerant is evaporated to generate a concentrated absorbent, and the absorption refrigerator is operated.
An absorber heat exchanger for cooling the concentrated absorbent flowing from the regenerator to the absorber by heat exchange with a cooling medium introduced from the outside is provided in the absorption liquid circulation path outside the absorber,
An absorption refrigerator having a cooling medium flow path configured to allow the cooling medium to flow through the absorber heat exchanger and the condenser heat exchanger in the condenser to be discharged to the outside.
前記吸収液循環路が、前記吸収器から前記再生器に前記希吸収液を流通する往路と、前記再生器から前記吸収器に前記濃吸収液を流通する復路とを備えて構成され、
前記往路と前記復路との間に、前記往路を流通する前記希吸収液の一部を前記復路における前記吸収器用熱交換器の上流側に直接導入するバイパス路を設けた請求項1に記載の吸収式冷凍機。
The absorption liquid circulation path is configured to include a forward path through which the diluted absorbent is circulated from the absorber to the regenerator, and a return path through which the concentrated absorbent is circulated from the regenerator to the absorber;
2. The bypass path for directly introducing a part of the diluted absorbent flowing through the forward path to the upstream side of the absorber heat exchanger in the return path is provided between the forward path and the return path. Absorption refrigerator.
JP2012002143A 2012-01-10 2012-01-10 Absorption refrigerating machine Pending JP2012068019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002143A JP2012068019A (en) 2012-01-10 2012-01-10 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002143A JP2012068019A (en) 2012-01-10 2012-01-10 Absorption refrigerating machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007161553A Division JP5260895B2 (en) 2007-06-19 2007-06-19 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JP2012068019A true JP2012068019A (en) 2012-04-05

Family

ID=46165483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002143A Pending JP2012068019A (en) 2012-01-10 2012-01-10 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2012068019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210866A (en) * 2018-06-05 2019-12-12 株式会社日立製作所 Cogeneration power plant and method for operating the same
JP2019215136A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Absorption type refrigeration unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176552A (en) * 1983-03-28 1984-10-05 株式会社 田熊総合研究所 Absorber for absorption refrigerator
JPS61116251A (en) * 1984-11-09 1986-06-03 三菱電機株式会社 Absorption type heat pump
JP2000074520A (en) * 1998-09-03 2000-03-14 Hitachi Ltd Absorption chilled and hot water machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176552A (en) * 1983-03-28 1984-10-05 株式会社 田熊総合研究所 Absorber for absorption refrigerator
JPS61116251A (en) * 1984-11-09 1986-06-03 三菱電機株式会社 Absorption type heat pump
JP2000074520A (en) * 1998-09-03 2000-03-14 Hitachi Ltd Absorption chilled and hot water machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210866A (en) * 2018-06-05 2019-12-12 株式会社日立製作所 Cogeneration power plant and method for operating the same
JP7137968B2 (en) 2018-06-05 2022-09-15 株式会社日立製作所 Cogeneration plant and its operation method
JP2019215136A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Absorption type refrigeration unit
JP7003847B2 (en) 2018-06-14 2022-01-21 Jfeエンジニアリング株式会社 Absorption chiller

Similar Documents

Publication Publication Date Title
CN106440476A (en) Two-stage independent cascade double-effect lithium bromide absorption type refrigerating heat pump unit
JP2011075180A (en) Absorption type refrigerating machine
JP2011089722A (en) Method and device for refrigeration/air conditioning
KR100981672B1 (en) Two-stage driven hot water absorption chiller
KR101060776B1 (en) Absorption Chiller
JP2012068019A (en) Absorption refrigerating machine
JPH08159594A (en) Multiple effect absorption refrigerator
JP5260895B2 (en) Absorption refrigerator
JP5338270B2 (en) Absorption refrigeration system
JP2010085006A (en) Absorption type water chiller and heater
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2008020094A (en) Absorption type heat pump device
JPH074769A (en) Single and double effect absorption refrigerating device
US10018383B2 (en) Triple effect absorption chiller
KR20080094985A (en) Hot-water using absorption chiller
JP2009168358A (en) Chilled water generation system and absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP5338272B2 (en) Absorption refrigeration system
KR20180085363A (en) Low load control system for 2-stage low temperature hot water absorption chiller
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP2010007907A (en) Air conditioning system
JP4282225B2 (en) Absorption refrigerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP3857955B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130704