JP2004143079A - 直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法 - Google Patents

直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法 Download PDF

Info

Publication number
JP2004143079A
JP2004143079A JP2002309739A JP2002309739A JP2004143079A JP 2004143079 A JP2004143079 A JP 2004143079A JP 2002309739 A JP2002309739 A JP 2002309739A JP 2002309739 A JP2002309739 A JP 2002309739A JP 2004143079 A JP2004143079 A JP 2004143079A
Authority
JP
Japan
Prior art keywords
compound represented
formula
compound
ocf
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309739A
Other languages
English (en)
Inventor
Kazuya Oharu
大春 一也
Yoichi Takagi
高木 洋一
Eisuke Murotani
室谷 英介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002309739A priority Critical patent/JP2004143079A/ja
Publication of JP2004143079A publication Critical patent/JP2004143079A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】経済的に有利な方法で、ペルフルオロカルボン酸フルオリドを製造方法を提供する。
【解決手段】下記式(3)で表される化合物を液相フッ素化して下記式(4)で表される化合物を得、該式(4)で表される化合物の分解反応を行うことを特徴とする下記式(5)で表されるペルフルオロカルボン酸フルオリドの製造方法。Q(COOR・・・(3) Q(COORF1・・・(4) RF2COF・・・(5)ここで、RはR(OCHCH−(ただし、Rは炭素数1〜10の有機基、kは1以上の整数。)を表し、RF1はRF3(OCFCF−(ただし、RF3は上記Rがペルフルオロ化された1価の有機基、kは上記と同義。)を表し、RF2はRF3(OCFCFk−1OCF−(ただし、RF3とkは上記と同義。)を表し、Qはn価の含フッ素有機基を表し、Qは上記Qがペルフルオロ化されたn価の有機基を表し、nは1以上の整数を表す。
【選択図】なし

Description

【0001】
【発明の属する技術分野】
本発明は、直鎖構造であり、かつペルフルオロ(ポリエチレングリコール)連鎖を有するペルフルオロカルボン酸フルオリドの効率的な製造方法、および新規な該ペルフルオロカルボン酸フルオリド化合物、さらにはその化合物を製造するために有効な中間体に関する。
【0002】
【従来の技術】
ヘキサフルオロプロピレンオキシドのオリゴマーであるF(CF(CF)CFO)CF(CFCOF(pは1以上の整数を示す。)は、従来より公知の化合物である。該化合物は、工業的にヘキサフルオロプロピレンオキシドの開環重合反応により製造されている。
【0003】
【発明が解決しようとする課題】
しかし、ヘキサフルオロプロピレンオキシドの代わりにテトラフルオロエチレンオキシドを用いてペルフルロオロエチレンオキシド連鎖を有する酸フルオリドを得ようとしても、テトラフルオロエチレンオキシド自体が安定に存在しないために、実際には目的とする酸フルオリドを得ることはできなかった。
ヘキサフルオロプロピレンオキシドのオリゴマーは、種々の機能性材料の合成中間体等として有用な化合物であり、ペルフルロオロエチレンオキシド連鎖を有する酸フルオリドもまた同様の有用性がある他、化合物中に分岐鎖を持たない直鎖状の化合物であることに伴う、様々な機能の発現が期待できる化合物である。
【0004】
本発明は、入手が容易な原料から経済的に有利な方法で、ペルフルオロエチレングリコール連鎖を有する酸フルオリドを製造する方法の提供を目的とする。
また本発明は、新規なペルフルオロエチレングリコール連鎖を有する酸フルオリド、およびその製造に有用な中間体の提供を目的とする。
【0005】
【課題を解決するための手段】
すなわち、以下の構成を有する発明を提供する。
1.下記式(3)で表される化合物を液相フッ素化してペルフルオロ化することにより下記式(4)で表される化合物を得、該式(4)で表される化合物のエステル結合の分解反応を行うことを特徴とする下記式(5)で表されるペルフルオロカルボン酸フルオリドの製造方法。
Q(COOR・・・(3)
(COORF1・・・(4)
F2COF・・・(5)
ここで、式中の記号は、以下の通りである。
:R(OCHCH−(ただし、Rは炭素数1〜10の有機基、kは1以上の整数。)。
F1:RF3(OCFCF−(ただし、RF3は上記Rがペルフルオロ化された1価の有機基、kは上記と同義。)。
F2:RF3(OCFCFk−1OCF−(ただし、RF3とkは上記と同義。)。
Q:n価の含フッ素有機基。
:上記Qがペルフルオロ化されたn価の有機基。
n:1以上の整数。
【0006】
2.式(3)で表される化合物が、下記式(1)で表される化合物と下記式(2)で表される化合物とをエステル化反応させて得た化合物である上記1に記載の製造方法。
OH・・・(1)
Q(COF)・・・(2)
ここで、R、Q、nは、式(3)における意味と同義である。
3.式(2)で表される化合物が、エステル結合の分解反応生成物から得た下記式(2F)で表される化合物である上記2に記載の製造方法。
(COF)・・・(2F)
ここで、Qおよびnは、式(4)における意味と同義である。
4.式(3)で表される化合物のフッ素含有量が20〜60質量%であり、分子量が200〜1100である上記1〜3のいずれかに記載の製造方法。
5.式(3)で表される化合物が下記式(3−1)で表される化合物であり、式(4)で表される化合物が下記式(4−1)で表される化合物である上記1〜4のいずれかに記載の製造方法。
2f(COOR・・・(3−1)
2f(COORF1・・・(4−1)
ここで、Q2fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキレン基を示し、Rは式(3)における意味と同義であり、RF1は式(4)における意味と同義である。
6.式(3)で表される化合物が下記式(3−2)で表される化合物であり、式(4)で表される化合物が下記式(4−2)で表される化合物である上記1〜4のいずれかに記載の製造方法。
3fCOOR・・・(3−2)
3fCOORF1・・・(4−2)
ここで、Q3fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキル基を示し、Rは式(3)における意味と同義であり、RF1は式(4)における意味と同義である。
【0007】
7.下記式(3−1)で表される化合物または下記式(3−2)で表される化合物。
2f(COOR・・・(3−1)
3fCOOR・・・(3−2)
ここで、Q2f、Q3fおよびRは上記と同義である。
8.下記式(4−1)で表される化合物、下記式(4−2)で表される化合物、または下記式(5)で表される化合物。
2f(COORF1・・・(4−1)
3fCOORF1・・・(4−2)
F2COF・・・(5)
ここで、Q2f、Q3f、RF1およびRF2は上記と同義である。
9.下記式(5−1)で表される化合物。
CF(OCFCFOCFCOF・・・(5−1)
ここで、mは1〜9の整数である。
【0008】
【発明の実施の形態】
本明細書における有機基とは、炭素原子を必須とする基をいう。有機基としては、C−H部分を有する有機基や、炭素−炭素不飽和結合を有する有機基が挙げられ、C−H部分を有する有機基が好ましく、特に該基のうち炭素−炭素結合が単結合のみからなる飽和有機基が好ましい。
C−H部分を有する有機基としては、飽和炭化水素基、エーテル性酸素原子含有飽和炭化水素基、部分ハロゲン化飽和炭化水素基、または部分ハロゲン化(エーテル性酸素原子含有飽和炭化水素)基が挙げられる。ここで、エーテル性酸素原子とは、エーテル結合(C−O−C)を形成する酸素原子を意味する。
【0009】
飽和炭化水素基のうち1価の飽和炭化水素基としては、アルキル基、シクロアルキル基、または環構造を有する1価飽和炭化水素基(たとえば、シクロアルキル基、シクロアルキルアルキル基、またはこれらの基を部分構造とする基)等が挙げられ、アルキル基が好ましい。
2価の飽和炭化水素基としては、アルキレン基、シクロアルキレン基、または環構造を有する2価の飽和炭化水素基(たとえば、シクロアルキル基、ビシクロアルキル基、またはシクロアルキレン基を部分構造とする2価の飽和脂肪族炭化水素基。)等が挙げられ、アルキレン基が好ましい。
【0010】
エーテル性酸素原子含有飽和炭化水素基のうち1価の基としては、炭素−炭素結合間にエーテル性酸素原子が挿入されたアルキル基、または、炭素−炭素結合間にエーテル性酸素原子が挿入されたシクロアルキル基等が挙げられる。また、エーテル性酸素原子含有飽和炭化水素基のうち2価の基としては、炭素−炭素結合間や該基の結合末端にエーテル性酸素原子が挿入されたアルキレン基、または、炭素−炭素結合間にエーテル性酸素原子が挿入されたシクロアルキレン基等が挙げられ、特にオキシアルキレン基、または、ポリオキシアルキレン部分を有する基が好ましい。エーテル性酸素原子を含有する基において、エーテル性酸素原子の数は1個であっても2個以上であってもよい。
また、部分ハロゲン化飽和炭化水素基および部分ハロゲン化(エーテル性酸素原子含有飽和炭化水素)基とは、飽和炭化水素基およびエーテル性酸素原子含有飽和炭化水素基のそれぞれが、水素原子が残る割合でハロゲン化された基であることを意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、またはヨウ素原子であり、フッ素原子または塩素原子が好ましい。特に部分ハロゲン化された基におけるハロゲン原子としては、塩素原子が好ましい。
【0011】
ぺルフルオロ化とは、フッ素化され得る基中に存在するフッ素化され得る部分の実質的に全てがフッ素化されることをいう。たとえば、C−H部分を有する有機基をペルフルオロ化した基においては、C−H部分の実質的に全てがC−Fになり、炭素−炭素不飽和結合が存在する有機基をペルフルオロ化した基においては、実質的に全ての不飽和結合にフッ素原子が付加する。
ペルフルオロ化された1価有機基としては、たとえばペルフルオロアルキル基が挙げられ、具体的には−CFCF、−CFCFCF、−CFCFCFCF、−CF(CF、−CFCF(CF、−CF(CF)CFCF、−C(CF等が挙げられる。また−CFCClF、−CFCBrF、−CFCFClCFCl等のように塩素原子が結合した基も例示されうる。ペルフルオロ化された2価有機基としては、たとえばペルフルオロアルキレン基が挙げられ、具体的には−(CF−(aは1〜8の整数が好ましい)、−CF(CF)CFCFCF−、−CFCF(CF)CFCF−、および下記の基等が挙げられる。
【0012】
【化1】
Figure 2004143079
【0013】
また、ペルフルオロ化されたエーテル性酸素原子含有基としては、上記に例示した基の炭素−炭素原子間にエーテル性酸素原子が挿入された基が挙げられ、たとえば、1価の基としては、−CF(CF)[OCFCF(CF)]OCFCFCF(bは1以上の整数であり、1〜5の整数が好ましい。)、−(CFOCF(dは1以上の整数であり、1〜8の整数が好ましい。)等が挙げられる。2価の基としては、−CF(CF)OCF(CF)−等が挙げられる。
【0014】
以下、本発明の製造方法について、詳細に説明する。
本発明においては、式(3)で表される化合物(以下、化合物(3)と称する)を液相フッ素化する。なお、以下同様に、式(X)で表される化合物を化合物(X)と記す。
化合物(3)は、n価の含フッ素有機基であるQの結合手に、−COORで表される基がn個結合した化合物である。nは1以上の整数を示し、化合物の入手しやすさからnは1または2であるのが好ましく、特にnが1である化合物は、化合物の入手しやすさの点で有利である。n価の含フッ素有機基としては、部分フッ素化された有機基であってもペルフルオロ化された有機基であってもよく、含フッ素n価飽和炭化水素基、含フッ素(エーテル性酸素原子含有n価飽和炭化水素)基が好ましい。さらにn価含フッ素有機基(Q)としては、ペルフルオロ化された基であるQが好ましく、1価の基である場合には、ペルフルオロアルキル基、ペルフルオロ(エーテル性酸素原子含有アルキル)基が好ましく、2価の基である場合には、ペルフルオロアルキレン基、ペルフルオロ(エーテル性酸素原子含有アルキレン)基が好ましい。Qの炭素数は1〜18が好ましい。
【0015】
また、化合物(3)におけるRは、R(OCHCH−を示す。Rは、炭素数が1〜10である1価の有機基を示し、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、メチル基が特に好ましい。kは、1以上の整数を示し、1〜10が好ましく、1〜5以下が特に好ましい。
化合物(3)の具体例としては、下記化合物が挙げられる。
nが1である化合物(3)の具体例。
(CFCFCOOCHCHOCHCHOCH
(CFCFCOOCHCHOCHCHOCHCHOCH
F(CFOCF(CF)CFOCF(CF)COOCHCHOCHCHOCHCHOCH
F(CFOCF(CF)COOCHCHOCHCHOCHCHOCHCH
F(CFCF(CF)CFOCF(CF)COOCHCHOCHCHOCHCH
F(CFOCF(CF)COOCHCHOCHCHOCHCHOCHCHCH
nが2である化合物(3)の具体例。
CHOCHCHOCHCHOCOCF(CF)OCF(CF)COOCHCHOCHCHOCH
【0016】
化合物(3)で表される化合物の液相フッ素化反応においては、該反応を円滑に進行させるために、化合物(3)のフッ素含量を20〜60質量%にするのが好ましく、特に25〜55質量%にするのが好ましい。また、化合物(3)の分子量は200〜1100の範囲にあることが好ましく、特に300〜800の範囲にあることが好ましい。フッ素含量が上記特定の範囲にある化合物(3)においては、フッ素化反応時の液相中への溶解性が格段に向上し、液相フッ素化反応の操作性、反応収率が向上する利点があり、また経済性に優れる利点もある。また化合物(3)の分子量が200以上(より好ましくは300以上)である場合には、気相フッ素化反応により分解反応が起こるリスクを回避できる利点があり、さらに該分子量が1100以下(より好ましくは800以下)にある場合には、化合物の取扱いや生成物の精製がしやすい利点がある。
【0017】
本発明における化合物(3)は、化合物(1)と化合物(2)とのエステル化反応により得た化合物であるのが好ましい。ただし、下式中の記号は式(3)における意味と同義である。
OH・・・・・・(1)
Q(COF)・・・(2)
化合物(1)はポリエチレングリコールの片末端の水酸基にR(炭素数1〜10の1価有機基)がエーテル結合した化合物であり、公知の製造方法により得られる化合物である。該化合物(1)の具体例としては、下記化合物が挙げられる。
CHOCHCHOCHCHOH、
CHOCHCHOCHCHOCHCHOH、
CHCHOCHCHOCHCHOH、
CHCHOCHCHOCHCHOCHCHOH、
CHCHCHOCHCHOCHCHOCHCHOH。
【0018】
また、化合物(2)は公知の化合物であり、ヘキサフルオロプロピレンのオリゴマー化反応や本出願人による国際公開第00/56694号公報に記載の方法等により製造できる化合物である。
化合物(1)と化合物(2)とのエステル化反応は、公知のエステル化反応の条件により実施できる。反応温度の下限は通常は−50℃であるのが好ましく、上限は+100℃であるのが好ましい。また、該反応の反応時間は、原料の供給速度と実際に反応する化合物量に応じて適宜変更することができる。反応圧力は常圧〜2MPa(ゲージ圧。以下、圧力はゲージ圧で記載する。)であるのが好ましい。
【0019】
化合物(1)の量は、化合物(2)に対してn倍モル(nは、化合物(2)中の−COFで表される基の数nに対応する。)以下であるのが好ましい。化合物(1)の量をn倍モル以下にすることにより、エステル化反応の反応生成物中に、未反応の化合物(1)が残って、残留化合物(1)が次のフッ素化反応時に好ましくない反応を引き起こす問題を回避でき、かつ、化合物(3)の精製の手間を省略できる。該化合物(1)の量は、化合物(2)に対して0.5n倍〜n倍モルであるのが特に好ましく、0.9n倍〜n倍モルであるのがとりわけ好ましい。
【0020】
nが2以上である場合には、エステル化反応で未反応の−COF基が残った下記化合物(3−A)が反応生成物中に存在し得る。この化合物(3−A)はエステル化反応生成物中に存在させたまま、つぎのフッ素化反応を行ってもよい。ただし、下式(3−A)中のn、Q、Rは上記と同じ意味を示し、mは1以上n未満の整数を示す。nが2である場合のmは1である。
Q(COORn−m(COF)・・・・(3−A)
【0021】
フッ素化反応を円滑に行う観点から、エステル化反応の生成物は精製するのが好ましい。特にエステル化反応の生成物が化合物(1)を含む場合には、精製により化合物(1)を除去しておくのが好ましい。精製方法としては、蒸留法、生成物を水等で処理した後に分液する方法、適当な有機溶媒で抽出した後に蒸留する方法、シリカゲルカラムクロマトグラフィ等が挙げられる。
エステル化反応では、フッ酸(HF)が発生するため、アルカリ金属フッ化物(NaF、KF等が好ましい。)やトリアルキルアミン等をHF捕捉剤として反応系中に存在させてもよい。HF捕捉剤の量は、発生するHFの理論量に対して0.1〜10倍モル程度であるのが好ましい。HF捕捉剤を使用しない場合には、HFが気化しうる反応温度で反応を行い、HFを窒素気流に同伴させて反応系外に排出するのが好ましい。
また、HF捕捉剤を用いずにHFを窒素気流に同伴させて反応系外に排出する方法をとってもよく、該方法によるのが粗液をそのまま次のフッ素化工程に用いることができる点から好ましい。
【0022】
本発明においては、化合物(3)を液相フッ素化反応する。化合物(3)は、フッ化コバルトを用いるフッ素化法、または電気化学的フッ素化法によってもフッ素化できるが、フッ素化反応の収率が格段に高いことから、本発明においては、液相中でフッ素と反応させる液相フッ素化法によりフッ素化を行う。
液相フッ素化法における液相としては、反応の基質自身であってもよいが、生成物や反応に関与しない溶媒であるのが好ましい。
【0023】
該溶媒としては、フッ素化反応に不活性な溶媒が好ましく、さらに化合物(3)の溶解性が高い溶媒を用いるのが特に好ましく、特に化合物(3)を1質量%以上溶解しうる溶媒、特には5質量%以上溶解しうる溶媒を用いるのが好ましい。
フッ素化反応に用いる溶媒の例としては、後述する化合物(2F)、本発明の目的化合物である化合物(5)などのペルフルオロカルボン酸フルオリド類、化合物(4)などのペルフルオロエステル類のほかに、液相フッ素化の溶媒として用いられる公知の溶媒、たとえば、CFClCFCl等のクロロフルオロカーボン類、ペルフルオロトリブチルアミン、ペルフルオロ(2−ブチルテトラヒドロフラン)等のペルフルオロカーボン類が挙げられる。このうち該溶媒としては、化合物(2F)または化合物(4)であるのが、後処理が容易になる利点があるため好ましい。
溶媒の量は、化合物(3)の総質量に対して、5倍質量以上が好ましく、特に1×10〜1×10倍質量が好ましい。
【0024】
フッ素化反応の反応形式は、バッチ方式であっても連続方式であってもよい。たとえば、反応器にフッ素化反応溶媒と化合物(3)とを仕込み、撹拌し、つぎにフッ素ガスを、フッ素化反応溶媒中に連続的に供給しながら反応させる方法が挙げられる。また、反応器にフッ素化反応溶媒を仕込んで撹拌し、つぎにフッ素ガスと化合物(3)とを、所定のモル比で連続的にフッ素化反応溶媒中に供給する方法が挙げられる。このうち、フッ素化反応は、反応収率と選択率の点から、後者の方法で実施するのが好ましい。
【0025】
フッ素は、フッ素ガスそのままを用いるか、不活性ガスで希釈されたフッ素ガスを用いるのが好ましい。不活性ガスとしては、窒素ガス、ヘリウムガスが好ましく、経済的な理由から窒素ガスが特に好ましい。窒素ガス中のフッ素ガス量は特に限定されず、10vol%以上にするのが効率の点で好ましく、20vol%以上にするのが特に好ましい。
フッ素化反応に用いるフッ素は、化合物(3)中に含まれる水素原子の量に対するフッ素(F)の量が、反応の最初から最後まで常に過剰当量となるように保つのが好ましく、特に水素原子に対するフッ素の量を1.05倍当量以上(すなわち、1.05倍モル以上)となるように保つのが選択率の点から好ましく、2倍当量以上(すなわち、2倍モル以上)となるように保つのが選択率の点からさらに好ましい。また、反応の開始時点においてもフッ素の量を過剰量にするために、反応当初に用いるフッ素化反応溶媒には、あらかじめフッ素を充分量溶解させておくのが好ましい。
また、液相フッ素化反応は、化合物(3)中のエステル結合を切断せずに実施する必要があることから、反応温度の下限は−60℃および化合物(3)の沸点のうち低い温度にするのが好ましい。通常の場合には、反応収率、選択率、および工業的実施のしやすさの点から、反応温度は−50℃〜+100℃が特に好ましく、−20℃〜+50℃がとりわけ好ましい。フッ素化反応の反応圧力は特に限定されず、常圧〜2MPaにするのが、反応収率、選択率、工業的な実施のしやすさの観点から特に好ましい。
【0026】
さらに、フッ素化反応を効率的に進行させるためには、反応系中にベンゼンやトルエン等のC−H結合含有化合物を添加する、化合物(3)を長時間反応系内に滞留させる、または、紫外線照射を行う等の操作を行うのが好ましい。これらの操作はフッ素化反応の後期に行うのが好ましい。
【0027】
液相中フッ素化においては、水素原子がフッ素原子に置換されてHFが副生する。このHFを除去する目的で、反応系中にHF捕捉剤(NaFが好ましい。)を共存させる、反応器ガス出口でHF捕捉剤と出口ガスを接触させる、または出口ガスを冷却してHFを凝縮させて回収する、等を行うのが好ましい。またHFは窒素ガス等の不活性ガスに同伴させて反応系外に導き、アルカリ処理してもよい。HF捕捉剤を使用する場合の量は、化合物(3)中に存在する全水素原子量に対して1〜20倍モルが好ましく、1〜5倍モルが特に好ましい。
【0028】
フッ素化反応の反応生成物は、そのまま次の工程に用いてもよく、精製して高純度のものにしてもよい。精製方法としては、粗生成物を常圧または減圧下に蒸留する方法等が挙げられる。
【0029】
フッ素化反応では、化合物(3)がペルフルオロ化されて、化合物(4)が生成する。化合物(4)におけるQは、Qがペルフルオロ化されたn価有機基であり、Qがフッ素化され得る基である場合には、該基がペルフルオロ化された結果Qとなる。Qがフッ素化されない基(たとえば、Qがペルフルオロn価有機基である場合)である場合には、QはQと同一の基である。
化合物(4)のRF1は、RF3(OCFCF−を示し、RF3は、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ペルフルオロブチル基であるのが好ましい。
【0030】
化合物(4)の具体例としては、下記化合物が挙げられる。
nが1である化合物(4)の具体例。
(CFCFCOOCFCFOCFCFOCF
(CFCFCOOCFCFOCFCFOCFCFOCF
F(CFOCF(CF)CFOCF(CF)COOCFCFOCFCFOCFCFOCF
F(CFOCF(CF)COOCFCFOCFCFOCFCFOCFCF
F(CFCF(CF)CFOCF(CF)COOCFCFOCFCFOCFCF
F(CFOCF(CF)COOCFCFOCFCFOCFCFOCFCFCF
nが2である化合物(4)の具体例。
CFOCFCFOCFCFOCOCF(CF)OCF(CF)COOCFCFOCFCFOCF
【0031】
本発明においては、さらに化合物(4)のエステル結合の分解反応を行う。エステル結合の分解反応はそれ自体公知の反応である。該反応は、化合物中に存在するエステル結合を切断して、ペルフルオロカルボン酸フルオリド(化合物(5))を生成させる反応である。
エステル結合の分解反応は、熱分解反応、または求核剤もしくは求電子剤の存在下に行う分解反応、によるのが好ましい。熱分解反応は、気相反応または液相反応で実施するのが好ましい。
【0032】
たとえば、化合物(4)の沸点が低い場合、熱分解反応は、気相熱分解法で実施するのが好ましい。気相熱分解法は、気相で連続的に分解反応を行い、生成する分解反応生成物を出口ガスから凝縮させ、これらを回収する方法で行うのが好ましい。
気相熱分解法の反応温度は、50〜350℃が好ましく、50〜300℃が特に好ましく、とりわけ100〜250℃が好ましい。気相熱分解法においては、金属塩触媒を使用してもよく、反応系に反応には直接は関与しない不活性ガスを共存させてもよい。不活性ガスとしては、窒素ガス、二酸化炭素ガス等が挙げられる。不活性ガスの添加量は、化合物(4)の総量に対して0.01〜50vol%程度であるのが好ましい。不活性ガスの添加量が多すぎると、生成物の回収量が低減することがある。
【0033】
沸点が高い化合物(4)のエステル結合の分解反応は、液相熱分解法で実施するのが好ましい。液相分解法は、液状にした化合物(4)を加熱する方法により実施するのが好ましい。該分解反応の生成物は、反応器中から一度に抜き出してもよい。また、目的のペルフルオロカルボン酸フルオリドは、化合物(4)よりも通常は低沸点であることを利用して、蒸留塔を付けた反応装置を用いて反応を行い、生成物を蒸留で抜き出しながら行ってもよい。液相熱分解法の反応温度は50〜300℃が好ましく、特に100〜250℃が好ましい。液相熱分解法における反応圧力は限定されない。
液相熱分解法は、無溶媒で行っても、分解反応溶媒の存在下に行ってもよく、無溶媒で行うのが好ましい。分解反応溶媒を使用する場合には、化合物(4)に対して0.1倍〜10倍質量の溶媒を使用するのが好ましい。
【0034】
エステル結合の分解反応を液相中で求核剤または求電子剤と反応させる方法で実施する場合には、無溶媒であっても、分解反応溶媒の存在下であってもよく、無溶媒で行うのが好ましい。無溶媒で反応を行うことは、フッ素化反応生成物自身が溶媒としても作用し、反応生成物中から溶媒を分離する手間を省略できる。求核剤または求電子剤を用いる方法も、蒸留塔をつけた反応装置で蒸留をしながら行うのが好ましい。
求核剤としてはFが好ましく、特にアルカリ金属のフッ化物由来のFが好ましい。アルカリ金属のフッ化物としては、NaF、NaHF、KF、CsFが好ましく、経済性の点ではNaFが、反応活性の点ではKFが特に好ましい。また、反応の最初の求核剤量は触媒量であってもよく、過剰量であってもよい。F等の求核剤の量はフッ素化反応生成物に対して1〜500モル%が好ましく、1〜100モル%が特に好ましく、とりわけ5〜50モル%が好ましい。反応温度の下限は−30℃が好ましく、上限は−20℃〜250℃であるのが好ましい。
化合物(5)中のRF2は、RF3(OCFCFk−1−を示し、RF3およびkは、化合物(4)における意味と同じ意味を示す。
化合物(5)の具体例としては、下記化合物が挙げられる。
CF(OCFOCF)OCFCOF、
CF(OCFOCFOCFCOF、
CFCF(OCFOCF)OCFCOF、
CFCF(OCFOCFOCFCOF、
CFCFCF(OCFOCFOCFCOF。
【0035】
化合物(4)のエステル結合の分解反応では、化合物(5)とともに化合物(2F)が生成する。ここで、Qおよびnは、式(4)における意味と同義である。
(COF)・・・(2F)
分解反応生成物から化合物(5)と化合物(2F)とを分離する方法としては、蒸留法が好ましい。
【0036】
本発明の方法で得られる化合物(5)は、種々の機能性材料用の中間体として有用である。たとえば、ペルフルオロカルボン酸フルオリドを、HFPO(ヘキサフルオロプロピレンオキサイド)と反応させた後に、熱分解反応を行うことによってフッ素ゴムまたはフッ素樹脂のモノマーとして有用な化合物に導くことができる。
また、化合物(5)は、シランカップリング剤の中間体として有用な化合物である。たとえば、ペルフルオロカルボン酸フルオリドは、LiIと反応させた後に、熱分解反応を行い、エチレン付加後に脱HIさせ、ヒドロシリル化することによってシランカップリング剤として有用な化合物に導くことができる。
【0037】
さらに、エステル結合の分解反応生成物中に含まれる化合物(2F)の一部または全部は、前述した化合物(3)の製造に用いる化合物(2)として再利用して、化合物(5)の連続製造方法が実施できる。
【0038】
本発明の製造方法の好ましい態様としては、以下の態様が挙げられる。
(態様1)
上記式(3)のnが2であって、化合物(3)が下記化合物(3−1)であり、化合物(4)が下記化合物(4−1)である態様。
2f(COOR・・・(3−1)
2f(COORF1・・・(4−1)
ここで、Q2fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキレン基を示し、Rは式(3)における意味と同義であり、RF1は式(4)における意味と同義である。
【0039】
(態様2)
nが1であり、化合物(3)が下記化合物(3−2)であり、化合物(4)が下記化合物(4−2)である態様。
3fCOOR・・・(3−2)
3fCOORF1・・・(4−2)
ここで、Q3fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキル基を示し、RおよびRF1は、態様1における意味と同義である。
【0040】
(態様3)
化合物(3)が下記化合物(3−3)である態様。この場合には、化合物(3−3)のペルフルオロ化物である下記化合物(4ー3)のエステル結合の分解反応生成物が、実質的に本発明のペルフルオロカルボン酸フルオリド(下記化合物(5))のみとなるため、特別な分離操作を行うことなく、目的とする化合物が得られるため特に好ましい。すなわち、化合物(3)が化合物(3−3)であり、化合物(4)が化合物(4−3)である場合には、エステル結合の分解反応生成物に実質的に分離操作を行うことなく化合物(5)を得ることができる。
F2COOR・・・(3−3)
F2COORF1・・・(4−3)
F2COF・・・(5)
ここで、RF2は上記と同じ意味を示し、RおよびRF1は、態様1における意味と同義である。
【0041】
(態様4)
本発明におけるエステル結合の分解反応において生成する化合物(2F)[Q(COF)]を、化合物(3)の調製に用いる態様。この態様では、エステル結合の分解反応で生成した化合物(2F)の一部または全部を、化合物(1)と反応させる化合物(2F)として用いることによってペルフルオロカルボン酸フルオリドの連続製造方法が可能となる。
【0042】
【実施例】
以下に本発明を実施例によって詳細に説明するが、本発明はこれらに限定されない。
なお、以下において、1,1,2−トリクロロ−1,2,2−トリフルオロエタンをR−113と記す。また、ガスクロマトグラフィをGCと記し、GC分析における結果はピーク面積比で示す。
【0043】
実施例1〔CFO(CFO(CFOCFCOFの製造例;態様2および4〕
(工程1−1)エステル化反応によるCHO(CHO(CHO(CHOCOCF(CFの製造工程
ハステロイC製の2LのオートクレーブにCHO(CHO(CHO(CHOH(900g)を入れ、反応器を冷却し、密閉撹拌下、内温が30℃以下に保たれるようにゆっくりと(CFCFCOF(1240g)を導入した。(CFCFCOFの全量を導入し、さらに30℃で3時間の撹拌を行った後、反応で生じたHFを窒素ガスのバブリングによって系外に追い出して生成物を得た。生成物をGC分析した結果、CHO(CHO(CHO(CHOCOCF(CFが99.1%生成しており、未反応のCHO(CHO(CHO(CHOHは検出されなかった。この生成物は精製することなく、次の工程(1−2)に使用した。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):3.4(3H)、3.5〜3.6(2H)、3.6〜3.7(6H)、3.8(2H)、4.5〜4.6(2H)。
19F−NMR(282.6MHz、溶媒CDCl、基準:CFCl)δ(ppm):−74.8〜−74.9(6F)、−182.1〜−182.2(1F)。
【0044】
(工程1−2)フッ素化反応によるCFO(CFO(CFO(CFOCOCF(CFの製造工程
500mLのニッケル製オートクレーブに、R−113(312g)を加えた後に撹拌して25℃に保った。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−10℃に保持した冷却器を直列に設置した。また−10℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。オートクレーブに窒素ガスを室温で1時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガス(以下、20%希釈フッ素ガスと記す。)を室温で流速17.04L/hで1時間吹き込んだ。つぎに20%希釈フッ素ガスを同じ流速で吹き込みながら、工程1−1で得た生成物(5g)をR−113(150g)に溶解した溶液を4.1時間かけて注入した。
つぎに、20%希釈フッ素ガスを同じ流速で吹き込みながらオートクレーブ内圧力を0.15MPa(ゲージ圧)まで昇圧した。ベンゼン濃度が0.01g/mLであるR−113溶液を25℃から40℃にまで昇温しながら9mL注入し、オートクレーブのベンゼン溶液注入口を閉め、0.3時間撹拌を続けた。
つぎに反応器内圧力を0.15MPaに、反応器内温度を40℃に保ちながら、前記ベンゼン溶液を6mL注入し、オートクレーブのベンゼン溶液注入口を閉め、0.3時間撹拌を続けた。さらに同様の操作を1回繰り返した。ベンゼンの注入総量は0.22g、R−113の注入総量は21mLであった。
さらに20%希釈フッ素ガスを同じ流速で吹き込みながら1時間撹拌を続けた。つぎに、反応器内圧力を常圧にして、窒素ガスを1時間吹き込んだ。生成物を19F−NMRで分析した結果、標記化合物が収率99%で含まれていた。
19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−55.8(3F)、−74.7(6F)、−89.1(8F)、−91.2〜−92.1(4F)、−181.7(1F)。
【0045】
(工程1−3)エステル結合の分解反応によるCFO(CFO(CFOCFCOFの製造工程
10℃の還流器を備えた蒸留塔の釜(2L)に、工程1−2で得たCFO(CFO(CFO(CFOCOCF(CF(2000g)を仕込み、フッ化カリウム(18.4g)を加えて加熱撹拌を行い(熱媒温度:100〜130℃)、反応蒸留形式で留分を回収した。また、生成するガスは、−78℃に冷却したステンレス(SUS316)製トラップにて回収を行った。反応蒸留の終了後、留分およびステンレス製トラップの、質量測定とGC分析を行ったところ、CFO(CFO(CFOCFCOFが収率99%で含まれていた。
【0046】
実施例2〔CFO(CFO(CFOCFCOFの製造例;態様2および4〕
(工程2−1)エステル化反応によるCHO(CHO(CHO(CHOCOCF(CF)OCFCF(CF)OCFCFCFの製造工程ハステロイC製の2LのオートクレーブにCHO(CHO(CHO(CHOH(500g)を入れ、反応器を冷却して、常圧で内温が30℃以下に保たれるようにゆっくりとFCOCF(CF)OCFCF(CF)OCFCFCF(1590g)を導入した。同時に充分に撹拌しながら、窒素ガスをバブリングさせ、反応により生じたHFを系外に追い出した。FCOCF(CF)OCFCF(CF)OCFCFCFの全量を投入後、50℃でさらに5時間反応させて生成物を得た。生成物をGC分析した結果、標記化合物が99.2%生成しており、未反応のCHO(CHO(CHO(CHOHは検出されなかった。この生成物は精製することなく、次の工程(2−2)に使用した。
【0047】
(工程2−2)フッ素化反応によるCFOCFCFOCFCFOCFCFOCOCF(CF)OCFCF(CF)OCFCFCFの製造工程
製造工程1−2における希釈フッ素ガスの流速を13.85L/hに変更し、工程1−1で得た生成物(5g)をR−113(150g)に溶解した溶液を4.1時間かけて注入する方法を製造工程2−1で得た生成物(5g)をR−113(100g)に溶解した溶液を2.8時間かけて注入する方法に変更すること以外は工程1−2と同様の方法で反応を行った。生成物を19F−NMRで分析した結果、標記化合物が収率90%で含まれていた。
19F−NMR(282.7MHz、溶媒CDCl、基準:CFCl)δ(ppm):−55.6(3F)、−78.9〜−80.5(4F)、−81.9〜−82.5(8F)、−84.5〜−85.6(1F)、−89.2(8F)、−91.2〜−92.1(4F)、−130.1(2F)、−132.1(1F)、−145.3(1F)。
【0048】
(工程2−3)エステル結合の分解反応によるCFO(CFO(CFOCFCOFの製造工程
10℃の還流器を備えた蒸留塔の釜(2L)に、工程2−2で得たCFO(CFO(CFO(CFOCOCF(CF)OCFCF(CF)OCFCFCF(2000g)を仕込み、フッ化カリウム(12.7g)を加えて加熱撹拌を行い(熱媒温度:100〜130℃)、反応蒸留形式で留分を回収した。反応蒸留の終了後、留分の質量測定とGC分析を行ったところ、CFO(CFO(CFOCFCOFが収率99%で含まれていた。
【0049】
【発明の効果】
本発明の方法によれば、入手が容易な原料から経済的に有利な方法で、直鎖構造でありかつペルフルオロエチレングリコール連鎖を有する酸フルオリドを製造できる。
さらに、本発明によれば、新規なペルフルオロカルボン酸フルオリド、およびその製造に有利な中間体が提供される。該ペルフルオロカルボン酸フルオリドはフッ素樹脂やフッ素ゴム、シランカップリング剤等の機能性材料の中間体として有用である。

Claims (9)

  1. 下記式(3)で表される化合物を液相フッ素化してペルフルオロ化することにより下記式(4)で表される化合物を得、該式(4)で表される化合物のエステル結合の分解反応を行うことを特徴とする下記式(5)で表されるペルフルオロカルボン酸フルオリドの製造方法。
    Q(COOR・・・(3)
    (COORF1・・・(4)
    F2COF・・・(5)
    ここで、式中の記号は、以下の通りである。
    :R(OCHCH−(ただし、Rは炭素数1〜10の有機基、kは1以上の整数。)。
    F1:RF3(OCFCF−(ただし、RF3は上記Rがペルフルオロ化された1価の有機基、kは上記と同義。)。
    F2:RF3(OCFCFk−1OCF−(ただし、RF3とkは上記と同義。)。
    Q:n価の含フッ素有機基。
    :上記Qがペルフルオロ化されたn価の有機基。
    n:1以上の整数。
  2. 式(3)で表される化合物が、下記式(1)で表される化合物と下記式(2)で表される化合物とをエステル化反応させて得た化合物である請求項1に記載の製造方法。
    OH・・・(1)
    Q(COF)・・・(2)
    ここで、R、Q、nは、式(3)における意味と同義である。
  3. 式(2)で表される化合物が、エステル結合の分解反応生成物から得た下記式(2F)で表される化合物である請求項2に記載の製造方法。
    (COF)・・・(2F)
    ここで、Qおよびnは、式(4)における意味と同義である。
  4. 式(3)で表される化合物のフッ素含有量が20〜60質量%であり、分子量が200〜1100である請求項1〜3のいずれかに記載の製造方法。
  5. 式(3)で表される化合物が下記式(3−1)で表される化合物であり、式(4)で表される化合物が下記式(4−1)で表される化合物である請求項1〜4のいずれかに記載の製造方法。
    2f(COOR・・・(3−1)
    2f(COORF1・・・(4−1)
    ここで、Q2fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキレン基を示し、Rは式(3)における意味と同義であり、RF1は式(4)における意味と同義である。
  6. 式(3)で表される化合物が下記式(3−2)で表される化合物であり、式(4)で表される化合物が下記式(4−2)で表される化合物である請求項1〜4のいずれかに記載の製造方法。
    3fCOOR・・・(3−2)
    3fCOORF1・・・(4−2)
    ここで、Q3fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキル基を示し、Rは式(3)における意味と同義であり、RF1は式(4)における意味と同義である。
  7. 下記式(3−1)で表される化合物または下記式(3−2)で表される化合物。
    2f(COOR・・・(3−1)
    3fCOOR・・・(3−2)
    ここで、Q2fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキレン基を示し、Q3fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキル基を示し、RはR(OCHCH−(ただし、Rは炭素数1〜10の有機基、kは1以上の整数。)を示す。
  8. 下記式(4−1)で表される化合物、下記式(4−2)で表される化合物、または下記式(5)で表される化合物。
    2f(COORF1・・・(4−1)
    3fCOORF1・・・(4−2)
    F2COF・・・(5)
    ここで、Q2fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキレン基を示し、Q3fは炭素−炭素結合間にエーテル性酸素原子が挿入されていてもよい炭素数1〜18のペルフルオロアルキル基を示し、RF1はRF3(OCFCF−(ただし、RF3はペルフルオロ化された1価の有機基、kは1以上の整数。)を示し、RF2はRF3(OCFCFk−1OCF−(ただし、RF3とkは上記と同義。)を示す。
  9. 下記式(5−1)で表される化合物。
    CF(OCFCFOCFCOF・・・(5−1)
    ここで、mは1〜9の整数である。
JP2002309739A 2002-10-24 2002-10-24 直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法 Pending JP2004143079A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309739A JP2004143079A (ja) 2002-10-24 2002-10-24 直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309739A JP2004143079A (ja) 2002-10-24 2002-10-24 直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法

Publications (1)

Publication Number Publication Date
JP2004143079A true JP2004143079A (ja) 2004-05-20

Family

ID=32455462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309739A Pending JP2004143079A (ja) 2002-10-24 2002-10-24 直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法

Country Status (1)

Country Link
JP (1) JP2004143079A (ja)

Similar Documents

Publication Publication Date Title
USRE41184E1 (en) Process for producing a fluorine atom-containing sulfonyl fluoride compound
US6956138B2 (en) Method for producing a fluorine-containing compound
JP4934940B2 (ja) 含フッ素エステル化合物の製造方法
TWI296615B (en) Process for preparation of fluorinated ketones
US7501540B2 (en) Process for producing perfluorodiacyl fluorinated compounds
JP4285000B2 (ja) 含フッ素エステル、含フッ素アシルフルオリドおよび含フッ素ビニルエーテルの製造方法
JP4534765B2 (ja) フッ素化されたアダマンタン誘導体およびその製造方法
US7781612B2 (en) Process for producing fluorinated sulfonyl fluoride
RU2268876C2 (ru) Способ получения фторированного поливалентного карбонильного соединения
JP4961656B2 (ja) ペルフルオロアシルフルオリド類の製造方法
JP4126542B2 (ja) 含フッ素エステル化合物の分解反応生成物の製造方法
JP2004143079A (ja) 直鎖ペルフルオロカルボン酸フルオリド、およびその製造方法
JP4362710B2 (ja) 含フッ素カルボニル化合物の製造方法
JP2003261502A (ja) ペルフルオロ(3−メトキシプロピオニルフルオリド)の製造方法
WO2002026693A1 (fr) Procede de preparation d'un compose fluoroamine
JP2004189611A (ja) フッ化カルボニルの製造方法、および該製造に用いる中間体
JP2006028023A (ja) 含塩素含フッ素化合物の製造方法
JP2005002014A (ja) ペルフルオロ環状ラクトン誘導体の製造方法およびペルフルオロ環状ラクトンを含む混合物
JP2004346014A (ja) ペルフルオロジビニルエーテルの製造方法
WO2004094365A1 (ja) 含フッ素スルホニルフルオリド化合物の製造方法
JP2003313152A (ja) クロロジフルオロ酢酸フルオリドおよびその誘導体の製造方法
JP2004323413A (ja) ペルフルオロビニルエーテル類の製造方法および該方法に使用し得る新規化合物
JP2002255901A (ja) 新規なvic−ジクロロ酸フルオリド化合物
JP2003238461A (ja) ペルフルオロオレフィン類の製造方法
JP2003183222A (ja) 含フッ素ジカルボニル化合物の製造方法