JP2004136021A - 集中照射型放射線治療装置 - Google Patents

集中照射型放射線治療装置 Download PDF

Info

Publication number
JP2004136021A
JP2004136021A JP2002305717A JP2002305717A JP2004136021A JP 2004136021 A JP2004136021 A JP 2004136021A JP 2002305717 A JP2002305717 A JP 2002305717A JP 2002305717 A JP2002305717 A JP 2002305717A JP 2004136021 A JP2004136021 A JP 2004136021A
Authority
JP
Japan
Prior art keywords
radiation
data
period
data collection
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305717A
Other languages
English (en)
Inventor
Masahiro Ozaki
尾嵜 真浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002305717A priority Critical patent/JP2004136021A/ja
Publication of JP2004136021A publication Critical patent/JP2004136021A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】本発明の目的は、集中照射型放射線治療装置において、治療と並行して散乱線によるアーチファクトの少ない画像を生成することにある。
【解決手段】第1,第2X線管101,201と、検出器103と、第1,第2X線管に電力を供給する第1,第2高電圧発生装置107,207と、第2X線管から治療用放射線を発生させるために第2高電圧発生装置を制御し、第1放射線源からデータ収集用放射線を発生させるために第1高電圧発生装置を制御するコントローラ3と、第1X線管からのX線発生期間に対応するデータをX線停止期間に対応するデータにより補正する補正装置8と、補正されたデータに基づいて画像データを即時的に再構成する再構成装置4と、画像データに基づいて画像を表示する表示装置6とを具備する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、X線コンピュータ断層撮影機能を備えた集中照射型放射線治療装置に関する。
【0002】
【従来の技術】
X線を被検体に照射し、その投影データから画像データを再構成するX線コンピュータ断層撮影装置が知られている。このX線コンピュータ断層撮影装置を、高線量照射可能な仕様に改良し、また、治療対象以外に放射線を当てないようにX線を任意形状にトリミングすることを可能とするマルチリーフコリメータを採用することにより、集中照射型放射線治療にも兼用しようとする動きがある。
【0003】
この兼用機は、位置決め用の画像生成から治療までの一連の作業を、従来のようにX線コンピュータ断層撮影装置から放射線治療装置へ被検体を移し替える必要がなくなり、単一の機器に載置した状態のままで一貫して行うことができるので、治療時間を短縮することができ、また位置決めから治療開始までの期間、被検体が位置ズレを起こす機会が減少することから位置決め精度の向上を図ることができるという優位性を備えている。この優位性は格別なものであり、この種の兼用機は今後一層の普及していくものと考えられる。
【0004】
この兼用機を、2管球化して、その一方のX線管から治療用X線を発生し、他方からデータ収集(スキャン)用のX線を発生し、治療と並行してデータを収集して画像をリアルタイムで再構成し表示しようとする試みがある。この試みは、リアルタイムで、治療用X線の集中個所に対する呼吸や心拍等の体動による患部の位置ズレを画像上で視覚的に監視することを可能にする。
【0005】
しかし、実際的には、画像上に散乱線によるアーチファクト、特にボケが強く現れ、患部の位置ズレを画像上で確認するほどの画質が得られない。通常、検出器の入射面にはコリメータが装備されており、それに対向配置されたデータ収集用のX線管に由来する散乱線をほぼ除去することができる。しかし、治療用のX線管は、データ収集用のX線管に対して例えば90°シフトした位置に配置されており、治療用のX線管に由来する散乱X線の一部はコリメータを通過して散乱線として検出されてしまう。
【0006】
【発明が解決しようとする課題】
本発明の目的は、集中照射型放射線治療装置において、治療と並行して散乱線によるアーチファクトの少ない画像を生成することにある。
【0007】
【課題を解決するための手段】
本発明の第1局面による集中照射型放射線治療装置は、第1放射線源と、第2放射線源と、前記第1放射線源に対して被検体を挟んで対向する放射線検出器と、前記第1、第2放射線源を前記放射線検出器とともに前記被検体に対して移動する移動機構と、前記第1放射線源から比較的低線量のデータ収集用の放射線を発生するために前記第1放射線源に電力を供給する第1高電圧発生装置と、前記第2放射線源から比較的高線量の治療用の放射線を発生するために前記第2放射線源に電力を供給する第2高電圧発生装置と、前記第2放射線源から治療用の放射線を発生させるために前記第2高電圧発生装置を制御し、前記第1放射線源からデータ収集用の放射線を発生させるために前記第1高電圧発生装置を制御する制御部と、前記第1放射線源からデータ収集用放射線が発生している期間に対応して前記放射線検出器から出力されるデータを、前記第1放射線源からのデータ収集用放射線の発生が停止している期間に対応して前記放射線検出器から出力されるデータにより補正する補正部と、前記補正されたデータに基づいて、画像データを即時的に再構成する画像再構成部と、前記画像データに基づいて画像を表示する表示部とを具備する。
本発明の第2局面による集中照射型放射線治療装置は、第1放射線源と、第2放射線源と、前記第1放射線源に対して被検体を挟んで対向する放射線検出器と、前記第1、第2放射線源を前記放射線検出器とともに前記被検体に対して移動する移動機構と、前記第1放射線源から比較的低線量のデータ収集用の放射線を発生するために前記第1放射線源に電力を供給する第1高電圧発生装置と、前記第2放射線源から比較的高線量の治療用の放射線を発生するために前記第2放射線源に電力を供給する第2高電圧発生装置と、前記第1放射線源と前記被検体との間に配置されたシャッター機能を有する絞り装置と、前記第2放射線源から治療用の放射線を発生させるために前記第2高電圧発生装置を制御し、前記第1放射線源からデータ収集用の放射線を発生させるために前記第1高電圧発生装置を制御し、前記データ収集用の放射線を前記被検体に対して照射させるために前記絞り装置を制御する制御部と、前記データ収集用放射線が前記被検体に照射されている期間に対応して前記放射線検出器から出力されるデータを、前記被検体への前記データ収集用放射線の照射が停止されいる期間に対応して前記放射線検出器から出力されるデータにより補正する補正部と、前記補正されたデータに基づいて、画像データを即時的に再構成する画像再構成部と、前記画像データに基づいて画像を表示する表示部とを具備する。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明による集中照射型放射線治療装置を好ましい実施形態により説明する。データ収集用及び治療用の放射線としては、一般的なX線として説明するが、それに限定されることはない。集中照射型放射線治療装置は、被検体(患者)に対する放射線源の連続的な移動に連動して絞り装置の開口を動的に制御することにより、細く絞った放射線を常に被検体の腫瘍等の被治療部位に集中させることにより、被治療部位に対して選択的に高エネルギーで治療効果を与え、それ以外の健常部位への被曝をできるだけ抑えるようにした治療装置である。ここでは放射線源は、円周軌道上を移動する例で説明するが、放射線源の移動軌道はそれに限定されない。
【0009】
集中照射型放射線治療装置は、X線コンピュータ断層撮影装置(CTスキャナとの呼ばれる)と共通する基本構造を備え、治療用の高線量のX線を発生することが可能なように熱容量の大きなX線管と共にX線照射野を被治療部位の形状に応じて任意形状及びサイズに制限できるようにいわゆるマルチリーフ型のX線絞りを装備し、また治療用の高線量のX線の発生に対応した高い管電圧及びフィラメント電流をX線管に供給することができる高電圧発生装置を装備している。
【0010】
集中照射型放射線治療装置は、X線コンピュータ断層撮影装置と同様に、X線管と放射線検出器とが1体として被検体の周囲を回転する回転/回転タイプと、リング状に多数の検出素子がアレイされ、X線管のみが被検体の周囲を回転する固定/回転タイプ等様々なタイプがあり、いずれのタイプでも本発明を適用可能である。ここでは回転/回転タイプとして説明する。
【0011】
また、1スライスの断層像データを再構成するには、被検体の周囲1周、約360°分の投影データが、またハーフスキャン法でも180°+ファン角分の投影データが必要とされる。いずれの再構成方式にも本発明を適用可能である。ここでは、一般的な前者の例で説明する。
【0012】
また、入射X線を電荷に変換するメカニズムは、シンチレータ等の蛍光体でX線を光に変換し更にその光をフォトダイオード等の光電変換素子で電荷に変換する間接変換形と、X線による半導体内の電子正孔対の生成及びその電極への移動すなわち光導電現象を利用した直接変換形とが主流である。X線検出素子としては、それらのいずれの方式を採用してもよいが、ここでは、前者の間接変換形として説明する。
【0013】
図1は本発明の実施形態に係る集中照射型放射線治療装置の構成を示す図である。本実施形態に係る集中照射型放射線治療装置は、多管球型のX線コンピュータ断層撮影装置と共通の基本構造を備えている。ここでは2管球型装置として説明するが、それに限定されることは無く、3管球型、又はそれ以上の多管球型装置であっても本発明を適用することができる。
【0014】
ガントリ1は、回転中心軸RAを中心として回転自在に保持されたリング状の回転フレーム10を有する。回転フレーム10には、第1X線管101と第2X線管201とが搭載される。第2X線管201は、第1X線管101に対して、回転方向に関して例えば90°後方にシフトした位置に配置される。回転フレーム10には、多チャンネル型の第1X線検出器103と多チャンネル型の第2X線検出器203が搭載される。第1X線検出器103は、第1X線管101に対して、回転軸RA付近に図示しない寝台の天板上に載置された被検体を挟んで対向する。同様に、第2X線検出器203は、第2X線管201に対して、被検体を挟んで対向する。
【0015】
第1X線管101は、データ収集用(スキャン用)の比較的低線量のX線の発生に対応する管電圧の印加及びフィラメント電流の供給を第1高電圧発生装置107から受けて、データ収集用の比較的低線量のX線を発生する。第1X線管101のX線放射窓にはスリット型のX線絞り装置102が取り付けられている。X線絞り装置102は図2(a)に示すように、前後(Y方向)に移動する一対の遮蔽板110と左右(X方向)に移動する一対の遮蔽板111とを有する。4枚の遮蔽板110、111の配置を任意に変更することによりチャンネル方向に関するX線の広がり角(ビュー角)及びX線束の厚さ(スライス厚)を変更され得る。このX線絞り装置102は、シャッター機能を備えている。つまり、X線絞り装置102は、遮蔽板110,111を高速で開閉できる動力源及びリンク機構を備えている。遮蔽板110,111が完全に閉じたとき、X線管101からのX線を完全に遮蔽する。
【0016】
第1のX線検出器103のX線入射面には、一点で集束するように個々に角度調整された複数のコリメータ板を有するコンバージングコリメータ104が取り付けられる。コンバージングコリメータ104の幾何学的な集束点がX線管101のX線焦点に一致するのに最適な集点深度を有するコンバージングコリメータ104が採用されている。コンバージングコリメータ104は、高い散乱線除去性能を獲得するために、例えば30mmの高さを有する。
【0017】
第1X線検出器103には、一般的にDAS(data acquisition system) と呼ばれているデータ収集回路105が接続されている。データ収集回路105は、X線検出器103の各チャンネルの出力(電流信号)を電圧信号に変換し、そして増幅するとともに、ディジタル信号に変換する機能を備えている。DAS105には、光や磁気を媒体とした非接触型データ伝送装置106を経由して、DAS出力のチャンネル間非均一性等を補正する前処理装置108が接続される。前処理を受けたデータ(投影データ)は、記憶装置5に記憶される。
【0018】
第2のX線管201には第2高電圧発生装置207が接続される。第2高電圧発生装置207は、データ収集用の比較的低線量のX線の発生に対応する比較的低い管電圧及びフィラメント電流と、治療用の比較的高線量のX線の発生に対応する比較的高い管電圧及びフィラメント電流とを選択的に発生することが可能に構成されている。第2X線管201は、データ収集用の比較的低い線量のX線の発生に対応する管電圧の印加及びフィラメント電流の供給を第2高電圧発生装置207から受けて、データ収集用の比較的低い線量のX線を発生し、また治療用の比較的高い線量のX線のばく射に対応する管電圧の印加及びフィラメント電流の供給を第2高電圧発生装置207から受けて、治療用の比較的高い線量のX線を発生する。
【0019】
第2X線管201のX線放射窓には、マルチリーフ型X線絞り装置202が配置される。マルチリーフ型X線絞り装置202は、図2(b)に示すように、X軸に沿って個々に進退自在に設けられた回転中心軸RA上での換算値で幅1mmの短冊形状の複数のリーフ210を有している。実際には、X線中心軸XC2中心線として、この中心線を挟んで左右両開きで2枚のリーフ210がペアを構成し、このリーフペアがZ軸方向に複数、ここでは19個並列されている。
【0020】
第2X線検出器203のX線入射面には、一点で集束するように個々に角度調整された複数のコリメータ板を有するコンバージングコリメータ204が取り付けられる。コンバージングコリメータ204の幾何学的な集束点が第2X線管201のX線焦点に一致するのに最適な集束点深度を有するコンバージングコリメータ204が採用されている。コンバージングコリメータ204は、一般的な30mmの高さを有する。
【0021】
第2X線検出器203には、データ収集回路205が接続されている。データ収集回路205は、X線検出器203の各チャンネルの出力(電流信号)を電圧信号に変換し、そして増幅するとともに、ディジタル信号に変換する機能を備えている。DAS205には、光や磁気を媒体とした非接触型データ伝送装置206を経由して、DAS出力のチャンネル間非均一性等を補正する前処理装置208が接続される。前処理を受けたデータ(投影データ)は、記憶装置5に記憶される。
【0022】
記憶装置5は、投影データから画像データを再構成するための画像再構成装置4と、表示装置6と、マウス等のポインティングデバイスやキーボードを装備した入力装置7と、散乱補正装置8と、治療/スキャンコントローラ3とともに、データ/制御バスを介してシステムコントローラ2に接続される。治療/スキャンコントローラ3は、治療/スキャン動作を実行するために必要な制御信号を、回転フレーム機構、高電圧発生装置107、207、X線絞り装置102,202、X線検出器103、203、DAS105、205、データ伝送装置106、206にそれぞれ供給する。治療/スキャンコントローラ3は、治療/スキャン動作として3種類の動作モードを選択的に備えている。入力装置7からの操作者の指示に従って3種類の動作モードのいずれかが選択される。治療/スキャンに関する3種類の動作モードは、治療動作について共通しているが、データ収集(スキャン)に関する動作が相違している。
【0023】
治療においては、まず治療計画作業の中で、図3に示すように表示装置6にガン腫瘍等の被治療部位を含むスライスの画像が表示され、この画面上で操作者によって入力装置7を介して被治療部位が関心領域(ROI)として設定される。治療計画では、被治療部位の設定と共に、治療X線の線量と照射時間が設定される。
【0024】
治療計画完了後、操作者から入力装置7を介して治療トリガが入力されると、治療/スキャンコントローラ3の制御のもとで、回転フレーム10が回転を開始し、一定速度に達した時点で、第2高電圧発生装置207から第2X線管201にへの例えば250kVの比較的低い高電圧の印加が開始され、また例えば500mAの比較的高い管電流に対応するフィラメント電流の供給が開始される。それにより第2X線管201から治療用の比較的高線量のX線の連続的な発生が開始される。第2X線管201から治療用の比較的高線量のX線は、マルチリーフコリメータ202の開口で被治療部位の形状及びサイズに応じて細く成形され、被検体の被治療部位に照射される。マルチリーフコリメータ202の各リーフの開度及び開口中心位置は、図4に示すように、第2X線管201の回転角に応じて動的に変更される。それにより被治療部位に治療用X線が集中する。この集中エネルギーにより被治療部位は変性する。この治療用X線の照射は、入力装置7に装備されている緊急停止ボタンが操作者により押下されるまで、または治療開始から予め計画された照射時間が経過するまで継続される。
【0025】
この治療期間中、DAS205によりデータ収集が繰り返され、再構成装置4により画像がリアルタイムに再構成され、表示装置6に表示される。このデータ収集の方法として上述したように3種類の動作モードが用意されていて、入力装置7からの操作者の指示に従ってその3種類の動作モードのいずれかが選択される。以下に3種類の動作モードについて順番に説明する。なお、ここでは説明の便宜上、第1X線検出器103からDAS105には1回転あたり900回(900ビュー)の頻度でビューデータが収集されるものとする。また、回転フレーム10は、0.9秒/1回転の一定速度で回転するものとする。
【0026】
まず、第1動作モードについて説明する。図5に示すように、第1動作モードにおいては、DAS105は第1X線検出器103から1ミリ秒の一定周期で信号を読出し、ディジタル信号として出力する。なお、第1X線検出器103の全チャンネル分の一揃いのデータをビューデータと称する。図5では、ビューデータをその収集順に従って順番に#001、#002、#003・・・を付している。例えばビューデータ#001は、図示した期間に検出素子で発生した電荷に相当するデータとして示している。
【0027】
この一定の周期で第1X線検出器103から読み出されるビューデータに対して、データ収集用のX線は第1X線管101から断続的に発生される。具体的には第1X線管101からX線は、ビューデータの読出し周期に同期して、交互に発生/停止が繰り返される。つまり、X線は略1ミリ秒の継続時間でパルス状に発生され、次の略1ミリ秒の期間は停止され、これが繰り返される。実際の動作としては、治療/スキャンコントローラ3の制御のもとで、第1高電圧発生装置107から第1X線管101への高電圧及びフィラメント電流が1ミリ秒の周期で交互に供給/停止される。次々と収集されたビューデータは、非接触データ伝送装置106を経由して記憶装置5に次々と記憶される。
【0028】
このように収集されるビューデータに対して散乱補正装置8は即時的に散乱補正をかけ、そして再構成装置4は補正された例えば360度分のビューデータのセットに基づいて即時的に画像を再構成し、その表示装置6は画像を表示する。
【0029】
図6にこの動作手順をフローチャートで示している。治療及びデータ収集が開始される(S1)。散乱補正装置8において、ビューデータを識別するビュー番号n=1が初期化される(S2)。データ収集と並行して、連続する2つのビューのビューデータ#(n)とビューデータ#(n+1)とが記憶装置5から散乱補正装置8に読み出される(S3、S4)。
【0030】
散乱補正装置8は、X線発生期間に対応するビューデータ#(n)を、そのビューに隣り合うビュー、ここでは直後のX線停止期間に対応するビューデータ#(n+1)に基づいて、散乱補正する(S5)。図7に示すように、X線発生期間に対応するビューデータ#(n)には、第1X線管101から発生され、被検体を透過して減衰を受けてから第1X線検出器103に到達する直接X線の強度を反映する信号成分とともに、治療用の第2X線管201から発生され、そして被検体内で散乱してから第1X線検出器103に到達する散乱線成分が含まれる。一方、X線停止期間に対応するビューデータ#(n+1)には、信号成分は含まれず、第2X線管201からの治療用X線に由来する散乱線成分が含まれる。
【0031】
従って、ビューデータ#(n)からビューデータ#(n+1)を同じチャンネル同士で引き算することにより、ビューデータ#(n)に含まれる散乱線成分を低減することができる。もちろん、ビューデータ#(n)のビュー方向(回転角)とビューデータ#(n+1)のビュー方向(回転角)とはずれている。そのためビューデータ#(n+1)に含まれる散乱線成分は、ビューデータ#(n)に含まれる散乱線成分とは完全に等価とはならないまでも、その角度の差は(360/900)°と非常に微小であるので、ほぼ同じ散乱条件とみなされ、従って近似値として得られる。また、ビューデータ#(n)の収集時刻に対するビューデータ#(n+1)の収集時刻のずれは、1ミリ秒と非常に短い。そのためビューデータ#(n+1)に含まれる散乱線成分は、ビューデータ#(n)に含まれる散乱線成分とは、完全に等価とはならないまでも、心拍動や呼吸動等の体動は殆ど影響しないで、ほぼ等価な値として得られる。
【0032】
このようにビューデータ#(n)に含まれる散乱線成分をビューデータ#(n+1)で低減する処理を、ビュー番号変数nを2だけインクリメントしながら(S7)、S6でnが899に至るまで繰り返される。nが899に達した時点で、1画像の再構成に必要とされるここでは1回転分(ここでは450ビュー)のビューデータが揃うので、そのビューデータに基づいて再構成装置4で画像が再構成され、表示される(S8)。このようなS2〜S8の処理が緊急停止が入力されるまで(S9)、または所定時間経過するまで(S10)繰り返される。それにより、術者は、治療と並行して、散乱線によるアーチファクトの少ない画像(断層像)上で、治療用X線の集中個所に対する呼吸や心拍等の体動による患部の位置ズレを画像上で視覚的に監視して、この位置ズレが過大であるとき、緊急停止ボタンを押して治療を停止することができる。
【0033】
上述の第1動作モードでは、散乱線によるアーチファクトを良好に抑えることはできるが、再構成に用いるビュー数(450ビュー)が、DAS105の収集シーケンス上の実際のビュー数(900ビュー)の1/2に減るので、再構成した画像の画質の若干の低下は免れない。以下に説明する第2動作モードは、再構成に用いるビュー数を増加させる手法である。
【0034】
図8には、第2動作モードにおいて、第1、第2X線管101,201のX線発生動作をタイムチャートで示している。第2動作モードにおいても、第1動作モードと同様に、DAS105は第1X線検出器103から1ミリ秒の一定周期で信号を読出し、ディジタル信号として出力する。一方、データ収集用のX線パルスは、データ読出し周期の2倍の時間(略2ミリ秒)で継続され、次の略1ミリ秒の期間は停止され、これが繰り返される。それにより連続する2ビューで信号成分と散乱成分とを含むビューデータ#(n)、#(n+1)が収集され、それに続くビューで信号成分葉含まないで散乱成分だけを含むビューデータ#(n+2)が収集され、これが繰り返される。
【0035】
もちろん、X線パルスの継続時間は、略2ミリ秒に限定されず、データ読出し周期の3倍の時間(略3ミリ秒)、さらに4以上の整数倍の時間に変更することが可能である。X線パルスの継続時間を長くすることにより、再構成に用いることのできるビュー数は増加して、それに伴って画質の向上を図ることはできるが、その一方で、散乱補正の精度が低下して、散乱線によるアーチファクトが強く出るようになる。実際的には、X線パルスの継続時間は、略2ミリ秒又は略3ミリ秒が好ましい。
【0036】
図9に第2動作モードにおける処理手順をフローチャートで示している。図6と同じステップには同じ符号を付して説明は省略する。この第2動作モードでは、連続する2つのビューのビューデータ#(n)とビューデータ#(n+1)の記憶装置5から散乱補正装置8への読み出しに続いて、次のビューデータ#(n+2)が読み出される(S12)。
【0037】
図10に示すように、X線発生期間に対応するビューデータ#(n)、#(n+1)には、第1X線管101から発生され、被検体を透過して減衰を受けてから第1X線検出器103に到達する直接X線の強度を反映する信号成分とともに、治療用の第2X線管201から発生され、そして被検体内で散乱してから第1X線検出器103に到達する散乱線成分が含まれる。一方、X線停止期間に対応するビューデータ#(n+2)には、信号成分は含まれず、第2X線管201からの治療用X線に由来する散乱線成分が含まれる。
【0038】
散乱補正装置8では、X線発生期間に対応するビューデータ#(n)を、X線停止期間に対応するビューデータ#(n+2)に基づいて、散乱補正するとともに、X線発生期間に対応するビューデータ#(n+1)を、X線停止期間に対応するビューデータ#(n+2)に基づいて散乱補正する(S13)。ビューデータ#(n)、#(n+1)に含まれる散乱線成分をビューデータ#(n+2)で低減する処理を、ビュー番号変数nを3だけインクリメントしながら(S15)、S14でnが898に至るまで繰り返される。nが898に達した時点で、1画像の再構成に必要とされる1回転分のここでは600ビューのビューデータが揃うので、そのビューデータに基づいて再構成装置4で画像が再構成され、表示される(S17)。
【0039】
上述の第2動作モードでは、第1動作モードよりも再構成に用いるビュー数が600ビューに増えるので、第1動作モードよりも、再構成した画像の画質を向上することができるが、散乱成分と共に信号成分を含むビューデータ#(n)と散乱成分を含むビューデータ#(n+2)との間の角度差及び時間差が拡大するので、散乱成分の差異が広がって、それにと伴って散乱線によるアーチファクトの抑制効果は第1動作モードの場合に比べて若干低下する。
【0040】
次の説明する第3の動作モードは、第2動作モードに対してビュー数の更なる増加と、第1動作モードと同等の散乱線によるアーチファクトの抑制効果を実現する。その一方では、第1,第2の動作モードに比べて感度が低下する側面がある。
【0041】
図11に示すように、第3動作モードにおいては、DAS105は第1X線検出器103から、1ミリ秒の期間に、2ビューのビューデータ#(n)、#(n+1)を読出す。この1ミリ秒の期間に、第1X線管101からX線が発生され、そして停止される。
【0042】
ここで第3動作モードで、第1,2動作モードと同様に、一定周期でデータ読出しを行うと、1周期が0.5ミリ秒になる。0.5ミリ秒の短い電荷変換期間では感度低下が著しい。そのため第3動作モードでは、不均一なデータ読出しを行う。つまり、第1X線管101からのX線の発生を伴う期間をX線停止期間よりも長く設定し、例えば0.75ミリ秒の継続時間で第1X線管101からX線をパルス状に発生し、次の略0.25ミリ秒の期間は停止し、これを繰り返す。それに伴ってデータ読出しを0.75ミリ秒期と0.25ミリ秒期とで交互に行う。それにより感度低下を補う。
【0043】
図12に第3動作モードの処理手順をフローチャートで示している。図6と同じステップには同じ符号を付して説明は省略する。散乱補正装置8では、X線発生期間に対応するビューデータ#(n)を、次のビューのX線停止期間に対応するビューデータ#(n+1)で散乱補正する(S5)。しかし、X線停止期間はX線発生期間より短いので、散乱成分の強度は、図13に示すように、両データ間で相違する。散乱成分の強度を揃えるために、散乱補正装置8では、S18において、ビューデータ#(n+1)に、X線発生期間に対するX線停止期間の比率の逆数を乗算することにより、ビューデータ#(n+1)を補正する。これによりX線発生期間とX線停止期間との不一致に伴う散乱成分の強度の相違は軽減される。
【0044】
S5において、散乱補正装置8では、X線発生期間に対応するビューデータ#(n)を、強度補正されたX線停止期間に対応するビューデータ#(n+1)で散乱補正することにより、ビューデータ#(n)の散乱成分を低減することができる。
【0045】
このようにビューデータ#(n)に含まれる散乱線成分を、強度補正をかけたビューデータ#(n+1)で低減する処理を、ビュー番号変数nを2だけインクリメントしながら(S7)、S19でnが1799に至るまで繰り返される。nが1799に達した時点で、1画像の再構成に必要とされるここでは1回転分(ここでは900ビュー)のビューデータが揃うので、そのビューデータに基づいて再構成装置4で画像が再構成され、表示される(S20)。
【0046】
(変形例)
本発明は、上述した実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々変形して実施することが可能である。さらに、上記実施形態には種々の段階が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されてもよい。
【0047】
上述では、第1X線管101からのX線の発生と停止とを交互に行って、X線停止期間に散乱成分のデータを収集し、そのデータでX線発生期間のデータを補正することを説明した。しかし、第1X線管101からX線を連続的に発生し、それと共に絞り装置102の開口を開閉するようにしてもよい。絞り装置102の開口を閉じた状態では、X線は被検体には照射されないので、X線発生の停止と実質的に同等である。この場合の動作としては、上述の「X線の発生」を「絞り装置102の開口を開ける」と読み替え、「X線の停止」を「絞り装置102の開口を閉じる」と読み替えることで説明され得る。
【0048】
【発明の効果】
本発明によれば、集中照射型放射線治療装置において、治療と並行して散乱線によるアーチファクトの少ない画像を生成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る集中照射型放射線治療装置の構成を示す図。
【図2】図1のマルチリーフコリメータ202とコリメータ102の構造を示す平面図。
【図3】図1の表示装置6の画面に表示された断層像上で指定された被治療部位を示す図。
【図4】本実施形態において、治療時のX線照射の様子を示す模式図。
【図5】本実施形態の第1動作モードにおいて、第1、第2X線管101,201のX線発生動作を示すタイムチャート。
【図6】図5の第1動作モードにおいて、ビューデータ散乱補正及び画像再構成に関する動作の手順を示すフローチャート。
【図7】図5の第1動作モードにおいて、ある一のチャンネルに関するデータの成分変化を模式的に示す図。
【図8】本実施形態の第2動作モードにおいて、第1、第2X線管101,201のX線発生動作を示すタイムチャート。
【図9】図8の第2動作モードにおいて、ビューデータ散乱補正及び画像再構成に関する動作の手順を示すフローチャート。
【図10】図8の第2動作モードにおいて、ある一のチャンネルに関するデータの成分変化を模式的に示す図。
【図11】本実施形態の第3動作モードにおいて、第1、第2X線管101,201のX線発生動作を示すタイムチャート。
【図12】図11の第3動作モードにおいて、ビューデータ散乱補正及び画像再構成に関する動作の手順を示すフローチャート。
【図13】図11の第3動作モードにおいて、ある一のチャンネルに関するデータの成分変化を模式的に示す図。
【符号の説明】
1…ガントリ、
2…システムコントローラ、
3…治療/スキャンコントローラ、
4…再構成装置、
5…記憶装置、
6…表示装置、
7…入力装置、
8…散乱補正装置、
10…回転フレーム、
101…第1X線管(データ収集用)、
102…第1絞り装置、
103…第1X線検出器、
104…第1コリメータ、
105…第1データ収集回路(DAS)、
106…第1非接触データ伝送装置、
107…第1高電圧発生装置(データ収集用)、
108…第1前処理装置、
201…第2X線管(データ収集/治療兼用)、
202…第2絞り装置(マルチリーフ型)、
203…第2X線検出器、
204…第2コリメータ、
205…第2データ収集回路(DAS)、
206…第2非接触データ伝送装置、
207…第2高電圧発生装置(データ収集/治療切替型)、
208…第2前処理装置。

Claims (18)

  1. 第1放射線源と、
    第2放射線源と、
    前記第1放射線源に対して被検体を挟んで対向する放射線検出器と、
    前記第1、第2放射線源を前記放射線検出器とともに前記被検体に対して移動する移動機構と、
    前記第1放射線源から比較的低線量のデータ収集用の放射線を発生するために前記第1放射線源に電力を供給する第1高電圧発生装置と、
    前記第2放射線源から比較的高線量の治療用の放射線を発生するために前記第2放射線源に電力を供給する第2高電圧発生装置と、
    前記第2放射線源から治療用の放射線を発生させるために前記第2高電圧発生装置を制御し、前記第1放射線源からデータ収集用の放射線を発生させるために前記第1高電圧発生装置を制御する制御部と、
    前記第1放射線源からデータ収集用放射線が発生している期間に対応して前記放射線検出器から出力されるデータを、前記第1放射線源からのデータ収集用放射線の発生が停止している期間に対応して前記放射線検出器から出力されるデータにより補正する補正部と、
    前記補正されたデータに基づいて、画像データを即時的に再構成する画像再構成部と、
    前記画像データに基づいて画像を表示する表示部とを具備することを特徴とする集中照射型放射線治療装置。
  2. 前記制御部は、前記第2高電圧発生装置を制御して前記第2放射線源から治療用の放射線を連続的に発生させ、前記第1高電圧発生装置を制御して前記第1放射線源からデータ収集用の放射線を断続的に発生させることを特徴とする請求項1記載の集中照射型放射線治療装置。
  3. 前記制御部は、前記放射線検出器のデータ読み出し周期と略等価な周期で前記データ収集用放射線の発生と停止とを交互に切り替えることを特徴とする請求項1記載の集中照射型放射線治療装置。
  4. 前記補正部は、前記データ収集用放射線の発生期間に対応するデータを、前記データ収集用放射線の発生期間に隣り合う前記データ収集用放射線の停止期間に対応するデータに基づいて補正することを特徴とする請求項3記載の集中照射型放射線治療装置。
  5. 前記データ収集用放射線の発生期間は、前記データ収集用放射線の停止期間よりも長いことを特徴とする請求項1記載の集中照射型放射線治療装置。
  6. 前記データ収集用放射線の発生期間は、前記放射線検出器のデータ読み出し周期の2以上の整数倍の期間と略等価であり、前記データ収集用放射線の停止期間は、前記放射線検出器のデータ読み出し周期と略等価であることを特徴とする請求項1記載の集中照射型放射線治療装置。
  7. 前記補正部は、前記データ収集用放射線の発生期間に対応する連続する2周期のデータ各々を、その直前又は直後の前記データ収集用放射線の停止期間に対応するデータに基づいて補正することを特徴とする請求項6記載の集中照射型放射線治療装置。
  8. 前記データ収集用放射線の発生期間は、前記放射線検出器のデータ読み出し周期と略等価であり、前記データ収集用放射線の停止期間は、前記放射線検出器のデータ読み出し周期より短いことを特徴とする請求項1記載の集中照射型放射線治療装置。
  9. 前記補正部は、前記データ収集用放射線の発生期間に対応するデータを、前記データ収集用放射線の発生期間に隣り合う前記データ収集用放射線の停止期間に対応するデータに基づいて補正することを特徴とする請求項8記載の集中照射型放射線治療装置。
  10. 第1放射線源と、
    第2放射線源と、
    前記第1放射線源に対して被検体を挟んで対向する放射線検出器と、
    前記第1、第2放射線源を前記放射線検出器とともに前記被検体に対して移動する移動機構と、
    前記第1放射線源から比較的低線量のデータ収集用の放射線を発生するために前記第1放射線源に電力を供給する第1高電圧発生装置と、
    前記第2放射線源から比較的高線量の治療用の放射線を発生するために前記第2放射線源に電力を供給する第2高電圧発生装置と、
    前記第1放射線源と前記被検体との間に配置されたシャッター機能を有する絞り装置と、
    前記第2放射線源から治療用の放射線を発生させるために前記第2高電圧発生装置を制御し、前記第1放射線源からデータ収集用の放射線を発生させるために前記第1高電圧発生装置を制御し、前記データ収集用の放射線を前記被検体に対して照射させるために前記絞り装置を制御する制御部と、
    前記データ収集用放射線が前記被検体に照射されている期間に対応して前記放射線検出器から出力されるデータを、前記被検体への前記データ収集用放射線の照射が停止されいる期間に対応して前記放射線検出器から出力されるデータにより補正する補正部と、
    前記補正されたデータに基づいて、画像データを即時的に再構成する画像再構成部と、
    前記画像データに基づいて画像を表示する表示部とを具備することを特徴とする集中照射型放射線治療装置。
  11. 前記制御部は、前記第2高電圧発生装置を制御して前記第2放射線源から治療用の放射線を連続的に発生させ、前記第1高電圧発生装置を制御して前記第1放射線源からデータ収集用の放射線を連続的に発生させ、前記絞り装置の開閉を制御して前記データ収集用の放射線を前記被検体に対して断続的に照射させることを特徴とする請求項10記載の集中照射型放射線治療装置。
  12. 前記制御部は、前記放射線検出器のデータ読み出し周期と略等価な周期で前記絞り装置を開閉することを特徴とする請求項10記載の集中照射型放射線治療装置。
  13. 前記補正部は、前記絞り装置の開期間に対応するデータを、前記絞り装置の開期間に隣り合う前記絞り装置の閉期間に対応するデータに基づいて補正することを特徴とする請求項12記載の集中照射型放射線治療装置。
  14. 前記絞り装置の開期間は、前記絞り装置の閉期間よりも長いことを特徴とする請求項10記載の集中照射型放射線治療装置。
  15. 前記絞り装置の開期間は、前記放射線検出器の読み出し周期の2以上の整数倍の期間と略等価であり、前記絞り装置の閉期間は、前記放射線検出器のデータ読み出し周期と略等価であることを特徴とする請求項10記載の集中照射型放射線治療装置。
  16. 前記補正部は、前記絞り装置の開期間に対応する連続する2周期のデータ各々を、その直前又は直後の前記絞り装置の閉期間に対応するデータに基づいて補正することを特徴とする請求項15記載の集中照射型放射線治療装置。
  17. 前記絞り装置の開期間は、前記放射線検出器のデータ読み出し周期と略等価であり、前記絞り装置の閉期間は、前記放射線検出器のデータ読み出し周期より短いことを特徴とする請求項10記載の集中照射型放射線治療装置。
  18. 前記補正部は、前記絞り装置の開期間に対応するデータを、前記絞り装置の開期間に隣り合う前記絞り装置の閉期間に対応するデータに基づいて補正することを特徴とする請求項17記載の集中照射型放射線治療装置。
JP2002305717A 2002-10-21 2002-10-21 集中照射型放射線治療装置 Pending JP2004136021A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305717A JP2004136021A (ja) 2002-10-21 2002-10-21 集中照射型放射線治療装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305717A JP2004136021A (ja) 2002-10-21 2002-10-21 集中照射型放射線治療装置

Publications (1)

Publication Number Publication Date
JP2004136021A true JP2004136021A (ja) 2004-05-13

Family

ID=32452749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305717A Pending JP2004136021A (ja) 2002-10-21 2002-10-21 集中照射型放射線治療装置

Country Status (1)

Country Link
JP (1) JP2004136021A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014822A (ja) * 2004-06-30 2006-01-19 Toshiba Corp X線コンピュータ断層撮影装置
JP2007330302A (ja) * 2006-06-12 2007-12-27 Hitachi Medical Corp X線撮影装置
WO2010084389A1 (en) * 2009-01-21 2010-07-29 Koninklijke Philips Electronics N.V. Method and apparatus for large field of view imaging and detection and compensation of motion artifacts
JP2011528273A (ja) * 2008-07-16 2011-11-17 ボリス オレパー 電子ビームスキャナを含む照射システム
US8403821B2 (en) 2008-03-17 2013-03-26 Mitsubishi Heavy Industries, Ltd. Radiotherapy apparatus controller and radiation irradiating method
JP2013252420A (ja) * 2012-04-11 2013-12-19 Toshiba Corp 放射線治療システム及び治療計画装置
JP2014151007A (ja) * 2013-02-08 2014-08-25 Toshiba Corp 放射線治療システム、放射線治療装置及び制御プログラム
JP2015134030A (ja) * 2014-01-16 2015-07-27 株式会社東芝 X線コンピュータ断層撮影装置
JP2016155019A (ja) * 2016-06-09 2016-09-01 株式会社日立製作所 粒子線治療装置
WO2017188345A1 (ja) * 2016-04-26 2017-11-02 国立大学法人東京大学 画像処理装置および画像処理方法
WO2020112681A1 (en) * 2018-11-30 2020-06-04 Accuray Inc. Multimodal radiation apparatus and methods
JP2020525151A (ja) * 2017-06-27 2020-08-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 誤使用を検出し及び傷害を防止するための散乱x線検出
US11166690B2 (en) 2020-03-19 2021-11-09 Accuray, Inc. Noise and artifact reduction for image scatter correction
US11357467B2 (en) 2018-11-30 2022-06-14 Accuray, Inc. Multi-pass computed tomography scans for improved workflow and performance
US11605186B2 (en) 2021-06-30 2023-03-14 Accuray, Inc. Anchored kernel scatter estimate
US11647975B2 (en) 2021-06-04 2023-05-16 Accuray, Inc. Radiotherapy apparatus and methods for treatment and imaging using hybrid MeV-keV, multi-energy data acquisition for enhanced imaging
US11794039B2 (en) 2021-07-13 2023-10-24 Accuray, Inc. Multimodal radiation apparatus and methods
US11854123B2 (en) 2021-07-23 2023-12-26 Accuray, Inc. Sparse background measurement and correction for improving imaging

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619704B2 (ja) * 2004-06-30 2011-01-26 株式会社東芝 X線コンピュータ断層撮影装置
JP2006014822A (ja) * 2004-06-30 2006-01-19 Toshiba Corp X線コンピュータ断層撮影装置
JP2007330302A (ja) * 2006-06-12 2007-12-27 Hitachi Medical Corp X線撮影装置
US8403821B2 (en) 2008-03-17 2013-03-26 Mitsubishi Heavy Industries, Ltd. Radiotherapy apparatus controller and radiation irradiating method
JP2011528273A (ja) * 2008-07-16 2011-11-17 ボリス オレパー 電子ビームスキャナを含む照射システム
US9710936B2 (en) 2009-01-21 2017-07-18 Koninklijke Philips N.V. Method and apparatus for large field of view imaging and detection and compensation of motion artifacts
WO2010084389A1 (en) * 2009-01-21 2010-07-29 Koninklijke Philips Electronics N.V. Method and apparatus for large field of view imaging and detection and compensation of motion artifacts
JP2013252420A (ja) * 2012-04-11 2013-12-19 Toshiba Corp 放射線治療システム及び治療計画装置
JP2014151007A (ja) * 2013-02-08 2014-08-25 Toshiba Corp 放射線治療システム、放射線治療装置及び制御プログラム
JP2015134030A (ja) * 2014-01-16 2015-07-27 株式会社東芝 X線コンピュータ断層撮影装置
WO2017188345A1 (ja) * 2016-04-26 2017-11-02 国立大学法人東京大学 画像処理装置および画像処理方法
JP2016155019A (ja) * 2016-06-09 2016-09-01 株式会社日立製作所 粒子線治療装置
JP6991252B2 (ja) 2017-06-27 2022-01-12 コーニンクレッカ フィリップス エヌ ヴェ 誤使用を検出し及び傷害を防止するための散乱x線検出
JP2020525151A (ja) * 2017-06-27 2020-08-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 誤使用を検出し及び傷害を防止するための散乱x線検出
US11160526B2 (en) 2018-11-30 2021-11-02 Accuray, Inc. Method and apparatus for scatter estimation in cone-beam computed tomography
US11337668B2 (en) 2018-11-30 2022-05-24 Accuray, Inc. Computed tomography system and method for image improvement using prior image
CN113164129A (zh) * 2018-11-30 2021-07-23 爱可瑞公司 使用分次间信息进行图像重构和校正的方法和装置
US11154269B2 (en) 2018-11-30 2021-10-26 Accuray Inc. Multimodal radiation apparatus and methods
WO2020112685A1 (en) * 2018-11-30 2020-06-04 Accuray Inc. Method and apparatus for image reconstruction and correction using inter-fractional information
US11890125B2 (en) 2018-11-30 2024-02-06 Accuray, Inc. Multimodal radiation apparatus and methods
US11179132B2 (en) 2018-11-30 2021-11-23 Accuray, Inc. Helical cone-beam computed tomography imaging with an off-centered detector
US11191511B2 (en) 2018-11-30 2021-12-07 Accuray, Inc. Method and apparatus for image reconstruction and correction using inter-fractional information
WO2020112681A1 (en) * 2018-11-30 2020-06-04 Accuray Inc. Multimodal radiation apparatus and methods
US11224396B2 (en) 2018-11-30 2022-01-18 Accuray, Inc. Method and apparatus for improving scatter estimation and correction in imaging
US11324471B2 (en) 2018-11-30 2022-05-10 Accuray Inc. Asymmetric scatter fitting for optimal panel readout in cone-beam computed tomography
CN113164136A (zh) * 2018-11-30 2021-07-23 爱可瑞公司 多模式放射设备和方法
US11357467B2 (en) 2018-11-30 2022-06-14 Accuray, Inc. Multi-pass computed tomography scans for improved workflow and performance
US11364007B2 (en) 2018-11-30 2022-06-21 Accuray, Inc. Optimized scanning methods and tomography system using region of interest data
US11375970B2 (en) 2018-11-30 2022-07-05 Accuray, Inc. Integrated helical fan-beam computed tomography in image-guided radiation treatment device
US11413002B2 (en) 2018-11-30 2022-08-16 Accuray Inc. Apparatus and methods for scalable field of view imaging using a multi-source system
US11638568B2 (en) 2018-11-30 2023-05-02 Accuray, Inc. Multi-pass computed tomography scans for improved workflow and performance
US11166690B2 (en) 2020-03-19 2021-11-09 Accuray, Inc. Noise and artifact reduction for image scatter correction
US11647975B2 (en) 2021-06-04 2023-05-16 Accuray, Inc. Radiotherapy apparatus and methods for treatment and imaging using hybrid MeV-keV, multi-energy data acquisition for enhanced imaging
US11605186B2 (en) 2021-06-30 2023-03-14 Accuray, Inc. Anchored kernel scatter estimate
US11794039B2 (en) 2021-07-13 2023-10-24 Accuray, Inc. Multimodal radiation apparatus and methods
US11854123B2 (en) 2021-07-23 2023-12-26 Accuray, Inc. Sparse background measurement and correction for improving imaging

Similar Documents

Publication Publication Date Title
US7583775B2 (en) Concentrated irradiation type radiotherapy apparatus
JP2004136021A (ja) 集中照射型放射線治療装置
JP5460318B2 (ja) X線発生装置及びこれを用いたx線ct装置
US7751528B2 (en) Stationary x-ray digital breast tomosynthesis systems and related methods
US5335255A (en) X-ray scanner with a source emitting plurality of fan beams
JP4088058B2 (ja) X線コンピュータ断層撮影装置
WO2013154162A1 (ja) 放射線治療システム及び治療計画装置
JP2004180715A (ja) X線コンピュータ断層撮影装置
JP2006020675A (ja) X線コンピュータトモグラフィ装置
JP2010082428A (ja) X線コンピュータ断層撮影装置
JP2006297095A (ja) 患者のコンピュータ断層撮影画像データセットの作成および照射システム
JPH06254082A (ja) 放射線立体像撮影装置および方法
JP5426379B2 (ja) X線ct装置
JP2010178909A (ja) X線コンピュータ断層撮影装置および撮影制御プログラム
JP5196782B2 (ja) X線ct装置およびその制御方法
JP4503727B2 (ja) X線ct装置
JP4250386B2 (ja) 集中照射型放射線治療装置
JP4119202B2 (ja) 集中照射型放射線治療装置
JP5433283B2 (ja) X線コンピュータ断層撮影装置
JP2000116638A (ja) 透過型ct装置
JP4256127B2 (ja) 集中照射型放射線治療装置
JP5716069B2 (ja) X線ct装置
JP5597364B2 (ja) X線コンピュータ断層撮影装置および撮影制御プログラム
US20230058177A1 (en) Spectral x-ray imaging using variable high voltage x-ray source
EP3967366A2 (en) Apparatus for fast cone-beam tomography and extended sad imaging in radiation therapy