JP2004135259A - 時間スプリアス応答を消去するためのカスケード型表面弾性波フィルタ・システム - Google Patents

時間スプリアス応答を消去するためのカスケード型表面弾性波フィルタ・システム Download PDF

Info

Publication number
JP2004135259A
JP2004135259A JP2003138968A JP2003138968A JP2004135259A JP 2004135259 A JP2004135259 A JP 2004135259A JP 2003138968 A JP2003138968 A JP 2003138968A JP 2003138968 A JP2003138968 A JP 2003138968A JP 2004135259 A JP2004135259 A JP 2004135259A
Authority
JP
Japan
Prior art keywords
filter
input
surface acoustic
acoustic wave
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003138968A
Other languages
English (en)
Inventor
David S Yip
デイビッド エス.イップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Space and Mission Systems Corp
Original Assignee
Northrop Grumman Space and Mission Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Space and Mission Systems Corp filed Critical Northrop Grumman Space and Mission Systems Corp
Publication of JP2004135259A publication Critical patent/JP2004135259A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】時間スパーに伴う群遅延および通過帯域脈動を打ち消す。
【解決手段】カスケード型SAWフィルタ・システムは、第1及び第2SAWフィルタ(12a,12b)と、各々入力変換器(36,36’)と出力変換器(37,37’)を圧電基板(38,38’)上に有し、1)第2フィルタ(12b)の入力及び出力変換器(36’,37’)を第1フィルタ(12a)のそれらからずらし、2)第2フィルタ(12b)の中心周波数(f’)を第1フィルタ(12a)の中心周波数(f)からずらし、3)第1フィルタ(12a)の摂動領域(P1)を第2フィルタ(12b)の摂動領域(P2)とは異ならせ、或いは3)1)、2)及び/又は3)の組合せに依り、カスケード接続の応答に伴う時間スパー・エコーも打ち消す事が出来る。
【選択図】図3

Description

【0001】
【発明の属する技術分野】
本発明は表面弾性波(SAW)フィルタ一般に関する。より詳細には、SAWフィルタにおける電磁フィードスルーや音響エコーなどの望ましくない時間スプリアス信号の排除に関する。
【0002】
【従来の技術】
SAWフィルタに伴う三回通過エコーおよび電磁フィードスルーは、通信システムの設計における代表的な公知の問題点である。三回通過エコーが生ずるのは、入力変換器によって発生した弾性波が最初に反射されて出力変換器によって再生され、次いで再度入力変換器によって反射され再生されるときである。実際には、かかる入力および出力変換器間で往復するSAWの再生および反射によって、三回通過エコーに加えて、5回、7回および更に多数回の通過エコーが発生する。これら発生したエコーは、群遅延および通過帯リップルを生ずることによって、フィルタ性能を低下させる。
【0003】
SAWフィルタにおける三回通過エコーの影響を低減するための多くの技法の開発に成功している。より詳細には、単一位相、二位相、三位相、および四位相一方向性変換器を用いて三回通過エコーの影響を低減することが多い。単一位相の一方向性変換器(SPUDT)が一般に用いられているのは、かかるフィルタは製造が容易であり、入力変換器および出力変換器にそれぞれ単純な整合回路があれば済むからである。分散弾性反射変換器(DART)SPUDT、電極幅制御(EWC)SPUDT、群SPUDT(GSPUDT)およびディザ型SPUDT(DSPUDT)は、異なる種類のSPUDTの例である。
【0004】
SPUDT SAWフィルタは、その優れたチャネル選択性および比較的低い挿入損失のために、移動電話や衛星通信において広く用いられている。しかしながら、SPUDTフィルタの性能は、整合回路の安定性に大きく依存する。したがって、整合用構成部品(抵抗素子、インダクタおよびコンデンサ)の値のばらつきや整合回路における温度によって誘発される不整合による三回通過抑制(TTS)の減少、ならびに群遅延および通過帯リップルの増大は、かかるフィルタの性能に悪影響を及ぼす。また、衛星通信において用いられる高性能SAWフィルタの要件を満たすために整合回路を微調整することは、多くの労力を要する可能性もある。
【0005】
上記のシステムでは、2つの同一または類似のカスケード型フィルタが一般に用いられている。前述の制約を克服するためには、通常、これらのフィルタを過剰設計してカスケード接続要件を満たしている。何故なら、三回通過エコーに伴うカスケード接続群遅延および通過帯リップルは倍増し、カスケード接続TTSは個々のフィルタ応答に対して6dB低下するからである。通常、SAWフィルタの挿入損失が減少すると、TTSは悪化する。その結果、SPUDTフィルタの挿入損失をフィルタの能力よりも故意に高く設計し、TTSを強化している。
しかしながら、この過剰設計は、カスケード型フィルタを実現する際の総コスト増大を招く。
【0006】
電磁波(EM)フィードスルーは、入力変換器から出力変換器へ、そして入力整合回路から出力整合回路に直接結合されるEMエネルギである。EM波は光速とほぼ同一の速度で伝達されるため、フィードスルーは大抵の場合に、時間=0秒付近の時間スパー(time spur) として現れる。フィードスルーは望ましくない信号であり、通過帯域において群遅延および通過帯リップルの双方を発生することによって、フィルタ性能を低下させ、その周波数領域における通過帯領域外側の究極除去を低減する。この問題は、高周波SAWフィルタでは非常に顕著となる。何故なら、フィルタの外形サイズは動作周波数に対して反比例するため、入力および出力変換器ならびに入力および出力整合回路は互いに非常に接近して配置されるからである。
【0007】
フィードスルーを低減する方法は多数存在する。いくつかの例を挙げると、1)フィルタ・パッケージを注意深く設計して、入力変換器および入力整合回路を出力側のそれから電気的に隔離すること。2)入力および出力整合回路に平行変圧器を用いること。3)効果的に変換器をパッケージに接地すること。4)金属接地バーを入力および出力変換器間に挿入すること。方法3)および4)は実現が簡単である。しかしながら、特に動作周波数が高い場合には、フィードスルーを完全に抑制することができない。方法1)および2)は、フィードスルーを低減するにはより効果的な方法である。しかしながら、これらの方法では、フィルタ・パッケージの総コスト、および整合回路の複雑性が増大してしまう。2つのかかるフィルタをカスケード接続すると、カスケード型フィードスルー・レベルは、個々の各フィルタのフィードスルー抑制よりも6dB悪化する。このフィードスルー抑制の低下は、先に論じた衛星や移動電話の用途では、フィードスルーの抑制が極めて重要であるので問題となる。
【0008】
加えて、SPUDT SAWフィルタにおける変換器のエッジからの反射が、時間ドメイン応答において望ましくない時間スパーの原因となる。これは特に、ニオブ酸リチウムのような非常に強い結合材料上に作成したフィルタに当てはまる。2つのかかるフィルタをカスケード接続すると、スパーの抑制は、個々の各フィルタのスパー抑制よりも6dB悪化する。このスパー抑制の悪化は、先に論じた衛星や移動電話の用途では、スパーの抑制が極めて重要であるので、問題となる。
【0009】
【発明が解決しようとする課題】
したがって、本発明の目的は、時間スパーに伴う群遅延や通過帯リップルを排除しつつ、同時に費用がかかるシステムの過剰設計を必要とせずに、時間スパーの抑制を維持することが可能な、表面弾性波フィルタ・システムを提供することにある。
【0010】
本発明の更に別の目的は、第1フィルタの変換器を第2フィルタの変換器から、時間または周波数ドメインのいずれかに関して所定量だけずらして、群遅延や通過帯リップルを解消した、表面弾性波フィルタ・システムを提供することにある。
【0011】
本発明の他の目的は、第1フィルタの入力および出力変換器間に位置する摂動領域を、第1フィルタの入力および出力変換器間に位置する摂動領域から、所定量だけ異ならせることによって、群遅延や通過帯リップルを解消する、表面弾性波フィルタ・システムを提供することにある。
【0012】
本発明の更に別の目的は、第2フィルタの変換器を第2フィルタの変換器から時間または周波数ドメインのいずれかに関して所定量だけずらし、第1フィルタの入力および出力変換器間に位置する摂動領域を、第2フィルタの入力および出力変換器間に位置する摂動領域から所定量だけ異ならせることによって、群遅延や通過帯リップルを解消した、表面弾性波フィルタ・システムを提供することにある。
【0013】
加えて、本発明の目的は、変換器のエッジによって時間ドメイン応答に生ずる、望ましくない時間スパーを解消する、カスケード型表面弾性波フィルタを提供することである。
【0014】
【課題を解決するための手段】
上記に鑑み、本発明は2つのSAWフィルタを直列に電気的にカスケード接続し時間スプリアス信号を打ち消す、カスケード型SAWフィルタ・システムを提供する。第1フィルタは、圧電基板上に構成された1つの入力変換器と1つの出力変換器とから成る。第1フィルタの2つの変換器の間に、摂動領域を設けても設けなくてもよい。第1フィルタに伴うm回通過エコー(mは1よりも大きい奇数の整数)またはフィードスルーが、時間ドメインにおいて、主応答から時点TD(TDはフィードスルーの場合負となる)の所にあり、中心周波数fの周波数応答を伴う。第2フィルタは、第1フィルタのそれと同一種類または異種類の材料とすることができる圧電基板上に構成された1つの入力変換器と1つの出力変換器とから成り、第1フィルタと同じ基板上または別個の基板上に形成することができる。第2フィルタの2つの変換器の間に摂動領域を設けても設けなくてもよい。第2フィルタに伴うm回通過エコーまたはフィードスルーが、時間ドメインにおいて、主応答から時点TD’(TD’は、フィードスルーの場合負となる)の所にあり、中心周波数f’の周波数応答を伴う。中心周波数f’は、第1フィルタの中心周波数と同様であるが、多少これからずれているのが通例である。
【0015】
本発明のカスケード型SAWフィルタ・システムでは、第2フィルタの時間スパーに伴う群遅延および通過帯リップルが、第1フィルタの同様の時間スパーに伴う群遅延および通過帯リップルを打ち消す。その理由は、1)第2フィルタの入力変換器を第1フィルタのそれからずらしている。2)第2フィルタの中心周波数を第1フィルタの中心周波数からずらしている。3)第1フィルタの摂動領域が第2フィルタの摂動領域とは異なる、あるいは4)1)、2)および/または3の組み合わせにより、2つのフィルタの群遅延のよび通過帯リップルの位相が180°ずれており、TD−TD’=(n+1/2)/fとなるからである。ここで、nは0以上の整数である。また、カスケード接続の応答に伴う時間スパー・エコーも打ち消す。即ち、第1フィルタの入力変換器および出力変換器が第2フィルタのそれらに等しい場合、カスケードしたm回通過エコーまたはフィードスルーは、第2フィルタの入力および出力変換器をλ(n+1/2)/(m−1)だけずらすことによって、または第2フィルタの中心周波数f’を第1フィルタの中心周波数から(n+1/2)/TDだけずらすことによって、打ち消すことができる。ここで、λ=v/f、vは表面弾性波の伝搬速度、mはフィードスルーに対しては2、m回通過エコーに対しては1よりも大きい奇数である。同様の技法を用いて、第2フィルタの変換器の端部に別途ダミー・フィンガを追加することにより、第2フィルタの変換器のエッジが第1フィルタの変換器のそれぞれのエッジから約(n+1/2)λ/2となるようにすることによって、変換器の端部における反射を打ち消すこともできる。
【0016】
本発明のその他の目的および利点は、以下に続くその好適な実施形態の詳細な説明を、添付図面と共に検討することによって、一層容易に理解できよう。
【0017】
【発明の実施の形態】
これより図面を参照するが、図面では、同様の参照符号は同様の部分を示すこととする。図1は、一例としての衛星通信システム10を示し、この中に、本発明の好適な実施形態による、SAWフィルタ12a,12bを含むカスケード型表面弾性波フィルタ・システム(SAWフィルタ・システム)12が実施されている。衛星通信システム10は、商用または軍用通信の目的で配備されるいずれの衛星でもよく、RF信号のような、所定の動作周波数において信号を受信および送信するアンテナ14を含む。高周波フロント・エンド・フィルタ16が、信号から、過渡現象やノイズを含む不要な信号部分を濾過した後に、信号をロー・ノイズ増幅器(LNA)18によって増幅する。増幅されLNA18から出力された信号は、次に、ミキサ20において、発振器(VCO)22が発生した単一トーン発振信号と混合される。得られた信号は、ミキサ20から出力され、IF信号となって増幅器24に入力される。増幅器24は、IF信号をSAWフィルタ12aの要求入力レベルまで増幅する。次に、SAWフィルタ12aは、以下に論ずるように、信号を濾過する。
【0018】
IF信号がSAWフィルタ12aから出力されSAWフィルタ12bに入力される際に、可変利得増幅器(VGA)26のようなSAWフィルタ・システムのバッファが、IF信号の歪みを防止する。別の環境では、このバッファは、VGA26以外の構成部品でもよい。いずれにしろ、SAWフィルタ12a,12bを互いに電気的に隔離することによって、信号の歪みを防止するためには、SAWフィルタ12a,12b間に何らかの種類のバッファがあることが望ましい。
加えて、VGA26は、IF信号の信号レベルを、SAWフィルタ12bの入力レベルに調節する。増幅器28は、SAWフィルタ12bからのIF信号出力を増幅し、ロー・パス・フィルタ30は、SAWフィルタ12a,12bがIF信号から濾過できない高周波ノイズを排除する。増幅器32は、IF信号をA/D変換器34の入力レベルまで増幅する。次いで、A/D変換器34は、この信号をディジタル信号に変換し、この信号が更に他のシステムの構成部品によって処理することができるようにする。
【0019】
例示および論述の目的のために本願全体を通じて、SAWフィルタ・システム12の論述は、衛星通信システム10におけるその実施を参照しながら論ずるが、SAWフィルタ12は、例えば、ワイヤレス通信基地局のようなあらゆる通信関連環境や、表面弾性波を発生し送信するその他のあらゆる環境においても、時間スパーを消去し、したがってそれに伴う通過帯および群遅延脈動を消去するために実施することができる。
【0020】
図2は、SAWフィルタ12aの構造を更に詳細に示し、SAWフィルタ12bの構造がSAWフィルタ12aのそれと本質的に同一であり、図示したフィルタのトポロジは変換器のトポロジの単なる一例であり、ここでは例示および論述の目的で用いているに過ぎないことは理解されよう。図示のように、圧電基板38上に取り付けられたSAWフィルタ12aは、入力変換器36および出力変換器37を含み、入力および出力整合回路39,40の間に配置されている。摂動領域P1が、入力変換器36と出力変換器37との間に位置する。好ましくは、入力および出力変換器36,37は、例えば、アルミニウム、アルミニウム合金、金、チタン、クロムなどで形成し、送信する表面弾性波の送信特性にしたがって、基板38上で互いから離間させる。入力および出力変換器36,37は、櫛歯フィンガ(フィンガ)36a、37aを含む。電気的導通のために、1群のフィンガ36aが共通のバス・バー即ち電極36cに電気的に接続されており、別の1群のフィンガ36が共通のバス・バー即ち電極36c’に電気的に接続されている。同様に、電気的導通のために、1群のフィンガ37aが共通のバス・バー即ち電極37cに電気的に接続されており、一方別の1群のフィンガ37aが共通のバス・バー即ち電極37c’に電気的に接続されている。しかしながら、二位相、三位相、または四位相の一方向性変換器の場合、バス・バーは2つよりも多いことを、当業者は認めよう。また、入力または出力変換器36,37の一方または双方は、直列または並列、あるいは直列および並列の組み合わせに接続された1つよりも多い副変換器で構成することもでき、かかる副変換器の各々は、入力および出力変換器36,37と同様の構成を有する。大抵の場合、音響吸収器36b,37bが入力および出力変換器36,37のそれぞれの端部付近に配され、それぞれの端部に向かって漏出する不要の音響エネルギを吸収する。
【0021】
ここで再度両SAWフィルタ12a,12bを参照すると、摂動領域P1,P2は、図3〜9に示すように、多くの方法で実現することができる。一般に、SAWフィルタ12aの摂動領域P1におけるSAW伝搬速度vpは、自由表面速度vとは異なる。摂動領域P1の幅Yは、入力および出力変換器36,37の高さwよりも大きくなければならない。また、必ずしもそうとは限らないが、変換器のアパーチャおよびエッジE1は、一般に、少なくとも変換器のアパーチャにおいてはエッジE2と並列であり、エッジE1、E2は変換器のフィンガ36aに並列である必要はない。同じ構造パラメータは、SAWフィルタ12bにも適用される。
【0022】
更に具体的には、図4に示すように、摂動領域P1,P2は、メタライズ面として形成することができる。メタライズ面は、それぞれ厚さh1,h1’を有し、変換器のフィンガ36a,37aを形成するために用いた材料と同じまたは異なる材料を用いる。しがたって、摂動領域P1の厚さh1が摂動領域P2の厚さh1’とは異なる場合、VはV’とは異なる。図5に示すように、摂動領域P1および/または摂動領域P2は、区間P1a,P1b,P1cで表すように、1つよりも多い区間に細分することができる。
【0023】
あるいは、図6に示すように、SAWフィルタ12a’,12b’の摂動領域P1’,P2’は、基板表面38,38’をそれぞれ深さt1,t1’までエッチングすることにより、凹陥面として形成することもできる。したがって、摂動領域P1’の深さt1が摂動領域P2’の深さt1’とは異なる場合、vはv’とは異なる。図7に示すように、摂動領域P1’および/または摂動領域P2’は、区間P1a’、P1b’,P1c’で表すように、1つよりも多い区間に細分化することができる。
【0024】
図8に示すように、摂動領域P1”,P2”は、基板面38,38’をそれぞれの深さt1,t1’までエッチングして作成した凹陥面に、それぞれ厚さh1,h1’の金属を堆積することによって形成することができる。したがって、摂動領域P1の深さt1が摂動領域P2の深さt1’とは異なる場合、および/または厚さh1が厚さh1’とは異なる場合、vはv’とは異なる。図9に示すように、摂動領域P1および/または摂動領域P2は、区間P1a”,P1b”,P1c”で表すように、1つよりも多い区間に細分することができる。
【0025】
再度図2を参照すると、基板38は、クオーツ、タンタル酸リチウム、ニオブ酸リチウムなどのような圧電材料である。入力および出力整合回路39、40は、各々、1つ以上のRLC構成素子を含み、SAWフィルタ12aのインピーダンスを、衛星通信システム10またはSAWフィルタ12a(およびSAWフィルタ12b)が実装されている他のシステムの残りの部分のインピーダンスまたは負荷と一致させるようにしている。
【0026】
更に図2を参照すると、動作において、入力変換器36は、先に論じたIF信号のような入力AC信号を受け取り、このAC信号によるフィンガ36aの励起によって入力変換器のフィンガ36a間に規定されるギャップ内に電界を発生する。次に、電界は、入力変換器36によって、機械的摂動即ちSAWに変換され、基板38全域を伝搬する。SAWの一部は、伝搬して出力変換器37から出て行き、音響吸収器36bによって吸収される。SAWの残り部分は、摂動領域P1を介して出力変換器37に伝搬する。出力変換器37はSAWを受け取り、入力変換器36に関して説明したのと逆に、これをAC信号に逆変換する。波発生および基板38伝達の結果として、入力変換器36に入力された信号のある周波数のみが、入力および出力変換器36,37の共振構造に応じて、出力変換器37に伝達される。
【0027】
次に図10,11を参照しながら、従来のSAWフィルタ41の全体的な動作について手短に論ずる。説明を簡略化するために、摂動領域P1は図から除外されている。図示のように、音響吸収器43を有する入力変換器42から直接SAW52が発生し、次いで伝搬する。音響吸収器43は、必ずしも常にという訳ではないが、大抵の場合変換器42から離れている。SAWは、圧電基板46を通じて、音響吸収器45を有する出力変換器44に伝搬する。したがって、この伝搬の結果、再生波54,56、第2再生波58,60、および再生波62,64のような、スプリアス応答即ち時間スパーが発生し伝搬する。当技術分野では周知であるが、再生波54,56は、排除するのが一層困難なスパーの内の2つであり、SAWフィルタがニオブ酸リチウムのような強い結合材料で形成された基板上に形成された場合、非常に強いスパーとなる。加えて、66で示すように、三回通過エコーも発生し、伝搬時間における0秒付近のフィードスルー68は、SAWフィルタ41と同様に構成されるあらゆるSAWフィルタに関わることである。
【0028】
再度図3を参照して、本発明の好適な実施形態によるSAWフィルタ・システム12のSAWフィルタ12a,12bについて更に詳しく論ずる。論述および例示の目的上並置構成で示すが、フィルタは実際にはカスケード接続されており、したがって互いに直列に電気的に接続していることは認められよう。更に具体的には、図3は、SAWフィルタ12a,12bの入力変換器36,36’、出力変換器37,37’および摂動領域P1、P2の互いに対する間隔を示す。図示のように、SAWフィルタ12bは、基板38と同種または異種の圧電材料のいずれかで形成された基板38’上に実装された入力および出力変換器36’,37’を含む。また、SAWフィルタ12bは、SAWフィルタ12aと同じ基板上でも、または別個の基板上でも作成することができる。しかしながら、出力変換器の中央線70で示すように、SAWフィルタ12a,12bのそれぞれの出力変換器37,37’は位置合わせされており、入力変換器36’の中央線72’は入力変換器36の中央線72から(n+1/2)λ/(m−1)だけずれている。nは0以上の整数であり、フィードスルーが消去しなければならない時間スパーである場合、m=2となる。mは、m番目の通過エコーが消去しなければならない時間スパーである場合、1よりも大きい奇数である。この場合、λ=v/fとなる。ここで、vは基板38,38’上の表面弾性波の伝搬速度を表し、fはSAWフィルタ12a,12bの中央周波数を表す。入力および出力変換器36’,37’の中央線70’,72’は、例えば、製造中に入力および出力変換器36’および37’を形成するために用いられるマスクのレイアウトを調節することによって、調節することができる。
【0029】
次に図12〜16を参照すると、上記のようにSAWフィルタ12a,12bを互いに離間することによって、フィルタ12a,12bに伴うそれぞれの通過帯リップル、群遅延脈動、および付随する時間スパーを互いに打ち消すことができる。時間スパーは、フィードスルーのm回通過エコーである可能性がある。例えば、図12におけるSAWフィルタ12aのインパルス応答h(t)のグラフで示すように、フィルタ12aに伴う時間スパー74は、時間ドメインにおいて、直接SAW76から距離TDだけ離間されている。図14は、インパルス応答h(t)のフーリエ変換をグラフで示すが、ここでは、主信号76および時間スパー74は、各々、中央周波数fの対応する周波数応答77、振幅Pの振幅応答成分、または通過帯域脈動、振幅Gおよび周期1/TD=Fの対応する位相応答派生物、または群遅延脈動を有する。
【0030】
図13におけるSAWフィルタ12bのインパルス応答h’(t)のグラフで示すように、SAWフィルタ12bに伴う時間スパー74と同様の時間スパー82は、時間ドメインにおいて主応答84から離間距離TD’だけ離れている。関数h’(t)のフーリエ変換をグラフで示す図15に示すように、主信号84および時間スパー82は、各々、対応する周波数応答85を有する。その周期は1/TD’=F’であり、周波数応答77の周期Fにほぼ等しいが、その中央周波数f’は、SAWフィルタ12aの中央周波数fと同様であるが、これから僅かにずれている。したがって、振幅P1の通過帯リップル86、および振幅G’の対応する群遅延脈動88は、SAWフィルタ12aに伴う通過帯リップル78および群遅延脈動80から180°ずれている。その結果、図16に示すように、通過帯リップル78,86は難いに打ち消し合い、群遅延脈動80,88も互いに打ち消し合い、所望の周波数応答90のみが残る。時間スパー74および82はそれぞれ主信号76および84の右側にあっても、時間スパー74および82がそれぞれ主信号76および84の左側にある場合と同じ打ち消し原理が適用される。
【0031】
言い換えると、SAWフィルタ12aの図12におけるインパルス応答h(t)に伴う通過帯リップル78および群遅延脈動80は、SAWフィルタ12bの図13におけるインパルス応答h’(t)に伴う通過帯リップル86および群遅延脈動88を相殺するように発生することができる。その際、SAWフィルタ12bの入力変換器36’をSAWフィルタ12aの入力変換器36から離間させて、2つのフィルタ間の群遅延および通過帯リップルが180°位相ずれとなり、TD−TD’=(n+1/2)/fとなるようにする。ここで、nは0以上の整数である。
【0032】
対応して、カスケード応答の三回通過エコーも打ち消される。図10,11を再度参照すると、三回通過エコー66および直接表面弾性波52間の経路長差は2Lである。言い換えると、図11に示すように、三回通過エコー66は、主信号からT8だけ離れている。ここで、T8=(2L)/v,vはSAWの伝搬速度である。SAWフィルタ12a,12bを同様に製造するが、SAWフィルタ12bの変換器の中心を距離L’だけ離すと、SAWフィルタ12bの新たな三回通過スパーは、主信号からT8’だけ離れ、T8’=(2L’)/v=2L+(n+1/2)/f=T8+(n+1/2)/fとなる。ここで、L’=L+(n+1/2)λ/2である(λ=v/f)。これは、正に、前述したスパー打ち消しと同じ条件である。
【0033】
対象の時間スパーがm回通過エコーの場合、L’=L+(n+1/2)λ/(m−1)はスパー打ち消し条件を満たす。何故なら、m回通過エコーは常に主信号から(m−1)Lだけ離れているからである。尚、mは奇数の整数である。同様に、フィードスルーが対象の時間スパーである場合、L’=L+(n+1/2)λはスパー打ち消し条件を満たす。何故なら、フィードスルーは常に主信号からLだけ離れているからである。一般に、関係L’=L+(n+1/2)λ/(m−1)は、前述の時間スパー打ち消しに当てはまる。m=1の場合、フィードスルーは打ち消される。mが奇数の整数であり1よりも大きい場合、m回通過エコーが打ち消される。一方、m=2,3,5に対してL’=L+nλ/(m−1)の場合、mの特定の値に伴う時間スパーに対するスパー打ち消しは行われない。その理由は、フィルタ12aに伴う時間スパーは、SAWフィルタ12bに伴う時間スパーと同相であるからである。以上の論述から、L’=L+(n+1/2)λ/(M−1)であれば、m=Mの特定値に伴うスパーに対して、総合的なスパー打ち消しが行われ、m<Mの特定値に伴うスパーに対しては、部分的な打ち消しが行われ、m>Mの特定値に伴うスパーに対しては、打ち消しは行われない。言い換えると、フィードスルーを抑制するようにL’およびLを設計すれば(m=2)、m回通過エコー(m>2)は打ち消されない。L’およびLを5回通過エコーを抑制するように設計すれば(m=5)、フィードスルーおよび3回通過エコーは部分的に抑制され、7次および更に高次の通過エコーは抑制されない。
【0034】
本発明の前述の実施形態によるSAWフィルタ・システムは、前述のようにしてSAWフィルタ12a,12bによって発生した群遅延および通過帯リップルを打ち消すが、本発明の別の実施形態も、群遅延および通過帯リップルを打ち消すように実施することができる。例えば、図3を再度参照すると、SAWフィルタ12bの中心周波数f’を、SAWフィルタ12Aの中心周波数fからずらして、SAWフィルタ12a,12bの中心周波数が次の関係を有するようにすればよい。f=f’+(n+1/2)F。ここで、F=1/TD(図14〜16参照)。
【0035】
例えば、フィルタ12aの入力および出力変換器36,37のフィンガ36a,37aの形状サイズを変化させることによって、中心周波数fを変化させることができる。即ち、フィンガ36a,37aの水平方向寸法、即ち、フィンガ幅およびフィンガ間隙を変化させれば、フィルタ36a,37aが発生する波の波長を変化させることができる。また、フィンガ36a,37aの垂直方向寸法、即ち、金属の厚さを変化させれば、フィンガ36a,37aが発生する波の伝搬速度を変化させることができる。あるいは、SAWフィルタ12aの基板38を変更すれば、SAWフィルタ12aに伴う伝搬速度を変化させることができる。勿論、前述の技法を如何様に組み合わせて用いても、中心周波数fを調節することができ、前述の技法は等しくSAWフィルタ12bにも同様に適用することができる。
【0036】
本発明の更に別の実施形態によれば、前述の2つの実施形態の混成を設計すると、群遅延および通過帯リップルを打ち消し、したがってSAWフィルタ12a,12bに伴う、対応する時間スパーも打ち消すことができる。言い換えると、SAWフィルタ・システム12は、前述の2つの実施形態と同様に設計することができるので、入力変換器36,36’の双方をSAW波長の所定の分数だけ離間させ、更にSAWフィルタ12a’に伴う中心周波数f’をSAWフィルタ12aの中心周波数fに関してずらすことによって、群遅延および通過帯リップルの打ち消し、ならびに対応する時間スパーの打ち消しが可能となる。
【0037】
本発明の更に別の実施形態によれば、SAWフィルタ12aの入力および出力変換器36,37の間、ならびにSAWフィルタ12bの入力および出力変換器36’,37’の間にそれぞれ摂動領域P1,P2を設ければ、群遅延および通過帯リップルを打ち消し、したがってSAWフィルタ12a,12bに伴う、対応の時間スパーも打ち消すことができる。摂動領域P1は、SAWが自由表面速度vとは異なる速度vpで伝達する媒体を提供する。摂動領域P1のvpを摂動領域P2のvp’に変化させることにより、または摂動領域P1およびP2の物理的幾何学的形状を変化させることにより、SAWフィルタ12a,12bのTDおよびTD’を調節して、前述の時間スパー打ち消しの条件を満たすことができる。
【0038】
前述の方法は、時間スパー打ち消しを実行するための技法のいくつかに過ぎない。以下の式(1)によれば、前述の方法の多くの組み合わせを用いれば、時間スパーを打ち消すことができる。異なる組み合わせを用いると、式(1)における1つ以上のパラメータが変化するので、(TD−TD’)は、時間スパー打ち消しの条件(n+1/2)λ/(m−1)を満たす。再度図3を参照すると、パラメータx1およびx5を変化させてx1<>x1および/またはx5<>x5’となるようにすることは、入力変換器および/または出力変換器の設計を変更して、入力変換器36を入力変換器36’と同一としないようにすること、および/または出力変換器37を出力変換器37’と同一としないようにすることと同等である。パラメータx2および/またはx4を変化させてx2<>x2’および/またはx4<>x4’となるようにすることは、入力および出力変換器のずれを変化させて、L<>L’となるようにすることと同等である。x3および/またはvpを変化させてx3<>x3’および/またはvp<>vp’となるようにすることは、摂動領域を変化させてP1がP2と同一でないようにすることと同等である。vmを変化させてvm<>vm’となるようにすることは、入力変換器36,36’および出力変換器37,37’の中心周波数を変化させて、f<>f’となるようにすることと同等である。vを変化させてv<>v’となるようにすることは、SAWフィルタ12bに異なる材料を用いることと同等である。
【0039】
以下に、前述の結論を最も一般的な形態で数学的に導出する。
主SAW信号がSAWフィルタ12aのL1からL2まで伝達する際の時間遅延をTとし(TDは主信号および時間スパー間の分離であるので、TDと区別するためにTを用いる)、主SAW信号がSAWフィルタ12bのL1’からL2’まで伝達する際の時間遅延とする。更に、SAWフィルタ12aでは、T=(x1+x5)/vm+(x2+x4)/v+x3/vpである。また、SAWフィルタ12bでは、T’=(x1’+x5’)/vm’+(x2’+x4’)/v’+x3’/vp’である。ここで、vmはSAWフィルタ12aの変換器におけるSAW伝搬速度、vm’はSAWフィルタ12bの変換器におけるSAW伝搬速度、vはフィルタ12aの自由面におけるSAW伝搬速度、v’はSAWフィルタ12bの自由面におけるSAW伝搬速度、vpはSAWフィルタ12aの摂動領域P1におけるSAW伝搬速度、そしてvp’はSAWフィルタ12bの摂動領域P2におけるSAW伝搬速度である。
【0040】
T−T’=[(x1+x5)/vm−(x1’+x5’)/vm’]+[(x2+x4)/v−(x2’+x4’)/v’]+(x3/vp−x3’/vp’)             式(1)
【0041】
変換器偏移方法を用いた時間スパー打ち消しの条件は、以下の通りである。
入力変換器36,36’が同一であり、出力変換器37,37’も同一であり、摂動領域P1は摂動領域P2と同一であり、両SAWフィルタ12a,12bが同じ種類の基板材料上に構成されている場合、x1=x1’,x5=x5’,x3=x3’,vm=vm’,v=v’,およびvp=vp’である。したがって、式(1)は次のようになる。
【0042】
T−T’=[(x2+x4)−(x2’+x4’)]/v 式(2)
式(2)におけるT−T’は、入力および出力変換器36,37および36’,37’間の間隔の関数であり、摂動領域P1が摂動領域P2と同一である限り、摂動領域とは無関係である。したがって、式(2)は、次のように書くこともできる。
【0043】
T−T’=(L−L’)/v            式(3)
フィードスルー・スパーを打ち消すためには、以下の条件を満たさなければならない。
【0044】
(T−T’)=(n+1/2)/f=(L−L’)/v 式(4)
更に、m回通過スパーを打ち消すためには、以下の条件を満たさなければならない。
【0045】
(T−T’)=(n+1/2)/f(m−1)=(L−L’)/v   式(5)
【0046】
変換器周波数偏移方法を用いた時間スパー打ち消し条件は次の通りである。
入力変換器36,36’が同一であり、出力変換器37,37’が同一であり、摂動領域P1が摂動領域P2と同一であり、x2=x2’,x4=x4’であるが、vm<>vm’,x1<>x1’,およびx5<>x5’,x3=x3’、そしてvp=vp’である場合、式(1)は次のようになる。
【0047】
T−T’=[(x1+x5)/vm−(x1’+x5’)/vm’]   式(6)
フィードスルー・スパーを打ち消すためには、式(6)=式(4)とする。
m回通過スパーを打ち消すためには、式(6)=式(5)とする。
式(6)=式(4)または式(6)=式(5)の特殊な場合の1つが、図14〜16に実証されているように、f−f’=(n+1/2)/TDである。
【0048】
摂動領域方法を用いた時間スパー打ち消しの条件は、次の通りである。
論述の目的上、入力変換器36,36’は同一であり、出力変換器37,37’は同一であり、両SAWフィルタ12a,12bは同じ種類の基板上に構成されており、Lは両SAWフィルタ12a,12bに対して同一であると仮定する。すると、式(1)は、次のようになる。
【0049】
T−T’=[(x2+x4)−(x2’+x4)]/v+(x3/vp−x3’/vp’)          式(7)
フィードスルー・スパーを打ち消すためには、式(7)=式(4)とする。
m回通過スパーを打ち消すためには、式(7)=式(5)とする。
式(7)は、(T−T’)がSAWフィルタ12aのx2,x3,x4,vp、ならびにSAWフィルタ12bのx2’,x3’,x4’,vp’の関数であることを示す。
【0050】
SAWフィルタ12aのx3および/またはvpがSAWフィルタ12bのx3’および/またはvp’と異なる場合、式(7)=式(4)または式(7)=式(5)という条件を満たせることは、式(7)から自明である。
【0051】
尚、摂動領域P1,P2の幅を変えることによってx3,x3’を容易に異なる値に設定すれば、その後x2,x4,x2’,x4’も異なることを注記しておく。
【0052】
また、vpおよびvp’は、図2に示すように、摂動領域P1およびP2の物理的形状サイズを変化させることによって、異なる値に設定することができる。
図4〜8は、それぞれ、図2における線III−IIIおよびIII’−III’に沿った、摂動領域P1,P2の断面図である。これらは、摂動領域P1,P2を実現するための異なる方法を示す。図4,6,8は、各図面に示す、対応の垂直方向寸法を変化させることによって、vpを変えられることを示す。図5,7,9は、摂動領域P1を1つよりも多い区間に細分化することができ、各小区間が他の小区間に対して周期的または非周期的のいずれかであることを示す。
【0053】
図17は、本発明の前述の実施形態によるSAWフィルタ・システムを実施する効果を示す。即ち、従来技術にしたがってカスケード接続した2つの同一フィルタから得られるフィルタ出力を92に示し、一方本発明のSAWフィルタ・システムのフィルタ出力を94に示す。図示のように、三回通過抑制は、従来のカスケード技術を用いた場合僅か50dBに過ぎないのに対して、本発明のSAWフィルタ・システムを用いることによって、三回通過抑制は6,3dBまで増加した。
【0054】
図18は、ニオブ酸リチウムなどの強い結合材料で形成した基板上に構成したSAWフィルタに実施する場合に特に有用な、本発明の別の実施形態を示す。即ち、SAWフィルタ112bの入力および出力変換器136a、137aを、SAWフィルタ12aの入力および出力変換器36a、37aと共に示す。入力および出力変換器136a、137aは、各端部にダミー・フィンガ138a、139aを含む。図10に示す関連技術を再度参照すると、再生波54および直接表面弾性波52間の経路長差は2Xである。言い換えると、再生波即ちスパー54は、主波からT2だけ離れており、T2=(2X)/vmである。同様に、再生波即ちスパー56および直接表面弾性波52間の経路長差は2Yである。言い換えると、スパー56は、直接表面弾性波52からT3だけ離れており、T3=(2Y)/vmである。ダミー・フィンガ138aを入力変換器136aの右側λ/4(λ=f/vm)の所に追加し、ダミー・フィンガ139aを出力変換器137aの左側λ/4の所に追加することを除いて、SAWフィルタ112bをSAWフィルタ12aと同じ入力変換器および出力変換器を有するように設計すると、再生波54の反射および直接表面弾性波52間、ならびに再生波56の反射および直接表面弾性波52間の新たな経路長差は、SAWフィルタ112bに対して、それぞれ2X’および2Y’となる。X,X’およびY,Y’は、それぞれ、互いにX’=X+λ/4およびY’=Y+λ/4という関係がある。SAWフィルタ112bのT2’,T3’は、SAWフィルタ12aのT2,T3に対して、T2’=(2X’)/v=T2+1/(2f)およびT3’=(2Y’)/v=T3+1/(2f)という関係を有する。双方は、スパー打ち消しについて前述した条件を満たす。
【0055】
同様に、ダミー・フィンガ138bを入力変換器136aの左端に追加することができ、ダミー・フィンガ139bを出力変換器137aの右側に追加することができる。これは、エッジ反射打ち消しについて前述したのと同様である。加えて、変換器のサンプリング・レートがλあたり4フィンガとすると、エッジ反射打ち消しのために、互いからλ/4だけ離間した(2n+1)本のダミー・フィンガをフィルタ112bのそれぞれの端部に追加することができる。サンプリング・レートがλあたり4フィンガに等しくない場合、フィルタ12a,112b間の変換器のエッジのずれが約(n+1/2)λ/2となるような数のダミー・フィンガを、フィルタ112bの入力および出力変換器136、137の端部に追加することによっても、エッジ反射打ち消しを達成することができる。
【0056】
以上の説明を読むことにより、本発明の好適な実施形態によるSAWフィルタ・システムは、数々の理由から、従来のSAWフィルタよりも優れていることを当業者は認めよう。即ち、本発明のSAWフィルタ・システムは、実施が非常に簡単である。例えば、2つのフィルタの入力および出力変換器をλ/4だけずらすことによって、またはフィルタの中心周波数を1/(2TD)だけずらすことによって、三回通過抑制を容易に達成することができる。ここで、TDは主信号および三回通過エコー間の離隔距離である。また、同様の抑制は、フィードスルー・スパーまたは高回通過エコーに対しても、全体的性能の低下を招いている支配的なスパーがどれであるかに応じて、同様の偏移手法を用いることによって行うことができる。この手法を適正に用いれば、1つのスパーを完全に打ち消す一方、1つ以上の他のスパーを部分的に抑制することができる。ダミー・フィンガ手法および偏移手法をSAWフィルタ・システムに組み込めば、前述のエッジ反射およびその他の時間スパー双方を打ち消すことができる。
【0057】
更に、本SAWフィルタ・システムは、2つの同一フィルタをカスケード接続する際に伴う固有の問題を解消する。即ち、群遅延および通過帯リップルがほぼ倍増し、対応する時間スパー抑制が、2つの同一フィルタをカスケード接続した後では、6dB悪化する問題である。第1フィルタの群遅延および通過帯リップル応答は、第1フィルタのそれらに対して常に180°位相がずれているので、カスケード接続された後の脈動は、本発明に係わる前述の脈動打ち消しにより、個々の応答の脈動よりも少なくなる。言い換えると、本発明のSAWフィルタ・システムは、従来の抑制技術と比較すると、群遅延や通過帯リップルを低減するために過剰設計する必要もなく、カスケード接続した場合の時間スパーを更に抑制する。
【0058】
加えて、2つの完全に一致するSAWフィルタを本発明のSAWフィルタ・システムに用いると、群遅延および通過帯リップルは理論上0にすることができ、これに伴う時間スパーも理論上排除することができる。これは、2つのフィルタをカスケード接続することにより、脈動が倍増し、対応して時間スパーが6dB悪化する従来技術に対して、有意な利点を意味する。
【0059】
また、本発明のSAWフィルタ・システムは、温度変化や構成部品の許容度による、整合回路の構成部品のばらつきに対する感受性が低いので、群遅延および通過帯リップルならびに三回通過スパーの打ち消しを一層安定して行うことができる。また、本発明のSAWフィルタ・システムは、従来のSAWフィルタの実施におけるように、厳しい脈動または三回通過スパー要件を満たすためにフィルタ応答を微調整する必要がないので、高価なフィルタを削減して実施することができる。更に、本発明のSAWフィルタ・システムは、当該システムに用いられている個々のフィルタに伴うより高い三回通過スパーを許容することができるので、フィルタ・システムの挿入損失を改善することができる。
【0060】
尚、本発明のSAWフィルタ・システムの実施には、広い範囲の端数帯域幅を有するフィルタを使用可能であることも認められよう。概して、本発明のSAWフィルタ・システムが最良に動作するのは、狭い端数帯域幅を有するフィルタを用いる場合である。しかしながら、実験データによって、23%端数帯域を有するフィルタを用いて実施した場合でも、本発明のSAWフィルタ・システムは群遅延および通過帯リップルを打ち消し可能であることが示されている。
【0061】
更に、本発明のSAWフィルタ・システムは、ダミー・フィンガを入力および出力変換器の端部に追加することによって、強い結合材料から成る基板上に実施したフィルタ・システムでは問題になる、変換器エッジ反射の打ち消しに関しても、簡単な解決策を提供する。
【0062】
加えて、本発明のSAWフィルタ・システムは、あらゆる種類の横断SAWフィルタでもカスケード型に用いれば実施することができる。具体的には、SPUDTフィルタを用いて本発明を実施することが好ましい。何故なら、個々のSPUDTフィルタに伴う三回通過エコーが初期状態において小さいからである。
【0063】
最後に、入力および出力変換器の分離は、本発明のSAWフィルタ・システム内の個々のSAWフィルタ毎に異なるので、フィードスルー・スパーおよび主波間の時間分離も、個々のフィルタ毎に異なることを注記しておく。三回通過エコーを打ち消すために偏移手法を主に用いる場合、2つの同一フィルタをカスケード接続した場合と同様、カスケード接続した後のフィードスルーの抑制は6dBも悪化することはない。何故なら、カスケード接続したフィルタをずらすことにより、そのフィードスルー・スパーが部分的にずれるからである。
【0064】
以上の説明は、本発明の好適な実施形態についてであるが、本発明は、特許請求の範囲およびその公正な意味から逸脱することなく、修正、変更、または変形が可能であることは当然認められよう。
【図面の簡単な説明】
【図1】本発明の好適な実施形態によるカスケード型SAWフィルタ・システムを実施可能な衛星通信システムの一例のブロック図。
【図2】図1に示すSAWフィルタの更に詳細なブロック図。
【図3】SAWフィルタの寸法を例示する、図1に示すSAWフィルタの詳細なブロック図。
【図4】図3に示すSAWフィルタの摂動領域P1,P2の一構成例の断面側面図。
【図5】図3に示すSAWフィルタの摂動領域P1,P2の一構成例の断面側面図。
【図6】図3に示すSAWフィルタの摂動領域P1,P2の一構成例の断面側面図。
【図7】図3に示すSAWフィルタの摂動領域P1,P2の一構成例の断面側面図。
【図8】図3に示すSAWフィルタの摂動領域P1,P2の一構成例の断面側面図。
【図9】図3に示すSAWフィルタの摂動領域P1,P2の一構成例の断面側面図。
【図10】関連技術のSAWフィルタおよび対応する弾性波経路図の一例の平面図。
【図11】図10に示すSAWフィルタの時間ドメイン応答のグラフ。
【図12】時間および周波数ドメインにおける本発明によるカスケード型SAWフィルタ・システムの効果を示すグラフ。
【図13】時間および周波数ドメインにおける本発明によるカスケード型SAWフィルタ・システムの効果を示すグラフ。
【図14】時間および周波数ドメインにおける本発明によるカスケード型SAWフィルタ・システムの効果を示すグラフ。
【図15】時間および周波数ドメインにおける本発明によるカスケード型SAWフィルタ・システムの効果を示すグラフ。
【図16】時間および周波数ドメインにおける本発明によるカスケード型SAWフィルタ・システムの効果を示すグラフ。
【図17】図3のカスケード型SAWフィルタ・システムの時間ドメイン応答の三回通過抑制に対する効果を示すグラフ。
【図18】本発明の別の好適な実施形態によるカスケード型SAWフィルタ・システムの第1フィルタおよび第2フィルタの平面図。

Claims (10)

  1. 第1圧電基板と、該第1圧電基板上にあり、所定の周波数を有した入力電気信号から所定の波長λを有した第1表面弾性波を発生および送信する第1入力変換器と、前記第1表面弾性波を受信し、第1フィルタ電気信号に変換する第1出力変換器とを有する第1フィルタと、
    前記第1フィルタと直列にカスケード接続され、第2圧電基板と、前記第1フィルタ電気信号から第2表面弾性波を発生および送信する第2入力変換器と、前記第2表面弾性波を受信し第2フィルタ電気信号に変換する第2出力変換器とを有する、第2フィルタとからなり、前記第1フィルタの第1入力変換器は、前記第2フィルタの第2入力変換器から(n+1/2)λ/(m−1)の距離だけ離間され、nは0以上の整数、mは、時間スパーがフィードスルーの場合には2、時間スパーがm回通過エコーである場合には1よりも大きい奇数の整数であり、システムの時間スパー抑制を強化した、表面弾性波フィルタ・システム。
  2. 前記システムの時間スパー抑制を20dBを超えて強化するために、前記第1フィルタの第1入力変換器を前記第2フィルタの第2入力変換器から分離している請求項1に記載の表面弾性波フィルタ・システム。
  3. 前記第1入力および出力変換器のそれぞれと、前記第2入力および出力変換器との少なくとも1つの端部に、エッジ反射を防止するための少なくとも1つのダミー・フィンガをさらに有する、請求項1に記載の表面弾性波フィルタ・システム。
  4. 変換器のサンプリング・レートがλ当たり4フィンガの場合、前記少なくとも1つのダミー・フィンガが、前記第1および第2入力および出力変換器のそれぞれの端部において、互いにλ/4離間された(2n+1)本のダミー・フィンガからなる、請求項3に記載の表面弾性波フィルタ・システム。
  5. 前記第1および第2圧電基板を同一の圧電材料で形成した、請求項1に記載の表面弾性波フィルタ・システム。
  6. 前記第1および第2圧電基板を異なる圧電材料で形成した、請求項1に記載の表面弾性波フィルタ・システム。
  7. 当該システムの挿入損失を、2つの同一のカスケード型フィルタからなる表面弾性波フィルタ・システムに伴う挿入損失よりも少なくするために、前記第1フィルタの第1入力変換器を前記第2フィルタの第2入力変換器から分離している、請求項1に記載の表面弾性波フィルタ・システム。
  8. 前記第1フィルタの第1入力変換器と電気的に接続した入力整合回路と、前記第1フィルタの第2入力変換器と電気的に接続した出力整合回路とをさらに有し、前記入力および出力整合回路の各々は1つ以上のRLC構成部品からなり、前記第1および第2フィルタのそれぞれのインピーダンスを周囲のシステム・インピーダンスに整合する、請求項1に記載の表面弾性波フィルタ・システム。
  9. 前記第1および第2フィルタの各々はSPUDT表面弾性波フィルタからなる、請求項1に記載の表面弾性波フィルタ・システム。
  10. 第1圧電基板と、該第1圧電基板上にあり、所定の周波数を有した入力電気信号から所定の波長λを有した第1表面弾性波を発生および送信する第1入力変換器と、前記第1表面弾性波を受信し、第1フィルタ電気信号に変換する第1出力変換器とを有する第1フィルタと、
    前記第1フィルタと直列にカスケード接続され、第2圧電基板と、前記第1フィルタ電気信号から第2表面弾性波を発生および送信する第2入力変換器と、前記第2表面弾性波を受信し、第2フィルタ電気信号に変換する第2出力変換器とを有する、第2フィルタとからなり、前記第2フィルタの中心周波数f’を前記第1フィルタの中心周波数fから、f=f’+(n+1/2)Fで表されるようにずらし、nは0以上の整数であり、Fは前記入力電気信号およびフィルタ電気信号の所定の周波数であり、システムの時間スパー抑制を強化してある、表面弾性波フィルタ・システム。
JP2003138968A 2002-05-16 2003-05-16 時間スプリアス応答を消去するためのカスケード型表面弾性波フィルタ・システム Pending JP2004135259A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/150,264 US6664871B2 (en) 2002-05-16 2002-05-16 Cascaded surface acoustic wave filter system for cancelling time spurious responses

Publications (1)

Publication Number Publication Date
JP2004135259A true JP2004135259A (ja) 2004-04-30

Family

ID=29269790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138968A Pending JP2004135259A (ja) 2002-05-16 2003-05-16 時間スプリアス応答を消去するためのカスケード型表面弾性波フィルタ・システム

Country Status (3)

Country Link
US (1) US6664871B2 (ja)
EP (1) EP1363397A3 (ja)
JP (1) JP2004135259A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924716B2 (en) * 2003-07-10 2005-08-02 Motorola, Inc. Method and apparatus for reduction of electromagnetic feed through in a SAW filter
US7038547B2 (en) * 2003-10-20 2006-05-02 Freescale Semiconductor, Inc. Amplifier circuit
US7250887B2 (en) * 2004-10-25 2007-07-31 Broadcom Corporation System and method for spur cancellation
US7687971B2 (en) * 2006-08-15 2010-03-30 Northrop Grumman Corporation Electric field control of surface acoustic wave velocity
US7656253B2 (en) 2007-04-18 2010-02-02 Northrop Grumman Space & Mission Systems Corporation Surface acoustic wave passband control
WO2016012837A1 (en) 2014-07-23 2016-01-28 Telefonaktiebolaget L M Ericsson (Publ) Radio frequency multiplexer and receiver filter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559115A (en) * 1968-02-28 1971-01-26 Zenith Radio Corp Surface-wave filter reflection cancellation
US3659231A (en) * 1971-03-17 1972-04-25 Zenith Radio Corp Multi-stage solid-state signal-transmission system
US4063202A (en) * 1976-05-05 1977-12-13 Rockwell International Corporation Band-pass filter with surface acoustic wave devices
US4126838A (en) * 1977-09-26 1978-11-21 Rca Corporation Uniform surface acoustic wave transducer configuration having improved frequency selectivity
US5028831A (en) * 1990-04-04 1991-07-02 Motorola, Inc. SAW reflectionless quarter-wavelength transducers
US5073763A (en) 1990-11-02 1991-12-17 R.F. Monolithics, Inc. Group single-phase unidirectional transducers with 3/8λand 5/8λ sampling
JP3244386B2 (ja) * 1994-08-23 2002-01-07 松下電器産業株式会社 弾性表面波装置
JP3330512B2 (ja) * 1997-04-17 2002-09-30 株式会社日立製作所 弾性表面波素子
US6104260A (en) * 1997-12-22 2000-08-15 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter with first and second filter tracks and balanced or unbalanced terminals
JP3323860B2 (ja) * 2000-10-31 2002-09-09 日本碍子株式会社 一方向性変換器及びそれを具える弾性表面波フィルタ装置

Also Published As

Publication number Publication date
US6664871B2 (en) 2003-12-16
EP1363397A2 (en) 2003-11-19
US20030214371A1 (en) 2003-11-20
EP1363397A3 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US6420946B1 (en) Surface acoustic wave arrangement with a junction region between surface acoustic wave structures having a decreasing then increasing finger period
JP3606944B2 (ja) Sawフィルタ
US7023300B2 (en) Surface wave devices with low passband ripple
WO2017159408A1 (ja) 弾性波装置、帯域通過型フィルタ及び複合フィルタ装置
US4342011A (en) Surface acoustic wave device
JP5850209B1 (ja) 弾性波装置
JP7136026B2 (ja) マルチプレクサ
JP6178972B2 (ja) ローパス特性を有する電子音響フィルタ
WO2000070758A1 (fr) Dispositif d'onde acoustique de surface
JP2004135259A (ja) 時間スプリアス応答を消去するためのカスケード型表面弾性波フィルタ・システム
JP4188252B2 (ja) 弾性表面波装置
EP0566587B1 (en) Saw device tapped delay lines
KR102597953B1 (ko) 필터 장치 및 멀티플렉서
KR960005384B1 (ko) 넓은 대역에 대한 소정 통과대역 특성과 적은 삽입손실을 갖는 대역 필터용 표면 탄성파 장치
JP2021068953A (ja) フィルタ装置およびマルチプレクサ
JP2021007196A (ja) フィルタおよびマルチプレクサ
US11848661B2 (en) Filter and multiplexer
US4237432A (en) Surface acoustic wave filter with feedforward to reduce triple transit effects
JPS6231860B2 (ja)
US4472694A (en) Acoustic surface wave device
JPWO2005036743A1 (ja) 弾性境界波装置
JPH026670Y2 (ja)
US6836197B2 (en) Dual track SAW reflector filter using weighted reflective gratings
JP2020088846A (ja) フィルタおよびマルチプレクサ
RU2157046C2 (ru) Фильтр на поверхностных акустических волнах

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090714

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090812

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208