JP2004132556A - Water-cooled conductor and manufacturing method thereof - Google Patents

Water-cooled conductor and manufacturing method thereof Download PDF

Info

Publication number
JP2004132556A
JP2004132556A JP2002294554A JP2002294554A JP2004132556A JP 2004132556 A JP2004132556 A JP 2004132556A JP 2002294554 A JP2002294554 A JP 2002294554A JP 2002294554 A JP2002294554 A JP 2002294554A JP 2004132556 A JP2004132556 A JP 2004132556A
Authority
JP
Japan
Prior art keywords
conductor
water
cooling pipe
cooling
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002294554A
Other languages
Japanese (ja)
Inventor
Sumiichi Shibuya
澁谷 純市
Minoru Funato
船渡 稔
Takatsugu Uchida
内田 隆次
Toshihiro Miyase
宮瀬 敏浩
Tatsuo Miyamoto
宮本 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002294554A priority Critical patent/JP2004132556A/en
Publication of JP2004132556A publication Critical patent/JP2004132556A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cooled conductor manufacturable at low cost and having high reliability even in the case of a long size water cooled conductor having a large vertical/lateral ratio of a cross section or in the case of a cooled water conductor having a pipe projecting from an end thereof. <P>SOLUTION: This water cooled conductor is formed of a cooling pipe 13 forming a flow passage when the cooling water flows and a pair of conductor parts 11 respectively formed from a rectangular conductive body and formed with a U-shape groove 12 having a nearly semicircular cross section, to which the cooling pipe 13 is to be inserted, on a surface of one of the conductors. The cooling pipe 13 is pinched between the U-shape grooves of the pair of conductors 11, while inserting the cooling pipe 13. An abutment surface of each of the members is bonded for integration by a bonding means such as soldering, brazing, eutectic bonding and diffused bonding. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内部に冷却水が流動して導体部を冷却できるようにした水冷導体及びその製造方法に関する。
【0002】
【従来の技術】
水車発電機や火力発電機等においては、銅、銅合金、アルミウム、アルミニウム合金等の電気抵抗の小さい金属を材料とした大容量の水冷導体が用いられている。
【0003】
また、最近では電気導体以外の目的で、同様の構造の水冷導体が用いられる場合も増え、例えば核融合装置におけるプラズマ閉込容器の耐熱材料外壁に密着させて高熱負荷機器の除熱機器として利用されている。
【0004】
このような水冷導体50は、図8(a)、図8(b)に示すように断面形状が角型の水冷導体50、図8(c)に示すように断面形状が丸型の水冷導体50、図8(d)に示すように断面形状が平型の水冷導体50等のように種々の構造がある。
【0005】
なお、図8において、番号51は導体部を示し、番号52は冷却水路を示している。
【0006】
図8に示すような、水冷導体50は単純形状であるため抜加工や押出加工により容易に製造することができ、そのコストの大部分は引抜加工や押出加工に用いる金型の費用が占めている。
【0007】
従って、必要とする水冷導体50の量が多量である程コストは安くなるが、このような水冷導体50を製造する線材メーカ等においては数百キログラム単位を最小ロッドとして製造するため、非標準品等の在庫がないものは必要量が数10キログラムでも数百キログラムの水冷導体50を購入せざるを得ない状況にある。
【0008】
このため目的に適した形状の検証等のため外形寸法の僅かに違う水冷導体50をテストしようとしても、新たに金型を製作する必要が生じて金型製作等のために時間がかかると共にコスト高となる不都合があった。
【0009】
また、図9に示すような端部にパイプが飛出した形状の水冷導体50を製造するには、図10に示すような水冷導体50の斜線部分Sを刃物や工具等を用いて機械的に除去加工するか、あるいは薬品などで溶解し、除去する必要で除去加工等にコストがかさむ不都合がある。
【0010】
そこで、図9に示すような形状の水冷導体50の製造においては、図11に示すように、予め導体部51にU溝54を加工し、そのU溝54に冷却パイプ55をトーチロウ付して一体化する方法が提案されている。
【0011】
しかし、この方法では図11(b)に示すように、導体部51の表面にロウ材が盛り上がって付くため(番号56で示す部分)、その除去加工に多くの時間を要し、またロウ付部分にはピンホール等のトーチロウ付けに特有な欠陥が多く発生する問題があった。
【0012】
なお、図11(a)は、予めU溝54が形成された導体部51に冷却パイプ55を挿嵌する様子を示す図であり、11(b)はこれをトーチロウ付して一体化したさいの様子を示す図である。また図11(c)は、導体部51の表面に盛上がったロウ材を切削等して除去した完成水冷導体の断面図であり、図11(d)はその長手方向の側面図である。
【0013】
ところで、図8〜図11に示すような方法による水冷導体50においては、断面形状の縦・横比の大きい水冷導体50を製造することが困難であった。
【0014】
そこで、特開平6−234079号公報等においては、冷却板や電極として用いられる冷却孔付銅製品の冷却孔を任意形状に、かつ、容易に製造できるようする発明が開示されている。
【0015】
この公報にかかる発明では、少なくとも1枚の銅板表面に溝が形成された一対の銅板を用意し、この溝にオーステナイト系ステンレス鋼製パイプを埋込み、その上から他方の銅板を当接させて、これらを熱間等方圧加圧装置により拡散接合することにより一体化させ、その後に硫酸溶液に浸けることによりステンレス鋼性パイプを熔解除去して冷却孔を形成するものである。
【0016】
【発明が解決しようとする課題】
しかしながら、上述した方法では、ロウ材等を用いないため図11(b)に示すようにロウ材が盛上り等の不都合が発生せず、また断面形状の縦・横比の大きい水冷導体50の製造が容易に行えるものの、1m長さを越える長尺水冷導体50の製造方法が困難であり、また図9に示すようなパイプの突出た形状の水冷導体50を製造することができない問題があった。
【0017】
従って、図9に示すようなパイプの突出た形状の水冷導体50を製造するにはパイプを別途溶接等により固着する必要が生じ、コストアップの要因になると共に、固着箇所での気密性を保つために高度な技術が必要とされる問題がある。
【0018】
そこで、本発明は、断面形状の縦・横比が大きい長尺の水冷導体であっても、また端部にパイプが飛出した構成の水冷導体であっても、安価で容易に製造でき、かつ、信頼性の高い水冷導体及びその製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記課題を解決するため、請求項1にかかる発明は、銅、銅合金、アルミニウム、アルミニウム合金等の導電性導体内部に冷却水が流動する流路を備え、からなり、その内部に冷却水が流動する流路を備えた水冷導体において、冷却水が流動する際の流路を形成する冷却パイプと、矩形状の導電性導体を材料とし、その1の表面に冷却パイプの挿嵌される断面概略半円状のU溝が形成された一対の導体部とからなり、一対の導体部のU溝に冷却パイプを挿嵌させながら挟み込んで、各部材の当接面を半田付、ロウ付、共晶接合、拡散接合等の接合手段により接合して一体化して、断面形状の縦・横比が大きい長尺の水冷導体であっても、また端部にパイプが飛出した構成の水冷導体であっても、安価で容易に製造でき、かつ、信頼性を高めたことを特徴とする。
【0020】
請求項2にかかる発明は、冷却パイプがステンレス又はチタンを材料に含むことを特徴とする。
【0021】
請求項3にかかる発明は、導体部又は冷却パイプの接合面の少なくとも1に、銀、錫の薄膜をコーティングして接合処理を行ってなることを特徴とする。
【0022】
請求項4にかかる発明は、銅、銅合金、アルミニウム、アルミニウム合金等の導電性導体内部に冷却水が流動する流路を備え、からなり、その内部に冷却水が流動する流路を備えた水冷導体において、冷却水が流動する際の流路を形成する冷却パイプと、矩形状の導電性導体を材料とし、その1の表面に冷却パイプの挿嵌される断面概略半円状のU溝が形成された一対の導体部とからなり、一対の導体部のU溝に冷却パイプを挿嵌させながら挟み込んで組立て、その後に引抜加工、押出加工、冷間圧延加工、熱間圧延加工、プレス加工、熱間等方圧加圧等の加工法により一体化して接合してなることを特徴とする。
【0023】
【発明の実施の形態】
本発明の実施の形態を図を参照して説明する。図1は第1の実施の形態の説明に適用される水冷導体10の断面図である。なお、図1(a)は水冷導体10の断面図であり、図1(b)はその製造方法を説明する図である。
【0024】
当該水冷導体10は、一対の銅等の導電性部材である導体部11に半円状のU溝12が形成され、そのU溝12に銅等からなる冷却パイプ13を挿入して一体化した構成である。
【0025】
このような導体部11は、例えば板厚8mm、板幅30mmであり、冷却パイプ13は約直径6mm、肉厚1mmの寸法である。
【0026】
そして、U溝12は冷却パイプ13の直径に対応した寸法であり、U溝12は冷却パイプ13より微少量大きいことが好ましい。
【0027】
これは、後述するように導体部11や冷却パイプ13を接合する際に、半田等の接合材料を接合面Kに浸透させるが、そのときの浸透チャネルを確保するためである。
【0028】
なお、接合面Kは、導体部11間の接触面及び導体部11のU溝12と冷却パイプ13の接触面であることを念のため明記する。
【0029】
次に、このような導体部11、冷却パイプ13を組立てて水冷導体10を製造する方法について説明する。
【0030】
先ず、導体部11、U溝12、冷却パイプ13の表面を研磨、洗浄等して清浄度を高める。次に、一方の導体部11に形成されたU溝12に冷却パイプ13を挿入して、他方の導体部11を宛う。
【0031】
そして、これを図示しない半田コテ等の加熱機器を用いて導体部11及び冷却パイプ13を接合材料の融点以上まで加熱し、接合面K近傍に接合材料を宛って溶融させ、この溶融した接合材料を接合面Kに浸透させることにより冷却パイプ13を導体部11に接合すると共に2枚の導体部11を接合する。
【0032】
導体部11や冷却パイプ13が接合材料の融点以上まで加熱されているので、溶融した接合材料は毛細管現象等により細部まで浸透するので空隙の発生や不純物の巻き込み等が生ぜず、導体部11を効率的に冷却することが可能になる。
【0033】
また、溶融した接合材料が浸透することにより接合面Kを接合するため、余剰の接合材料が導体部11間の接合面Kからはみ出したりすることがなく、はみ出した場合の除去処理等が不要になる利点がある。
【0034】
さらに、このように接合材料を毛細管現象等により浸透させるため、寸法の小さい水冷導体10でも容易に製造できる。
【0035】
ところで、上記説明では、接合面K近傍に接合材料を宛って溶融させ、この溶融した接合材料を接合面Kに浸透させることにより冷却パイプ13や導体部11を接合する場合について説明したが、本発明はこれに限定されるものではなく、図2に示すように、接合面Kに予め接合材料をメッキの方法によりコーティング14しておき、これらを組立てた後に加熱することで接合するようにしても良い。
【0036】
このように予め接合面Kに接合材料をコーティング14することにより、冷却パイプ13や導体部11を溶融点以上に上げるだけで接合ができるので接合作業が容易になる利点がある。
【0037】
導体部11や冷却パイプ13の加熱方法としては、上述した半田コテを用いる方法の他に、プロパンガス等のバーナで加熱することも可能である。プロパンガス等のバーナで加熱する場合には、火力が強いので接合材料の融点まで短時間で加熱することができ、また導体部11や冷却パイプ13の接合する部材全体が同時に、かつ、均一に加熱できるため均一な接合面Kを形成することが容易である。
【0038】
また、接合材料として半田を例に説明したが、本発明はこれに限定されるものではなく銀ロウ等のロウ材であっても良いことは言うまでもなく、アセチレンガス等を用いたトーチロウ付や高周波加熱による高周波ロウ付等が利用可能である。
【0039】
さらに、一般的に半田付けやロウ付けは大気中で行うため、導体部11の表面や接合面K等の酸化が危惧される。このような場合には、アルゴンガスや窒素ガス雰囲気で行うことが可能であり、また数10パスカル程度の雰囲気で数リッターの水素ガスを流しながら加熱ロウ付する水素ロウ付、真空中で行う真空ロウ付等を行うことも可能である。
【0040】
特に、水素ロウ付に代表されるガス雰囲気ロウ付や真空中で行う真空ロウ付では、水冷導体10の表面及び冷却パイプ13の管内面に酸化膜ができないのでロウ付後の洗浄や仕上げ加工が不要であり、さらにはカーボンヒータや金属ヒータの電気炉内で行うバッチ処理によるために生産性が非常に高く、その接合の信頼性も優れている。
【0041】
また、図1及び図2に示す水冷導体10の構造の製造方法において、半田付やロウ付、その他の方法で、接合面Kに適宜圧力を加えることにより接合面Kの密着を図りながら、接合面Kの分子、原子の相互拡散を利用して接合する拡散接合法、液相を生じさせてその液相を介して接合する液相拡散接合法等を用いてもよい。
【0042】
なお、拡散接合法や液相拡散接合法には、接合を容易にするために接合面Kに銀や金等のインサート金属、液相を積極的に生成する組成のチタン等のインサート金属の挿入やコーティング14などを行うことも有用である。
【0043】
次に、本発明の第2の実施の形態を図を参照して説明する。なお、第1の実施の形態と同一構成に関しては同一符号を用い説明を適宜省略する。
【0044】
本実施の形態は、冷却パイプ13にステンレスパイプやチタンパイプを用いたものである。
【0045】
一般に、導体部11がアルミニュームや銅で冷却パイプ13がステンレスやチタンの場合には、これらを直接接合することが困難であり、特にアルミニウムとステンレス、アルミニウムとチタンの組合せではロウ付や拡散による接合が難しい。
【0046】
そこで、本発明では、アルミニウムの導体部11やステンレスパイプ又はチタンパイプの表面にニッケルや銀をメッキ等によりコーティングして接合を行うようにしたものである。
【0047】
このようなニッケルや銀等をコーティングすることにより、アルミニウムの導体やステンレスパイプ又はチタンパイプの半田付、ロウ付、拡散接合が可能になり、耐食性及び強度に優れる信頼性の高い水冷導体10を製造することが可能になる。
【0048】
このような例として、銀メッキを行った銅の導体部11に銀メッキを行ったステンレスの冷却パイプ13を用いて、水冷導体10の形状に反応接合した場合を説明する。
【0049】
反応接合は、数ミクロンから数十ミクロン厚の銀を銅の導体部11とステンレスの冷却パイプ13とにメッキする。そして、図3に示すような真空炉20に入れて加熱して接合を行う。
【0050】
この真空炉20には、カーボンの載置台21が設けられ、該載置台21には導体部11が収納される導体部溝22が形成されている。
【0051】
導体部11の寸法が板厚5mm、板幅30mmの場合には、導体部溝22の寸法は深さ8〜9mm、幅32mmとなっている。従って、この導体部溝22に冷却パイプ13が嵌め込まれた1対の導体部11を入れると、その上部の1〜2mmは載置台21から飛出した状態となる。
【0052】
そこで、この飛出した部分に10〜50g/cm2の錘23を載せて真空ポンプ24で真空度10・1Pa以下まで真空引きし、約800℃まで加熱する。
【0053】
すると、図4に示す銀と銅との二元合金標準状態図からわかるように、銅と銀とは拡散反応により共晶反応が起こし、共晶組成が銀71.9wt%、銅28.1wt%程度に至るまで相互拡散が進行した領域において液相が生じる。
【0054】
この液相が生成する温度(共晶温度)は、銀と銅の二元合金標準状態図からもわかるように779.4℃であり、銅の融点が1083℃、銀の融点が960.5℃であるので、これらの融点よりも数百度も低い温度で接合することが可能になる。
【0055】
従って、未反応の銀が溶融することがないので、上下の導体部11の接合面Kから当該銀が滲み出してしまうことがなく、例えば滲み出した銀を切削等により除去する手間が不要となる利点がある。
【0056】
また、図には示さないがチタンと銅の組合せにおいても、900℃前後に共晶温度があり、銀と銅共晶を利用した反応接合が可能である。
【0057】
このように、直接接合することができないアルミニウムや銅の導体部11に銅やアルミニウムより強度が強く耐食性のあるステンレスやチタンの冷却パイプ13を母材の融点よりも低い温度で接合できるので、接合が容易になると共に冷却パイプ13に流す冷却水量を高くすることが可能になり、冷却効率を向上させることができるようになる。
【0058】
なお、上記説明では、ニッケルや銀を導体部11や冷却パイプ13にコーティングする方法として、メッキによる方法について説明したが、本発明はかかるコーティング方法に限定されるものではなく、アークイオンプレーティング、スパッタリング等の方法によりコーティングしても良い。
【0059】
特に、アークイオンプレーティングやスパッタリング等の乾式法でコーティングする方法は、メッキ等の湿式法に比べてコーティングされた銀等の内部に欠陥が少なく、かつ、導体部11や冷却パイプ13との密着強度が高いため接合性も高くなる特性があり、高品質の水冷導体10を製造することが可能である。
【0060】
次に、本発明の第3の実施の形態を図を参照して説明する。なお、第1、第2の実施の形態と同一構成に関しては同一符号を用い説明を適宜省略する。
【0061】
本実施の形態に係る発明は、銅やアルミニウムの導体部11と銅の冷却パイプ13との接合温度を比較的低い温度で行えるように、導体部11や冷却パイプ13の接合面Kに錫をコーティングさせて接合した場合に関するものである。
【0062】
銅と錫の二元合金状態図は、図5に示すように、銅の融点は1083℃であり、錫の融点は232℃である。
【0063】
そこで、銅の導体部11や銅の冷却パイプ13の双方又は一方の表面に、錫を数ミクロン〜数十ミクロンの厚みでコーティングし、これらを真空炉20に入れて加熱する。
【0064】
加熱することで、錫は232℃から溶けはじめるが、低い温度の場合、銅への拡散及び反応速度は遅いものの加熱温度が高くなるにつれて銅と錫の相互拡散が活発化する。
【0065】
そして、銅と錫との成分比(濃度)が各50%の組成では、約700℃で導体部11と冷却パイプ13との接合面Kに液相が生成して、この液相を介して導体部11と冷却パイプ13とが接合できる。
【0066】
このような液相を介した接合は、先に説明した半田付、ロウ付、固相(拡散)接合と比較して接合部の密着性が優れ、極めて小さな加圧力によりギャップやボイドを容易に消失させることができる利点がある。
【0067】
また、液相を介した接合操作となるため、銅及び錫の金属原子相互間の拡散速度が固相接合の場合と比較して大きいので短時間で接合することができ、当該接合を行っている最中に導体部11や冷却パイプ13における銅の結晶粒が粗大化したり、ときには粒界割れしたりするのを抑制することが可能になって、信頼性が向上する。
【0068】
なお、導体部11又は冷却パイプ13の少なくとも一方がアルミニウムで形成されている場合に、これらに錫をコーティングして接合する際の温度は、アルミニウムの溶融温度が550〜600℃程度であるので、500℃以下に設定することが好ましい。
【0069】
次に、本発明の第4の実施の形態を図を参照して説明する。なお、第1〜第3の実施の形態と同一構成に関しては同一符号を用い説明を適宜省略する。
【0070】
これまで説明した各実施の形態においては、導体部11と冷却パイプ13との接合を半田付、ロウ付等の固相拡散により行い、また銀、錫、ニッケル等をコーティングして液相拡散させることにより行う構成について説明した。
【0071】
これに対し本実施の形態では、図6に示すように、銅や銅合金等の導体部11に形成されたU溝12に冷却パイプ13を挟み、この状態で圧延加工機等の成型機における上下又は上下左右に配置されたロール31で圧延成型することにより、これらを圧着して一体化するものである。
【0072】
なお、この場合少なくとも圧着して接合される面は、ブラッシングや薬品処理により酸化皮膜等の不純物、ゴミ等を除去しておくことが好ましい。
【0073】
また、圧着する際の温度は、室温よりも温間、温間よりも熱間というように、高い方が良好な接合を得ることができる。
【0074】
このように高い温度の場合には、圧着作業中に接合面K等が酸化してしまうことがあるので、かかる作業は無酸化雰囲気のガス雰囲気中で行ったり、予め接合面K等の酸化しては不都合な箇所に無酸化雰囲気等の中で酸化防シールを行うことが好ましい。
【0075】
このような酸化防シールを行った場合には、大気雰囲気中で加熱圧着(当該酸化防シールが耐えうる温度まで)できるので、作業効率が向上する利点もある。
【0076】
また、図7に示すように、特に酸化して困る接合面Kに空気等の酸化剤が侵入しないように、このような酸化剤が侵入する部分(外から見える接合面K部分)をシール溶接32等するようにしてもよい。
【0077】
無論、シール溶接32する際に既に接合面Kに侵入している空気があると、接合面Kに酸化膜が形成されたり、当該空気が逃場を失うことにより気密な圧着が行えない場合が生じるので、当該シール溶接32する際には真空引きして空気等を除去した状態で行うことが好ましい。
【0078】
このようにして、外部から見える接合面Kを塞ぐようにシール溶接32した後、熱間等方圧加圧(略称HIP:HotISOstaticPressing)装置等により高温、高圧の雰囲気中で加熱・加圧処理を行う。
【0079】
そして、導体部11が銅で、冷却パイプ13がステンレスの場合には、例えば約800℃、約98Mpaの条件で約2時間保持することで、それぞれの金属が相互拡散して強固に接合が行えるようになる。
【0080】
なお、図7(b)における矢印(↓→等の矢印)は、高温・高圧のガス圧を示し、基本的に静水圧であるので冷却パイプ13の内側からも同じ圧力が作用するため、均一の製品が量産化でき、また図6に示すような圧延による圧着方法の場合に生じる冷却パイプ13の変形が発生しない利点がある。
【0081】
因みに、国内最大のHIP装置は、Φ1.2m、高さ3mで、このようなHIP装置により長さ3mの水冷導体10を接合処理した際には、1バッチ当り数千本処理できることになり、高い生産性を示すと共に、大量に製造できることから製造コストが大幅に低減できるようになる。
【0082】
【発明の効果】
以上述べたように本発明によれば、冷却水が流動する際の流路を形成する冷却パイプと、矩形状の導電性導体を材料とし、その1の表面に冷却パイプの挿嵌される断面概略半円状のU溝が形成された一対の導体部とからなり、一対の導体部のU溝に冷却パイプを挿嵌させながら挟み込んで、各部材の当接面を半田付、ロウ付、共晶接合、拡散接合等の接合手段により接合して一体化して、断面形状の縦・横比が大きい長尺の水冷導体であっても、また端部にパイプが飛出した構成の水冷導体であっても、安価で容易に製造でき、かつ、信頼性を高めることが可能になる。
【図面の簡単な説明】
【図1】第1の実施の形態の説明に適用される水冷導体の構成図である。
【図2】錫等をコーティングして水冷導体を形成する際の構成図である。
【図3】第2の実施の形態の説明に適用される真空炉中で接合を行う際の様子を示す図である。
【図4】銀−銅の二元合金標準状態図である。
【図5】第3の実施の形態の説明に適用される銅と錫の二元合金状態図である。
【図6】第4の実施の形態の説明に適用される、圧延加工機等による水冷導体の製造方法を示す図である。
【図7】熱間等方圧加圧による水冷導体の製造方法を示す図である。
【図8】従来の技術の説明に適用される一般的な水冷導体の構造を示す図である。
【図9】端部にパイプが飛出した水冷導体の構造を示す図である。
【図10】端部にパイプが飛出した水冷導体の製造方法を示す図である。
【図11】冷却パイプを埋込みトーチロウ付して水冷導体を製造する際の様子を示す図である。
【符号の説明】
10 水冷導体
11 導体部
12 U溝
13 冷却パイプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water-cooled conductor in which cooling water flows to cool a conductor portion, and a method for manufacturing the same.
[0002]
[Prior art]
In water turbine generators, thermal power generators, and the like, large-capacity water-cooled conductors made of metal having a small electric resistance such as copper, copper alloy, aluminum, and aluminum alloy are used.
[0003]
In recent years, more and more water-cooled conductors with similar structures have been used for purposes other than electric conductors. For example, they are used as heat removal equipment for high heat load equipment by being in close contact with the outer wall of heat-resistant material of a plasma containment vessel in a fusion device. Have been.
[0004]
Such a water-cooled conductor 50 has a square cross section as shown in FIGS. 8A and 8B, and a water-cooled conductor having a round cross section as shown in FIG. 8C. There are various structures such as a water-cooled conductor 50 having a flat cross section as shown in FIG.
[0005]
In FIG. 8, reference numeral 51 denotes a conductor, and reference numeral 52 denotes a cooling water passage.
[0006]
Since the water-cooled conductor 50 as shown in FIG. 8 has a simple shape, it can be easily manufactured by drawing or extrusion, and most of the cost is due to the cost of the mold used for drawing or extrusion. I have.
[0007]
Therefore, the cost becomes lower as the required amount of the water-cooled conductor 50 is larger, but a wire maker or the like that manufactures such a water-cooled conductor 50 manufactures a few hundred kilograms as a minimum rod, so that a non-standard product is required. In such a case where there is no stock, even if the required amount is several tens of kilograms, it is inevitable to purchase several hundred kilograms of the water-cooled conductor 50.
[0008]
Therefore, even if an attempt is made to test the water-cooled conductor 50 having slightly different external dimensions to verify the shape suitable for the purpose, it is necessary to manufacture a new die, which takes time and costs for manufacturing the die. There was an inconvenience of becoming high.
[0009]
Further, in order to manufacture the water-cooled conductor 50 having a shape in which a pipe protrudes from the end as shown in FIG. 9, a hatched portion S of the water-cooled conductor 50 as shown in FIG. However, there is a disadvantage that the cost is increased in the removal processing, etc.
[0010]
Therefore, in manufacturing the water-cooled conductor 50 having a shape as shown in FIG. 9, as shown in FIG. 11, a U-groove 54 is previously formed in the conductor portion 51, and a cooling pipe 55 is attached to the U-groove 54 with a torch braze. A method of integration has been proposed.
[0011]
However, in this method, as shown in FIG. 11 (b), since the brazing material swells on the surface of the conductor portion 51 (portion indicated by reference numeral 56), it takes a lot of time to remove the brazing material, and the brazing is also performed. There was a problem that many defects peculiar to torch brazing, such as pinholes, occurred in portions.
[0012]
FIG. 11A is a diagram showing a state in which the cooling pipe 55 is inserted into the conductor portion 51 in which the U groove 54 is formed in advance, and FIG. FIG. FIG. 11C is a cross-sectional view of the completed water-cooled conductor in which the brazing material swelling on the surface of the conductor portion 51 has been removed by cutting or the like, and FIG. 11D is a longitudinal side view thereof.
[0013]
By the way, in the water-cooled conductor 50 by the method as shown in FIGS. 8 to 11, it was difficult to manufacture the water-cooled conductor 50 having a large aspect ratio in cross section.
[0014]
Therefore, Japanese Patent Application Laid-Open No. 6-234079 discloses an invention in which cooling holes of a copper product with a cooling hole used as a cooling plate or an electrode can be easily formed into an arbitrary shape and easily.
[0015]
In the invention according to this publication, a pair of copper plates having a groove formed on at least one copper plate surface is prepared, an austenitic stainless steel pipe is embedded in the groove, and the other copper plate is brought into contact with the pipe, These are integrated by diffusion bonding with a hot isostatic pressing device, and then immersed in a sulfuric acid solution to melt and remove the stainless steel pipe to form cooling holes.
[0016]
[Problems to be solved by the invention]
However, in the above-described method, since no brazing material or the like is used, inconveniences such as the rise of the brazing material do not occur as shown in FIG. Although it can be easily manufactured, it is difficult to manufacture a long water-cooled conductor 50 having a length of more than 1 m, and there is a problem that a water-cooled conductor 50 having a protruding pipe shape as shown in FIG. 9 cannot be manufactured. Was.
[0017]
Therefore, in order to manufacture the water-cooled conductor 50 having a protruding pipe shape as shown in FIG. 9, it is necessary to fix the pipe separately by welding or the like, which causes an increase in cost and also maintains the airtightness at the fixing point. Therefore, there is a problem that requires advanced technology.
[0018]
Therefore, the present invention can be easily manufactured inexpensively and easily, even if it is a long water-cooled conductor having a large aspect ratio in cross-sectional shape, or even a water-cooled conductor having a configuration in which a pipe is protruded at an end. It is another object of the present invention to provide a highly reliable water-cooled conductor and a method for manufacturing the same.
[0019]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 includes a flow path through which cooling water flows inside a conductive conductor such as copper, copper alloy, aluminum, and aluminum alloy, and the cooling water flows therein. In a water-cooled conductor having a flowing channel, a cooling pipe that forms a channel when the cooling water flows, and a cross section in which a rectangular conductive conductor is used as a material, and the cooling pipe is inserted into the surface of one of the cooling pipes It consists of a pair of conductors in which a substantially semicircular U-groove is formed, sandwiches a cooling pipe in the U-groove of the pair of conductors while inserting and fitting, and soldering, brazing, Even if it is a long water-cooled conductor with a large cross-sectional aspect ratio that is joined and integrated by joining means such as eutectic bonding, diffusion bonding, etc., a water-cooled conductor with a pipe protruding at the end Even though it is inexpensive, easy to manufacture, and has increased reliability And wherein the door.
[0020]
The invention according to claim 2 is characterized in that the cooling pipe contains stainless steel or titanium as a material.
[0021]
The invention according to claim 3 is characterized in that at least one of the joining surfaces of the conductor portion or the cooling pipe is coated with a thin film of silver or tin and subjected to a joining process.
[0022]
The invention according to claim 4 includes a flow path through which cooling water flows inside a conductive conductor such as copper, copper alloy, aluminum, and aluminum alloy, and comprises a flow path through which cooling water flows. In the water-cooled conductor, a cooling pipe that forms a flow path when the cooling water flows, and a U-shaped groove having a substantially semicircular cross section into which the cooling pipe is inserted and fitted on a surface of a rectangular conductive conductor. Formed of a pair of conductors, and assembled by inserting a cooling pipe into the U-grooves of the pair of conductors while assembling them, then drawing, extruding, cold rolling, hot rolling, pressing It is characterized by being integrated and joined by a working method such as working and hot isostatic pressing.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a water-cooled conductor 10 applied to the description of the first embodiment. FIG. 1A is a cross-sectional view of the water-cooled conductor 10, and FIG. 1B is a diagram illustrating a method of manufacturing the same.
[0024]
In the water-cooled conductor 10, a semicircular U-shaped groove 12 is formed in a conductor portion 11 which is a pair of conductive members such as copper, and a cooling pipe 13 made of copper or the like is inserted into the U-shaped groove 12 and integrated. Configuration.
[0025]
Such a conductor portion 11 has, for example, a plate thickness of 8 mm and a plate width of 30 mm, and the cooling pipe 13 has a size of about 6 mm in diameter and 1 mm in wall thickness.
[0026]
The U groove 12 has a size corresponding to the diameter of the cooling pipe 13, and the U groove 12 is preferably slightly larger than the cooling pipe 13.
[0027]
This is because when joining the conductor portion 11 and the cooling pipe 13 as described later, a joining material such as solder is made to penetrate the joining surface K, and a penetration channel at that time is secured.
[0028]
It should be noted that the joint surface K is a contact surface between the conductor portions 11 and a contact surface between the U groove 12 of the conductor portion 11 and the cooling pipe 13 for the sake of clarity.
[0029]
Next, a method of manufacturing the water-cooled conductor 10 by assembling the conductor portion 11 and the cooling pipe 13 will be described.
[0030]
First, the surfaces of the conductor 11, the U-groove 12, and the cooling pipe 13 are polished, cleaned, and the like to increase cleanliness. Next, the cooling pipe 13 is inserted into the U-shaped groove 12 formed in one conductor portion 11 to address the other conductor portion 11.
[0031]
Then, using a heating device such as a soldering iron (not shown), the conductor portion 11 and the cooling pipe 13 are heated to a temperature equal to or higher than the melting point of the joining material, and the joining material is melted in the vicinity of the joining surface K. By infiltrating the material into the joint surface K, the cooling pipe 13 is joined to the conductor 11 and the two conductors 11 are joined.
[0032]
Since the conductor portion 11 and the cooling pipe 13 are heated to a temperature equal to or higher than the melting point of the joining material, the molten joining material penetrates into details due to capillary action and the like, so that no voids or entrainment of impurities occur, and the conductor portion 11 is removed. It becomes possible to cool efficiently.
[0033]
Moreover, since the joining surface K is joined by the permeation of the molten joining material, the surplus joining material does not protrude from the joining surface K between the conductor portions 11, and the removal process or the like when it protrudes is unnecessary. There are advantages.
[0034]
Further, since the bonding material is permeated by capillary action or the like, even the water-cooled conductor 10 having a small size can be easily manufactured.
[0035]
By the way, in the above description, the case where the cooling pipe 13 and the conductor portion 11 are joined by melting the joining material in the vicinity of the joining surface K and infiltrating the fused joining material into the joining surface K has been described. The present invention is not limited to this. As shown in FIG. 2, the joining surface K is previously coated with a joining material 14 by a plating method, and after these are assembled, they are joined by heating. May be.
[0036]
By coating the bonding surface K with the bonding material in advance in this way, the bonding can be performed only by raising the cooling pipe 13 and the conductor portion 11 to the melting point or higher, so that there is an advantage that the bonding operation is facilitated.
[0037]
As a method for heating the conductor portion 11 and the cooling pipe 13, in addition to the method using the soldering iron described above, it is also possible to heat with a burner such as propane gas. In the case of heating with a burner such as propane gas, the heating power is so strong that it can be heated to the melting point of the bonding material in a short time, and the entire members to be bonded of the conductor portion 11 and the cooling pipe 13 are simultaneously and uniformly. Since heating can be performed, it is easy to form a uniform bonding surface K.
[0038]
In addition, although solder has been described as an example of a joining material, the present invention is not limited to this, and it goes without saying that a brazing material such as silver brazing may be used. High frequency brazing by heating or the like can be used.
[0039]
Further, since soldering and brazing are generally performed in the air, oxidation of the surface of the conductor portion 11 and the joint surface K is feared. In such a case, the heating can be performed in an atmosphere of argon gas or nitrogen gas. In addition, a heating process is performed while flowing several liters of hydrogen gas in an atmosphere of about several tens of pascals. It is also possible to perform brazing or the like.
[0040]
In particular, in a gas atmosphere brazing represented by a hydrogen brazing or a vacuum brazing performed in a vacuum, an oxide film cannot be formed on the surface of the water-cooled conductor 10 and the inner surface of the cooling pipe 13, so that cleaning and finishing after brazing are required. It is unnecessary, and furthermore, the productivity is extremely high because of the batch processing performed in the electric furnace of the carbon heater or the metal heater, and the reliability of the joining is excellent.
[0041]
Also, in the method of manufacturing the structure of the water-cooled conductor 10 shown in FIGS. 1 and 2, soldering, brazing, or another method is used to apply the appropriate pressure to the joining surface K so as to bring the joining surface K into close contact with each other. A diffusion bonding method in which bonding is performed using mutual diffusion of molecules and atoms on the surface K, a liquid phase diffusion bonding method in which a liquid phase is generated and bonded through the liquid phase may be used.
[0042]
In addition, in the diffusion bonding method or the liquid phase diffusion bonding method, an insert metal such as silver or gold, or an insert metal such as titanium having a composition that actively generates a liquid phase is inserted into the bonding surface K in order to facilitate bonding. It is also useful to perform coating or coating 14.
[0043]
Next, a second embodiment of the present invention will be described with reference to the drawings. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
[0044]
In the present embodiment, a stainless pipe or a titanium pipe is used for the cooling pipe 13.
[0045]
Generally, when the conductor 11 is made of aluminum or copper and the cooling pipe 13 is made of stainless steel or titanium, it is difficult to directly join them together. Particularly, in the case of a combination of aluminum and stainless steel or aluminum and titanium, brazing or diffusion is difficult. Difficult to join.
[0046]
Therefore, in the present invention, the surface of the aluminum conductor portion 11 or the surface of the stainless steel pipe or the titanium pipe is coated with nickel or silver by plating or the like to perform the joining.
[0047]
By coating with such nickel or silver, soldering, brazing and diffusion bonding of aluminum conductors or stainless steel pipes or titanium pipes become possible, and a highly reliable water-cooled conductor 10 having excellent corrosion resistance and strength is manufactured. It becomes possible to do.
[0048]
As an example of such a case, a case will be described in which a silver-plated stainless steel cooling pipe 13 is reactively joined to a water-cooled conductor 10 using a silver-plated copper conductor portion 11.
[0049]
In the reaction bonding, silver having a thickness of several microns to several tens of microns is plated on the copper conductor portion 11 and the stainless steel cooling pipe 13. Then, it is placed in a vacuum furnace 20 as shown in FIG.
[0050]
The vacuum furnace 20 is provided with a mounting table 21 made of carbon, and the mounting table 21 is formed with a conductor groove 22 in which the conductor 11 is stored.
[0051]
When the dimensions of the conductor 11 are 5 mm in thickness and 30 mm in width, the dimensions of the conductor groove 22 are 8 to 9 mm in depth and 32 mm in width. Therefore, when a pair of conductors 11 in which the cooling pipe 13 is fitted are inserted into the conductor groove 22, the upper portion of the conductor 1 to 2 mm protrudes from the mounting table 21.
[0052]
Then, a weight 23 of 10 to 50 g / cm2 is placed on the protruding portion, and the vacuum is drawn to a degree of vacuum of 10.1 Pa or less by a vacuum pump 24, and the resultant is heated to about 800C.
[0053]
Then, as can be seen from the standard phase diagram of the binary alloy of silver and copper shown in FIG. 4, a eutectic reaction occurs between copper and silver due to a diffusion reaction, and the eutectic composition is 71.9 wt% of silver and 28.1 wt% of copper. % In the region where the interdiffusion has progressed to about%.
[0054]
The temperature at which this liquid phase is formed (eutectic temperature) is 779.4 ° C. as can be seen from the standard phase diagram of the binary alloy of silver and copper, and the melting point of copper is 1083 ° C. and the melting point of silver is 960.5. C., it is possible to join at a temperature several hundred degrees lower than these melting points.
[0055]
Therefore, since the unreacted silver is not melted, the silver does not ooze out from the joint surfaces K of the upper and lower conductors 11, and there is no need to remove the oozed silver by cutting or the like. There are advantages.
[0056]
Although not shown in the figure, even in the case of a combination of titanium and copper, there is a eutectic temperature of about 900 ° C., and reactive bonding utilizing silver and copper eutectic is possible.
[0057]
As described above, the cooling pipe 13 made of stainless steel or titanium, which is stronger and more resistant to corrosion than copper or aluminum, can be joined to the aluminum or copper conductor portion 11 that cannot be directly joined at a temperature lower than the melting point of the base material. And the amount of cooling water flowing through the cooling pipe 13 can be increased, and the cooling efficiency can be improved.
[0058]
In the above description, as a method of coating the conductor portion 11 and the cooling pipe 13 with nickel or silver, a method by plating has been described. However, the present invention is not limited to such a coating method. Coating may be performed by a method such as sputtering.
[0059]
In particular, in the method of coating by a dry method such as arc ion plating or sputtering, the inside of coated silver or the like has less defects than in a wet method such as plating, and adherence to the conductor portion 11 and the cooling pipe 13. Since the strength is high, there is a characteristic that the joining property is also high, and it is possible to manufacture a high quality water-cooled conductor 10.
[0060]
Next, a third embodiment of the present invention will be described with reference to the drawings. Note that the same components as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted as appropriate.
[0061]
In the invention according to the present embodiment, tin is applied to the joint surface K of the conductor portion 11 and the cooling pipe 13 so that the joining temperature between the copper or aluminum conductor portion 11 and the copper cooling pipe 13 can be relatively low. It relates to the case of coating and joining.
[0062]
In the binary alloy phase diagram of copper and tin, as shown in FIG. 5, the melting point of copper is 1083 ° C. and the melting point of tin is 232 ° C.
[0063]
Then, both or one surface of the copper conductor 11 or the copper cooling pipe 13 is coated with tin with a thickness of several microns to several tens of microns, and these are placed in a vacuum furnace 20 and heated.
[0064]
By heating, tin begins to melt at 232 ° C., but at low temperatures, diffusion into copper and the reaction rate are slow, but interdiffusion of copper and tin becomes active as the heating temperature increases.
[0065]
When the composition ratio (concentration) of copper and tin is 50%, a liquid phase is generated at a joining surface K between the conductor portion 11 and the cooling pipe 13 at about 700 ° C., and the liquid phase is formed through the liquid phase. The conductor 11 and the cooling pipe 13 can be joined.
[0066]
Bonding through such a liquid phase has better adhesion at the bonding portion than the soldering, brazing, and solid-phase (diffusion) bonding described above, and gaps and voids can be easily formed by an extremely small pressing force. There is an advantage that can be eliminated.
[0067]
In addition, since the bonding operation is performed through the liquid phase, the diffusion rate between the metal atoms of copper and tin is larger than that in the case of solid-phase bonding, so that bonding can be performed in a short time. During the operation, it is possible to suppress the crystal grains of copper in the conductor portion 11 and the cooling pipe 13 from being coarsened and sometimes from being broken at the grain boundaries, thereby improving the reliability.
[0068]
In addition, when at least one of the conductor portion 11 and the cooling pipe 13 is formed of aluminum, the temperature at which these are coated with tin and joined is such that the melting temperature of aluminum is about 550 to 600 ° C. It is preferable to set the temperature to 500 ° C. or lower.
[0069]
Next, a fourth embodiment of the present invention will be described with reference to the drawings. In addition, about the same structure as 1st-3rd embodiment, the same code | symbol is used and description is abbreviate | omitted suitably.
[0070]
In each of the embodiments described so far, the connection between the conductor portion 11 and the cooling pipe 13 is performed by solid-phase diffusion such as soldering or brazing, and silver, tin, nickel, or the like is coated and liquid-phase diffused. The configuration to be performed has been described.
[0071]
On the other hand, in the present embodiment, as shown in FIG. 6, a cooling pipe 13 is sandwiched between U grooves 12 formed in a conductor portion 11 such as copper or a copper alloy, and in this state, a molding machine such as a rolling machine is used. By rolling and molding with rolls 31 arranged vertically or horizontally and vertically, these are pressed and integrated.
[0072]
In this case, it is preferable to remove impurities such as an oxide film, dust, and the like by brushing or chemical treatment at least on the surface to be bonded by pressing.
[0073]
In addition, when the temperature at the time of pressure bonding is higher than room temperature, such as warmer than room temperature or hotter than warm, better bonding can be obtained.
[0074]
At such a high temperature, the bonding surface K and the like may be oxidized during the pressure bonding operation. Therefore, this operation is performed in a non-oxidizing gas atmosphere, or the bonding surface K and the like are oxidized in advance. In addition, it is preferable to perform anti-oxidation sealing in a non-oxidizing atmosphere or the like at an inconvenient location.
[0075]
In the case where such an oxidation-resistant seal is performed, heat and pressure bonding (to a temperature that the oxidation-resistant seal can withstand) can be performed in an air atmosphere, so that there is also an advantage that the working efficiency is improved.
[0076]
Further, as shown in FIG. 7, a portion where such an oxidizing agent infiltrates (a portion of the joining surface K that can be seen from the outside) is seal-welded so that an oxidizing agent such as air does not enter the bonding surface K which is particularly difficult to oxidize. 32 or the like.
[0077]
Of course, if there is air that has already entered the joint surface K when performing the seal welding 32, an oxide film may be formed on the joint surface K, or the air may lose air escape, so that airtight crimping may not be performed. Therefore, when performing the seal welding 32, it is preferable to perform vacuum welding to remove air and the like.
[0078]
In this way, after the seal welding 32 is performed so as to close the joining surface K visible from the outside, the heating and pressurizing treatment is performed in a high-temperature and high-pressure atmosphere by a hot isostatic pressing (abbreviated as HIP: HotISOstatic Pressing) device or the like. Do.
[0079]
When the conductor 11 is made of copper and the cooling pipe 13 is made of stainless steel, by holding the material at about 800 ° C. and about 98 Mpa for about 2 hours, for example, the respective metals are mutually diffused and can be strongly bonded. Become like
[0080]
Arrows (arrows such as ↓ →) in FIG. 7B indicate high-temperature and high-pressure gas pressures. Since the pressures are basically hydrostatic pressures, the same pressure acts from the inside of the cooling pipe 13. There is an advantage that the product can be mass-produced, and the deformation of the cooling pipe 13 that occurs in the case of the pressure bonding method by rolling as shown in FIG. 6 does not occur.
[0081]
By the way, the largest HIP device in Japan is φ1.2m, height 3m, and when such a HIP device joins 3m long water-cooled conductor 10, it can process several thousand pieces per batch. In addition to exhibiting high productivity, the production cost can be greatly reduced because it can be produced in large quantities.
[0082]
【The invention's effect】
As described above, according to the present invention, a cooling pipe that forms a flow path when cooling water flows, and a cross section in which a rectangular conductive conductor is used as a material and the cooling pipe is inserted and fitted on one surface thereof It consists of a pair of conductors in which a substantially semicircular U-groove is formed, sandwiches a cooling pipe in the U-groove of the pair of conductors while inserting and fitting, and soldering, brazing, Even if it is a long water-cooled conductor that has a large cross-sectional shape with a large aspect ratio, the water-cooled conductor has a configuration with a pipe protruding at the end even if it is joined and integrated by joining means such as eutectic bonding and diffusion bonding. Even so, it is possible to manufacture easily at low cost and to increase the reliability.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a water-cooled conductor applied to the description of a first embodiment.
FIG. 2 is a configuration diagram when a water-cooled conductor is formed by coating with tin or the like.
FIG. 3 is a diagram showing a state in which joining is performed in a vacuum furnace applied to the description of a second embodiment.
FIG. 4 is a standard phase diagram of a silver-copper binary alloy.
FIG. 5 is a binary alloy phase diagram of copper and tin applied to the description of the third embodiment.
FIG. 6 is a diagram illustrating a method of manufacturing a water-cooled conductor using a rolling machine or the like, which is applied to the description of the fourth embodiment.
FIG. 7 is a diagram showing a method for producing a water-cooled conductor by hot isostatic pressing.
FIG. 8 is a diagram showing a structure of a general water-cooled conductor applied to the description of the conventional technique.
FIG. 9 is a diagram showing a structure of a water-cooled conductor with a pipe protruding from an end.
FIG. 10 is a diagram illustrating a method of manufacturing a water-cooled conductor with a pipe protruding at an end.
FIG. 11 is a view showing a state in which a water-cooled conductor is manufactured by embedding a cooling pipe with a torch brazing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Water-cooled conductor 11 Conductor part 12 U groove 13 Cooling pipe

Claims (4)

銅、銅合金、アルミニウム、アルミニウム合金等の導電性導体内部に冷却水が流動する流路を備え、からなり、その内部に冷却水が流動する流路を備えた水冷導体において、
前記冷却水が流動する際の流路を形成する冷却パイプと、
矩形状の前記導電性導体を材料とし、その1の表面に前記冷却パイプの挿嵌される断面概略半円状のU溝が形成された一対の導体部とからなり、
一対の前記導体部の前記U溝に前記冷却パイプを挿嵌させながら挟み込んで、各部材の当接面を半田付、ロウ付、共晶接合、拡散接合等の接合手段により接合して一体化してなることを特徴とする水冷導体。
Copper, copper alloy, aluminum, including a flow path through which cooling water flows inside a conductive conductor such as an aluminum alloy, comprising a water cooling conductor having a flow path through which cooling water flows,
A cooling pipe that forms a flow path when the cooling water flows,
The rectangular conductive material is made of a material, and a pair of conductor portions each having a U-shaped groove having a substantially semicircular cross section to be inserted into the cooling pipe on one surface thereof,
The cooling pipe is inserted into the U-grooves of the pair of conductors while being inserted therein, and the contact surfaces of the members are joined and joined by joining means such as soldering, brazing, eutectic joining, diffusion joining, or the like. A water-cooled conductor comprising:
前記冷却パイプがステンレス又はチタンを材料に含むことを特徴とする請求項1記載の水冷導体。The water-cooled conductor according to claim 1, wherein the cooling pipe includes stainless steel or titanium as a material. 前記導体部又は前記冷却パイプの接合面の少なくとも1に、銀、錫の薄膜をコーティングして接合処理を行ってなることを特徴とする請求項1又は2記載の水冷導体。The water-cooled conductor according to claim 1, wherein at least one of the joining surfaces of the conductor portion and the cooling pipe is coated with a thin film of silver or tin and subjected to a joining process. 銅、銅合金、アルミニウム、アルミニウム合金等の導電性導体内部に冷却水が流動する流路を備え、からなり、その内部に冷却水が流動する流路を備えた水冷導体において、
前記冷却水が流動する際の流路を形成する冷却パイプと、
矩形状の前記導電性導体を材料とし、その1の表面に前記冷却パイプの挿嵌される断面概略半円状のU溝が形成された一対の導体部とからなり、
一対の前記導体部の前記U溝に前記冷却パイプを挿嵌させながら挟み込んで組立て、その後に引抜加工、押出加工、冷間圧延加工、熱間圧延加工、プレス加工、熱間等方圧加圧等の加工法により一体化して接合してなることを特徴とする水冷導体の製造方法。
Copper, copper alloy, aluminum, including a flow path through which cooling water flows inside a conductive conductor such as an aluminum alloy, comprising a water cooling conductor having a flow path through which cooling water flows,
A cooling pipe that forms a flow path when the cooling water flows,
The rectangular conductive material is made of a material, and a pair of conductor portions each having a U-shaped groove having a substantially semicircular cross section to be inserted into the cooling pipe on one surface thereof,
The cooling pipe is inserted into the U-grooves of the pair of conductors while being inserted into the U-groove, and then assembled, followed by drawing, extrusion, cold rolling, hot rolling, pressing, hot isostatic pressing. A method for producing a water-cooled conductor, wherein the water-cooled conductor is integrated and joined by a processing method such as the above.
JP2002294554A 2002-10-08 2002-10-08 Water-cooled conductor and manufacturing method thereof Pending JP2004132556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294554A JP2004132556A (en) 2002-10-08 2002-10-08 Water-cooled conductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294554A JP2004132556A (en) 2002-10-08 2002-10-08 Water-cooled conductor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004132556A true JP2004132556A (en) 2004-04-30

Family

ID=32285063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294554A Pending JP2004132556A (en) 2002-10-08 2002-10-08 Water-cooled conductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004132556A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194750A (en) * 2007-02-09 2008-08-28 Korea Atom Energ Res Inst Method for preventing embrittlement and enhancing bonding force of interface between titanium using silver diffusion-controlled layer and dissimilar metal
DE102008020276A1 (en) * 2008-04-22 2009-10-29 Thyssenkrupp Steel Ag Producing a windable composite material with two layers, comprises casting and pre-rolling first and second slabs from a material provided for the layers, where the slabs are laminarly and materially bonded with one another by roll-bonding
JP2011507702A (en) * 2007-11-13 2011-03-10 アイスフィンク・マックス・マイヤー・ゲーエムベーハー・ウント・カンパニー・カーゲー Metal composite and method for producing metal composite
KR101208577B1 (en) 2011-01-04 2012-12-06 주식회사 제이에스티 Cooling module and cooling system comprising the same
JP2013045747A (en) * 2011-08-26 2013-03-04 Toshiba Corp Electrode for ion source, and method of manufacturing the same
WO2016068434A1 (en) * 2014-10-28 2016-05-06 한국생산기술연구원 Method for manufacturing cooling block for hot stamping mold using three-dimensional metal printer
JP2016207380A (en) * 2015-04-20 2016-12-08 三菱電機株式会社 Electric contactor and manufacturing method thereof
WO2017141690A1 (en) * 2016-02-19 2017-08-24 株式会社オートネットワーク技術研究所 Conductive member
CN107461975A (en) * 2017-09-13 2017-12-12 江苏佳成科技股份有限公司 Elevator winding displacement cooling device
CN115255535A (en) * 2022-07-01 2022-11-01 深圳市泽米激光技术有限公司 Method for mounting laser cooling tube and structure thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194750A (en) * 2007-02-09 2008-08-28 Korea Atom Energ Res Inst Method for preventing embrittlement and enhancing bonding force of interface between titanium using silver diffusion-controlled layer and dissimilar metal
JP2011507702A (en) * 2007-11-13 2011-03-10 アイスフィンク・マックス・マイヤー・ゲーエムベーハー・ウント・カンパニー・カーゲー Metal composite and method for producing metal composite
US8651364B2 (en) 2007-11-13 2014-02-18 Eisfink Max Maier Gmbh & Co. Kg Composite metal object and method for producing a composite object
EP2089180B1 (en) * 2007-11-13 2019-08-21 Eisfink Max Maier GmbH & Co. KG Composite metal object and method for producing a composite metal object
DE102008020276B4 (en) 2008-04-22 2019-07-25 Thyssenkrupp Steel Europe Ag Method for producing a coatable composite material and its use
DE102008020276A1 (en) * 2008-04-22 2009-10-29 Thyssenkrupp Steel Ag Producing a windable composite material with two layers, comprises casting and pre-rolling first and second slabs from a material provided for the layers, where the slabs are laminarly and materially bonded with one another by roll-bonding
KR101208577B1 (en) 2011-01-04 2012-12-06 주식회사 제이에스티 Cooling module and cooling system comprising the same
JP2013045747A (en) * 2011-08-26 2013-03-04 Toshiba Corp Electrode for ion source, and method of manufacturing the same
US9849548B2 (en) 2014-10-28 2017-12-26 Korea Institute Of Industrial Technology Method of manufacturing cooling block for hot stamping mold using three-dimensional metal printer
WO2016068434A1 (en) * 2014-10-28 2016-05-06 한국생산기술연구원 Method for manufacturing cooling block for hot stamping mold using three-dimensional metal printer
JP2016207380A (en) * 2015-04-20 2016-12-08 三菱電機株式会社 Electric contactor and manufacturing method thereof
WO2017141690A1 (en) * 2016-02-19 2017-08-24 株式会社オートネットワーク技術研究所 Conductive member
CN108496227A (en) * 2016-02-19 2018-09-04 株式会社自动网络技术研究所 Conductive member
US10447022B2 (en) 2016-02-19 2019-10-15 Autonetworks Technologies, Ltd. Conductive member
CN107461975A (en) * 2017-09-13 2017-12-12 江苏佳成科技股份有限公司 Elevator winding displacement cooling device
CN115255535A (en) * 2022-07-01 2022-11-01 深圳市泽米激光技术有限公司 Method for mounting laser cooling tube and structure thereof

Similar Documents

Publication Publication Date Title
CN106112167B (en) A kind of diffusion in vacuum soldering processes of molybdenum-copper and nickel base superalloy
US7293689B2 (en) Two tier brazing for joining copper tubes to manifolds
JP2004132556A (en) Water-cooled conductor and manufacturing method thereof
CN105499833A (en) High-temperature brazing material for brazing tungsten-copper alloy and copper or copper alloy and brazing method of high-temperature brazing material
CN101494322A (en) Tungsten copper connection method
CN102335793B (en) Rustless steel and the method for attachment of aluminium oxide ceramics
CN105834540B (en) A kind of method of Ti-Ni high-temp solder soldering TZM alloy
JP2009226454A (en) Method and apparatus of joining metallic member
CN102485698B (en) Connection method of brass and silicon carbide ceramic, and connected piece
US5642853A (en) Method for bonding steel to copper
TWI429314B (en) Heating plate and heating plate manufacturing method
JP4806179B2 (en) Heater plate manufacturing method
JP4838992B2 (en) Heater plate and heater plate manufacturing method
TW200927346A (en) A diffusion bonding method for blocks of based bulk metallic glass
CN111940743B (en) Preparation method of tungsten and copper solderless seamless connection combined part
CN114260614A (en) Ti-Cr brazing filler metal of TZM alloy/graphite and brazing process thereof
JP3188745B2 (en) Manufacturing method of copper plate with cooling holes
JP4281881B2 (en) Heating furnace tube and manufacturing method of heating furnace tube
JP3681824B2 (en) Ceramic bonded body and ceramic bonding method
JP3602582B2 (en) Manufacturing method of electrode for resistance welding
KR200270457Y1 (en) A accumulator of cooling equipment
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module
CN107470795A (en) Active solder and its welding application method for SiC ceramic low temperature brazing
JP3188758B2 (en) Method of manufacturing copper parts with cooling holes
JP2002001424A (en) Method for manufacturing component for super critical water oxidization treatment

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703