JP2004129458A - 振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法 - Google Patents

振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法 Download PDF

Info

Publication number
JP2004129458A
JP2004129458A JP2002293437A JP2002293437A JP2004129458A JP 2004129458 A JP2004129458 A JP 2004129458A JP 2002293437 A JP2002293437 A JP 2002293437A JP 2002293437 A JP2002293437 A JP 2002293437A JP 2004129458 A JP2004129458 A JP 2004129458A
Authority
JP
Japan
Prior art keywords
vibration
rotation axis
amplitude
type actuator
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293437A
Other languages
English (en)
Inventor
Kenjirou Takemura
竹村 研治郎
Takashi Maeno
前野 隆司
Shinji Yamamoto
山本 新治
Nobuyuki Kojima
小島 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002293437A priority Critical patent/JP2004129458A/ja
Priority to US10/669,429 priority patent/US6885132B2/en
Priority to EP03022400A priority patent/EP1408560A3/en
Publication of JP2004129458A publication Critical patent/JP2004129458A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/108Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors around multiple axes of rotation, e.g. spherical rotor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/106Langevin motors

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Feedback Control In General (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

【課題】3種類以上の振動を励振させ冗長性・非線形性を有するような場合でも、所望の運動を効率よく行わせることのできる振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法を提供する。
【解決手段】振動型アクチュエータの制御装置は、移動体と、この移動体に接触する弾性体と、この弾性体に固着され少なくとも3相の周波信号の供給により弾性体に少なくとも3種類の異なる振動を励振させる電気−機械エネルギ変換素子とを備えた振動型アクチュエータに対し、弾性体に接触する移動体を目標位置まで回転させるための少なくとも3相の周波信号を供給する振動型アクチュエータの制御装置であって、移動体が目標位置まで到達するための回転軸を決定する回転軸決定手段と、逆モデルを用いることにより、決定された回転軸を中心として移動体を回転させるための各周波信号の位相および振幅を決定するパラメータ決定手段と、決定された位相および振幅を有する各周波信号を電気−機械エネルギ変換素子に供給する制御手段とを有する。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも3種類の異なる振動モードを利用して移動体を多自由度に駆動する振動型アクチュエータについての振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法に関するものである。
【0002】
【従来の技術】
これまでに超音波モータ等の振動型アクチュエータに関する提案が数多くなされている。その中で3種類以上の振動を組み合わせて、移動体を多自由度に駆動するタイプの超音波モータに関する提案もなされている。
【0003】
例えば、振動体に1つの縦振動と2つの横振動を励振させ、上記3つの振動のうち2つの振動を選択的に組み合わせることにより所定の平面内に楕円運動を形成し、振動体に接触させた移動体を多自由度に駆動させる構成としたものがある(例えば、特許文献1参照。)。
【0004】
また、上記と同様な構造の超音波モータに印加する交流電圧の位相差を調整することによって移動体の回転軸を調整する構成としたものもある(例えば、特許文献2参照。)。
【0005】
さらに、印加する交流電圧の位相差および振幅を調整することによって移動体の回転軸を調整する構成のものもある(例えば、特許文献3参照。)。
【0006】
【特許文献1】
特開平11−164576号公報 (第3―4頁、第1図)
【特許文献2】
特開平11−220891号公報 (第4―5頁、第1図)
【特許文献3】
特開平11−220892号公報 (第5―13頁、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の技術においては以下に示すような問題点があった。振動型アクチュエータの振動を制御するパラメータとしては、印加交流電圧の駆動周波数、電圧振幅、位相差などがあるが、3相以上の交流電圧を印加するタイプの多自由度振動型アクチュエータでは、入力と出力の関係が冗長性・非線形性を有しており、定式化が困難であった。この結果、所望の運動を効率よく行わせるためのパラメータを決定することができないという問題があった。
【0008】
本発明はこのような問題点に鑑みなされたもので、3種類以上の振動を励振させ冗長性・非線形性を有するような場合でも、所望の運動を効率よく行わせることのできる振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本願発明に係る振動型アクチュエータの制御装置は、移動体と、この移動体に接触する弾性体と、この弾性体に固着され少なくとも3相の周波信号の供給により弾性体に少なくとも3種類の異なる振動を励振させる電気−機械エネルギ変換素子とを備えた振動型アクチュエータに対し、弾性体に接触する移動体を目標位置まで回転させるための少なくとも3相の周波信号を供給する振動型アクチュエータの制御装置であって、移動体が目標位置まで到達するための回転軸を決定する回転軸決定手段と、逆モデルを用いることにより、決定された回転軸を中心として移動体を回転させるための各周波信号の位相および振幅を決定するパラメータ決定手段と、決定された位相および振幅を有する各周波信号を電気−機械エネルギ変換素子に供給する制御手段とを有する構成としている。
【0010】
このような構成とすることにより、3種類以上の振動を励振させ冗長性・非線形性を有するような、従来は入出力の関係の定式化が困難であった振動型アクチュエータの駆動制御においても、回転軸決定手段によって決定された回転軸に関する情報(例えば、回転軸ベクトルの姿勢など)を入力とし、この回転軸を中心として移動体を回転させるための各周波信号(交流電圧)の位相および振幅を出力とする逆モデルを使用することによって、所望の運動を効率よく行わせることができる。
【0011】
なお、回転軸決定手段は、移動体が目標位置まで最小の駆動量で到達するための回転軸を決定するようにしてもよく、これによれば、移動体が目標位置まで最小の駆動量で(すなわち、最も効率良く)到達することのできる回転軸を中心として回転するための各周波信号(交流電圧)の位相および振幅をパラメータ決定手段により求めることができる。さらに、位置決め制御を行う場合においても、短時間で高精度な位置決めが可能となる。
【0012】
また、パラメータ決定手段は、決定された回転軸の状態毎に対応する複数の逆モデルを有し、決定された回転軸の状態に応じてこれら複数の逆モデルの内いずれか1つを選択し、この選択した逆モデルを用いることにより各周波信号の位相および振幅を決定することが望ましい。
【0013】
このように、複数通りに場合分けされた回転軸の状態(例えば、回転軸ベクトルの方向等)毎に対応する複数の逆モデルを有し、駆動時にはその回転軸ベクトルの方向に応じて使用する逆モデルを使い分けることにより、回転軸ベクトルの方向の違いによって移動体の駆動特性が変化する振動型アクチュエータであっても的確な駆動制御を行うことができる。
【0014】
なお、この回転軸の状態の複数通りの場合分けは、回転軸ベクトルの方向を直交座標系における8つの象限により場合分けするものであってもよいし、制御対象である移動体の駆動特性が変化し得るいかなる場合分けでもよい。
【0015】
複数の逆モデルのうち少なくとも1つは、非線形な変換を行う非線形変換器を用いた非線形モデルであることが望ましいが、これに加えて複数の逆モデルのうち少なくとも1つは、線形な変換を行う線形変換器を用いた線形モデルであるようにしてもよい。
【0016】
このような構成とすることで、入出力の関係に冗長性および非線形性があるが回転軸ベクトルの方向によっては冗長性がなく線形な駆動制御が可能な振動型アクチュエータを駆動制御する場合に、回転軸ベクトルの方向に基づいて駆動時の位相および振幅を、線形な変換を行う逆モデルにより求める状態と、非線形な変換を行う逆モデルにより求める状態とに分類することができ、駆動制御を行う上での処理負担を軽減することができるとともに、高精度な駆動制御を行うことができる。また、変化するパラメータを少なくすることができ、ニューラルネットワークの構造を簡単にすることができるとともに、学習による最適化が容易に行えるようになる。
【0017】
さらに、具体的には、少なくとも3種類の異なる振動は、弾性体および移動体の中央部近傍を通るz軸方向の縦振動と、このz軸方向と略直交すると共に互いに略直交するx軸方向およびy軸方向の横振動からなり、決定された回転軸のベクトルがz軸と略一致、あるいはxy平面内に存在する場合には複数の逆モデルのうち線形モデルを選択し、他の場合(すなわち、決定された回転軸のベクトルがz軸と略一致せず、かつxy平面内にも存在しない場合)には非線形モデルを選択する構成とすることもでき、上述の構成と同様に駆動制御を行う上での処理負担を軽減することができるとともに、高精度な駆動制御を行うことができる。また、変化するパラメータを少なくすることができ、ニューラルネットワークの構造を簡単にすることができるとともに、学習による最適化が容易に行えるようになる。
【0018】
また、逆モデルは非線形な変換を行う非線形変換器を用いた非線型モデルであることが好ましい。これによれば、3種類以上の振動を励振させ冗長性・非線形性を有するような、従来は入出力の関係の定式化が困難であった振動型アクチュエータの駆動制御においても、効率的且つ高精度な駆動制御を行うことが可能となる。
【0019】
ここで、上述の非線形変換器は、ニューラルネットワークにより構築されている構成とすることが望ましい。すなわち、冗長性および非線形性を有する振動型アクチュエータにおいても、ニューラルネットワークにより構築された逆モデルを用いることにより、所望の運動を効率よく行うための最適なパラメータを決定することができ、ひいては高精度な駆動制御を実現することができる。
【0020】
なお、上述のニューラルネットワークは入力層、中間層、および出力層を有する3層構造であり、このニューラルネットワークは誤差逆伝播法(バックプロパゲーション法)により入力層と中間層の間、および中間層と出力層の間の結合係数の最適化(学習)を事前に行っているものであることが好ましい。
【0021】
ここで、移動体上の所定の点の現在位置を検出する位置検出手段を備え、この位置検出手段によって検出された現在位置情報と目標位置情報とに基づいて移動体の回転軸を決定する回転軸決定手段を有し、移動体をこの決定された回転軸を中心として回転させるための各周波信号の位相および振幅をパラメータ決定手段によって決定する構成としてもよい。
【0022】
なお、移動体の現在位置と目標位置とに基づいて、振動型アクチュエータに対して供給する周波信号の振幅の振幅増幅率を決定する振幅増幅率決定手段と、パラメータ決定手段により決定された振幅に振幅増幅率を乗じた値を周波信号の振幅とする振幅決定手段とを有する構成とすることが望ましく、これによれば、通常の位置決め制御で行なわれているような、目標位置と検出位置(現在位置)の距離に応じて速度を調整して駆動するといったことも可能となる。
【0023】
また振幅増幅率は、現在位置から目標位置までの距離に基づいて比例制御則での演算、積分制御則での演算、および微分制御則での演算により得られる値の内いずれか1つの値、またはこれら複数の制御則での演算により得られる複数の値を加算して得られる値であるようにしてもよい。
【0024】
なお、電気−機械エネルギ変換素子に供給する周波信号の周波数が、弾性体の共振周波数近傍(例えば、共振周波数よりも少し高い周波数)となるように周波数を調整する周波数調整手段を有することが望ましい。具体的には、少なくとも3相の周波信号の周波数を弾性体の共振周波数近傍の周波数で、かつ各相の周波信号の位相を異ならせて供給することにより、弾性体に楕円運動を発生させることができる。
【0025】
この周波数調整手段は、弾性体に設けられた振動状態検出手段からの信号と電気−機械エネルギ変換素子へ供給する周波信号の位相差を比較し、位相差が所定の範囲内になるように周波数を調整する手段であることが好ましい。
【0026】
なお、弾性体と電気−機械エネルギ変換素子からなる振動体は、略円形の断面形状を有する(すなわち、略丸棒状の)振動体であることが望ましいが、これに限られるものではなく、平板状の振動体であってもよい。
【0027】
ここで、上述の縦振動は1次モードであり、2つの横振動は2次モードであって、3つの振動の固有振動数は略一致させてあることが好ましい。
【0028】
また、上記の目的を達成するために、本願発明に係る振動型アクチュエータシステムは、上述のような振動型アクチュエータの制御装置と、振動型アクチュエータの制御装置から供給される周波信号により駆動制御される振動型アクチュエータとを有する構成としている。
【0029】
この他、上記の目的を達成するために、本願発明に係る振動型アクチュエータの制御方法は、移動体と、この移動体に接触する弾性体と、この弾性体に固着され少なくとも3相の周波信号の供給により弾性体に少なくとも3種類の異なる振動を励振させる電気−機械エネルギ変換素子とを備えた振動型アクチュエータに対し、弾性体に接触する移動体を目標位置まで回転させるための少なくとも3相の周波信号を供給する振動型アクチュエータの制御方法であって、 移動体が目標位置まで到達するための回転軸を決定し、逆モデルを用いることにより、決定された回転軸を中心として移動体を回転させるための各周波信号の位相および振幅を決定し、決定された位相および振幅を有する各周波信号を電気−機械エネルギ変換素子に供給する構成とすることが望ましい。
【0030】
なお、上述の回転軸の決定は、移動体が目標位置まで最小の駆動量で到達するための回転軸を決定することが好ましい。
【0031】
また、上述の各周波信号の位相および振幅の決定は、決定された回転軸の状態に応じて、決定された回転軸の状態毎に対応する複数の逆モデルの内いずれか1つを選択し、この選択した逆モデルにより各周波信号の位相および振幅を決定する構成とすることができる。
【0032】
この他、上述の複数の逆モデルのうち少なくとも1つにニューラルネットワークにより構築され非線形な変換を行う非線形変換器を用いた非線形モデルを使用することもできる。
【0033】
【発明の実施の形態】
(第1実施形態)
以下、本発明の第1実施形態である振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法について詳細に説明する。
【0034】
図2は、本実施形態による振動型アクチュエータとしての多自由度超音波アクチュエータの斜視図である。この振動型アクチュエータは、弾性体3に接触する移動体4上の出力軸6の先端部分を任意の方向に移動可能なように(すなわち、移動体4を任意の回転方向に回転運動させることが可能なように)構成されたアクチュエータである。
【0035】
このような振動型アクチュエータは、例えば移動体4上の出力軸6にカメラを取り付けることにより多自由度に駆動される監視カメラを実現したり、ロボットの関節として使用する等の用途がある。
【0036】
以下、このような振動型アクチュエータの動作原理について説明する。
【0037】
図2において、1は縦振動用の圧電素子であり、不図示の駆動回路から交流電圧(周波信号)を印加(供給)することにより、弾性体3に図中z軸方向の縦振動を発生させる。2も圧電素子であるが、この圧電素子2は2群の圧電素子に分かれており、この2つの郡のうちの1群は弾性体3に図中x軸方向の横振動を発生させるために使用され、残りの1群は図中y軸方向の横振動を発生させるために使用されている。すなわち、このような圧電素子(電気―機械エネルギ変換素子)が弾性体3に固着されている構成により弾性体3にはz軸方向の縦振動と、x軸方向およびy軸方向の横振動を発生させることが可能となる。
【0038】
圧電素子1および2と弾性体3で構成される振動体Sの縦方向の1次の共振周波数と、横方向の2次の共振周波数は概略一致するように構成されている。駆動時には圧電素子1と2群からなる圧電素子2にそれぞれ同一の共振周波数付近の周波数で、かつ位相の異なる3相の交流電圧を印加することにより、弾性体3に楕円運動を発生させることができる。この楕円運動の方向は交流電圧の位相差および振幅を調整することにより変化させることができる。この結果、移動体4を任意の回転軸を中心として回転運動させることができる。
【0039】
7および8はポテンショメータであり、振動型アクチュエータを制御する際に移動体の位置を検出するために使用されている。ポテンショメータ7は図中x軸まわりの回転量を、ポテンショメータ8は図中y軸まわりの回転量を検出するために使用される。5は、移動体4の回転量をポテンショメータ7および8に伝達するためのアーチ状ガイドである。
【0040】
図1は本実施形態で使用される制御装置の構成を示した機能ブロック図である。本実施形態では図2で示した振動型アクチュエータの出力軸6の先端の点の位置を目標の位置に移動させることを目的としている。
【0041】
全体の概略的な構成としては、制御対象9である振動型アクチュエータに接続された検出回路10からの情報を変換した検出位置(現在位置)情報P(ベクトル量)と目標位置を表す目標位置情報P(ベクトル量)とに基づいて、移動体が目標位置まで到達するための回転軸を決定する回転軸決定器(回転軸決定手段)12で移動体の回転軸Axis(ベクトル量)が決定される。決定された回転軸情報Axisは制御対象の逆モデル(パラメータ決定手段)13に入力され、決定された回転軸を中心として移動体を回転させるための3相の交流電圧の位相差φ(ベクトル量)と振幅比rAmp(ベクトル量)が決定される。
【0042】
他方で検出位置情報Pと目標位置情報Pをもとに振幅係数決定器(振幅増幅率決定手段)14では3相の交流電圧の振幅係数(振幅の増幅率)A(スカラー量)が決定される。逆モデル13から得られる振幅比rAmpと振幅係数Aを積算することにより制御対象に印加する3相の交流電圧の各振幅が決定される。
【0043】
周波数調整器17では制御対象の振動状態Vを検知することにより、駆動周波数f(スカラー量)が上述した振動体Sの共振周波数近傍になるように調整が行なわれている。駆動回路(制御手段)16では入力される周波数情報f、位相差φ、振幅Ampをもとに3相の交流電圧を生成し、制御対象(具体的には、電気−機械エネルギ変換素子)9に供給している。
【0044】
以上が全体の概略の構成である。以下、各ブロックの詳細を説明する。
【0045】
図1の制御対象9である振動型アクチュエータには、移動体の位置を検出するための検出回路10が取り付けられている。検出回路10は図2で説明したポテンショメータ7および8を含むものであり、移動体のx軸回りの回転量とy軸回りの回転量の2つの値を出力する。
【0046】
本実施形態における振動型アクチュエータの制御では、空間座標を直交座標系で取り扱っている。よって、座標変換器11では、検出回路10から出力されるx軸回りの回転量とy軸回りの回転量をもとに、移動体の出力軸6の先端の点の空間座標を直交座標系に変換し、x成分,y成分,z成分で表されるベクトル量である検出位置情報Pを出力する。出力軸6の先端の点の回転半径は変化しないので、この変換では半径が一定の場合の極座標系を直交座標系に変換する手法を用いることができる。
【0047】
回転軸決定器12では、出力軸6の先端の検出位置情報Pと目標位置情報Pにもとづいて、出力軸6の先端が検出位置(P)から目標位置(P)に向かう最短軌道を実現するための回転軸ベクトルAxisを求めている。回転軸ベクトルAxisは下記の数1によって求められる。
【0048】
【数1】
Figure 2004129458
【0049】
上記計算式の分子は2つのベクトルPおよびPの外積である。よって、外積した結果得られるベクトルは2つのベクトルPおよびPに対して直交するベクトルとなる。また、外積の向きはPを角度の小さい方向に回転してPに重ねるときに右ねじの進む方向となる。また、ベクトルの大きさを1にするために、外積の大きさを分母としている。
【0050】
このようにして決定された回転軸ベクトルAxisは逆モデル13に入力される。本実施形態における振動型アクチュエータの印加電圧条件と回転軸の関係は冗長性および非線形性を有している。よって、この印加電圧条件と回転軸の関係の定式化が困難である上に、駆動の際の回転軸が決定されたとしてもそれを実現するための位相差や振幅の条件は複数存在することになる。また、複数得られる条件が同じ回転軸を実現する位相差や振幅であっても、その条件毎に効率が異なってしまう。
【0051】
よって、所望の回転軸で駆動させるための最適な交流電圧の位相差と振幅を決定することが望まれる。本実施形態ではこれを実現するために、振動型アクチュエータの逆モデル13を使用して、最適な交流電圧の位相差と振幅を決定する構成としている。以下、この逆モデルについて詳細に説明する。
【0052】
本実施形態では、上述のような機能を有する逆モデルを構築するために公知のニューラルネットワークを使用している。本実施形態で使用するニューラルネットワークは図3に示すような入力層,中間層,出力層を有する3層構造となっている。ニューラルネットワークの入力層には、回転軸決定器12によって求められた回転軸ベクトルAxisのx軸方向成分Axis_x,y軸方向成分Axis_y,z軸方向成分Axis_zが入力される。
【0053】
この入力層からの信号は中間層を介して出力層に接続されており、出力層からは2つの位相差情報と3つの振幅情報が出力される。位相差φ_xyはx軸方向の振動を発生させる圧電素子とy軸方向の振動を発生させる圧電素子に印加する交流電圧の位相差である。また位相差φ_xzはx軸方向の振動を発生させる圧電素子とz軸方向の振動を発生させる圧電素子に印加する交流電圧の位相差である。また、振幅比rAmp_x,rAmp_y,rAmp_zはそれぞれx軸方向,y軸方向,z軸方向の振動を発生させる圧電素子に印加する交流電圧の振幅比である。
【0054】
上述したニューラルネットワークは公知の誤差逆伝播法(バックプロパゲーション法)により入力層と中間層の間、および中間層と出力層の間の結合係数の最適化(学習)を事前に行っている。図4はこの学習の流れを示した模式図である。
【0055】
本実施形態ではニューラルネットワークの学習のために、振動型アクチュエータの順モデルである駆動推定シミュレータ18を構築した。これは、振動型アクチュエータに利用する3つの直交モードを任意の振幅および位相で組み合わせたときの移動体の回転軸、回転数およびトルクを算出するモデルである。モデル構築には、まず振動体の移動体との接触部を有限個の節点とそれにつながった離散線形ばねでモデル化する。
【0056】
次に、有限要素法によって算出したモード形状に基づいて各モードによる各節点の変位を1周期に渡り計算する。このとき、回転子の位置は固定し、各節点は線形ばねによって沈み込むこととすると、その沈み込み量から決まる摩擦力が計算される。各節点の1周期に渡る摩擦力を算出し、それによって生じるトルクの平均から回転子の回転軸を推定することができる。また、決定された回転軸回りの回転数とトルクの関係も、摩擦力と、振動体と回転体との間での相対速度とから算出できる。これにより回転数と摺動効率の関係も算出可能である。
【0057】
学習の際は駆動推定シミュレータ18に対して印加交流電圧の周波数、振幅、位相差を入力する。その結果、駆動推定シミュレータ18からは回転軸と効率が出力される。回転軸はニューラルネットワーク19に入力され、ニューラルネットワーク19からは振幅比および位相差が出力される。駆動推定シミュレータ18に入力した振幅から求められる振幅比と位相差が、ニューラルネットワーク19から出力される振幅比と位相差になるべく一致するようにニューラルネットワーク19の学習が行なわれる。
【0058】
前述したように、本実施形態で使用される振動型アクチュエータの入力と出力の関係には冗長性があるので、学習の際には駆動推定シミュレータから出力される効率も学習の際の材料としている。これにより、振動型アクチュエータ駆動時の効率も加味した(すなわち、移動体が目標位置までできるだけ少ない駆動量で到達するための回転軸を決定するような)ニューラルネットワークが構築されることになる。
【0059】
これまで説明した処理により、振動型アクチュエータに印加する位相差および振幅比が決定されるが、出力軸6を目標位置に短時間で正確に位置決めするためには、通常の位置決め制御で行なわれているような、目標位置と検出位置の距離に応じて速度を調整して駆動することも必要となる。以下にその方法について述べる。
【0060】
図1の14は振幅係数決定器である。この振幅係数決定器14では、振動型アクチュエータへの印加交流電圧の振幅係数Aを決定している。この振幅係数Aは、上述したように制御位置Pと目標位置情報Pの偏差に応じた係数である。これは、例えば比例制御則にもとづいて下記の数2のように決定する。
【0061】
【数2】
Figure 2004129458
【0062】
ただし、Kは比例ゲインである。
【0063】
振幅決定器(振幅決定手段)15では振幅係数(振幅の増幅率)Aと逆モデル13から得られる振幅比rAmpの乗算が下記の数3の演算により行なわれる。
【0064】
【数3】
Figure 2004129458
【0065】
これにより、振動型アクチュエータに印加する交流電圧の最終的な振幅Ampが決定される。
【0066】
駆動回路16では入力される位相差φ、振幅Amp、周波数fによって、振動型アクチュエータ(すなわち、超音波モータ)を駆動するための交流電圧が生成される。図示しないが、駆動回路16には発振回路、位相シフト回路、昇圧回路などが含まれている。
【0067】
本実施形態では、制御対象9に相当する振動型アクチュエータの駆動周波数は、常に振動体Sの共振周波数近傍(共振周波数より少し高い周波数)になるように制御されている。これを実現するために、制御対象9には振動を検出するための圧電素子を用いたセンサが取り付けられている。前記振動検出用センサの出力と、制御対象9に印加する3相の交流電圧のうちの1相の位相差を所定の値に保つように駆動周波数fを調整することにより、制御対象9である振動型アクチュエータの駆動周波数を振動体Sの共振周波数近傍に保つことが可能となる。
【0068】
以上説明したように、本実施形態では冗長性および非線形性を有する振動型アクチュエータにおいて、ニューラルネットワークを利用した逆モデルを使用することにより、振動型アクチュエータへの印加電圧条件を最適に決定することができる。また、振動型アクチュエータの出力軸6を目標位置に正確に短時間で(すなわち効率よく)位置決めすることが可能となる。
【0069】
本実施形態において図1に示したような制御回路を実際に構成する場合、座標変換器11、回転軸決定器12、逆モデル13、振幅係数決定器14、振幅決定器15および周波数調整器17は、CPUやDSP等のプログラムとして記述したソフトウエアによって実現しても良いし、ゲートアレイ等のデジタル回路、あるいはアナログ回路によって実現しても良い。また、これらの組み合わせによって実現することもできる。
【0070】
なお、本実施形態では振幅係数を決定する際に、検出位置と目標位置との偏差に応じて比例制御則を用いて振幅係数を決定しているが、これに限られるものではなく、積分制御則や微分制御則を用いて制御を行うこともできる。
【0071】
さらに、本発明では検出位置のフィードバック制御を行っていたが、本発明はこれに限られるものではなく、フィードフォワード制御による駆動を行っても良い。すなわち、図5に示すような制御ブロックにおいて、ジョイスティック等の入力装置により逆モデル13に所望の回転軸情報を入力し、逆モデルによって決定された位相差と振幅により駆動を行うこともできる。
【0072】
図6は、初期位置Piniから目標位置Pgoalまでの出力軸6先端の移動軌跡を3次元的に表した図である。また、図7において、(a)は図6に表した移動軌跡のxy平面への投影図、(b)は図6に表した移動軌跡のyz平面への投影図、(c)は図6に表した移動軌跡のzx平面への投影図である。これらの図において、丸印は本実施形態において示したような逆モデルを用いた制御法による出力軸6先端の移動軌跡を、四角印は従来の制御法による出力軸6先端の移動軌跡を、曲線は初期位置Piniから目標位置Pgoalまでの最短軌道を示している。
【0073】
これらの図からも分かるように、本実施形態において説明したような逆モデルを用いて駆動制御を行う振動型アクチュエータによれば、従来の制御法による駆動制御を行った場合の駆動軌跡に比べ、初期位置Piniから目標位置Pgoalまでの最短軌道に忠実な駆動軌跡での(すなわち、高精度かつ効率のよい)駆動制御が実現できている。
【0074】
(第2実施形態)
上述した第1実施形態では、1つのニューラルネットワークを使用した逆モデルにより、振動型アクチュエータの回転軸から駆動周波数の位相差および振幅を求めた。第1実施形態で用いたような縦振動と横振動といった種類の異なる振動モードを組み合わせて駆動するアクチュエータの場合、回転軸のベクトルの方向によってアクチュエータとしての特性が変化する。本実施形態はこのことに応じた上述の第1実施形態の応用例である。図8に本実施形態における制御回路の機能ブロック図を示す。
【0075】
図8において、逆モデル群20および選択器21以外は、上述した第1実施形態における構成と同様であるので、これらの同様な部分についての説明は省略する。また、制御対象9に相当する振動型アクチュエータも上述の第1実施形態において図2で示した振動型アクチュエータと同様のものである。
【0076】
逆モデル群20には、振動型アクチュエータの回転軸ベクトルAxisの方向(回転軸の状態)に応じた8つの逆モデル(複数の逆モデル)が存在している。ここでは、これら8つの逆モデルを回転軸ベクトルAxisが直交座標系のどの象限に存在するかによって使い分けている。すなわち、回転軸ベクトルAxisの各方向成分の符号(回転軸の状態)によっていずれか1つの逆モデルを選択し、使い分けている。この8つの逆モデルは第1実施形態と同様にニューラルネットワークによって構成されている。
【0077】
この逆モデル群20内の各ニューラルネットワークの学習は、上述の第1実施形態において図4で示したのと同様な流れで行なわれる。その際、回転軸ベクトルAxisが存在する象限ごとに学習するニューラルネットワークを切り替えている。この結果、回転軸ベクトルAxisの存在する象限に対し、最適なニューラルネットワークを構築することができる。
【0078】
次に、振動型アクチュエータの駆動時の動作について説明する。回転軸決定器12で決定された回転軸ベクトルAxisは逆モデル群20の内部の全てのニューラルネットワークに入力される。逆モデル群20からはそれぞれのニューラルネットワークによって決定された位相差φ1〜φ8、および振幅比rAmp1〜rAmp8が選択器21に出力される。
【0079】
選択器21では、入力される回転軸ベクトルAxisが直交座標系におけるどの象限に存在するかを判断し、入力された位相差φ1〜φ8のうち適切なものをφとして出力する。すなわち、上述のようにして選択した逆モデルを用いることによって、制御対象9に供給する各交流電圧の位相および振幅比を決定する。振幅比も同様の処理を経て、rAmp1〜rAmp8のうち適切なものがrAmpとして出力される。駆動回路16では第1実施形態と同様に駆動交流電圧が生成され、制御対象9である振動型アクチュエータが駆動される。なお、選択器21によって駆動状態を分類した後に、逆モデル群から適当な逆モデルを選択し、上記選択された逆モデルのみに回転軸ベクトルAxisを入力し、駆動状態に応じた位相φおよび振幅比rAmpを出力するようにすることもできる。
【0080】
以上説明したように、回転軸ベクトルの方向に応じたニューラルネットワークを構築し、駆動時にはその回転軸ベクトルの方向に応じて使用するニューラルネットワークを使い分けることにより、回転軸ベクトルの方向の違いによって特性の変化する制御対象であっても的確な駆動制御を行うことができる。
【0081】
なお、本実施形態では回転軸ベクトルの方向を直交座標系における8つの象限により場合わけを行ったが、これに限られるものではなく、制御対象の特性が変化し得るいかなる場合分けによっても制御を行うことが可能であることは言うまでもない。
【0082】
(第3実施形態)
上述した第2実施形態では、使用する逆モデルを回転軸ベクトルの方向に応じて複数用意し、これらのうちいずれかを選択して使用することを行った。本実施形態においても上述の各実施形態における振動型アクチュエータと同様な構成のもの、すなわち入出力の関係に冗長性および非線形性のあるものを使用しているが、このような振動型アクチュエータでは回転軸ベクトルの方向によっては冗長性がなく線形な駆動制御が可能な場合もある。
【0083】
また、回転軸の存在する象限に応じた変化だけでなく、同じ象限内においても、回転軸のベクトル成分のうちどの成分が最も大きいかによる特性の変化もあることが分かっている。そこで、本実施形態においては以下のような構成をとっている。
【0084】
図9は、本発明の第3実施形態における制御回路の機能ブロック図である。ここに示す機能ブロック図の逆モデル群22と選択器23の内部構造以外は、上述の第2実施形態において図8で説明した機能ブロック図と同様な構成をとっているので、本実施形態では上述の第2実施形態と異なる点に関してのみ説明する。
【0085】
上述のように、本実施形態で使用する振動型アクチュエータは上述の各実施形態と同様な図2に示す構成の振動型アクチュエータである。
【0086】
上述したように、z軸方向の縦振動と、x軸方向およびy軸方向の横振動を組み合わせるタイプの振動型アクチュエータでは、回転軸ベクトルの方向によっては3つの振動モードのうち2つの振動モードのみを使用することにより駆動制御が可能な場合がある。なお図2から分かるように、ここでのz軸は弾性体および移動体の中央部近傍を通過しており、x軸およびy軸は互いに略直交するとともに、このz軸とも略直交している。いわゆる直交座標系である。
【0087】
例えば、回転軸ベクトルをx軸と一致させて駆動させる場合には、y軸方向の横振動とz軸方向の縦振動をπ/2の位相差で駆動すればよい。また、回転軸ベクトルをy軸と一致させて駆動させる場合は、x軸方向の横振動とz軸方向の縦振動をπ/2の位相差で駆動すればよい。さらに、回転軸ベクトルをz軸と一致させて駆動させる場合は、x軸方向およびy軸方向の2つの横振動をπ/2の位相差で駆動すればよい。なお、この位相差については、回転軸の方向が軸のプラス方向およびマイナス方向のいずれの方向を向いているかによって正負の選択が行われることになる。
【0088】
上述のような3つの状態すなわち、回転軸ベクトルがx軸方向と一致しているとき,y軸方向と一致しているとき,およびz軸方向と一致しているときは位相差も上述したように決定され、振幅も同じ振幅とすることにより駆動が可能であるので、ニューラルネットワークのような非線形の逆モデル(非線形モデル、すなわち、非線形変換器に相当する。)を用いることなく、駆動条件を決定することができる。
【0089】
また、回転軸がxy平面上にある状態、すなわち回転軸ベクトルのz軸方向における成分がゼロの状態で駆動する場合は、回転軸がxy平面上におけるどの象限に含まれるかによって位相差を決定することができる。図10に回転軸の象限と位相差の関係を示す。そのときの各振動モードの振動振幅は、下記の数4によって求められる。
【0090】
【数4】
Figure 2004129458
【0091】
このように、回転軸がxy平面上に存在する場合もこれまでに使用したニューラルネットワークのような非線形の逆モデルを用いることなく駆動条件を決定することができる。
【0092】
なお、回転軸が上記以外の状態にある場合は非線形な系に対応した逆モデルを用いる必要があるが、この際には図11に示すようなテーブルを用いて場合分けを行う。以下、図11において、上述の第2実施形態と同様な方法によって回転軸ベクトルAxisの存在する象限にもとづいて分けられる8つの状態をクラス、回転軸ベクトルAxisの各成分の大きさの絶対値を比較し最大のものがx軸成分なのかy軸成分なのかz軸成分なのかにより分けられる3つの状態をサブクラスというものとする。
【0093】
このようにして計24種類の状態に分けることにより、位相差および振幅比の設定は図11のφおよびrAmpに示す範囲で決定すればよいことになる。言い換えれば、上述の第1および第2の実施形態では、3相の交流電圧の全てのパラメータが変化するものとして取り扱っていたが、本実施形態のような手法で分類を行うことにより、変化するパラメータを少なくすることができ、ニューラルネットワークの構造を簡単にすることができるとともに、学習による最適化が容易に行えるようになる。
【0094】
なおこれまでの位相に関する表現は、2相の交流電圧間の位相差によって表したが、本実施形態の図11では位相として表現してある。位相差として表現する場合は、各相の位相の差を演算することによって求められるので、実質的には同じものを表現していることになる。
【0095】
以上のように、本実施形態では振動型アクチュエータの回転軸ベクトルの方向にもとづき、駆動時の位相および振幅を、線形な変換による逆モデル(すなわち、線形変換器に相当する。)により求める状態と、非線形な変換による逆モデル(線形モデル)により求める状態に分類した。さらに、非線形な変換による逆モデルを使用する際は、回転軸ベクトルの方向と大きさによって24通りの状態に分類した。よって、結果的には図12に示すように計28通りの状態に分類されることになる。
【0096】
図9に示す逆モデル群22には、上述の28通りの状態に対応した28通りの逆モデル群が含まれている。それぞれの逆モデルからの出力である振幅比rAmp1〜rAmp28および位相φ1〜φ28が選択器23に入力される。この選択器23では、上述したような分類により駆動制御に使用する振幅比rAmpおよび位相φを決定している。図13に選択器23における振幅比rAmpおよび位相φの決定方法のフローチャートを示す。
【0097】
図13において、回転軸ベクトルが決定されるとその回転軸ベクトルの状態の分類が開始される(S101)。まず、回転軸ベクトルのz軸方向成分がゼロであるかどうかを判断し、ゼロであればS103に進む(S102)。S103では回転軸ベクトルのy軸方向成分がゼロであるかどうかを判断している。次に、y軸方向成分がゼロの場合はS104へと進み(S103)、回転軸ベクトルはx軸に一致するので、状態番号25を選択する(S104)。
【0098】
S103において、y軸方向成分がゼロでない場合は、x軸方向成分がゼロかどうかを判断する(S105)。その結果、x軸方向成分がゼロの場合は回転軸ベクトルはy軸に一致するので、状態番号26を選択する(S106)。
【0099】
S105において、x軸方向成分がゼロでない場合は回転軸ベクトルがxy平面に存在することになるので、状態番号28を選択する(S107)。
【0100】
一方、S102において、z軸方向成分がゼロでない場合はS108に進む(S102)。S108では、x軸方向およびy軸方向の成分両方がゼロであるかどうかを判断している。両方がゼロの場合は回転軸ベクトルはz軸に一致するので、S109にて状態番号27が選択される。
【0101】
S108において、x軸方向およびy軸方向の成分もゼロでない場合はx,y,zの全ての方向の成分を持つことになる。その場合はS110に進み(S108)、回転軸ベクトルの方向およびどの軸方向の成分の絶対値が最大であるかによりクラスおよびサブクラスが決定される(S110)。決定されたクラスおよびサブクラスにもとづいて状態番号が1から24のいずれかに選択される(S111)。
【0102】
そして、以上のような方法によっていずれかの状態番号が選択されると、その選択された状態番号に応じた逆モデルを使用することにより、駆動回路に入力する振幅比rAmpおよび位相φが決定されることになる(S112)。
【0103】
以上説明したように本実施形態では、振動型アクチュエータがz軸方向の縦振動とx軸方向およびy軸方向の横振動によって駆動を行っていることに着目し、線形な変換で駆動電圧の条件を求めることのできる回転軸ベクトルの状態と、非線形な変換で駆動電圧の条件を求める必要のある回転軸ベクトルの状態とに分類した。
【0104】
さらに、上述のような非線形な変換を行う状態においては、上述の第1および第2の実施形態の場合に比べ、より細かい分類を行ったので、ニューラルネットワークの構成がより簡単になると共に、学習も容易に行うことができる。
【0105】
(第4実施形態)
図14は、本発明の第4実施形態で使用される振動型アクチュエータの斜視図である。これまでの実施形態では円筒形状の棒状の振動体Sを使用したが、本実施形態では図14に示したように、弾性体202に圧電素子203を貼り付けた平板状の振動体Bを使用する。球形状の移動体102にはカメラ103が取り付けられており、カメラの向きを多自由度に自在に駆動させることが可能となっている。以下、駆動原理を説明する。
【0106】
図15は、振動体Bの斜視図である。この振動体Bは、リン青銅等の金属により成形した正方板状の弾性体202と、この弾性体202に接着固定される圧電素子203とにより形成される。
【0107】
この弾性体202は、図15に示すようにZ軸方向に延びる接触突起部PC201〜PC204を有しており、これら接触突起部は移動体102と接触して駆動力を伝達するための駆動点C201〜C204をその端面(X―Y平面と略平行な端面)に有している。
【0108】
これら駆動点C201〜C204には、表面酸化処理を施したSUS等の耐磨耗性を有する部材が接着等により一体化されている。もちろん、耐摩耗性を有する部材を接着する態様に限らず、接触突起部PC201〜PC204の端面に対して直接、耐摩耗性を向上させる表面処理を施してもよい。
【0109】
また、弾性体202のほぼ中央部にはX―Y平面と略平行な端面を有する突起部PGが形成されており、この突起部PGの端面は接触突起部PC201〜PC204の端面よりも高さ方向(Z軸方向)において低い位置となるように形成されている。
【0110】
そして、弾性体202のX―Y平面上における4つの角部分には、同じくX―Y平面と略平行な端面を有する突起部PE201〜PE204が形成されている。
【0111】
これら突起部PE201〜PE204、および突起部PGは後述する固有振動モードの固有振動数を一致させると共に、接触突起部PC201〜PC204上の駆動点C201〜C204の変位を拡大する作用を有している。
【0112】
弾性体202の中央部(すなわち、突起部PGの中央部)には移動体102を吸引加圧するための加圧磁石205が配置されている。
【0113】
図16に振動体Bに励振する固有振動モードの模式図を示す。図中の矢印は各固有モードの相対的な変位を示している。ここで示すMode−α,Mode−βx,Mode−βyともに、振動体のXY面外の変形を生じる固有振動モードである。なお、Mode−βxとMode−βyは互いに略直交する重根モードである。
【0114】
図17は弾性体202の裏面に配置され、振動体に固有振動モードを励振するための圧電素子203−1〜203−8の構成を示す。同図において示す+,−は各圧電素子203の分極方向を表している。端子A,B,Cおよびこれらと各圧電素子を結ぶ線は、駆動信号の印加端子と接続状態を模式的に示している。弾性体202と接続するGはコモン電位である。
【0115】
このような構成において、端子Aに交番信号を印加するとMode−αが励振される。そして、端子Bと端子Cに同位相の交番信号を印加することでMode−βxが励振される。さらに、端子Bと端子Cに互いに逆位相の交番信号を印加することでMode−βyが励振される。これら振動体に励振される固有振動モードを組み合わせて、3つの略直交する軸回りの駆動力およびこれらの任意の組み合わせによる駆動力を発生させることができる。また、2つの略直交する並進方向の駆動力と1つの軸回りの駆動力およびこれらの任意の組み合わせによる駆動力を発生させることもできる。
【0116】
もちろん、本実施形態において述べた構成の振動型アクチュエータについても、上述した各実施形態による制御装置および制御方法を適用することにより、上述の各実施形態に示した構成による効果と同様な効果を奏することができることはいうまでもない。
【0117】
また、振動型アクチュエータは上述の各実施形態に示した構成に限定されるものではない。振動体を構成する弾性体に3種類の異なる振動を励振させることによって、振動体の表面を、互いに直交する3方向のいずれにも変位させることができる振動型アクチュエータであれば、上述した各実施形態による制御装置および制御方法を適用することができる。
【0118】
なお、上述の各実施形態においては、振動型アクチュエータに対して供給する周波信号が交流電圧である例を挙げているが、これに限られるものではなく、パルス信号であってもよい。この場合、周波信号の位相とはパルス同士の位相を意味し、振幅とはパルス信号の高さ(振幅)を意味する。
【0119】
また、上述した各実施形態による振動型アクチュエータの制御装置と、これらの振動型アクチュエータの制御装置から供給される周波信号により駆動制御される振動型アクチュエータとを備えた振動型アクチュエータシステムを構成することによっても、上述した各実施形態における効果と同様な効果が得られることは言うまでもない。
【0120】
【発明の効果】
以上説明したように、本願各発明によれば、3種類以上の振動を励振させ冗長性・非線形性を有するような場合でも、所望の運動を効率よく行わせることのできる振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態で使用される制御装置の構成を示した機能ブロック図。
【図2】本実施形態による振動型アクチュエータ(棒状多自由度超音波モータ)を説明するための斜視図。
【図3】本実施形態における逆モデルを構築するために使用しているニューラルネットワークの模式図。
【図4】本実施形態における逆モデルのニューラルネットワークの学習方法を示す図。
【図5】フィードフォワードによる制御回路の構成を示す機能ブロック図。
【図6】初期位置Piniから目標位置Pgoalまでの出力軸6先端の移動軌跡を3次元的に表した図。
【図7】図6に表した移動軌跡の各平面への投影図。
【図8】本発明の第2実施形態における制御回路の構成を示す機能ブロック図。
【図9】本発明の第3実施形態における制御回路の構成を示す機能ブロック図。
【図10】回転軸の象限と位相差の関係を示す表。
【図11】回転軸ベクトルの条件と位相および振幅比の関係を示す表。
【図12】回転軸ベクトルの条件と位相および振幅比の関係を示す表。
【図13】選択器23における振幅比rAmpおよび位相φの決定方法のフローチャート。
【図14】本発明の第4実施形態で使用される振動型アクチュエータ(平板状振動型アクチュエータ)の斜視図。
【図15】本実施形態による振動型アクチュエータの振動体Bの斜視図。
【図16】振動体Bに励振する固有振動モードを説明するための模式図。
【図17】振動体に固有振動モードを励振するための圧電素子の構成を示す図。
【符号の説明】
1,2,203 圧電素子
3,202 弾性体
S,B 振動体
4,102 移動体
5 アーチ状ガイド
6 出力軸
7,8 ポテンショメータ
9 制御対象
10 検出回路
11 座標変換器
12 回転軸決定器
13 逆モデル
14 振幅係数決定器
15 振幅決定器
16 駆動回路
17 周波数調整器
18 駆動推定シミュレータ
19 ニューラルネットワーク
20,22 逆モデル群
21,23 選択器
103 カメラ

Claims (14)

  1. 移動体と、この移動体に接触する弾性体と、この弾性体に固着され少なくとも3相の周波信号の供給により前記弾性体に少なくとも3種類の異なる振動を励振させる電気−機械エネルギ変換素子とを備えた振動型アクチュエータに対し、前記弾性体に接触する移動体を目標位置まで回転させるための少なくとも3相の周波信号を供給する振動型アクチュエータの制御装置であって、
    前記移動体が目標位置まで到達するための回転軸を決定する回転軸決定手段と、
    逆モデルを用いることにより、前記決定された回転軸を中心として移動体を回転させるための各周波信号の位相および振幅を決定するパラメータ決定手段と、
    前記決定された位相および振幅を有する各周波信号を前記電気−機械エネルギ変換素子に供給する制御手段とを有することを特徴とする振動型アクチュエータの制御装置。
  2. 前記回転軸決定手段は、前記移動体が目標位置まで最小の駆動量で到達するための回転軸を決定することを特徴とする請求項1に記載の振動型アクチュエータの制御装置。
  3. 前記パラメータ決定手段は、前記決定された回転軸の状態毎に対応する複数の逆モデルを有し、前記決定された回転軸の状態に応じてこれら複数の逆モデルの内いずれか1つを選択し、この選択した逆モデルを用いることにより前記各周波信号の位相および振幅を決定することを特徴とする請求項1又は2に記載の振動型アクチュエータの制御装置。
  4. 前記複数の逆モデルのうち少なくとも1つは、非線形な変換を行う非線形変換器を用いた非線形モデルであることを特徴とする請求項3に記載の振動型アクチュエータの制御装置。
  5. 前記複数の逆モデルのうち少なくとも1つは、線形な変換を行う線形変換器を用いた線形モデルであることを特徴とする請求項4に記載の振動型アクチュエータの制御装置。
  6. 前記逆モデルは非線形な変換を行う非線形変換器を用いた非線型モデルであることを特徴とする請求項1又は2に記載の振動型アクチュエータの制御装置。
  7. 前記非線形変換器は、ニューラルネットワークにより構築されていることを特徴とする請求項4又は6に記載の振動型アクチュエータの制御装置。
  8. 前記少なくとも3種類の異なる振動は、前記弾性体および移動体の中央部近傍を通るz軸方向の縦振動と、このz軸方向と略直交すると共に互いに略直交するx軸方向およびy軸方向の横振動からなり、
    前記決定された回転軸のベクトルがz軸と略一致、あるいはxy平面内に存在する場合は、前記複数の逆モデルのうち線形モデルを選択し、他の場合には非線形モデルを選択することを特徴とする請求項5に記載の振動型アクチュエータの制御装置。
  9. 前記移動体の現在位置と目標位置とに基づいて、前記振動型アクチュエータに対して供給する周波信号の振幅の振幅増幅率を決定する振幅増幅率決定手段と、
    前記パラメータ決定手段により決定された振幅に前記振幅増幅率を乗じた値を前記周波信号の振幅とする振幅決定手段とを有することを特徴とする請求項1から8に記載の振動型アクチュエータの制御装置。
  10. 請求項1から9のいずれかに記載の振動型アクチュエータの制御装置と、
    前記振動型アクチュエータの制御装置から供給される周波信号により駆動制御される振動型アクチュエータとを有することを特徴とする振動型アクチュエータシステム。
  11. 移動体と、この移動体に接触する弾性体と、この弾性体に固着され少なくとも3相の周波信号の供給により前記弾性体に少なくとも3種類の異なる振動を励振させる電気−機械エネルギ変換素子とを備えた振動型アクチュエータに対し、前記弾性体に接触する移動体を目標位置まで回転させるための少なくとも3相の周波信号を供給する振動型アクチュエータの制御方法であって、
    前記移動体が目標位置まで到達するための回転軸を決定し、
    逆モデルを用いることにより、前記決定された回転軸を中心として移動体を回転させるための各周波信号の位相および振幅を決定し、
    前記決定された位相および振幅を有する各周波信号を前記電気−機械エネルギ変換素子に供給することを特徴とする振動型アクチュエータの制御方法。
  12. 前記回転軸の決定は、前記移動体が目標位置まで最小の駆動量で到達するための回転軸を決定することを特徴とする請求項11に記載の振動型アクチュエータの制御方法。
  13. 前記各周波信号の位相および振幅の決定は、前記決定された回転軸の状態に応じて、前記決定された回転軸の状態毎に対応する複数の逆モデルの内いずれか1つを選択し、この選択した逆モデルにより前記各周波信号の位相および振幅を決定することを特徴とする請求項11又は12に記載の振動型アクチュエータの制御方法。
  14. 前記複数の逆モデルのうち少なくとも1つにニューラルネットワークにより構築され非線形な変換を行う非線形変換器を用いた非線形モデルを使用することを特徴とする請求項13に記載の振動型アクチュエータの制御方法。
JP2002293437A 2002-10-07 2002-10-07 振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法 Pending JP2004129458A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002293437A JP2004129458A (ja) 2002-10-07 2002-10-07 振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法
US10/669,429 US6885132B2 (en) 2002-10-07 2003-09-25 Control apparatus for vibration type actuator, vibration type actuator system, and method for controlling vibration type actuator
EP03022400A EP1408560A3 (en) 2002-10-07 2003-10-06 Control apparatus for vibration type actuator, vibration type actuator system, and method for controlling vibration type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293437A JP2004129458A (ja) 2002-10-07 2002-10-07 振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法

Publications (1)

Publication Number Publication Date
JP2004129458A true JP2004129458A (ja) 2004-04-22

Family

ID=32025479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293437A Pending JP2004129458A (ja) 2002-10-07 2002-10-07 振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法

Country Status (3)

Country Link
US (1) US6885132B2 (ja)
EP (1) EP1408560A3 (ja)
JP (1) JP2004129458A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049412A1 (ja) * 2005-10-27 2007-05-03 Yamaguchi University 超音波モータの制御方法、超音波モータ制御装置及び超音波モータを制御するためのプログラム
JP2008193874A (ja) * 2007-02-08 2008-08-21 Yamaguchi Univ 超音波モータ制御装置
JP2009005560A (ja) * 2007-06-25 2009-01-08 Canon Inc 振動波駆動装置の制御装置、振動波駆動装置の制御方法、及びプログラム
JP2009038901A (ja) * 2007-08-01 2009-02-19 Toshiba Corp 圧電モータおよびカメラ装置
JP2012170270A (ja) * 2011-02-15 2012-09-06 Toshiyuki Ueno 3軸球面モータ
JP2012196134A (ja) * 2012-06-14 2012-10-11 Canon Inc 振動波駆動装置
JP2013230014A (ja) * 2012-04-26 2013-11-07 Canon Inc 振動型アクチュエータの振動検出装置及び制御装置
JP2014135867A (ja) * 2013-01-11 2014-07-24 Denso Corp 車両運動制御装置
US9356548B2 (en) 2012-05-10 2016-05-31 Denso Corporation Vibration damping control apparatus for vehicle, vibration damping control system for vehicle, and vehicle motion control apparatus
US10775583B2 (en) 2015-07-14 2020-09-15 Canon Kabushiki Kaisha Control apparatus for vibration-type actuator, method of controlling vibration-type actuator, driving apparatus, image pickup apparatus, and automatic stage

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090018891A1 (en) * 2003-12-30 2009-01-15 Jeff Scott Eder Market value matrix
US20040236673A1 (en) 2000-10-17 2004-11-25 Eder Jeff Scott Collaborative risk transfer system
US20080256069A1 (en) * 2002-09-09 2008-10-16 Jeffrey Scott Eder Complete Context(tm) Query System
US20110040631A1 (en) * 2005-07-09 2011-02-17 Jeffrey Scott Eder Personalized commerce system
US20080027769A1 (en) 2002-09-09 2008-01-31 Jeff Scott Eder Knowledge based performance management system
JP4478407B2 (ja) * 2003-06-30 2010-06-09 キヤノン株式会社 制御装置およびプログラム
JP4314088B2 (ja) 2003-09-25 2009-08-12 キヤノン株式会社 振動型アクチュエータの制御装置および制御方法、振動型アクチュエータを駆動源とする装置
US20090043637A1 (en) * 2004-06-01 2009-02-12 Eder Jeffrey Scott Extended value and risk management system
US8713025B2 (en) 2005-03-31 2014-04-29 Square Halt Solutions, Limited Liability Company Complete context search system
WO2007055052A1 (ja) * 2005-11-10 2007-05-18 Kabushiki Kaisha Toyota Jidoshokki 超音波モータ
US8498915B2 (en) 2006-04-02 2013-07-30 Asset Reliance, Inc. Data processing framework for financial services
CN105867115B (zh) * 2016-04-26 2018-06-22 中国工程物理研究院总体工程研究所 一种非平稳随机振动试验控制方法
CN107677987A (zh) * 2017-09-22 2018-02-09 京东方科技集团股份有限公司 定位装置、定位方法和货架
JP2022095024A (ja) 2020-12-16 2022-06-28 キヤノン株式会社 学習データ生成装置、学習データ生成方法及びコンピュータプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US149301A (en) * 1874-04-07 Improvement in windmills
JP3332460B2 (ja) * 1993-04-16 2002-10-07 キヤノン株式会社 角速度検出方法および振動ジャイロ
JPH08280185A (ja) * 1995-04-07 1996-10-22 Nikon Corp 超音波アクチュエータ
JPH11164576A (ja) 1997-11-27 1999-06-18 Canon Inc 振動型アクチュエータおよび振動型駆動装置
JP4077923B2 (ja) 1997-11-27 2008-04-23 キヤノン株式会社 振動型アクチュエータ
US6404104B1 (en) * 1997-11-27 2002-06-11 Canon Kabushiki Kaisha Vibration type actuator and vibration type driving apparatus
JPH11220891A (ja) 1997-11-27 1999-08-10 Canon Inc 振動型アクチュエータおよび振動型駆動装置
JP3768665B2 (ja) * 1997-12-12 2006-04-19 キヤノン株式会社 周波信号生成回路及び振動型アクチュエータの駆動装置
US6229402B1 (en) * 1998-05-28 2001-05-08 Canon Kabushiki Kaisha Driving circuit for vibration type actuator apparatus
US6285972B1 (en) * 1998-10-21 2001-09-04 Mts Systems Corporation Generating a nonlinear model and generating drive signals for simulation testing using the same
US6933657B2 (en) 2001-03-30 2005-08-23 Canon Kabushiki Kaisha Stacked electro-mechanical energy conversion element and method of manufacturing the same
DE10154526B4 (de) * 2001-06-12 2007-02-08 Physik Instrumente (Pi) Gmbh & Co Piezoelektrisches Stellelement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049412A1 (ja) * 2005-10-27 2007-05-03 Yamaguchi University 超音波モータの制御方法、超音波モータ制御装置及び超音波モータを制御するためのプログラム
JP4918682B2 (ja) * 2005-10-27 2012-04-18 国立大学法人山口大学 超音波モータの制御方法、超音波モータ制御装置及び超音波モータを制御するためのプログラム
JP2008193874A (ja) * 2007-02-08 2008-08-21 Yamaguchi Univ 超音波モータ制御装置
JP2009005560A (ja) * 2007-06-25 2009-01-08 Canon Inc 振動波駆動装置の制御装置、振動波駆動装置の制御方法、及びプログラム
JP2009038901A (ja) * 2007-08-01 2009-02-19 Toshiba Corp 圧電モータおよびカメラ装置
JP2012170270A (ja) * 2011-02-15 2012-09-06 Toshiyuki Ueno 3軸球面モータ
JP2013230014A (ja) * 2012-04-26 2013-11-07 Canon Inc 振動型アクチュエータの振動検出装置及び制御装置
US9356548B2 (en) 2012-05-10 2016-05-31 Denso Corporation Vibration damping control apparatus for vehicle, vibration damping control system for vehicle, and vehicle motion control apparatus
JP2012196134A (ja) * 2012-06-14 2012-10-11 Canon Inc 振動波駆動装置
JP2014135867A (ja) * 2013-01-11 2014-07-24 Denso Corp 車両運動制御装置
US10775583B2 (en) 2015-07-14 2020-09-15 Canon Kabushiki Kaisha Control apparatus for vibration-type actuator, method of controlling vibration-type actuator, driving apparatus, image pickup apparatus, and automatic stage

Also Published As

Publication number Publication date
US6885132B2 (en) 2005-04-26
EP1408560A2 (en) 2004-04-14
EP1408560A3 (en) 2006-01-18
US20040124742A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
JP2004129458A (ja) 振動型アクチュエータの制御装置、振動型アクチュエータシステム、振動型アクチュエータの制御方法
Liu et al. A two-DOF ultrasonic motor using a longitudinal–bending hybrid sandwich transducer
Jayaram et al. Concomitant sensing and actuation for piezoelectric microrobots
US5872417A (en) Multiple degrees of freedom vibration actuator
Lucinskis et al. Investigation of oscillations of piezoelectric actuators with multi-directional polarization
Tanoue et al. Opposing preloads type ultrasonic linear motor with quadruped stator
WO2007049412A1 (ja) 超音波モータの制御方法、超音波モータ制御装置及び超音波モータを制御するためのプログラム
Goldfarb et al. Development of a piezoelectrically-actuated mesoscale robot quadruped
JP3989943B2 (ja) 羽ばたき浮上移動装置
Kawano et al. Application of a multi-DOF ultrasonic servomotor in an auditory tele-existence robot
Takemura et al. Characteristics of an ultrasonic motor capable of generating a multi-degrees of freedom motion
Wankhede et al. The Roles of Piezoelectric Ultrasonic Motors in Industry 4.0 Era: Opportunities & Challenges
JPH0888985A (ja) 振動波駆動装置の制御装置
JP4675346B2 (ja) 羽ばたき浮上移動装置
Ferreira et al. Dynamic modeling and control of a conveyance microrobotic system using active friction drive
Mracek et al. Synergetic driving concepts for bundled miniature ultrasonic linear motors
Mangeot Operation of a quasi-static piezomotor in transitory frequency range up to resonance
Otokawa et al. Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes
JP7297489B2 (ja) 振動型アクチュエータおよび振動型アクチュエータの駆動装置
Bolborici Modeling of the stator of piezoelectric traveling wave rotary ultrasonic motors
JP4209261B2 (ja) 多自由度超音波モータの回転位置制御方法及び装置
Hemsel et al. A novel approach for high power ultrasonic linear motors
JPH05184172A (ja) 超音波振動子
Stewart Dynamics and Steering of a Vibration-Driven Bristle Bot in a Pipe System
Izuhara et al. Tilting ultrasonic motor using extension and shear vibration modes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507