JP2004125881A - 基板洗浄方法 - Google Patents

基板洗浄方法 Download PDF

Info

Publication number
JP2004125881A
JP2004125881A JP2002286127A JP2002286127A JP2004125881A JP 2004125881 A JP2004125881 A JP 2004125881A JP 2002286127 A JP2002286127 A JP 2002286127A JP 2002286127 A JP2002286127 A JP 2002286127A JP 2004125881 A JP2004125881 A JP 2004125881A
Authority
JP
Japan
Prior art keywords
substrate
cleaning
film
removal
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002286127A
Other languages
English (en)
Inventor
Yukio Mori
森 幸男
Eiichi Miura
三浦 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002286127A priority Critical patent/JP2004125881A/ja
Publication of JP2004125881A publication Critical patent/JP2004125881A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】1回の洗浄のみによってラフネスの増大を抑制しながら、十分な洗浄効果を得る。
【解決手段】基板を15ppm以上の濃度のオゾン水によって処理する工程(ステップS21〜S30)を具備したことを特徴とする。オゾン水によって、膜表面の汚染を除去すると共に、保護膜としての酸化膜を形成する。そして、フッ酸を用いることで酸化膜及び基板表面の金属を除去する。そして、再度オゾン水を用いることで、有機物除去・金属除去・ハ゜シヘ゛ーション(保護膜)形成 ・汚染再付着防止を行う。十分な濃度のオゾン水を用いており、1回の洗浄によって汚染の確実な除去を可能にして、ラフネスの増大を抑制している。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板及びポリシリコン基板等に好適な基板洗浄方法に関する。
【0002】
【従来の技術】
例えば、液晶装置は、ガラス基板、石英基板等の2枚の基板間に液晶を封入して構成される。液晶装置の構造としては、基板の表面に画素をマトリクス状に配列させたパッシブ方式のものや、各画素毎にTFT(Thin Film Transistor:薄膜トランジスタ)やTFD(Thin Film Diode:薄膜ダイオード)等の非線形素子を設け、この非線形素子を介して信号電極と画素電極とを接続したアクティブ方式のもの等がある。
【0003】
アクティブ方式の液晶装置は、一方の基板に、能動素子をマトリクス状に配置し、他方の基板に対向する電極を配置して、両基板間に封止した液晶層の光学特性を画像信号に応じて変化させることで、画像表示を可能にする。
【0004】
このようなTFT基板は、洗浄、成膜、パターン形成の工程の繰返しで構成される。液晶装置においては、表示画像の高品位化という一般的な要請が強く、このためには、画素ピッチを微細化する必要がある。このような素子の微細化に伴い、製造プロセスにおいて混入してくるパーティクルや金属不純物がデバイスの歩留まりや特性に与える影響が増大している。例えば、パーティクルの付着は各種絶縁膜の膜厚不均一化を引き起こし、金属不純物は酸化膜の耐圧不良や接合リーク不良を引き起こす。しかしながら、TFT製造プロセスは、そのほとんどがパーティクルや金属不純物の発生源であるため、デバイスの歩留まりやその特性を向上させるためには、製造の全プロセスにわたり、基板表面を清浄に保たなければならない。
【0005】
このようなTFT基板の洗浄には、従来、シリコン半導体基板の洗浄方法として多用されているRCA洗浄(例えば、RCA Review 31−6、pp.185−205 (1970) )が採用される。ウエット洗浄法の代表であるRCA洗浄は、過酸化水素をベースとした、アルカリ洗浄と酸洗浄とからなる洗浄法である。一般的なRCA洗浄では、アンモニアと過酸化水素とからなる溶液を用いたいわゆるSC−1(RCA Standard Clean −1)洗浄、塩酸と過酸化水素とからなる溶液を用いたいわゆるSC−2(RCA Standard Clean −2)洗浄及び希フッ酸洗浄が採用される。SC−1洗浄は、パーティクルの除去に効果があり、SC−2(RCA Standard Clean −2)洗浄は金属不純物の除去に効果がある。希フッ酸洗浄は、SC−1洗浄およびSC−2洗浄で基板表面に形成された自然酸化膜の除去と金属不純物の除去とに効果がある。
【0006】
このようなRCA洗浄に代表される薬液洗浄法に対して、近年、環境への影響等を考慮した機能水洗浄法が採用されるようになってきた。例えば、特許文献1においては、シリコン半導体基板に対する洗浄方法として、オゾン水でシリコン酸化膜を形成してこの酸化膜中にパーティクルや金属不純物を取込み、希フッ酸水溶液で洗浄してシリコン酸化膜をエッチング除去して、同時にパーティクル及び金属不純物を除去する洗浄方法が開示されている。
【0007】
また、例えば、特許文献2においては、シリコン半導体基板を溶存オゾン水溶液で処理した後、希フッ酸水溶液で処理することにより、Cu膜を除去洗浄する洗浄方法が開示されている。
【0008】
【特許文献1】
特開平6−314679号公報
【0009】
【特許文献2】
特開平8−153698号公報
【0010】
【発明が解決しようとする課題】
しかしながら、上記特許文献1及び特許文献2の提案による機能水洗浄方法は、オゾン水とフッ酸水溶液とを繰返し用いることで汚染の除去を行うようになっている。この場合でも、これらの提案では単結晶シリコン基板の洗浄を目的としていることから特には問題はない。しかしながら、これらの提案による洗浄方法をガラス基板上に構成したポリシリコン膜の洗浄に適用した場合、ポリシリコンのラフネスの特性を考慮すると、オゾン水とフッ酸水溶液との繰返し洗浄を行うことによってポリシリコン膜のラフネスが大きくなり、酸化膜に悪影響を及ぼしてしまうことが考えられる。また、単結晶シリコン基板とポリシリコン基板とでは表面電位が異なり、メタルの付着やパーティクルの付着の挙動が異なることから、単結晶シリコン基板用の機能水洗浄方法をポリシリコン基板用として単純に転用することはできない。
【0011】
本発明はかかる問題点に鑑みてなされたものであって、1回の洗浄のみによってラフネスの増大を抑制しながら、十分な洗浄効果を得ることができる基板洗浄方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明に係る基板洗浄方法は、基板を15ppm以上の濃度のオゾン水によって処理する工程を具備したことを特徴とする。
【0013】
このような構成によれば、十分な濃度のオゾン水によって、基板表面に存在する有機及び金属不純物を溶解除去するので、1回の洗浄で、確実な汚染除去が可能である。
【0014】
また、前記基板は、単結晶シリコン基板、ポリシリコン基板又はガラス基板であることを特徴とする。
【0015】
このような構成によれば、十分な濃度のオゾン水によって1回のみの洗浄で汚染を除去することができるので、単結晶シリコン基板だけでなく、ポリシリコン基板又はガラス基板等においてもラフネスを増大させることなく確実な洗浄が可能である。
【0016】
また、前記基板は、成膜処理されたものであることを特徴とする。
【0017】
このような構成によれば、基板上のシリコン膜、ポリシリコン膜、酸化膜等の汚染を確実に除去することができる。
【0018】
また、前記オゾン水は、濃度が15〜100ppmであることを特徴とする。
【0019】
このような構成によれば、洗浄装置に適用可能で且つ十分な洗浄能力を有するオゾン水を用いた洗浄が可能である。
【0020】
また、前記オゾン水による処理は、1回のみ行われることを特徴とする。
【0021】
このような構成によれば、オゾン水処理によって基板及び基板上の膜に与える影響を最小限に抑制することができる。
【0022】
また、前記オゾン水による処理は、オゾン水処理によって形成される酸化膜の膜厚が0.5〜2nmの範囲となるように処理時間が制御されることを特徴とする。
【0023】
このような構成によれば、オゾン水の処理時間を制御することで、十分且つ最適な保護用の酸化膜を形成することができる。
【0024】
また、前記オゾン水は、室温と同様の温度で使用されることを特徴とする。
【0025】
このような構成によれば、室温と同様の温度のオゾン水を使用することができ、洗浄の作業性に優れている。
【0026】
また、本発明の洗浄方法は、液晶装置、EL(エレクトロルミネッセンス)装置、電気泳動装置等の電気光学装置の基板にも適用できる。
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は本発明の第1の実施の形態に係る基板洗浄方法を示すフローチャートである。図2は本実施の形態を適用する基板であるTFT基板(素子基板)の画素領域を構成する複数の画素における各種素子、配線等の等価回路図である。図3は本実施の形態を適用する素子基板を用いた液晶装置の平面図であり、素子基板の上に形成された各構成要素と共に対向基板側から見た平面図である。図4は素子基板と対向基板とを貼り合わせて液晶を封入する組立工程終了後の液晶装置を、図3のH−H’線の位置で切断して示す断面図である。また、図5は図3及び図4の液晶装置を詳細に示す断面図である。また、図6及び図7は素子基板の基板工程を示す工程図である。
【0028】
本実施の形態はオゾン水による1回のみの洗浄、オゾン水及び希フッ酸溶液による1回のみの洗浄並びにオゾン水、希フッ酸溶液及びオゾン水による1回のみの洗浄の3つの洗浄パターンをTFT基板の製造プロセス中の各洗浄プロセスに採用することにより、ラフネスの増大を抑制しながら、十分な洗浄効果を得るようになっている。なお、オゾン水による洗浄はメタル系の洗浄には用いずに、シリコン系の洗浄にのみ使用する。
【0029】
また、各洗浄パターンにおいては、後述するように、濃度及び洗浄時間を適正に制御することによって、フッ酸の残さを抑制しつつ不要なエッチングを防いで、効率のよい洗浄を可能にしている。これにより、歩留まりを向上させることができる。なお、後述するように、オゾン水の濃度は30〜100ppmであり、希フッ酸水溶液の濃度は0.1〜10%に設定している。
【0030】
先ず、図2乃至図5を参照して、本実施の形態における洗浄の対象である素子基板を用いた液晶装置の構造について説明する。
【0031】
液晶装置は、図3及び図4に示すように、TFT基板等の素子基板10と対向基板20との間に液晶50を封入して構成される。素子基板10上には画素を構成する画素電極等がマトリクス状に配置される。図2は画素を構成する素子基板10上の素子の等価回路を示している。
【0032】
図2に示すように、画素領域においては、複数本の走査線3aと複数本のデータ線6aとが交差するように配線され、走査線3aとデータ線6aとで区画された領域に画素電極9aがマトリクス状に配置される。そして、走査線3aとデータ線6aの各交差部分に対応してTFT30が設けられ、このTFT30に画素電極9aが接続される。
【0033】
TFT30は走査線3aのON信号によってオンとなり、これにより、データ線6aに供給された画像信号が画素電極9aに供給される。この画素電極9aと対向基板20に設けられた対向電極21との間の電圧が液晶50に印加される。また、画素電極9aと並列に蓄積容量70が設けられており、蓄積容量70によって、画素電極9aの電圧はソース電圧が印加された時間よりも例えば3桁も長い時間の保持が可能となる。蓄積容量70によって、電圧保持特性が改善され、コントラスト比の高い画像表示が可能となる。
【0034】
図5は、一つの画素に着目した液晶装置の模式的断面図である。
【0035】
ガラスや石英等の素子基板10には、溝11が形成されている。この溝11上に遮光膜12及び第1層間絶縁膜13を介してLDD構造をなすTFT30が形成されている。溝11によって、TFT基板の液晶50との境界面が平坦化される。
【0036】
TFT30は、チャネル領域1a、ソース領域1d、ドレイン領域1eが形成された半導体層に下層及び上層絶縁膜2a,2bを介してゲート電極をなす走査線3aが設けられてなる。なお、遮光膜12は、TFT30の形成領域に対応する領域、後述するデータ線6a及び走査線3a等の形成領域、即ち各画素の非表示領域に対応した領域に形成されている。この遮光膜12によって、反射光がTFT30のチャネル領域1a、ソース領域1d及びドレイン領域1eに入射することが防止される。
【0037】
TFT30上には第2層間絶縁膜14が積層され、第2層間絶縁膜14上には中間導電層15が形成されている。中間導電層15上には誘電体膜17を介して容量線18が対向配置されている。容量線18は、容量層と遮光層とからなり、中間導電層15との間で蓄積容量を構成すると共に、光の内部反射を防止する遮光機能を有する。半導体層に比較的近接した位置に中間導電層15を形成しており、光の乱反射を効率よく防止することができる。
【0038】
容量線18上には第3層間絶縁膜19が配置され、第3層間絶縁膜19上にはデータ線6aが積層される。データ線6aは、第3及び第2層間絶縁膜19,14を貫通するコンタクトホール24a,24bを介してソース領域1dに電気的に接続される。データ線6a上には第4層間絶縁膜25を介して画素電極9aが積層されている。画素電極9aは、第4〜第2層間絶縁膜25,19,14を貫通するコンタクトホール26a,26bにより容量線18を介してドレイン領域1eに電気的に接続される。画素電極9a上にはポリイミド系の高分子樹脂からなる配向膜16が積層され、所定方向にラビング処理されている。
【0039】
走査線3a(ゲート電極)にON信号が供給されることで、チャネル領域1aが導通状態となり、ソース領域1dとドレイン領域1eとが接続されて、データ線6aに供給された画像信号が画素電極9aに与えられる。
【0040】
一方、対向基板20には、TFTアレイ基板のデータ線6a、走査線3a及びTFT30の形成領域に対向する領域、即ち各画素の非表示領域において第1遮光膜23が設けられている。この第1遮光膜23によって、対向基板20側からの入射光がTFT30のチャネル領域1a、ソース領域1d及びドレイン領域1eに入射することが防止される。第1遮光膜23上に、対向電極(共通電極)21が基板20全面に亘って形成されている。対向電極21上にポリイミド系の高分子樹脂からなる配向膜22が積層され、所定方向にラビング処理されている。
【0041】
そして、素子基板10と対向基板20との間に液晶50が封入されている。これにより、TFT30は所定のタイミングでデータ線6aから供給される画像信号を画素電極9aに書き込む。書き込まれた画素電極9aと対向電極21との電位差に応じて液晶50の分子集合の配向や秩序が変化して、光を変調し、階調表示を可能にする。
【0042】
図3及び図4に示すように、対向基板20には表示領域を区画する額縁としての遮光膜42が設けられている。遮光膜42は例えば遮光膜23と同一又は異なる遮光性材料によって形成されている。
【0043】
遮光膜42の外側の領域に液晶を封入するシール材41が、素子基板10と対向基板20間に形成されている。シール材41は対向基板20の輪郭形状に略一致するように配置され、素子基板10と対向基板20を相互に固着する。シール材41は、素子基板10の1辺の一部において欠落しており、貼り合わされた素子基板10及び対向基板20相互の間隙には、液晶50を注入するための液晶注入口78が形成される。液晶注入口78より液晶が注入された後、液晶注入口78を封止材79で封止するようになっている。
【0044】
素子基板10のシール材41の外側の領域には、データ線駆動回路61及び実装端子62が素子基板10の一辺に沿って設けられており、この一辺に隣接する2辺に沿って、走査線駆動回路63が設けられている。素子基板10の残る一辺には、画面表示領域の両側に設けられた走査線駆動回路63間を接続するための複数の配線64が設けられている。また、対向基板20のコーナー部の少なくとも1箇所においては、素子基板10と対向基板20との間を電気的に導通させるための導通材65が設けられている。
【0045】
次に、このように構成される素子基板の製造工程及び基板洗浄方法について図1のフローチャート並びに図6及び図7の工程図を参照して説明する。
【0046】
先ず、石英基板、ハードガラス、シリコン基板等のTFTアレイ基板10を用意する。本実施の形態においては、基板10に対してステップS21の洗浄処理が行われる。
【0047】
即ち、ステップS21においては、図6(a)の基板10に対して、濃度が30〜60ppmで温度が23〜40℃のオゾン水Oを用いて、3〜5分間洗浄を行う。これにより、基板10表面の有機物及び金属を除去すると共に、オゾン水による保護膜の形成(パッシベーション)を行う。以上の洗浄方法を以下、[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成]と表記する。
【0048】
ステップS21では、次に、室温で3〜5分間、超純水によるリンスを行ってオゾン水を除去してもよい。この洗浄方法を以下、[超純水(室温/3〜5min ) 置換]と表記する。またリンスをせずに以下のフッ酸水溶液と混合して用いても良い。
【0049】
次に、ステップS21では、フッ酸、過酸化水素及び純水を1:1:50の割合で混合した温度が23〜25℃の希フッ酸水溶液を用いて、30秒〜3分間洗浄を行う。これにより、基板10表面の金属を除去すると共に、ケミカル及び自然酸化膜をエッチング除去する。この洗浄方法を以下、[DHForFPM(HF(:H):HO=1(:1):50〜400/23〜25℃/30s〜3min] 金属除去、ケミカル及び自然酸化膜エッチンク゛]と表記する。
【0050】
次に、ステップS21では、[超純水( 室温/5〜8min ) 置換]による洗浄を行い、次いで、[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・(ハ゜シヘ゛ーション) ・汚染再付着防止]による洗浄を行い、更に、[超純水(室温/3〜5min ) 置換]による純水置換を行って、最後に乾燥([Dry(IPA(イソフ゜ロヒ゜ルアルコール)雰囲気引き上げ乾燥)]と表記)を行う。
【0051】
即ち、ステップS21の基板洗浄をまとめると、以下のようになる。
【0052】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション(保護膜)形成  ]
[超純水(室温/3〜5min )置換)[DHForFPM(HF(:H):HO=1(:1):50〜400/23〜25℃/30s〜3min))] 金属除去、ケミカル及び自然酸化膜エッチンク゛)
[超純水( 室温/5〜8min )置換]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[超純水(/室温/3〜5min )置換]
[DryIPA(イソフ゜ロヒ゜ルアルコール)雰囲気引き上げ乾燥]]
オゾンの反応性を高める為には、温度が23〜40℃の範囲となるようにオゾン水の温度コントロールすることが有効である。また、オゾンの劣化以上に35℃近傍の温度が最も反応性が高く、洗浄能力は常温の最大8倍ほど高い。また、本実施の形態においては、オゾン水を30ppm以上の濃度で用いており、高い洗浄能力を得ている。なお、温度コントロールした場合もオゾンの劣化が生じることから元のオゾン濃度が高い方が望ましい。
【0053】
なお、上記ステップS21の説明では、バッチ洗浄を例に説明したが、枚葉洗浄においても、オゾン水、希フッ酸水溶液及びオゾン水を用いた洗浄法が考えられる。この場合には、例えば回転式の枚葉洗浄機を用いた以下の洗浄法が考えられる。なお、回転式の枚葉洗浄機は、基板を回転させながら、基板に対してノズルから洗浄液を吐出させて洗浄を行うものである。
【0054】
即ち、ノズルからの基板10に対して、濃度が30〜60ppmで温度が23〜40℃のオゾン水Oを吐出させる。このオゾン水はノズルから吐出されて基板表面に吹き付けられ、30秒〜3分間洗浄が行われる。これにより、基板10表面の有機物及び金属を除去すると共に、オゾン水によるパッシベーションの形成を行う。
【0055】
以上の洗浄方法を以下、[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成]と表記する。
【0056】
次に、フッ酸及び純水を1:50〜200の割合で混合した温度が23〜25℃の希フッ酸水溶液をノズルから吐出させる。そして、希フッ酸水溶液を用いて、5〜30秒間洗浄を行う。これにより、基板10表面の金属を除去すると共に、ケミカル及び自然酸化膜をエッチング除去する。この洗浄方法を以下、[DHF HF:HO=1:50〜200/23〜25℃/5〜30s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]と表記する。
【0057】
次に、[超純水(スヒ゜ンリンス, 1min)]による洗浄を行う。即ち、ノズルから純水を1分間吐出させ、基板の表面に吹き付ける。ノズルからの吐出された純水は基板10の中央から遠心方向に勢いよく流出する。この純水の流れにより、基板10上からリフトオフしたパーティクル(汚染物)は、基板10の周辺に押し流されて基板10から除去される。
【0058】
次に、再度、ノズルからオゾン水を吐出させ、基板10の表面に吹き付ける。即ち、[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ・汚染再付着防止]による洗浄を行い、最後に乾燥([Dry(Nハ゜ーシ゛型スピン乾燥)]と表記)を行う。なお、乾燥工程中においても、基板10を回転させることによって基板10の水切りを短時間に行うことができる。
【0059】
ステップS21において枚葉洗浄を採用した場合における基板洗浄をまとめると、以下のようになる。
【0060】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[DHF(HF:HO=1:50〜200/23〜25℃/5〜30s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(スヒ゜ンリンス, 1min)]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/ 30s〜3min ) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[Dry(Nハ゜ーシ゛型スピン乾燥)]
次に、洗浄した基板10に対して、好ましくはN(窒素)等の不活性ガス雰囲気且つ約900〜1300℃の高温でアニール処理し、後に実施される高温プロセスにおけるTFTアレイ基板10に生じる歪みが少なくなるように前処理しておく。
【0061】
次に、図1のステップS1 において、TFTアレイ基板10に対してエッチング等によって溝11(図1、図5参照)を形成する。次に、図1のステップS2 において、Ti、Cr、W、Ta、Mo及びPd等の金属や金属シリサイド等の金属合金膜を、スパッタリングにより、100〜500nm程度の膜厚、好ましくは約200nmの膜厚に堆積させる。そしてフォトリソグラフィ及びエッチングにより、平面形状が格子状の下側遮光膜12を形成する。
【0062】
次に、ステップS22において、第1層間絶縁膜13(図6(b))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS22の洗浄を示すと以下のようになる。
【0063】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[DHF or FPM(HF(:H):HO=1(:1):50〜400/23〜25℃/30s〜3min) 金属除去、ケミカル及び自然酸化膜エッチンク゛、ハ゜ーティクル除去]
[超純水( 室温/5〜8min )置換]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[超純水(室温/3〜5min )置換]
[DryIPA(イソフ゜ロヒ゜ルアルコール)雰囲気引き上げ乾燥]
下側遮光膜12を構成するWSiは酸化されやすいが、本実施の形態においては、オゾンの強力な酸化力ですばやくパッシベーションの形成が可能である。また、フッ酸によるリフトオフ機能によって、常温でMS(メガソニック)を使用することなくスパッタ成膜後の高いパーティクル除去能力を得ることができる。パーティクル残さが残ると相関絶縁膜内の異常成長を促し、上部形成される膜の均一な成膜が阻害されてしまい、断線や後のドライエッチング後に膜残りを生じさせデバイス不良を引き起こす原因となってしまう。しかし、本実施の形態においては、フッ酸水溶液による洗浄によって高いパーティクル除去性能を得ており、デバイス不良の発生を防止することができる。
【0064】
また、ステップS22において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0065】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[DHF(HF:H=1:50〜200/23〜25℃/5〜30s) 金属除去、ケミカル及び自然酸化膜エッチンク゛。ハ゜ーティクル除去]
[超純水(スヒ゜ンリンス, 1min)]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/ 30s〜3min ) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ・汚染再付着防止]
[Dry(Nハ゜ーシ゛型スピン乾燥)]
次に、ステップS3 において、下側遮光膜12上に、例えば、常圧又は減圧CVD法等によりTEOS(テトラ・エチル・オルソ・シリケート)ガス、TEB(テトラ・エチル・ボートレート)ガス、TMOP(テトラ・メチル・オキシ・フォスレート)ガス等を用いて、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる層間絶縁膜13を形成する。この層間絶縁膜13の膜厚は、例えば約500〜2000nm程度とする。
【0066】
次に、ステップS23において、半導体層1a(図6(c))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS23の洗浄を示すと以下のようになる。
【0067】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[DHForFPM(HF(:H):HO=1(:1):50〜400/23〜25℃/30s〜3min) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(室温/5〜8min )置換]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[DIW超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥)]
この洗浄工程においても、上記各洗浄工程と同様の効果を有する。
【0068】
また、ステップS23において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0069】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[DHF(HF:HO=1:50〜200/23〜25℃/5〜30s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[DIW(スヒ゜ンリンス, >1min)]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/ 30s〜3min ) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[Dry(Nハ゜ーシ゛型スピン乾燥)]
次に、ステップS4 において、層間絶縁膜13上に、約450〜550℃、好ましくは約500℃の比較的低温環境中で、流量約400〜600cc/minのモノシランガス、ジシランガス等を用いた減圧CVD(例えば、圧力約20〜40PaのCVD)により、アモルファスシリコン膜を形成する。その後、窒素雰囲気中で、約600〜700℃にて約1〜10時間、好ましくは、4〜6時間のアニール処理を施することにより、ポリシリコン膜を約50〜200nmの粒径、好ましくは約100nmの粒径となるまで固相成長させる。固相成長させる方法としては、RTA(Rapid Thermal Anneal)を使ったアニール処理でもよいし、エキシマレーザー等を用いたレーザーアニールでもよい。この際、画素スイッチング用のTFT30を、nチャネル型とするかpチャネル型にするかに応じて、V族元素やIII族元素のドーパントを僅かにイオン注入等によりドープしてもよい。そして、フォトリソグラフィ及びエッチングにより、所定パターンを有する半導体層1aを形成する。
【0070】
次に、ステップS24において、ゲート絶縁膜2a(図6(d))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS24の洗浄を示すと以下のようになる。
【0071】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )水置換)))))]
[DHForFPM(HF(:H):HO=1(:1):50〜400/23〜25℃/30s〜3min) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水( 室温/8〜15min )置換]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥]]
また、ステップS24において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0072】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[DHF(HF:HO=1:50〜200/23〜25℃/5〜30s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(スヒ゜ンリンス >1min)]
SIMS(2次イオン質量分析法)の軽元素不純物検査より、 O−DHF洗浄は、Si−SiOの洗浄界面にフッ素が残り易い。未結合手(ダングリングボンド)にHF 、HFが残さとして残り易いため完全な水素終端を阻害する。置換特性を挙げるため、また水素終端の最適化にはDHF洗浄後にリンスを実施した方がよい。
【0073】
また、大気中或いは装置中の汚染がSiのダングリングボンドに付着した場合には、フッ酸だけでは除去しにくい。そこで、一旦オゾン(O)水で酸化パッシベーションを形成してフッ酸でリフトオフするようになっている。
【0074】
次に、ステップS5 において、TFT30を構成する半導体層1aを約900〜1300℃の温度、好ましくは約1000℃の温度により熱酸化し、続けて減圧CVD法等により、若しくは両者を続けて行うことにより、多層の高温酸化シリコン膜(HTO膜)や窒化シリコン膜からなる(ゲート絶縁膜を含む)下層及び上層のゲート絶縁膜2a,2bを形成する。
【0075】
この結果、半導体層1aは、約30〜150nmの厚さ、好ましくは約35〜50nmの厚さとなり、絶縁膜2a,2bの厚さは、約20〜150nmの厚さ、好ましくは約30〜100nmの厚さとなる。
【0076】
次に、画素スイッチング用のTFT30のスレッシュホールド電圧Vthを制御するために、半導体層1aのうちNチャネル領域或いはPチャネル領域に、ボロン等のドーパントを予め設定された所定量だけイオン注入等によりドープする。
【0077】
次に、ステップS25において、走査線3a(図6(e))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS25の洗浄を示すと以下のようになる。
【0078】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥)]
また、ステップS25において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0079】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(スヒ゜ンリンス)]
[Dry(Nハ゜ーシ゛型スピン乾燥)
次に、ステップS6 において、減圧CVD法等によりポリシリコン膜を堆積し、更にリン(P)を熱拡散し、このポリシリコン膜を導電化する。または、Pイオンをこのポリシリコン膜の成膜と同時に導入したドープトシリコン膜を用いてもよい。このポリシリコン膜の膜厚は、約100〜500nmの厚さ、好ましくは約350nm程度である。そして、フォトリソグラフィ及びエッチングにより、TFT30のゲート電極部を含めて所定パターンの走査線3aを形成する。
【0080】
例えば、TFT30を、LDD構造を持つnチャネル型のTFTとする場合には、半導体層1aに、低濃度ソース領域及び低濃度ドレイン領域を形成するために、走査線3a(ゲート電極)をマスクとして、P等のV族元素のドーパントを低濃度で(例えば、Pイオンを1〜3×1013/cmのドーズ量にて)ドープする(ステップS7 )。これにより走査線3a下の半導体層1aはチャネル領域1a’となる。
【0081】
更に、画素スイッチング用TFT30を構成する高濃度ソース領域1d及び高濃度ドレイン領域1eを形成するために、走査線3aよりも幅の広い平面パターンを有するレジスト層を走査線3a上に形成する。その後、P等のV族元素のドーパントを高濃度で(例えば、Pイオンを1〜3×1015/cmのドーズ量にて)ドープする(ステップS8 )。
【0082】
こうして、低濃度のソース・ドレイン領域と高濃度のソース・ドレイン領域とを有するLDD構造の素子を構成する。なお、例えば、低濃度のドープを行わずに、オフセット構造のTFTとしてもよく、走査線3aをマスクとして、Pイオン、Bイオン等を用いたイオン注入技術によりセルフアライン型のTFTとしてもよい。この不純物のドープにより走査線3aは更に低抵抗化される。
【0083】
次に、ステップS26において、第2層間絶縁膜14(図6(f))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS26の洗浄を示すと以下のようになる。
【0084】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥)]
また、ステップS26において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0085】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(スヒ゜ンリンス)]
[Dry(Nハ゜ーシ゛型スピン乾燥)
次に、ステップS9 では、走査線3a上に、例えば、常圧又は減圧CVD法等によりTEOSガス、TEBガス、TMOPガス等を用いて、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第2層間絶縁膜14を形成する。この第2層間絶縁膜14の膜厚は、例えば約500〜2000nm程度とする。ここで好ましくは、800℃の程度の高温でアニール処理し、層間絶縁膜14の膜質を向上させておく。
【0086】
次に、ステップS10において、第2層間絶縁膜14に対する反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングにより、コンタクトホール24a,26aを同時開孔する。
【0087】
次に、ステップS27において、蓄積容量の下側電極を構成する第1中間導電層15(図6(g))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS27の洗浄を示すと以下のようになる。
【0088】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[Dry(IPA蒸気雰囲気引き上げ乾燥)]
また、ステップS27において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0089】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[DHF(HF:HO=1:50〜200/23〜25℃/5〜10s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(スヒ゜ンリンス 、 >1min)]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/ 30s〜3min ) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ・汚染再付着防止]
[Dry(Nハ゜ーシ゛型スピン乾燥)
次に、本実施の形態においては、ステップS11において、蓄積容量の下部容量電極となる第1中間導電層15が形成される。即ち、第2層間絶縁膜14上に、減圧CVD法等によりポリシリコン膜を堆積し、更にリン(P)を熱拡散し、このポリシリコン膜を導電化する。または、Pイオンをこのポリシリコン膜の成膜と同時に導入したドープトシリコン膜を用いてもよい。このポリシリコン膜の膜厚は、約100〜500nmの厚さ、好ましくは約150nm程度である。そして、フォトリソグラフィ及びエッチングによりパターニングを行って、第1中間導電層15を形成する。
【0090】
次に、ステップS28において、容量の絶縁膜を構成する誘電体膜17(図7(g))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS28の洗浄を示すと以下のようになる。
【0091】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ]
[超純水(室温/3〜5min )置換]
[FPM(HF:H:HO=1:1:50〜400/23〜25℃/30s〜1min) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(室温/8〜15min )置換]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成・汚染再付着防止]
[超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥)]
また、ステップS28において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0092】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ]
[DHF(HF:HO=1:50〜200/23〜25℃/5〜30s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(スヒ゜ンリンス >1min)]
[Dry(Nハ゜ーシ゛型スピン乾燥)]
次のステップS12において、蓄積容量の絶縁膜である誘電体膜17を形成する。即ち、画素電位側容量電極を兼ねる第1中間導電層15及び第2層間絶縁膜14上に、減圧CVD法、プラズマCVD法等により高温酸化シリコン膜(HTO膜)や窒化シリコン膜からなる誘電体膜17を膜厚50nm程度の比較的薄い厚さに堆積する。
【0093】
なお、誘電体膜17は、絶縁膜2a,2bの場合と同様に、単層膜或いは多層膜のいずれから構成してもよく、一般にTFTのゲート絶縁膜を形成するのに用いられる各種の公知技術により形成可能である。そして、誘電体膜17を薄くする程、蓄積容量は大きくなるので、結局、膜破れ等の欠陥が生じないことを条件に、膜厚50nm以下の極薄い絶縁膜となるように誘電体膜17を形成すると有利である。
【0094】
次に、ステップS29において、蓄積容量の上部電極を構成する容量線18(図7(i))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS29の洗浄を示すと以下のようになる。
【0095】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥)]
また、ステップS29において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0096】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(スヒ゜ンリンス)]
[Dry(Nハ゜ーシ゛型スピン乾燥)
次に、ステップS13において、誘電体膜17上に容量線18を形成する。容量線18の膜厚は例えば150nmに設定する。
【0097】
次に、ステップS30において、第3層間絶縁膜19(図7(j))の形成前の洗浄処理が行われる。上記[]書きと同様の表記でステップS30の洗浄を示すと以下のようになる。
【0098】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[超純水(室温/3〜5min )置換]
[FPM(HF:H:HO=1:1:50〜400/23〜25℃/30s〜1min) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(室温/8〜15min )置換]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/3〜5min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ・汚染再付着防止]
[超純水(室温/3〜5min )置換]
[Dry(IPA雰囲気引き上げ乾燥)]
また、ステップS30において、以下の洗浄方法を採用することも可能である。この洗浄方法は特に枚葉式の洗浄に好適である。
【0099】
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/30s〜3min) 有機物除去・金属除去・ハ゜シヘ゛ーション形成  ]
[DHF(HF:HO=1:50〜200/23〜25℃/5〜10s) 金属除去、ケミカル及び自然酸化膜エッチンク゛]
[超純水(スヒ゜ンリンス, >1min)]
[O(オゾン)水 (濃度30〜60ppm/温度 23〜40℃/ 30s〜3min ) 有機物除去・金属除去・ハ゜シヘ゛ーション形成 ・汚染再付着防止]
[Dry(Nハ゜ーシ゛型スピン乾燥)
次に、ステップS14において、例えば、常圧又は減圧CVD法やTEOSガス等を用いて、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第3層間絶縁膜19を形成する。第3層間絶縁膜19の膜厚は、例えば500〜1500nm程度である。
【0100】
次に、ステップS15において、コンタクトホール24a,24bを埋めるように第3層間絶縁膜19上の全面に、スパッタリング等により、遮光性のAl等の低抵抗金属や金属シリサイド等を金属膜として、約100〜500nmの厚さ、好ましくは約300nmに堆積する。そして、フォトリソグラフィ及びエッチングにより、所定パターンを有するデータ線6aを形成する(ステップS16)。
【0101】
次に、ステップS17において、データ線6a上を覆うように、例えば、常圧又は減圧CVD法やTEOSガス等を用いて、NSG、PSG、BSG、BPSG等のシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第4層間絶縁膜25を形成する。第4層間絶縁膜25の膜厚は、例えば500〜1500nm程度である。
【0102】
次に、ステップS18において、第4層間絶縁膜25及び第3層間絶縁膜19に対する反応性イオンエッチング、反応性イオンビームエッチング等のドライエッチングにより、コンタクトホール26bを開孔する。
【0103】
次に、ステップS19において、このコンタクトホール26bの内周面及び第4層間絶縁膜25上に、スパッタ処理等により、ITO膜等の透明導電性膜を、約50〜200nmの厚さに堆積する。そして、フォトリソグラフィ及びエッチングにより、画素電極9aを形成する。なお、液晶装置を反射型の液晶装置に用いる場合には、Al(アルミニウム)等の反射率の高い不透明な材料から画素電極9aを形成してもよい。コンタクトホール26bは、第1中間導電層15と画素電極9aとを接続する。
【0104】
このように、本実施の形態においては、オゾン水による1回のみの洗浄、オゾン水及び希フッ酸溶液による1回のみの洗浄並びにオゾン水、希フッ酸溶液及びオゾン水による1回のみの洗浄の3つの洗浄パターンをTFT基板の製造プロセス中の各洗浄プロセスに採用することにより、ラフネスの増大を抑制しながら、十分な洗浄効果を得るようになっている。
【0105】
即ち、製造ライン或いは装置内聞で表面に取り込まれた有機不純物、パーティクル異物または金属不純物が存在するガラス基板/あるいは膜表面を、先ず、30ppm程度のオゾン水で洗浄することによって、最表面に存在する有機及び金属不純物を表面から引き離して水溶液中に溶解して除去する。ポリシリコン膜表面上であれば、高濃度オゾン水によって均一に表面を0.5〜2nm酸化することができ、ポリシリコン膜最表面から0.5〜2nm深さの極界面領域に微少な残さとして存在しやすい金属不純物を酸化膜中に取り込むことができる。
【0106】
更に、希フッ酸を併用することにより、酸化膜を除去すると同時にその酸化膜中に存在する金属不純物分子(原子)及び酸化膜表面上に残った金属不純物とパーティクルをポリシリコン膜及び絶縁膜表面から略完全に分離することが可能である。
【0107】
この手法を用いると、単結晶シリコンと比較して格子欠陥やラフネスが大きいポリシリコン或いは不純物拡散されたポリシリコン膜表面を過剰にダメージを与えること無く清浄化することができることから、その上に形成される酸化膜或いは層間絶縁膜はより良質な膜成長を促され、それによって形成されるデバイスは特性及び歩留まりを安定させることができる。
【0108】
このように、本実施の形態では、単結晶シリコン基板と比較して、フッ酸通水水溶液、アンモニア通水水溶液によるダメージが表面に入り易いポリシリコン膜表面、不純物拡散ポリシリコン膜表面、シリサイド膜表面のマイクロダメージを抑制しながら清浄化することが可能である。しかも、有機物汚染、金属汚染及びパーティクル汚染を短時間且つ良好に除去することができる。また、液晶基板に対する洗浄、特に格子欠陥や不純物ドープの多いポリシリコン表面に対する洗浄では、単結晶シリコン表面と比較して選択酸化とエッチングにより面荒れが大きくなる虞があるのに対し、本実施の形態においては、濃いオゾン溶存水による均一酸化と希フッ酸水溶液或いは希フッ酸を含む高濃度オゾン水の組み合わせによるエッチングによって面荒れを抑制しており、ポリシリコン上に形成した酸化膜耐圧寿命を向上させ、歩留まりをより安定させることができる。なお、均一酸化速度を向上させるため、またエッチングによるポリシリコン表面やその他の絶縁膜に対する影響を考慮して希フッ酸濃度を極力薄くするために、上述したように、オゾン水の溶存濃度は15ppm以上に設定する。これにより、ポリシリコン表面から0.5〜2nm深さに存在する不純物を取込むポリシリコン上の酸化膜形成の時間を短縮し、1回のオゾン水と希フッ酸の処理で汚染の除去を可能にしている。
【0109】
本発明の基板は、液晶装置だけに限るもので無く、EL(エレクトロルミネッセンス)装置、電気泳動装置等の表示パネルにも適用できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る基板洗浄方法を示すフローチャート。
【図2】本実施の形態を適用する半導体装置であるTFT基板(素子基板)の画素領域を構成する複数の画素における各種素子、配線等の等価回路図。
【図3】本実施の形態を適用する素子基板を用いた液晶装置の平面図であり、素子基板の上に形成された各構成要素と共に対向基板側から見た平面図。
【図4】素子基板と対向基板とを貼り合わせて液晶を封入する組立工程終了後の液晶装置を、図3のH−H’線の位置で切断して示す断面図。
【図5】図3及び図4の液晶装置を詳細に示す断面図。
【図6】基板洗浄方法を工程順に示す工程図。
【図7】基板洗浄方法を工程順に示す工程図。
【符号の説明】
S21…基板洗浄、S22…第1層間絶縁膜前洗浄、S23…半導体層前洗浄、S24…ゲート絶縁膜前洗浄、S25…走査線前洗浄、S26…第2層間絶縁膜前洗浄、S27…中間導電層前洗浄、S28…絶縁膜前洗浄、S29…容量線前洗浄、S30…第3層間絶縁膜前洗浄。

Claims (8)

  1. 基板を15ppm以上の濃度のオゾン水によって処理する工程を具備したことを特徴とする基板洗浄方法。
  2. 前記基板は、単結晶シリコン基板、ポリシリコン基板又はガラス基板であることを特徴とする請求項1に記載の基板洗浄方法。
  3. 前記基板は、成膜処理されたものであることを特徴とする請求項1に記載の基板洗浄方法。
  4. 前記オゾン水は、濃度が15〜100ppmであることを特徴とする請求項1に記載の基板洗浄方法。
  5. 前記オゾン水による処理は、1回のみ行われることを特徴とする請求項1に記載の基板洗浄方法。
  6. 前記オゾン水による処理は、オゾン水処理によって形成される酸化膜の膜厚が0.5〜2nmの範囲となるように処理時間が制御されることを特徴とする請求項1に記載の基板洗浄方法。
  7. 前記オゾン水は、室温と同様の温度で使用されることを特徴とする請求項1に記載の基板洗浄方法。
  8. 前記基板は、電気光学装置用基板であることを特徴とする請求項1乃至8のいずれか一項に記載の基板洗浄方法。
JP2002286127A 2002-09-30 2002-09-30 基板洗浄方法 Withdrawn JP2004125881A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286127A JP2004125881A (ja) 2002-09-30 2002-09-30 基板洗浄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286127A JP2004125881A (ja) 2002-09-30 2002-09-30 基板洗浄方法

Publications (1)

Publication Number Publication Date
JP2004125881A true JP2004125881A (ja) 2004-04-22

Family

ID=32279257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286127A Withdrawn JP2004125881A (ja) 2002-09-30 2002-09-30 基板洗浄方法

Country Status (1)

Country Link
JP (1) JP2004125881A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517806A (zh) * 2013-09-30 2015-04-15 芝浦机械电子装置股份有限公司 基板处理方法和基板处理装置
JP2015091571A (ja) * 2013-09-30 2015-05-14 芝浦メカトロニクス株式会社 基板処理方法及び基板処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517806A (zh) * 2013-09-30 2015-04-15 芝浦机械电子装置股份有限公司 基板处理方法和基板处理装置
JP2015091571A (ja) * 2013-09-30 2015-05-14 芝浦メカトロニクス株式会社 基板処理方法及び基板処理装置

Similar Documents

Publication Publication Date Title
US20070252207A1 (en) Thin film transistor and method of fabricating the same
US6757031B2 (en) Metal contact structure and method for thin film transistor array in liquid crystal display
KR20010107764A (ko) 박막 트랜지스터 제조 방법
KR0173692B1 (ko) 박막트랜지스터의 제조방법
KR100493382B1 (ko) 액정표시장치의 제조방법
US20050242352A1 (en) Fabrication method of polycrystalline silicon liquid crystal display device
US7011996B2 (en) Method of manufacturing thin film transistor
US20050094041A1 (en) Polycrystalline liquid crystal display device and fabrication method thereof
US6716768B2 (en) Method of manufacturing thin-film transistor, and liquid-crystal display
JP2004125882A (ja) 基板洗浄方法
JP4082157B2 (ja) 電気光学装置用基板の製造方法
JP2004125881A (ja) 基板洗浄方法
JP2004121906A (ja) 基板洗浄方法
JP4118209B2 (ja) 半導体装置、その製造方法および回路の製造方法
JP2004356598A (ja) 基板処理方法及び電気光学装置の製造方法
US6482685B1 (en) Method for fabricating a low temperature polysilicon thin film transistor incorporating multi-layer channel passivation step
JP5419730B2 (ja) 薄膜トランジスタ
JP2005166911A (ja) 半導体装置の製造方法、半導体装置、電気光学装置の製造方法、電気光学装置および電子機器
KR100242946B1 (ko) 박막트랜지스터 및 그 제조방법
JP2004235422A (ja) 基板剥離洗浄方法及び電気光学装置用基板の製造方法
KR100778834B1 (ko) 박막트랜지스터 제조 방법 및 그를 이용한 액정표시소자제조방법
KR100658057B1 (ko) 박막 트랜지스터의 제조 방법
KR0172880B1 (ko) 액정표시장치의 제조방법
JP4226448B2 (ja) Tftアレイ基板、液晶表示装置、及びそれらの製造方法
JP2005128299A (ja) 半導体装置、平面表示装置およびそれらの製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110