JP2004122107A - Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure - Google Patents

Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure Download PDF

Info

Publication number
JP2004122107A
JP2004122107A JP2003117123A JP2003117123A JP2004122107A JP 2004122107 A JP2004122107 A JP 2004122107A JP 2003117123 A JP2003117123 A JP 2003117123A JP 2003117123 A JP2003117123 A JP 2003117123A JP 2004122107 A JP2004122107 A JP 2004122107A
Authority
JP
Japan
Prior art keywords
channel
microchannel
phase
microparticles
continuous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003117123A
Other languages
Japanese (ja)
Other versions
JP4193561B2 (en
Inventor
Akira Kawai
川井 明
Koji Katayama
片山 晃治
Tatsu Futami
二見 達
Katsuyuki Hara
原 克幸
Tomohiro Okawa
大川 朋裕
Keiichiro Nishizawa
西澤 恵一郎
Hideaki Kiritani
桐谷 英昭
Hirotatsu Kusabe
草部 博達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003117123A priority Critical patent/JP4193561B2/en
Publication of JP2004122107A publication Critical patent/JP2004122107A/en
Application granted granted Critical
Publication of JP4193561B2 publication Critical patent/JP4193561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchannel structure capable of producing fine particles, responding to industrial mass production, hardening the fine particles immediately after producing them without breaking the shapes of the produced fine particles and separating the fine particles from the medium, a method for producing the fine particles using the microchannel structure, and to provide a method for extracting a solvent using the microchannel structure. <P>SOLUTION: The microchannel structure comprises a microchannel provided with an introducing port and an introducing channel for introducing a dispersion phase, an introducing port and an introducing channel for introducing a continuous phase, and a discharging port and a discharging channel for discharging the fine particles produced by the dispersion phase and the continuous phase. The dispersion phase introducing channel and the continuous phase introducing channel intersect at an arbitrary angle and the two introducing channels are connected to the discharging channel at an arbitrary angle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、分取・分離用カラム充填剤に用いられる微小粒子や医薬品、含酵素カプセル、化粧品、香料、表示・記録材料、接着剤、農薬等に利用されるマイクロカプセル、化学反応・溶媒抽出等に用いられる微小粒子の生成方法とその用途であり、また、その微小粒子を生成するための微小流路構造体に関する。
【0002】
【従来の技術】
近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路をを有する微小流路構造体を用い、流体を微小流路へ導入することにより化学反応あるいは微小微小粒子の生成を行う研究が注目されている。なおここでいう微小粒子とは、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した微小粒子(以下、「半硬化」という。)や、非常に粘性が高い半固体状の微小粒子も含む。このような微小流路は、微小空間の短い分子間距離および大きな比界面積の効果により、効率の良い化学反応を行なうことができることが示唆されている(例えば非特許文献1参照)。
【0003】
また、界面張力の異なる2種類の液体を、交差部分が存在する流路に導入することにより極めて粒径が均一な微小粒子を生成することができる(例えば、非特許文献2及び特許文献1参照)。例えば、非特許文献2に示されている手法は図1に示すように、微小流路基板(1)の上に、連続相導入口(2)、連続相導入流路(3)、分散相導入口(4)、分散相導入流路(5)、排出流路(7)及び排出口(8)を有したT字型の微小流路構造体であり、導入された連続相と分散相とが合流する部分(以下、「合流部」という。)に合流部(6)が存在する。各流路の深さは100μmであり、分散相を導入する導入流路幅が100μm、連続相を導入する導入流路幅は300〜500μmのT字型微小流路を用いて、分散相と連続相の流れの速さを制御して送液を行うと、合流部において極めて均一な微小粒子の生成が可能となる。また、分散相及び連続相の流量を制御することで生成する微小粒子の粒径を制御することも可能となる。
【0004】
しかしながらこの方法は、連続相の導入流路幅が分散相の導入流路幅に対し、3〜5倍広い導入流路を用いており、分散相及び連続相を同一流速で送液した場合、流路幅が狭い分散相の導入流路内で線速は速くなってしまうため、分散相及び連続相がその合流部以降の流れにおいて層流となってしまうことがあり、結果として合流部において微小粒子生成が出来なくなってしまう課題があった。
【0005】
また、このため、連続相を過剰に供給する必要があるが、微小粒子を生成させて工業的に量産する場合には、分散相の使用量に対し連続相の使用量を過剰にすることが必要となり、低コスト化、あるいは廃液量の低減などの課題があった。
【0006】
また、非特許文献2あるいは特許文献1に示されている手法では、複合カプセルや多重カプセルの作成は困難であり、その改善が求められていた。
【0007】
また、非特許文献2あるいは特許文献1に示されている手法で生成した微小粒子は、粒径のばらつきが比較的小さく均一であるため、微小粒子を形成している化合物を架橋重合させることなどにより硬化させて、分取、分離用カラム充填剤等に用いられる粒径の均一で微小なゲル粒子などに用いることが試みられている。しかしながら、生成した微小粒子を微小流路の外部でビーカーなどに収集し、架橋重合などにより微小粒子を硬化すると、微小粒子を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうこと、また、硬化する前の微小粒子を媒体から分離することが難しいため、その改善が求められていた。
【0008】
また、前述した微小空間の短い分子間距離および大きな比界面積の効果により、効率の良い化学反応を行なうことができることや、界面張力の異なる2種類の液体を、交差部分が存在する流路に導入することにより極めて粒子系が均一な微小粒子を生成することができるような微小空間の特性を生かしたまま、微小流路での化学反応、微小粒子を工業生産に適用しようとする試みも行われている。この場合、微小空間の小ささ故に、単一の微小流路では、単位時間当りの生成量が少なくならざるを得ないが、多数の微小流路を並列に配置することができれば、前記微小流路の特性を生かしたまま単位時間当たりの生成量を増加させることができる(例えば非特許文献3参照)。非特許文献3に示されるように、1本の微小流路を有する微小流路基板を、反応溶液の入り口や反応生成物の出口などの共通部分を貫通した縦穴でつないで積層することなどが試みられている。このように、微小空間の特徴を生かしたまま、大量に化学合成や微小粒子の生成を行なう場合には、最小単位である微小流路の集積度を平面的に高める、あるいは立体的に積層することで可能であると言われているが、平面的あるいは立体的に配置された微小流路へ均一に流体を分配することは、従来非常に困難であり、改善が求められていた。
【0009】
また、非特許文献1には、微小空間での短い分子間距離および大きな比界面積の効果による分子のすみやかな拡散により、特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができることや、反応によって生じた目的化合物が反応相から抽出相へすばやく抽出、分離されることによって、引き続いて起こる副反応が抑えられることが示唆されている。
【0010】
上記の例等では、図2(a)に示すようにY字状の微小流路(16)に原材料を溶かした有機相(12)と水相(13)を導入し、Y字の合流部で形成される有機相と水相の流体境界(14)で反応や抽出を行なっている。一般的に、マイクロスケールの流路内ではレイノルズ数が1より小さいケースがほとんどであり、よほど流速を大きくしない限りは図2(a)に示すような層流の状態となる。また、拡散時間は微小流路の幅(9)の2乗に比例するので、微小流路の幅を小さくするほど反応液を能動的に混合しなくとも分子の拡散によって混合が進み、反応や抽出が起こりやすくなる。また、一般に反応や抽出は比界面積が大きいほど効率が良い。ここで比界面積とは、相同士が接触することで界面を形成している時の、相の総体積に対する界面の面積比を意味する。反応や抽出において、物質は界面を通してのみ他の相へ移動できるので、比界面積が大きいということは、それだけ反応や抽出の効率が高いことを意味する。
【0011】
以下では、図2(b)を用いて微小流路内の比界面積の計算方法を示す。図2(b)は、図2(a)のY字流路の合一部の一部分を切り出した立体断面図である。微小流路の幅(9)をW[μm]、微小流路の単位長さ(24)をL[μm]、微小流路の深さ(25)をd[μm]とすると、有機相(12)の総体積は、(W/2)×d×L[μm]となる。また、水相と有機相の流体境界(14)の面積は、d×L[μm]となる。従って比界面積は、(d×L)/{(W/2)×d×L}=2×10/W[cm−1]となり、微小流路の長さや深さ(d)に関係なく微小流路の幅(W)だけで決まることが分かる。例えば、微小流路の幅が1000[μm]の比界面積は、20[cm−1]であるのに対して、微小流路の幅が100[μm]の比界面積は、200[cm−1]となる。従って、微小流路の幅を小さくするほど比界面積が大きくなり、反応や抽出の効率が良くなる。
【0012】
しかしながら、前述した図2(a)に示すような層流間での反応や抽出の効率は、逆に言えば拡散時間の短縮と流体境界の比界面積の大きさ、すなわち微小流路の幅で制限されることを意味している。すなわち、反応や抽出に使用する微小流路の幅によって拡散時間と流体境界の比界面積が決まってしまい、反応や抽出の効率を微小流路の幅で決定される効率以上に向上させることができない。また、前述したように微小流路の幅を小さくすればさらに拡散時間を短くして比界面積を大きくでき、反応や抽出の効率を向上させることは可能だが、微小流路の幅が小さいほど圧力損失が大きく送液自体が難しくなり現実的でないため微小流路の幅を小さくすることには限界があり、その改善が求められていた。
【0013】
【非特許文献1】
H.Hisamoto et.al.(H.ひさもと ら著)「Fast and high conversion phase−transfer synthesis exploiting the liquid−liquidinterface formed in a microchannel chip」, Chem.Commun., 2001年発行, 2662−2663頁
【非特許文献2】
西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行
【非特許文献3】
菊谷ら、「パイルアップマイクロリアクターによる高収量マイクロチャンネル内合成」、第3回化学とマイクロシステム研究会公演予稿集、9頁、2001年発行
【特許文献1】
特許第2975943号
【0014】
【発明が解決しようとする課題】
以上のように従来技術による微小流路内における微小粒子生成の第1の課題は、微小流路において連続相と分散相の合流部で均一な微小粒子を生成する際に分散相及び連続相が層流を形成してしまい合流部において安定して微小粒子を生成することができなくなることである。
【0015】
第2の課題は、合流部で微小粒子を生成させるためには連続相を過剰に供給する必要があり、例えばゲル製造における連続相の低コスト化、工業的な量産、あるいは微小粒子の生成自体が困難なことである。
【0016】
第3の課題は複合カプセルや多重カプセルの生成を可能にすることである。
【0017】
第4の課題は、生成した微小粒子が微小液滴の場合、微小流路の外部でビーカーなどに収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうことである。また、硬化する前の微小粒子を媒体から分離することが難しいことである。
【0018】
第5の課題は、微小流路構造体に平面的あるいは立体的に配置された複数の微小流路へ均一に流体を分配することは、従来非常に困難なことである。
【0019】
第6の課題は、反応や抽出の効率を微小流路の幅で決定される効率以上に向上させることができないことである。
【0020】
本発明の目的は、上記課題を鑑みてなされたもので、微小流路内での微小粒子生成、複合カプセルや多重カプセルの生成を可能とすると共に、複数の微小流路に均一に流体を分配することにより工業的な量産にも対応でき、また、微小流路を用いて生成した微小粒子の形状を崩さずに微小粒子を生成した直後に微小粒子を硬化させ、微小粒子を媒体から分離することができる微小粒子製造方法及びそのための微小流路構造体を提供することにある。
【0021】
さらにはゲルやマイクロカプセルの製造方法を提供することにある。
【0022】
また、この微小流路構造体を用い、微小流路の幅で決定される以上の拡散時間の短縮と流体境界の比界面積の大きさを得ることによって、微小流路内における抽出の効率を微小流路の幅で決定される効率以上に向上する溶媒抽出方法を提供することにある。
【0023】
【課題を解決するための手段】
上記課題を解決する本発明の微小流路構造体は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、前記2つの導入流路が任意の角度で排出流路へと繋がる微小流路構造体である。また、多数の前記微小流路を並列化及び/または積層化して微小粒子を大量に生産するための形態としては、流体を導入するための導入口及び流体を排出するための排出口を備え、基板上に前記導入口及び排出口と連通する共通流路と、前記導入口及び排出口とは異なる位置で前記共通流路と連通する1以上の微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じである微小流路構造体である。
【0024】
また、本発明の微小粒子製造方法は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路構造体を用いて微小粒子を生成する方法であって、主として分散相と連続相とを合流させる合流部において、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御することにより分散相を微小粒子化する微小粒子製造方法である。さらに、上記微小流路構造体を用いることで、微小粒子の中でも、マイクロカプセルやゲルのようなものも製造できる。
【0025】
また、微小流路内において抽出溶媒あるいは被抽出物質含有の流体を微小液滴化した後、前記微小液滴からなる分散相と前記微小液滴を囲む連続相との間で被抽出物質の相間移動により溶媒抽出を行なう溶媒抽出方法として用いることもできる。
【0026】
以下、本発明をさらに詳細に説明する。
<微小粒子製造方法>
本発明において用いられる微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路を示す。
【0027】
また本発明における微小粒子とは、微小流路内で連続相が分散相をせん断することで生成される微小粒子であり、その微小粒子サイズは、一般的に直径が微小流路の幅あるいは深さよりも小さい。例えば、幅が100μm、深さが50μmの微小流路で生成される微小粒子の大きさは、微小粒子が完全球体であると仮定するとその直径は50μmより小さい。また本発明における微小粒子は、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した半硬化の微小粒子や、非常に粘性が高い半固体状の微小粒子も含む。
【0028】
また、本発明において用いられる分散相とは、微小流路構造体により微小粒子を生成させるための液状物であり、例えば、スチレンなどの重合用のモノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。ここで分散相としては、本発明が微小な微小粒子を効率的に生成させることを目的としており、この目的を達成させるためであれば微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分も特に制限されない。また、分散相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。
【0029】
本発明において用いられる連続相とは、微小流路構造体により分散相より微小粒子を生成させるために用いられる液状物であり、例えば、ポリビニルアルコールのようなゲル製造用の分散剤を適当な溶媒に溶解した媒体を指す。ここで連続相としては分散相と同様に、微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分は特に制限されない。また、連続相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。生成する微小粒子組成の観点から見た場合は、微小粒子の最外層が有機相であれば連続相の最外層は水相となり、微小粒子の最外層が水相であれば連続相の最外層は有機相となる。
【0030】
さらに、分散相と連続相とは微小粒子を生成させるために、実質的に交じり合わないあるいは相溶性がないことが好ましく、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相が用いられることとなる。また、連続相として水相を用いた場合にはその逆となる。
【0031】
本発明の微小粒子製造方法は、前述した分散相と連続相とを後述する本発明における微小流路構造体へその導入流路より導入し、両者が合流する合流部で分散相を連続相でせん断し微小粒子を生成させるものであるが、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることで、生成する微小粒子の粒径を制御することが可能である。これは、従来の微小流路構造体を使った微小粒子の生成においては、分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適している。特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、導入装置を1個用意することで足りるなどコスト面においても優れている。尚、ここでいう分散相の導入速度と連続相の導入速度とが実質的に同じとは、導入速度が多少変動があっても生成する微小粒子の粒径には大きな影響を与えないことを意味している。このようにすることで、安定した粒径の微小粒子を生成することができ、連続相を過剰に供給する必要がなくなり、例えばゲル製造における連続相の低コスト化、工業的な量産が可能となる。
【0032】
本発明における連続相と分散相との合流の方式としては、基本的には図3に示すようなY字型の微小流路の連続相導入口(2)から連続相を導入し、分散相導入口(4)から分散相を導入し合流部(6)で分散相を連続相によりせん断して微小粒子(17)を生成する。しかしながら本発明はこの方式に限定されるものではなく、図4に示すように、微小流路(16)で分散相(15)を連続相(10)が挟み込むように接触させて分散相を合流部(6)においてせん断して微小粒子(17)を生成する方式でも良いし、図5に示すように、微小流路(16)で連続相(10)を挟み込むように2以上の分散相(15)が接触し、分散相が連続相で合流部(6)においてせん断して微小粒子(17)を生成する方式でも良いし、図6に示すように、直線状に、微小流路(16)の一方の側より分散相(15)を、もう一方の側より連続相(16)を導入し、合流部(6)において分散相と連続相とを合流させることで微小粒子(17)を生成させ、合流した位置より1又は2以上の任意の方向へ排出させる方式でも良い。このようにすることで、微小粒子をより効率的に生成させることができる。なお、図6の方式の場合、生成した微小粒子を含む流体を、再度合流させて生成した微小粒子を回収することができる。
【0033】
また、図7(a)〜(g)に示すように、1または複数の分散相(15)を導入する分散相導入流路(5)や1または複数の連続相(10)を導入する連続相導入流路(3)を設けることで、分散相や連続相を、複数の流体の層流または混合液または懸濁液(エマルション)とすることができる。このようにすることで、多層構造の微小粒子や、異なった多種の微小粒子を含有した微小粒子を形成することができ、複合マイクロカプセルや多重マイクロカプセルを生成することができる。なお、連続相、分散相あるいはその両者には微小な粉末を含んでいてもよい。
【0034】
また本発明において、微小流路の合流部で生成した微小粒子が微小液滴であって微小液滴を硬化させる場合、微小流路中及び/又は微小流路の外において硬化させるとよい。さらに、硬化した微小粒子の粒径を均一にするために、微小液滴が排出流路を通過して排出部から出た後、微小流路構造体の排出部から微小流路構造体の外部に設けられた微小流路で連続的に硬化しても良い。さらに、硬化した微小粒子の粒径をより均一にするためには、微小流路の合流部で微小液滴が生成した直後に、微小流路構造体中の微小流路すなわち排出流路で硬化させることがより好ましい。
【0035】
本発明における微小液滴を硬化する手段の一つは、微小液滴に光を照射することにより硬化させるものであり、この場合の光は、硬化させる微小液滴の材質を比較的多くの材質から選択できることから、紫外線であることが好ましい。光照射(21)は、図8(a)に示すように微小流路構造体(19)の排出口(8)から微小液滴が微小流路構造体の外部に出た後に行なっても良いが、微小粒子の粒径をより均一にするためには、図8(b)に示すように、微小流路の合流部(6)で微小液滴が生成した直後に光照射(21)を行ない微小流路構造体(19)の中の排出流路(7)で硬化することがより好ましい。しかしながら、微小流路構造体中の排出流路において光照射を行なう場合は、微小液滴が生成される前に分散相に光照射されて硬化しないように、微小液滴が生成される前の排出流路の部分と、光照射して微小液滴を硬化させる排出流路の部分は、図8(b)に示すように、微小流路構造体の必要なところだけに光照射スポット(20)があたるようにマスク(22)を設置しておく必要がある。
【0036】
また本発明における微小液滴を硬化する別の手段は、微小液滴を加熱することにより硬化させる手段を用いた微小粒子製造方法である。図9(a)に示すように微小流路構造体(19)の排出口(8)から微小液滴が微小流路構造体の外部に出た後にヒーター(28)などにより加熱を行なっても良いが、微小粒子の粒径をより均一にするためには、図9(b)に示すように、微小流路の合流部(6)で微小液滴が生成した直後にヒーターなどにより加熱を行ない微小流路構造体中の排出流路(7)で硬化することがより好ましい。しかしながら、微小流路構造体中の排出流路において加熱を行なう場合は、微小液滴が生成される前に分散相が加熱されて硬化しないように、微小液滴が生成される前の排出流路の部分と、加熱して微小液滴を硬化させる排出流路の部分は、断熱材などを微小流路構造体の中に埋め込むなどの既知の断熱手法により熱的に絶縁しておく必要がある。
【0037】
なお、本発明において光照射あるいは加熱により微小液滴を硬化させる場合は、微小液滴全体を硬化させても良いが、半硬化させるなどにより、微小液滴の形状が崩れや微小液滴同士の合一が生じない程度に硬化させても良い。この場合、半硬化させた微小粒子をビーカー等で回収し、再度光照射や加熱により完全に硬化させることで、粒径が均一な微小粒子を得ることができる。
このようにすることで微小流路の合流部で生成した微小粒子が微小液滴の場合、微小流路の外部でビーカーなどに収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうことが無くなり、粒径が均一な微小粒子を得ることができる。また、微小液滴を硬化することにより媒体から分離することが容易になる。
【0038】
以上のように、本発明の微小粒子製造方法の最も好ましい態様の一つとしては、分散相がゲル製造用原料を含む媒体であり、分散相を導入するための導入口及び導入流路と、連続相がゲル製造用分散剤を含む媒体であり、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路構造体を用いて微小粒子を生成する方法であって、分散相と連続相とを合流させて分散相を微小粒子化し、前記分散相を導入するための導入流路と前記連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御し、微小粒子を微小流路中及び/又は微小流路の外において、光照射及び/又は加熱により硬化させる方法となる。
【0039】
本発明の微小粒子製造方法において、微小粒子の用途の例として、高速液体クロマトグラフィー用カラムの充填剤、シールロック剤などの接着剤、金属粒子の絶縁粒子、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などのマイクロカプセルやゲルが挙げられる。
<微小流路構造体>
本発明の微小流路構造体は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、前記2つの導入流路が任意の角度で排出流路へと繋がる構造であることを特徴とする微小流路構造体であり、その形態の例として、図3〜図7に示すような、微小流路構造体である。なお、本発明の微小流路構造体は図3〜図7の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。また、本発明の微小流路構造体の流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上3.0未満であることを特徴とする微小流路構造体である。
【0040】
ここで、分散相を導入するための導入口は分散相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて分散相を連続的に導入する機構としてもよい。同様に、連続相を導入するための導入口についても、連続相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて連続相を連続的に導入する機構としてもよい。
【0041】
分散相を導入するための導入流路は導入口と連通しており、分散相が導入され、この導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その幅は約300μm以下で、排出流路も含め任意の角度で合流する形状となっておればよい。同様に、連続相を導入するための導入流路についても、導入口と連通しており、連続相が導入され、この導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その幅は約300μm以下で、排出流路も含め任意の角度で合流する形状となっておればよい。
【0042】
排出流路は上記の2つの導入流路及び排出口と連通しており、分散相と連続相が合流後、この排出流路に沿って送液され、排出口より排出される。排出流路の形状は特に制限されないが、その幅は約300μm以下で、導入流路も含め任意の角度で合流する形状となっておればよい。また、排出流路は任意の角度で合流部から別れた2以上の排出流路であっても良い。排出口は、生成された微小粒子を排出させるための開口部を意味し、さらに、この排出口に適当なアタッチメントを備えて生成された微小粒子を含む相を連続的に排出する機構としてもよい。尚、これら流路は本明細書においては微小流路ということがある。
【0043】
さらに、本発明の微小流路構造体においては、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、これらの導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような2つの導入流路の交差する角度が任意の角度とすることで、合流部で生成する微小粒子を所望の粒径へと制御することが可能となる。交差角度の設定については、目的とする微小粒子の粒径に応じて適宜決めればよい。
【0044】
導入流路、排出流路の断面形状としては、流路断面のアスペクト比が0.30以上3.0未満であることがこのましい。アスペクト比がこの範囲にあれば、合流部において均一な微小粒子を生成させることができる。この範囲を逸脱して、アスペクト比が0.30未満または3.0以上となると均一な微小粒子を生成させることが困難となることがある。
【0045】
さらに、分散相を導入するための導入流路と連続相を導入するための導入流路の幅及び深さが等しい場合には上記の効果に加え、微小流路構造体の設計が容易となり、また、送液時の制御もより容易となって、工業的量産に好適となる。
【0046】
また、導入流路の幅と排出流路の幅との関係において、導入流路の幅≧排出流路の幅であれば、導入流路の幅<排出流路の幅よりも、送液速度を増加しても合流部において均一な微小粒子の生成が可能となり、微小粒子の生成速度を増加させることができるという効果を奏することができ、好ましい態様となる。
【0047】
排出流路の幅としては、分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっていることが好ましい。すなわち、微小粒子の排出口に至るまでの間の内、導入流路と排出流路の合流部において部分的に狭くする、あるいは分散相流路に沿った流路構成壁を凸状に形成する、あるいは図32(a)〜(e)に示すように流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成することで、送液速度を増加しても合流部において均一な微小粒子の生成が可能でありかつ、送液圧力の上昇を緩和することが可能とすることができ、好ましい態様となる。
【0048】
さらに、この排出流路の幅が狭くなっている部位が、排出流路中の交差部又はその近傍にあることが好ましく、特に、排出流路の幅が狭くなっている部位が、排出流路の交差部の分散相の導入流路側にあることが好ましい。
【0049】
また、本発明の微小流路構造体は、微小流路構造体の中に複数の微小流路を平面的あるいは立体的に配置することで工業的に大量の微小粒子を生成することができる。しかしながら、平面的あるいは立体的に配置された複数の微小流路に均一に流体を分配する必要がある。このため、本発明の微小流路構造体は、流体を導入するための導入口及び流体を排出するための排出口を備えかつ、基板上に導入口及び排出口と連通する共通流路と、導入口及び排出口とは異なる位置で共通流路と連通する微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じであることが好ましい。
【0050】
上記微小流路構造体の最も基本的な概念図を図10に示す。共通流路(29)の両端に流体を導入するための共通流路導入口(32)と流体を排出するための共通流路排出口(31)を設け、共通流路導入口と共通流路排出口の間に、共通流路よりも内径(流路幅)が小さい微小流路(16)を基板上に配置した。一般的に、微小流路の内径は、数十〜300μm程度である。これに対し、共通流路の内径は、500μm〜数mm程度であることが望ましい。共通流路導入口と共通流路をつなぐ流路の内径に特に制限はないが、共通流路と同様に500μm〜数mm程度であることが望ましい。共通流路排出口と共通流路をつなぐ流路の内径も特に制限はないが、微小流路と同様に数十〜300μm程度が望ましい。
【0051】
また、微小流路の配置については、共通流路導入口及び共通流路排出口とは異なる位置で共通流路と連通しておれば特に制限はない。この点をさらに具体的に示せば、図10に示すように、共通流路導入口に最も近い微小流路Yから共通流路排出口に最も近い微小流路Yまでn本の微小流路が共通流路と連通した微小流路構造体の共通流路において、共通流路導入口との連通位置をX、共通流路導入口に最も近い微小流路Yの連通位置をX、連通位置Xと連通位置Xとの間の共通流路に沿った長さをa、共通流路排出口との連通位置をXn+1、共通流路排出口に最も近い微小流路Yの連通位置をX、連通位置Xと連通位置Xn+1との間の共通流路に沿った長さをan+1としたとき、YからYまでの微小流路に均一に流体を分配でき、さらに微小液滴の生成を効率的に行なうことができるために、aからaがすべて等しくなる配置とすることが好ましい。さらに、a〜an+1をすべて等しくすることでこの効果をさらに向上させることができる。
【0052】
また、このような微小流路構造体において、基板上に複数の共通流路を有し、各々の共通流路が微小流路と連通させた構造としてもよい。
【0053】
図11〜図14には、本発明のいくつかの形態の概念図を示す。なお本発明は、これらの形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。
【0054】
図11は、共通流路(19)の内径が共通流路導入口(32)から共通流路排出口(31)に向かって次第に大きくなる例である。この場合、共通流路導入口付近の共通流路の内径(bで示される)は500μm〜1mm程度であり、共通流路排出口付近の共通流路の内径(cで示される)は数mm程度である。
【0055】
図12は、2本の共通流路(29)からYからYと示される微小流路(16)を引き出してY字状に合流させた例である。図12に示される微小流路構造体を用いて、2本の共通流路に本発明の微小粒子製造方法に用いる連続相と分散相をそれぞれ導入することで、複数のY字状の微小流路に均等に連続相と分散相を分配することができ、すべての微小流路に同じ条件で、極めて粒子系が均一な微小液滴を生成することができる。この形態は、微小流路基板が角型の基板である場合、平面的に多数の微小流路を集積する際に効果的である。
【0056】
図13は、共通流路(29)を円弧状に配置した例である。この場合、微小流路(16)は円弧の中心から等角度dで放射状に配置した。この形態は、微小流路基板が円盤状の基板である場合、平面的に多数の微小流路を集積する際に効果的である。この場合、図10におけると同様に、共通流路導入口(32)との連通位置をX、共通流路導入口に最も近い微小流路Yの連通位置をX、連通位置Xと連通位置Xとの間の共通流路に沿った長さをaなどとしたとき、a〜an+1とは、円弧状の共通流路の中心に沿った長さを意味する。
【0057】
図14は、微小流路(16)を有する微小流路基板(1)を重ねあわせ、共通流路(29)を前記微小流路基板を貫通させて構成した例である。この形態は、微小流路基板を積層し、立体的に多数の微小流路を集積する際に効果的である。この貫通孔の内径の大きさも、図11と同様に流体の共通流路導入口(32)から流体の共通流路排出口(31)に向かって次第に大きくなっても良い。
【0058】
また、図10〜図14に示した本発明の様々な形態において、共通流路導入口(32)には一般にシリンジポンプなどの送液ポンプを用いて流体を導入するが、共通流路に配置された共通流路排出口(31)から排出された流体を回収し、再び送液ポンプに戻して再度送液できる、すなわち、複数の共通流路の各々が微小流路と連通させ、共通流路排出口から排出された流体を各々の共通流路導入口へ戻す構造としても良く、このようにすることで、導入する連続相及び/または分散相を無駄無く使用することができる。さらに、共通流路の少なくとも1つに分散相を、少なくとも1つに別の共通流路にに連続相を導入し排出することが好ましい。
【0059】
本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、分散相と連続相を導入するための導入部及び導入流路と、導入流路が交わる合流部と、液体を排出させるための排出流路及び排出口を備えた微小流路構造体が、少なくとも一方の面に微小流路が形成された基板と、微小流路が形成された基板面を覆うように、微小流路の所定の位置に、微小流路と微小流路構造体外部とを連通するための小穴が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から微小流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して微小流路内を通過させることが可能となる。流体の送液は、マイクロポンプなどの機械的手段によって可能となる。
【0060】
微小流路が形成された基板及びカバー体の材質としては、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、微小流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数mm以下であることが望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。
【0061】
また本発明の微小流路構造体は、微小流路が形成された基板とカバー体は、熱処理接合あるいは光硬化樹脂や熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。
<微小流路構造体による溶媒抽出方法>
本発明の微小流路構造体を用いることで、微小流路内において抽出溶媒あるいは被抽出物質含有の流体を微小液滴化した後、微小液滴からなる分散相と微小液滴を囲む連続相との間で被抽出物質の相間移動により溶媒抽出を行なう溶媒抽出方法としての用途が挙げられる。
【0062】
なお、本発明の溶媒抽出法においては、抽出溶媒あるいは被抽出物質含有の流体のどちらか一方を分散相とし、別の一方を連続相として、任意に選択することができる。ここで、被抽出物質とは抽出対象となる物質を示し、被抽出物質含有の流体とは被抽出物質を溶解している液体を意味する。抽出溶媒とは被抽出物質含有の流体から被抽出物質を抽出する液体を意味し、被抽出物質を溶解でき、被抽出物質含有の流体よりも被抽出物質に対する溶解度が高いことが望まれる。また溶媒抽出とは、被抽出物質が被抽出物質含有の流体から抽出溶媒に相間移動により移動することを意味し、相間移動とは被抽出物質含有の流体の相から抽出溶媒の相への移動を意味する。
【0063】
本発明では、抽出溶媒あるいは被抽出物質含有の流体のどちらか一方を分散相とし、別の一方を連続相として、任意に選択することができる。また、微小液滴のサイズは、一般的に直径が微小流路の幅あるいは深さよりも小さい。例えば、幅が100μm、深さが50μmの微小流路で生成される液滴の大きさは、液滴が完全球体であると仮定するとその直径は50μmより小さい。
【0064】
この溶媒抽出方法が、微小流路の幅で決定される以上の拡散時間の短縮と流体境界の比界面積の大きさを得ることで微小流路内における抽出効率を微小流路の幅で決定される効率以上に向上させることを図15により説明する。
【0065】
図15に示すように球状の微小液滴の直径(33)をD[μm]とすると、微小液滴の総体積は(4π/3)×(D/2)[μm]となる。また、微小液滴の表面積は、4π×(D/2)[μm]となる。従って、微小液滴(34)とその周囲の媒体との比界面積は、{4π×(D/2)}/{(4π/3)×(D/2)}=6×10/D[cm−1]となる。一方、図1に示したように微小流路(16)に形成された流体境界(14)の比界面積は、2×10/W[cm−1]である。一般に、微小流路により形成される微小液滴の直径Dは、微小流路の幅(9)Wよりも小さいので、D<Wであることから、微小流路で微小液滴を生成すればその比界面積は、単に微小流路で形成される流体境界の比界面積よりも大きくなり、かつ微小液滴と周囲の溶媒との拡散時間も、微小流路で単に層流を形成させたときの拡散時間よりも短くなる。従って、微小流路で抽出溶媒あるいは被抽出物質含有の流体の微小液滴を形成すれば、微小流路の幅で決定される以上の拡散時間の短縮と流体境界の比界面積の大きさを得ることができ、微小流路における抽出効率を微小流路の幅で決定される効率以上に向上することができる。
【0066】
また微小液滴化する対象は、抽出溶媒であっても被抽出物質含有の流体であってもよいが、選択的にどちらかを微小液滴化することで、抽出後に抽出相をより分離しやすい様態に合わせて微小液滴化する対象を選択することができる。本発明の微小粒子製造方法では、合一するそれぞれの流体の流速を適切に制御するか、微小流路内壁の親水性、疎水性をそれ自体は公知の方法により変えることで微小液滴化する対象を抽出溶媒にするか被抽出物質含有の流体にするか選択することができ、抽出後に抽出相をより分離しやすい様態に合わせて微小液滴化する対象を選択することができる。また微小液滴の直径は、流速や微小流路の合流部で合一する角度や、微小流路の幅と深さ、あるいはこれらを組合わせることで制御することができ、比界面積をより正確に制御できる。
【0067】
また本発明の溶媒抽出方法は、被抽出物質が2種以上の流体を化学反応させて得られる生成物であり、被抽出物質含有の流体が原材料を含有する2種以上の流体を別々に微小流路に導入し接触させて得られた流体であっても良い。このようにすることで、微小流路内で反応させて得られた生成物を生成直後から速やかに溶媒抽出することができ、副反応の抑制や、平衡反応の制御を行なうことが可能となる。
【0068】
図16は、被抽出物質含有の流体が、原材料を有する流体A(35)と流体B(36)を別々に微小流路(16)に導入し微小流路内の反応相(37)で混合し反応させた流体である場合の概念を示した図である。図16の例では、被抽出物質含有の流体を連続相(10)とし、抽出溶媒(38)を分散相(15)とした。
【0069】
また本発明の溶媒抽出方法は、原材料を含有する2種以上の流体と抽出溶媒を別々に微小流路に導入し、原材料を含有する2種以上の流体を接触させて得られる被抽出物質を抽出溶媒相へと抽出させる方法において、原材料を含有する2種以上の流体は層流を形成しその流体境界で被抽出物質が生成され、抽出溶媒はこの原材料を含有する2種以上の流体で合流部においてせん断されて流体境界上で液滴が形成され、生成された被抽出物質は抽出溶媒の液滴へと抽出という態様をとっても良い。このようにすることで、反応系に用いられている溶媒以外の溶媒を抽出溶媒として導入することができ、例えば生成物の抽出効率がより高い溶媒を抽出溶媒として用いることができる。また、流体境界で生じる反応により生成した生成物を生成直後から速やかに溶媒抽出することができるので、副反応の抑制や平衡反応の制御を行なうことが可能となる。
【0070】
図17は、流体境界(14)で生じる反応により生成物を得るための微小流路(16)において、原材料を有する流体A(35)と流体B(36)を連続相(10)とし、この連続相により、流体境界で抽出溶媒(38)をせん断することにより流体境界に微小液滴(34)を形成することで、流体境界に生成した生成物を抽出する概念を示した図である。
【0071】
また本発明の微小粒子の用途としての溶媒抽出方法は、微小流路内で溶媒抽出を行なったあと、前記微小液滴の少なくとも表面を硬化することにより、連続相と分散相を分離しても良い。このようにすることで、微小液滴の分散相と微小液滴を取り囲む連続相をより容易に分離することができ、抽出溶媒と被抽出物質が含まれていた流体とを容易に分離することができる。
【0072】
例えば、図18に示すように被抽出物質含有の流体を微小液滴化して分散相(15)とし、連続相(10)である抽出溶媒(38)に被抽出物質を相間移動により溶媒抽出(39)を行なったあと、紫外線による光照射(21)により微小液滴(34)の少なくとも表面を硬化することで微小粒子(17)を形成すれば、連続相の液相と微小粒子の固相をろ過等の手法を用いて容易に分離することができ、被抽出物質を容易に回収できる。なお図18の例では、分散相としての被抽出物質含有の流体は、紫外線照射により硬化する液体を選択している。
【0073】
また逆に、図19に示すように被抽出物質含有の流体を連続相(10)とし、微小液滴化して分散相(15)とした抽出溶媒(38)に被抽出物質を相間移動により溶媒抽出(39)を行なったあと、紫外線照射により微小液滴(34)の少なくとも表面を硬化することで微小粒子(17)を形成すれば、同様に連続相の液相と微小粒子の固相をろ過等の手法を用いて容易に分離することができる。この場合は、被抽出物質を内部に有する表面が硬化されて微小粒子の表面を、化学的あるいは機械的などの手法により引き割り、微小粒子内部に存在する被抽出物質を取出せば良い。なお図19の例では、分散相としての抽出溶媒は、紫外線照射により硬化する液体を選択できる。
【0074】
以上の図18、図19の例では、微小液滴の表面を硬化する手段を紫外線照射とした例であるが、紫外線照射の他にも図9に示すような加熱や化学反応により架橋や重合など、硬化させる分散相の材質にあわせて選択すれば良い。
【0075】
【発明の実施の形態】
以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
【0076】
(実施例1)
本発明の第1の実施例における微小流路を図20に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(2)、分散相導入流路(4)及び排出流路(7)の幅がいずれも220μm、深さ80μm、微小流路のアスペクト比=0.36、排出流路の長さが30mmで、連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる合流部を持ったY字形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。
この微小流路を有する微小流路構造体は、図21に示すように、厚さ1mmで70mm×20mmのガラス基板の一方の面に、微小流路を一般的なフォトリソグラフィーとウェットエッチングにより形成し、この微小流路が形成されたガラス基板の微小流路を有する面に、微小流路の導入口(11)と排出口(8)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体(30)を熱接合し製作した。なお、製作方法および基板材料はこれに限定するものではない。
【0077】
次に本発明の微小粒子製造方法について説明する。図22に示すように微小流路構造体(19)に液体が送液可能なようにホルダー(23)などで保持すると共に、テフロン(登録商標)チューブ(27)及びフィレットジョイント(40)をホルダーに固定する。テフロン(登録商標)チューブのもう一方はマイクロシリンジ(42)に接続する。これで微小流路構造体に液体の送液が可能となる。次に微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をそれぞれのマイクロシリンジに注入し、マイクロシリンジポンプ(41)で送液を行った。送液速度は分散相及び連続相は共に20μl/minである。送液速度が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部にて、図23に示すような微小粒子の生成が観察された。生成された微小粒子を観察すると図24に示すように平均粒径200μm、粒径の分散度を示すCV値(%)は9.8%となり、極めて均一な微小粒子(17)であった。また、送液速度を分散相及び連続相を共に1μl/minで行った場合、生成した微小粒子の平均粒径は230μm、粒径の分散度を示すCV値(%)は9.5%となり、極めて均一な微小粒子であった。これにより分散相と連続相を同一の送液速度にて行っているので、連続相を過剰に送液することなく、均一な微小粒子を生成することが可能となる。
【0078】
(実施例2)
本発明の第2の実施例における微小流路を図25に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも185m、深さ75μm、微小流路のアスペクト比=0.41、排出流路(7)の長さが30mmで、連続相導入流路と分散相導入流路とが22°及び44°の角度にて交わる合流部を持ったY字形状の流路を2本形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。この微小流路を有する微小流路構造体は、実施例1と同様な方法で作製した。
【0079】
次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行い、連続相導入流路と分散相導入流路との交差部角度が44°及び22°における比較を行った。送液速度は分散相及び連続相は共に20μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部にて微小粒子の生成が観察された。生成された微小粒子を観察すると、合流部が22°の角度で交わる場合は平均粒径180μm、粒径の分散度を示すCV値(%)は8.7%となり、44°の場合は平均粒径160μm、粒径の分散度を示すCV値(%)は9.2%であった。また、送液速度は分散相及び連続相は共に5μl/minで行った場合の生成させた微小粒子を観察すると、合流部が22°で交わる場合は平均粒径250μm、粒径の分散度を示すCV値(%)は9.4%となり、44°の場合は平均粒径220μmであり、粒径の分散度を示すCV値(%)は8.5%となり、合流部の角度が22°の場合に対し、合流部の角度が44°の場合は0.89倍の粒径となる。これにより導入流路の幅及び深さが一定であると共に、導入する分散相及び連続相の送液速度の条件を変えることなく、導入流路の合流部の角度のみを変えることで粒径をコントロールが可能となる。
【0080】
(比較例1)
比較例1における微小流路を図26に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも130μm、深さ35μm、微小流路のアスペクト比=0.27、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる合流部を持ったY字形状の流路を1本形成した。この微小流路構造体は実施例1と同様な方法で作製した。
【0081】
次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液速度は分散相及び連続相は共に5μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部を観察すると、微小粒子生成が確認出来るが、排出流路内で分離・合一が発生し、生成された微小粒子を観察すると、粒径の分散度を示すCV値(%)は36.5%となり、分散性の悪い微小粒子であった。このアスペクト比の微小流路構造体で分散性の良好な微小粒子の生成を行う場合には、送液速度を連続相>分散相、具体的には5:1以上の流速比を与えて、連続相を過剰に送液する必要がある。
【0082】
(実施例3)
本発明の第3の実施例における微小流路を図27(a)に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも146μm、深さ55μm、微小流路のアスペクト比=0.38、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる合流部を持ち、且つ、分散相導入流路と排出流路との合流部に図27(b)の拡大図に示すような排出流路幅の一部を突起状にしたY字形状の流路を形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。また、突起のサイズについては微小粒子の粒径及び導入流路内圧に対するポンプ能力により適宜調整すれば良いが、今回は図27(b)に示すK−K’幅として116μmとした。この微小流路を有する微小流路構造体は、実施例1と同じ方法で作製した。
【0083】
次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行い、連続相導入流路と分散相導入流路及び排出流路との交差部位に図27(c)に示す突起の存在しない流路にて比較を行った。送液速度は分散相及び連続相は共に同じとし、微小粒子の生成が可能な流速を計測したところ、突起を有する微小流路構造体における微小粒子の生成可能な流速は10μl/min、図27(c)に示すような突起が無い微小流路構造体においては8μl/minであった。
突起を有する微小流路構造体にて生成された微小粒子を観察すると、平均粒径110μm、粒径の分散度を示すCV値(%)は6.3%となり、良好な粒径分散度が得られている。これにより排出流路内に突起を設けることにより良好な分散度を維持し、且つ生成微する微小粒子の量を増加させることが可能となる。
【0084】
(実施例4)
本発明の第4の実施例における微小流路を図28に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する2本の連続相導入流路(3)、1本の分散相導入流路(5)及び排出流路(7)の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが、2本の連続相導入流路で1本の分散相導入流路を挟む様に、各々22°の角度にて交わる合流部を持った形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する微小粒子の粒径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。なお、この微小流路構造体は、実施例1と同様な方法で作製した。
【0085】
次に実施例1と同様に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行なった。分散相は、中央の分散相導入流路から、連続相は分散相導入流路の両側にある連続相導入流路から導入した。送液速度は分散相及び連続相は共に6μl/minである。送液速度が共に安定した状態で、微小粒子製造用微小流路構造体の分散相及び連続相が交わる合流部にて微小粒子の生成が観察された。生成された微小粒子を観察すると平均粒径77μm、粒径の分散度を示すCV値(%)は7.0%となり、極めて均一な微小粒子であった。
【0086】
(実施例5)
第5の実施例として、図29に示すような4本の流路を持つ微小流路構造体を製作した。形成した微小流路(16)の幅は100μm、深さは40μmであり、流体導入口A(43)、流体導入口B(44)、流体導入口C(45)、および流体導入口と繋がる層流流路(46)と、層流流路とつながる微小流路は、それぞれ44°の角度で合流させた。この微小流路を有する微小流路構造体を実施例1と同様な方法で製作した。この微小流路の流体導入口Aから分散相として、有機相のジビニルベンゼン、酢酸ブチルの混合溶液を送液し、流体導入口Bから水相のポリビニルアルコール3%水溶液を送液しさらに、流体導入口Cからから連続相として水相のポリビニルアルコール3%水溶液を送液した。送液は、実施例1と同様にマイクロシリンジに流体を注入し、マイクロシリンジポンプで行った。送液速度は流体導入口A及び流体導入口Bからは5μl/min、流体導入口Cからは10μl/minで送液した。送液速度が共に安定した状態で、流体導入口Aと流体導入口Bの層流合流部(47)から、合流部(6)まで層流が観察された。また連続相合流部で微小粒子の生成を確認した。生成された微小粒子を観察すると平均粒径110μm、粒径の分散度を示すCV値(%)は8.2%となり、均一な微小粒子であった。
【0087】
(実施例6)
本発明の第6の実施例における微小流路を図20に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも220μm、深さ80μm、微小流路のアスペクト比=0.36、排出流路の長さが30mmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる合流部を持ったY字形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する液滴あるいは微小粒子の粒子径に依存するが、微小流路のアスペクト比が0.30以上3.0未満の範囲を逸脱しなければよい。
送液は実施例1と同様な方法により、微小粒子を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をそれぞれのマイクロシリンジに注入し、マイクロシリンジポンプで行った。送液速度は分散相及び連続相は共に2μl/minである。送液速度が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる合流部にて微小粒子の生成が観察された。微小粒子生成後、図8(b)に示すように排出口(8)から10mm離れた排出流路(7)の位置を光照射スポット(20)の中心とし、紫外線による光照射(21)を行ない微小粒子を硬化した。光照射スポットのサイズは直径約10mmとした。光照射スポット以外は光照射されないようにマスク(22)を設置した。排出口からは、ポリビニルアルコールの水溶液を媒体とした微小粒子が排出された。生成された微小粒子を観察すると平均粒径200μm、粒径の分散度を示すCV値(%)は8.5%となり、極めて均一な微小粒子であった。また微小流離内で微小粒子を生成した後、光照射する代わりに、図9(a)に示す排出口(8)から微小流路構造体の外部のテフロン(登録商標)チューブ(27)の部分をヒーター(28)により65℃に加熱して微小粒子を硬化した。ビーカー(26)には、ポリビニルアルコールの水溶液を媒体とした微粒子が排出された。生成された微粒子を観察すると平均粒子径200μmの、粒径の分散度を示すCV値(%)は8.5%となり、極めて均一な粒子であった。
【0088】
(実施例7)
第7の実施例として、図30に示すような微小流路(16)を有する微小流路構造体を製作した。流路深さが80μmで流路幅が共通流路導入口(32)の位置で0.5mm、共通流路排出口(31)の位置で2mmになるように、共通流路導入口の位置から共通流路排出口の位置にむけて徐々に流路幅を大きくした2本の共通流路(29)から幅220μm、深さ80μmの微小流路を引き出してY字状に合流させた微小流路4本を、6mmの等間隔(a〜aがすべて6mm)で配置した。このY字状の微小流路の形状は、実施例1と同じである。共通流路導入口は、幅0.5mm、深さ80μmとし、共通流路排出口は、幅200μm、深さ80μmとした。この微小流路を有する微小流路構造体は実施例1と同様な方法で製作した。
【0089】
この微小流路構造体の2本の共通流路のそれぞれの流体導入口に、実施例1と同様な方法で、各共通流路に流速2.5ml/分で純水を5分間送液し、Y字状の微小流路を通過して微小流路の流体排出口から排出された液量を各流路で比較したところ、表1に示す結果が得られ、Y〜Yの各微小流路に均一に液体を送液することができた。
【0090】
【表1】

Figure 2004122107
また、一方の共通流路にポリビニルアルコールの3%水溶液を、もう一方の共通流路にジビニルベンゼン、酢酸ブチルの混合溶液を実施例1と同様な方法で100μl/minで送液し、各微小流路で生成した10個の微小粒子の粒径を顕微鏡により測定し平均した結果、表2に示す結果が得られ、各微小流路より排出された微小粒子の粒径の平均値が101.0μm、粒径の分散度を示すCV値(%)は8.7%となり、各微小流路で均一な微小粒子を生成することができた。
【0091】
【表2】
Figure 2004122107
(比較例2)
第2の比較例として、図31に示すような微小流路(16)を有する微小流路構造体を製作した。流路深さが80μmで流路幅が共通流路導入口(32)の位置で2mm、共通流路排出口(31)の位置で0.5mmになるように、共通流路導入口の位置から共通流路排出口の位置にむけて徐々に流路幅を狭くしたの2本の共通流路(29)から幅220μm、深さ80μmの微小流路を引き出してY字状に合流させた微小流路4本を、6mmの等間隔(a〜aがすべて6mm)で配置した。この微小流路の形状は実施例1と同じである。共通流路導入口は、幅0.5mm、深さ80μmとし、共通流路排出口は、幅220μm、深さ80μmとした。この微小流路を有する微小流路構造体は実施例1と同様な方法で製作した。
【0092】
この微小流路構造体の2本の共通流路のそれぞれの流体導入口に、実施例1と同様に送液ポンプを使用して、各共通流路に流速2.5ml/分で純水を5分間送液し、Y字状の微小流路を通過して微小流路の流体排出口から排出された液量を各流路で比較したところ、表1に示す結果が得られ、Y〜Yの各微小流路に均一に液体を送液することができなかった。
【0093】
また、一方の共通流路にポリビニルアルコールの3%水溶液を、もう一方の共通流路にジビニルベンゼン、酢酸ブチルの混合溶液をそれぞれ実施例1と同様に送液ポンプで100μl/minで送液し、各微小流路で生成した10個の微小粒子の粒径を顕微鏡により測定し平均した結果、表2に示す結果が得られ、各微小流路で均一な粒径をもつ微小粒子を生成することができなかった。
【0094】
(実施例8)
第8の実施例として、図20に示すような微小流路を有する微小流路構造体を製作した。形成した微小流路の幅Wは220[μm]、微小流路の深さdは80[μm]、微小流路の長さは30[mm]であり、導入口(11)とつながる2本の導入流路(48)は、44°の角度で合流させた。この微小流路を有する微小流路構造体は、実施例1と同様な方法で製作した。
【0095】
実施例1と同様な方法で、この微小流路の流体導入口の一方からフェノールを被抽出物質として含有した水相を送液し、もう一方の流体導入口からは、抽出溶媒として酢酸エチルの有機相を送液した。送液速度を調整することで、層流を形成して酢酸エチル側にフェノールを抽出した場合と、水相により酢酸エチルの有機相を微小粒子化して抽出した場合で実験を行なった。層流を形成したときの送液速度は、水相および有機相とも20μl/minであった。また水相によりジビニルベンゼンの有機相を微小粒子化した場合の送液速度は、水相および有機相とも2μl/minであった。
【0096】
この微小流路では、層流を形成した場合に得られる比界面積は、微小流路の幅Wが約220[μm]であることから、2×10/W[cm−1]=約2×10/220[cm−1]=約90[cm−1]となった。また、水相により酢酸エチルの有機相を微小粒子化した場合の微小粒子の平均粒径を高速カメラを用いて測定し、微小粒子の直径Dを求めたところ約200[μm]であった。この場合の比界面積は、6×10/D[cm−1]=約6×10/200[cm−1]=約300[cm−1]となった。このことから水相により酢酸エチルの有機相を微小粒子化した場合の方が、水相と有機相で層流を形成した場合よりも非界面積が大きくなり、抽出効率が上がるものと推定される。
【0097】
実際に、流体排出口から排出された流体を試験管で回収し、有機相のみを取出して高速液体クロマトグラフィーを用いてフェノールの濃度を測定した。有機相と水相が接している時間が長いほど、抽出される物質の量が多くなることから、測定結果を抽出溶媒である有機相の送液速度から計算される微小流路内滞在時間で割り算して補正した。その結果、酢酸エチルの有機相を微小粒子化して抽出した場合のほうがフェノールの濃度が高かった。以上のことから、抽出溶媒を微小粒子化することで、抽出効率が微小流路の幅で決まる効率以上に向上したことを確認した。
【0098】
【発明の効果】
本発明の微小粒子製造方法は、分散相と連続相を微小流路を有する微小流路構造体へその導入流路より導入し、両者が合流する合流部で分散相を連続相でせん断し微小粒子を生成させるものであり、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることで、生成する微小粒子の粒径を制御することが可能である。これは、従来の微小流路構造体を使った微小粒子の生成においては、分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適しており、特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、導入装置を1個用意することで足りるなどコスト面においても優れている。従って、本発明の微小粒子製造方法により、安定した粒径の微小粒子を生成することが、連続相を過剰に供給する必要がなくなり、例えばゲル製造における連続相の低コスト化、工業的な量産が可能となる。
【0099】
また複数の分散相及び/または連続相を導入する導入流路を設けることで、分散相及び/または連続相を複数の流体の層流、または混合液または懸濁液(エマルション)とすることができ、このようにすることで、多層構造の微小粒子や、異なった多種の微小粒子を含有した微小粒子を形成することができ、複合マイクロカプセルや多重マイクロカプセルを生成することができる。
【0100】
また微小流路の合流部分で生成した微小粒子が微小液滴であって微小液滴を硬化させる場合、硬化した微小粒子の粒径を均一にするために、微小液滴が排出流路を通過して排出部から出た後、微小流路構造体の排出部から微小流路構造体の外部に設けられた微小流路で連続的に逐次硬化しても良く、さらに硬化した微小粒子の粒径をより均一にするためには、微小流路の合流部分で微小液滴が生成した直後に、微小流路構造体中の微小流路すなわち排出流路で硬化してもよくこのようにすることで微小流路の合流部で生成した微小粒子が微小液滴の場合、微小流路の外部でビーカーなどに収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径のばらつきが大きくなってしまうことが無くなり、粒径が均一な微小粒子を得ることができる。また、微小液滴を硬化することにより媒体から分離することが容易になる。
また、多数の前記微小流路を並列化及び/または積層化して微小粒子を大量に生産するための形態としては、流体を導入するための導入口及び流体を排出するための排出口を備え、基板上に前記導入口及び排出口と連通する共通流路と、前記導入口及び排出口とは異なる位置で前記共通流路と連通する1以上の微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じである微小流路構造体とすることで微小流路構造体に平面的あるいは立体的に配置された複数の微小流路へ均一に流体を分配することが可能となる。
【0101】
また、本発明の微小粒子製造方法により生成される微小粒子の用途の例として、高速液体クロマトグラフィー用カラムの充填剤、シールロック剤などの接着剤、金属粒子の絶縁粒子、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などのマイクロカプセルやゲルが挙げられる。
【0102】
また、本発明の微小流路構造体を用いた溶媒抽出方法は、微小粒子を微小流路内での溶媒抽出に用いることにより、反応や抽出の効率を微小流路の幅で決定される効率以上に向上させることができる。
【図面の簡単な説明】
【図1】従来の微小粒子を生成する微小流路を示す概略図であり、図1右は、図1左のA−A’、B−B’のA−A’ 断面図、B−B’断面図である。
【図2】図2(a)はY字状微小流路内における層流を示す概念図であり、図2(b)は図2(a)の一部である円内を拡大した立体断面図である。
【図3】微小流路の合流部近傍において連続相が分散相をせん断して微小粒子を形成する方法を示す概念図である。
【図4】微小流路の合流部近傍において両側の連続相が中央の分散相を挟み込むようにをせん断して微小粒子を形成する方法を示す概念図である。
【図5】微小流路の合流部近傍において中央の連続相が両側の分散をせん断して微小粒子を形成する方法を示す概念図である。
【図6】微小流路の合流部近傍において直線状に一方の側より分散相を、もう一方の側より連続相を導入し、分散相を連続相でせん断して微小粒子を生成し、任意の方向へ排出させる方法を示す概念図である。
【図7】複数の分散相及び/または連続相を導入する分散相導入流路)及び/または連続相導入流路を設けて分散相及び/または連続相を複数の流体の層流、または混合液または懸濁液(エマルション)として、微小流路の合流部近傍において分散相を連続相でせん断して微小粒子を形成する方法を示すいくつかの概念図であり、図7(a)〜(g)はそれぞれの態様を示す。
【図8】光照射により微小粒子を硬化させる方法を示した概略図であり、図8(a)は外部に光照射手段を設けた場合、図8(b)はマスクを使って光照射する場合の概略図である。
【図9】加熱により微小粒子を硬化させる方法を示した概略図であり、図9(a)は外部に加熱手段を設けた場合、図9(b)は微小流路構造体内に加熱手段を設けた場合の概略図である。
【図10】平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する最も基本的な微小流路形状を示した概念図である。
【図11】平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、共通流路の断面積が共通流路導入口から共通流路排出口に向かって次第に大きくなる例を示した概念図である。
【図12】平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、2本の共通流路からY字上の複数の微小流路に送液した例を示した概念図である。
【図13】平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、共通流路を円弧状に配置した例を示した概念図である。
【図14】平面的あるいは立体的に配置された複数の微小流路に均一に流体を送液する微小流路形状のうち、微小流路を有する微小流路基板を重ねあわせ、共通流路を前記微小流路基板を貫通させて構成した例であり、図14上は積層一体化を示す態様、図14下はD−D’、E−E’の断面図である。
【図15】微小流路内での微小粒子を示す概念図である。
【図16】被抽出物質含有の流体が、原材料を有する2つの流体を別々に微小流路に導入し微小流路内の反応相で混合し反応させた流体である場合の本発明における微小粒子の用途としての溶媒抽出方法の概念図である。
【図17】流体境界で生じる反応により生成物を生成する微小流路において、原材料を有する2つの流体を連続相とし、この連続相により流体境界で抽出溶媒をせん断することにより流体境界に微小液滴を形成し分散相とすることで、流体境界に生成した生成物を抽出する概念図である。
【図18】被抽出物質含有の流体を微小液滴化して分散相とし、連続相である抽出溶媒に相間移動を行なって溶媒抽出を行なったあと、微小液滴の少なくとも表面を硬化することで被抽出物質を分離することを示す概念図である。
【図19】被抽出物質含有の流体を連続相とし、微小液滴化して分散相とした抽出溶媒に相間移動を行なって溶媒抽出を行なったあと、微小液滴の少なくとも表面を硬化することで被抽出物質を分離することを示す概念図である。
【図20】実施例1、実施例6、実施例8における微小流路を示す概略図である。
【図21】実施例1における微小流路構造体を示す概略図である。
【図22】実施例1における微小粒子生成法を示す概略図である。
【図23】実施例1における微小粒子生成状況を示す概略図である。
【図24】実施例1における生成した微小粒子を示す図である。
【図25】実施例2における微小流路を示す概略図であり、図25右は、図25左のG−G’のG−G’断面図である。
【図26】比較例1における微小流路を示す概略図であり、図26右は、図26左のH−H’のH−H’断面図である。
【図27】図27(a)は実施例3における微小流路を示す概略図であり、図27(b)および図27(c)は図27(a)の6の部分の拡大図である。
【図28】実施例4における微小流路を示す概略図であり、図28右は、図28左のM−M’のM−M’断面図である。
【図29】実施例5における微小流路を示す概略図であり、図29右は、図29左のN−N’のN−N’断面図である。
【図30】実施例7に示した微小流路形状の概略図である。
【図31】比較例2に示した微小流路形状の概略図である。
【図32】図32(a)〜(e)は、流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成した場合の例を示すいくつかの概念図である。
【符号の説明】
1:微小流路基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:合流部
7:排出流路
8:排出口
9:微小流路の幅
10:連続相
11:導入口
12:有機相
13:水相
14:流体境界
15:分散相
16:微小流路
17:微小粒子
18:微小粒子の直径
19:微小流路構造体
20:光照射スポット
21:光照射
22:マスク
23:ホルダー
24:微小流路の単位長さ
25:微小流路の深さ
26:ビーカー
27:テフロン(登録商標)チューブ
28:ヒーター
29:共通流路
30:カバー体
31:共通流路排出口
32:共通流路導入口
33:微小液滴の直径
34:微小液滴
35:流体A
36:流体b
37:反応相
38:抽出溶媒
39:溶媒抽出
40:フィレットジョイント
41:マイクロシリンジポンプ
42:マイクロシリンジ
43:流体導入口A
44:流体導入口B
45:流体導入口C
46:層流流路
47:層流合流部
48:導入流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to microparticles used for column packing for preparative separation / separation, pharmaceuticals, enzyme-containing capsules, cosmetics, fragrances, display / recording materials, adhesives, microcapsules used for agricultural chemicals, etc., chemical reaction / solvent extraction The present invention also relates to a method for producing microparticles used for, for example, and its use, and relates to a microchannel structure for producing the microparticles.
[0002]
[Prior art]
In recent years, using a microchannel structure having a microchannel with a length of about several centimeters and a width and depth of sub-micrometer to several hundred micrometer on a glass substrate of several centimeters square, fluid is transferred to the microchannel. Attention has been paid to research on chemical reactions or the production of minute particles by introduction. The term “microparticles” used herein refers to not only solid microparticles, but also microdroplets, microparticles in which only the surface of the microdroplets are hardened (hereinafter referred to as “semi-hardened”), and extremely high viscosity. Also includes semi-solid fine particles. It has been suggested that such a microchannel can perform an efficient chemical reaction due to the effects of a short intermolecular distance in a microspace and a large specific interface area (for example, see Non-Patent Document 1).
[0003]
Also, by introducing two kinds of liquids having different interfacial tensions into a flow path where an intersection exists, it is possible to generate fine particles having a very uniform particle size (for example, see Non-Patent Document 2 and Patent Document 1). ). For example, as shown in FIG. 1, the method disclosed in Non-Patent Document 2 has a continuous phase introduction port (2), a continuous phase introduction channel (3), and a dispersed phase on a microchannel substrate (1). A T-shaped microchannel structure having an inlet (4), a dispersed phase inlet channel (5), an outlet channel (7), and an outlet (8). (Hereinafter, referred to as a "merging portion") has a merging portion (6). The depth of each channel is 100 μm, the width of the introduction channel for introducing the dispersed phase is 100 μm, and the width of the introduction channel for introducing the continuous phase is 300 to 500 μm. When the liquid is sent while controlling the flow rate of the continuous phase, extremely uniform fine particles can be generated at the junction. Further, it is also possible to control the particle size of the generated fine particles by controlling the flow rates of the dispersed phase and the continuous phase.
[0004]
However, in this method, the introduction flow path width of the continuous phase is 3 to 5 times wider than the introduction flow path width of the dispersed phase, and when the dispersion phase and the continuous phase are sent at the same flow rate, Since the linear velocity becomes high in the introduction flow path of the dispersed phase having a narrow flow path width, the dispersed phase and the continuous phase may become laminar in the flow after the junction, and as a result, at the junction. There was a problem that it was impossible to generate fine particles.
[0005]
For this reason, it is necessary to supply an excessive amount of the continuous phase.However, in the case of producing fine particles for industrial mass production, it is necessary to make the amount of the continuous phase excessive with respect to the amount of the dispersed phase. However, there are problems such as cost reduction and reduction of the amount of waste liquid.
[0006]
Further, with the method disclosed in Non-Patent Document 2 or Patent Document 1, it is difficult to prepare a composite capsule or a multiple capsule, and improvement thereof has been demanded.
[0007]
In addition, since the fine particles generated by the method disclosed in Non-patent Document 2 or Patent Document 1 have a relatively small variation in the particle size and are uniform, the compound forming the fine particles may be cross-linked and polymerized. It has been attempted to use the composition as a gel particle having a uniform and fine particle size used as a column packing material for fractionation and separation, etc. However, when the generated microparticles are collected in a beaker or the like outside the microchannel and the microparticles are cured by cross-linking polymerization, etc. Since the coalescence of the particles occurs, the variation in the particle size of the cured microparticles increases, and it is difficult to separate the microparticles before curing from the medium. .
[0008]
In addition, the effects of the short intermolecular distance and the large specific interface area of the above-mentioned minute space enable efficient chemical reactions to be performed, and that two kinds of liquids having different interfacial tensions are transferred to the flow path where the intersection exists. Attempts have been made to apply chemical reactions in microchannels and to apply microparticles to industrial production while taking advantage of the characteristics of microspaces that can produce extremely uniform microparticles by introducing them. Has been done. In this case, due to the small size of the micro space, the amount of generation per unit time must be reduced in a single micro channel, but if a large number of micro channels can be arranged in parallel, The generation amount per unit time can be increased while utilizing the characteristics of the road (for example, see Non-Patent Document 3). As shown in Non-Patent Document 3, it is possible to stack a microchannel substrate having a single microchannel by connecting a vertical hole penetrating a common portion such as an inlet of a reaction solution or an outlet of a reaction product. Attempted. As described above, when a large amount of chemical synthesis or generation of microparticles is performed while taking advantage of the characteristics of the microspace, the degree of integration of the microchannel, which is the minimum unit, is planarly increased or three-dimensionally stacked. Although it is said that this is possible, it has conventionally been very difficult to uniformly distribute the fluid to the microchannels arranged two-dimensionally or three-dimensionally, and improvements have been required.
[0009]
Also, Non-Patent Document 1 discloses that efficient chemical reaction can be performed without performing a special stirring operation by rapid diffusion of molecules due to a short intermolecular distance and a large specific surface area in a minute space. It has also been suggested that the target compound produced by the reaction is quickly extracted and separated from the reaction phase to the extraction phase, thereby suppressing a subsequent side reaction.
[0010]
In the above-described example and the like, as shown in FIG. 2A, an organic phase (12) and a water phase (13) in which raw materials are dissolved are introduced into a Y-shaped microchannel (16), and a Y-shaped junction is formed. The reaction and extraction are performed at the fluid boundary (14) between the organic phase and the aqueous phase formed by the above. In general, in most cases, the Reynolds number is smaller than 1 in a micro-scale flow path, and unless the flow velocity is set to a very high value, a laminar flow state as shown in FIG. Further, since the diffusion time is proportional to the square of the width of the microchannel (9), the smaller the width of the microchannel, the more the mixing proceeds by the diffusion of molecules without the need to actively mix the reaction solution. Extraction is likely to occur. In general, the efficiency of the reaction or extraction is higher as the specific surface area is larger. Here, the specific boundary area means the ratio of the area of the interface to the total volume of the phase when the phase is in contact with each other to form the interface. In a reaction or extraction, since a substance can move to another phase only through an interface, a large specific surface area means that the efficiency of the reaction or extraction is higher.
[0011]
Hereinafter, a method for calculating the relative boundary area in the microchannel will be described with reference to FIG. FIG. 2B is a three-dimensional cross-sectional view in which a part of a part of the Y-shaped flow channel in FIG. 2A is cut out. If the width (9) of the microchannel is W [μm], the unit length (24) of the microchannel is L [μm], and the depth (25) of the microchannel is d [μm], the organic phase ( 12) is (W / 2) × d × L [μm 3 ]. The area of the fluid boundary (14) between the aqueous phase and the organic phase is d × L [μm 2 ]. Accordingly, the specific area is (d × L) / {(W / 2) × d × L} = 2 × 10 4 / W [cm -1 ], And it can be seen that the width is determined only by the width (W) of the microchannel regardless of the length and the depth (d) of the microchannel. For example, the specific boundary area where the width of the microchannel is 1000 [μm] is 20 [cm]. -1 In contrast, the specific boundary area where the width of the microchannel is 100 [μm] is 200 [cm -1 ]. Therefore, the smaller the width of the microchannel, the larger the specific surface area, and the higher the efficiency of the reaction and extraction.
[0012]
However, the efficiency of the reaction and extraction between laminar flows as shown in FIG. 2 (a) described above, conversely, shortens the diffusion time and the size of the specific boundary area of the fluid boundary, that is, the width of the microchannel. Means that it is limited by That is, the diffusion time and the relative boundary area of the fluid boundary are determined by the width of the microchannel used for the reaction and extraction, and the efficiency of the reaction and extraction can be improved to be more than the efficiency determined by the width of the microchannel. Can not. Also, as described above, if the width of the microchannel is reduced, the diffusion time can be further shortened to increase the specific area, and the efficiency of the reaction and extraction can be improved. Since the pressure loss is large and the liquid sending itself becomes difficult and impractical, there is a limit to reducing the width of the microchannel, and improvement has been required.
[0013]
[Non-patent document 1]
H. Hisamoto et. al. (H. Hisamoto et al.) "Fast and high conversion phase-transfer synthesis explosing the liquid-liquid interface formed in a microchannel chip.", Chem. Commun. , 2001, pp.2662-2663.
[Non-patent document 2]
Takashi Nishisako et al., "Creation of microdroplets in liquid in microchannel", Proceedings of the 4th Technical Meeting of the Society for Chemistry and Microsystems, p. 59, published in 2001
[Non-Patent Document 3]
Kikutani et al., “Synthesis in High-yield Microchannels Using a Pile-Up Microreactor,” Proceedings of the 3rd Chemistry and Microsystems Workshop, p. 9, 2001
[Patent Document 1]
Patent No. 2975943
[0014]
[Problems to be solved by the invention]
As described above, the first problem of the generation of microparticles in the microchannel according to the conventional technique is that when the microparticles generate uniform microparticles at the junction of the continuous phase and the dispersion phase, the dispersion phase and the continuous phase are This means that a laminar flow is formed, and it becomes impossible to stably generate fine particles at the junction.
[0015]
The second problem is that in order to generate fine particles at the junction, it is necessary to supply an excessive amount of the continuous phase. For example, the cost of the continuous phase in gel production is reduced, industrial mass production is performed, or the generation of fine particles itself is performed. Is difficult.
[0016]
A third problem is to enable the generation of composite capsules and multiple capsules.
[0017]
The fourth problem is that when the generated microparticles are microdroplets, the microdroplets are collected in a beaker or the like outside the microchannel, and when the microdroplets are cured by crosslinking polymerization or the like, the microdroplets are collected and then cured. By this time, the shape of the microparticles is lost, or the coalescence of the microparticles occurs, so that the variation in the particle size of the hardened microparticles increases. Also, it is difficult to separate the fine particles before curing from the medium.
[0018]
The fifth problem is that it is conventionally very difficult to uniformly distribute a fluid to a plurality of microchannels arranged two-dimensionally or three-dimensionally in a microchannel structure.
[0019]
A sixth problem is that the efficiency of reaction and extraction cannot be improved beyond the efficiency determined by the width of the microchannel.
[0020]
The object of the present invention has been made in view of the above problems, and enables generation of microparticles in a microchannel, generation of a composite capsule or multiple capsules, and uniform distribution of a fluid to a plurality of microchannels. By doing so, it is possible to respond to industrial mass production.Also, the microparticles are hardened immediately after the microparticles are generated without disturbing the shape of the microparticles generated using the microchannel, and the microparticles are separated from the medium. It is an object of the present invention to provide a method for producing microparticles and a microchannel structure therefor.
[0021]
Another object is to provide a method for producing a gel or a microcapsule.
[0022]
In addition, by using this microchannel structure, by shortening the diffusion time longer than determined by the width of the microchannel and obtaining the relative boundary area of the fluid boundary, the efficiency of extraction in the microchannel is improved. It is an object of the present invention to provide a solvent extraction method that improves the efficiency more than the efficiency determined by the width of the microchannel.
[0023]
[Means for Solving the Problems]
The microchannel structure of the present invention that solves the above problems includes an inlet and an introduction channel for introducing a dispersed phase, an inlet and an introduction channel for introducing a continuous phase, a dispersed phase and a continuous phase. A microchannel having a discharge channel for discharging microparticles generated by the method and a discharge port, and an introduction channel for introducing a dispersed phase. And an introduction channel for introducing a continuous phase intersect at an arbitrary angle, and the two introduction channels are connected to a discharge channel at an arbitrary angle. In addition, as a mode for producing a large amount of microparticles by parallelizing and / or laminating a large number of the microchannels, an inlet for introducing a fluid and an outlet for discharging the fluid are provided. A microchannel structure having a common channel communicating with the inlet and the outlet on the substrate, and one or more microchannels communicating with the common channel at a position different from the inlet and the outlet. Wherein the cross-sectional area of the common flow path gradually increases or is the same as the cross-sectional area from the position of communication with the inlet to the position of communication with the discharge port.
[0024]
In addition, the method for producing fine particles of the present invention is formed by an inlet and an introduction channel for introducing a dispersed phase, an inlet and an introduction channel for introducing a continuous phase, and a dispersed phase and a continuous phase. A method for generating microparticles using a microchannel structure having a discharge channel and a discharge port for discharging microparticles, wherein the dispersion is mainly performed at a junction where a dispersed phase and a continuous phase are merged. Production of microparticles that converts dispersed phase into microparticles by controlling the particle size of generated microparticles by changing the angle at which the introduction channel for introducing the phase and the introduction channel for introducing the continuous phase intersect Is the way. Further, by using the above-described microchannel structure, among microparticles, microcapsules and gels can be produced.
[0025]
Further, after the extraction solvent or the fluid containing the substance to be extracted is formed into microdroplets in the microchannel, the phase of the substance to be extracted is interposed between the dispersed phase composed of the microdroplets and the continuous phase surrounding the microdroplets. It can also be used as a solvent extraction method for performing solvent extraction by transfer.
[0026]
Hereinafter, the present invention will be described in more detail.
<Method for producing fine particles>
The microchannel used in the present invention generally indicates a channel having a width of 500 μm or less and a depth of 300 μm or less.
[0027]
The microparticles in the present invention are microparticles generated by a continuous phase shearing a dispersed phase in a microchannel, and the size of the microparticles is generally the diameter or width of the microchannel. Smaller than that. For example, the size of a microparticle generated in a microchannel having a width of 100 μm and a depth of 50 μm is smaller than 50 μm assuming that the microparticle is a perfect sphere. The microparticles in the present invention include not only solid microparticles but also microdroplets, semi-cured microparticles in which only the surface of the microdroplets are hardened, and semi-solid microparticles having extremely high viscosity. .
[0028]
Further, the dispersed phase used in the present invention is a liquid material for generating microparticles by the microchannel structure, for example, a monomer for polymerization such as styrene, a crosslinking agent such as divinylbenzene, a polymerization initiator Etc. refers to a medium in which a raw material for producing a gel is dissolved in a suitable solvent. Here, as the dispersed phase, the purpose of the present invention is to efficiently generate fine microparticles, and in order to achieve this purpose, a liquid that can be sent through a channel in a microchannel structure is used. There is no particular limitation as long as the fine particles can be formed. Further, the slurry may be a slurry in which solids such as fine powders are mixed in the dispersed phase, or may be a laminar flow in which the dispersed phase is formed from a plurality of fluids. Or a suspension (emulsion) formed from the above fluid.
[0029]
The continuous phase used in the present invention is a liquid substance used to generate fine particles from the dispersed phase by the fine channel structure, and for example, a dispersant for gel production such as polyvinyl alcohol in a suitable solvent. Refers to the medium dissolved in Here, similarly to the dispersed phase, the continuous phase is not particularly limited as long as it can feed a flow path in the fine flow path structure, and the component thereof is not particularly limited as long as fine particles can be formed. Further, the slurry may be a slurry in which solid substances such as fine powders are mixed in the continuous phase, or may be a laminar flow in which the dispersed phase is formed from a plurality of fluids. Or a suspension (emulsion) formed from the above fluid. From the viewpoint of the generated microparticle composition, the outermost layer of the continuous phase is an aqueous phase if the outermost layer of the microparticles is an organic phase, and the outermost layer of the continuous phase if the outermost layer of the microparticles is an aqueous phase. Becomes an organic phase.
[0030]
Further, it is preferable that the dispersed phase and the continuous phase do not substantially mix with each other or have no compatibility in order to generate fine particles.For example, when an aqueous phase is used as the dispersed phase, water is preferably used as the continuous phase. An organic phase such as butyl acetate, which is substantially insoluble in water, will be used. When an aqueous phase is used as the continuous phase, the reverse is true.
[0031]
In the method for producing microparticles of the present invention, the dispersed phase and the continuous phase described above are introduced into the microchannel structure according to the present invention from the introduction channel described below, and the dispersed phase is formed as a continuous phase at a junction where both are joined. It is to generate fine particles by shearing, but by changing the angle at which the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase, the particle size of the generated fine particles Can be controlled. This is easier to control in the generation of microparticles using the conventional microchannel structure than changing the introduction speed of the dispersed phase and the continuous phase, and is suitable for industrial mass production. In particular, when the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, it is sufficient in terms of cost, such as preparing one introduction device. In addition, the phrase that the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same means that the fluctuation of the introduction speed does not significantly affect the particle size of the generated fine particles. Means. By doing so, it is possible to generate microparticles having a stable particle size, and it is not necessary to supply an excessive amount of the continuous phase, and for example, it is possible to reduce the cost of the continuous phase in gel production and to achieve industrial mass production. Become.
[0032]
As a method of merging the continuous phase and the dispersed phase in the present invention, basically, the continuous phase is introduced from the continuous phase inlet (2) of the Y-shaped microchannel as shown in FIG. The dispersed phase is introduced from the inlet (4), and the dispersed phase is sheared by the continuous phase at the junction (6) to generate the fine particles (17). However, the present invention is not limited to this method. As shown in FIG. 4, the dispersed phase (15) is brought into contact with the continuous phase (10) so as to sandwich the continuous phase (10), and the dispersed phases are merged. A method of generating microparticles (17) by shearing in the portion (6) may be used, or as shown in FIG. 5, two or more dispersed phases () may be sandwiched by the microchannel (16) so as to sandwich the continuous phase (10). 15) may be in contact with each other and the dispersed phase may be a continuous phase and shear at the junction (6) to generate fine particles (17). Alternatively, as shown in FIG. ), The dispersed phase (15) is introduced from one side, and the continuous phase (16) is introduced from the other side, and the dispersed particles and the continuous phase are merged at the junction (6) to form the fine particles (17). Generated and discharged in one or more arbitrary directions from the merged position It may be. By doing so, fine particles can be generated more efficiently. In the case of the method shown in FIG. 6, the generated fine particles can be collected by rejoining the fluid containing the generated fine particles.
[0033]
Also, as shown in FIGS. 7A to 7G, a dispersed phase introduction channel (5) for introducing one or a plurality of dispersed phases (15) and a continuous phase for introducing one or a plurality of continuous phases (10). By providing the phase introduction channel (3), the disperse phase or the continuous phase can be a laminar flow of a plurality of fluids or a mixed solution or suspension (emulsion). By doing so, fine particles having a multilayer structure or fine particles containing various kinds of fine particles can be formed, and composite microcapsules and multiple microcapsules can be generated. The continuous phase, the dispersed phase, or both of them may contain fine powder.
[0034]
In the present invention, when the microparticles generated at the junction of the microchannels are microdroplets and the microdroplets are cured, the microparticles may be cured inside and / or outside the microchannels. Further, in order to make the particle size of the hardened fine particles uniform, after the fine liquid droplets pass through the discharge flow path and exit from the discharge part, the discharge part of the fine flow path structure externally connects to the outside of the fine flow path structure. May be continuously hardened by the fine flow channel provided in the substrate. Furthermore, in order to make the particle size of the cured microparticles more uniform, immediately after microdroplets are generated at the confluence of the microchannels, the microparticles in the microchannel structure, ie, the discharge channels, are hardened. More preferably.
[0035]
One of the means for hardening the microdroplets in the present invention is to harden the microdroplets by irradiating the microdroplets with light. It is preferable to use ultraviolet light because it can be selected from the following. The light irradiation (21) may be performed after the microdroplets have come out of the microchannel structure from the outlet (8) of the microchannel structure (19) as shown in FIG. 8A. However, in order to make the particle size of the microparticles more uniform, as shown in FIG. 8B, light irradiation (21) is performed immediately after microdroplets are generated at the junction (6) of the microchannels. More preferably, the curing is performed in the discharge channel (7) in the microchannel structure (19). However, when light irradiation is performed in the discharge channel in the microchannel structure, before the microdroplets are generated, the dispersed phase is irradiated with light before the microdroplets are generated so as not to be cured. As shown in FIG. 8B, the portion of the discharge channel and the portion of the discharge channel that cures the microdroplets by irradiating light are provided only at the necessary portions of the microchannel structure, as shown in FIG. ) Must be installed so that the mask (22) can be hit.
[0036]
Another means for curing the microdroplets in the present invention is a method for producing microparticles using means for curing the microdroplets by heating. As shown in FIG. 9A, even when heating is performed by a heater (28) or the like after the minute liquid droplets exit the outside of the minute channel structure from the outlet (8) of the minute channel structure (19). However, in order to make the particle size of the microparticles more uniform, as shown in FIG. 9B, heating is performed by a heater or the like immediately after microdroplets are generated at the junction (6) of the microchannels. More preferably, the curing is performed in the discharge channel (7) in the microchannel structure. However, when heating is performed in the discharge channel in the microchannel structure, the discharge flow before the microdroplet is generated so that the disperse phase is not heated and hardened before the microdroplet is generated. It is necessary to thermally insulate the part of the passage and the part of the discharge flow path that heats and hardens the microdroplets by a known heat insulation method such as embedding a heat insulator or the like in the microchannel structure. is there.
[0037]
When the microdroplets are cured by light irradiation or heating in the present invention, the entirety of the microdroplets may be cured. Curing may be performed to such an extent that coalescence does not occur. In this case, the semi-cured fine particles are collected in a beaker or the like, and are completely cured again by light irradiation or heating, whereby fine particles having a uniform particle diameter can be obtained.
In this way, if the microparticles generated at the confluence of the microchannels are microdroplets, they are collected in a beaker or the like outside the microchannels and hardened by crosslinking polymerization. From the collection to the hardening, the shape of the fine particles collapses and coalescence of the fine particles occurs, so that the variation in the particle size of the hardened fine particles does not increase, and the particle size is uniform. Fine particles can be obtained. Further, the hardening of the microdroplets facilitates separation from the medium.
[0038]
As described above, as one of the most preferable embodiments of the method for producing microparticles of the present invention, the dispersed phase is a medium containing a raw material for gel production, and an inlet and an introduction channel for introducing the dispersed phase, The continuous phase is a medium containing a dispersant for gel production, and an inlet and an introduction channel for introducing the continuous phase, and a discharge channel and a drain for discharging fine particles generated by the dispersed phase and the continuous phase. A method for generating microparticles using a microchannel structure having an outlet, wherein the disperse phase and the continuous phase are merged to form the disperse phase into microparticles, and an introduction flow for introducing the disperse phase is provided. The particle diameter of the generated fine particles is controlled by changing the angle at which the flow path intersects with the introduction flow path for introducing the continuous phase, and the fine particles are illuminated in the fine flow path and / or outside the fine flow path. This is a method of curing by irradiation and / or heating.
[0039]
In the method for producing fine particles of the present invention, examples of uses of the fine particles include a filler for a column for high performance liquid chromatography, an adhesive such as a seal lock agent, insulating particles of metal particles, a pressure measurement film, and a carbonless (pressure-sensitive). Copy) paper, toner, thermal expansion agent, heat medium, light control glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoretic capsule, pesticide, artificial feed, artificial seed, fragrance, Microcapsules and gels such as massage creams, lipsticks, vitamin capsules, activated carbon, enzyme-containing capsules, and DDS (drug delivery system) are mentioned.
<Microchannel structure>
The microchannel structure of the present invention includes an inlet and an inlet channel for introducing a dispersed phase, an inlet and an inlet channel for introducing a continuous phase, and a microparticle formed by the dispersed phase and the continuous phase. A microchannel structure comprising a microchannel having a discharge channel and a discharge port for discharging particles, wherein an introduction channel for introducing a dispersed phase and a continuous phase are introduced. And the two introduction channels are connected to the discharge channel at an arbitrary angle, and the form of the micro channel structure is characterized in that: Is a microchannel structure as shown in FIGS. It should be noted that the microchannel structure of the present invention is not limited to the examples shown in FIGS. 3 to 7 and can be arbitrarily changed without departing from the gist of the present invention. Further, the aspect ratio (ratio of depth / width of the flow channel) of the flow channel cross section of the micro flow channel structure of the present invention is 0.30 or more and less than 3.0. is there.
[0040]
Here, the inlet for introducing the disperse phase means an opening for introducing the disperse phase, and a mechanism for continuously introducing the disperse phase may be provided by providing an appropriate attachment to the inlet. Similarly, the introduction port for introducing the continuous phase also means an opening for introducing the continuous phase, and a mechanism for continuously introducing the continuous phase by providing an appropriate attachment to this introduction port. Good.
[0041]
The introduction flow path for introducing the dispersed phase communicates with the introduction port, and the dispersed phase is introduced and sent along the introduction flow path. The shape of the introduction channel has an effect on controlling the shape and particle size of the fine particles, but the width may be about 300 μm or less, and the shape may be such that it merges at an arbitrary angle including the discharge channel. Similarly, the introduction flow path for introducing the continuous phase is also in communication with the introduction port, the continuous phase is introduced, and the liquid is sent along the introduction flow path. The shape of the introduction channel has an effect on controlling the shape and particle size of the fine particles, but the width may be about 300 μm or less, and the shape may be such that it merges at an arbitrary angle including the discharge channel.
[0042]
The discharge flow path communicates with the two introduction flow paths and the discharge port, and after the dispersed phase and the continuous phase merge, the liquid is sent along the discharge flow path and discharged from the discharge port. Although the shape of the discharge channel is not particularly limited, it is sufficient that the width of the discharge channel is about 300 μm or less and that it merges at an arbitrary angle including the introduction channel. Further, the discharge flow path may be two or more discharge flow paths separated from the junction at an arbitrary angle. The outlet means an opening for discharging the generated microparticles, and furthermore, the outlet may be provided with an appropriate attachment to provide a mechanism for continuously discharging the phase containing the generated microparticles. . Note that these channels may be referred to as minute channels in this specification.
[0043]
Furthermore, in the microchannel structure of the present invention, the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase intersect at an arbitrary angle, and these introduction channels are optional. It is preferable that the structure is such that it is connected to the discharge channel at an angle of. By setting the angle at which the two introduction flow paths intersect to an arbitrary angle, it is possible to control the fine particles generated at the junction to a desired particle size. The setting of the intersection angle may be appropriately determined according to the target particle size of the fine particles.
[0044]
As the cross-sectional shape of the introduction flow path and the discharge flow path, it is preferable that the aspect ratio of the flow path cross section is 0.30 or more and less than 3.0. If the aspect ratio is within this range, uniform fine particles can be generated at the junction. If the aspect ratio is out of this range and is less than 0.30 or 3.0 or more, it may be difficult to generate uniform fine particles.
[0045]
Furthermore, when the width and depth of the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase are equal, in addition to the above effects, the design of the micro flow path structure becomes easy, In addition, the control during liquid feeding becomes easier, which is suitable for industrial mass production.
[0046]
In addition, in the relationship between the width of the introduction flow path and the width of the discharge flow path, if the width of the introduction flow path ≥ the width of the discharge flow path, the width of the introduction flow path <the width of the discharge flow path, Even if is increased, uniform fine particles can be generated at the junction, and the effect of increasing the generation speed of the fine particles can be obtained, which is a preferable embodiment.
[0047]
As the width of the discharge channel, it is preferable that the width of the discharge channel is narrow at a part of the discharge channel from the intersection of the dispersed phase and the continuous phase to the discharge port. In other words, a part of the flow path forming wall along the dispersed phase flow path is formed to be narrower at the confluence of the introduction flow path and the discharge flow path, or to a convex shape, before reaching the discharge port of the fine particles. Alternatively, as shown in FIGS. 32 (a) to 32 (e), one or more projections are formed from any one or two or more of the bottom, top, and side surfaces of the flow path to increase the liquid sending speed. This also makes it possible to generate uniform fine particles at the confluence portion and to alleviate a rise in liquid sending pressure, which is a preferable embodiment.
[0048]
Further, it is preferable that the portion where the width of the discharge flow path is narrow is located at or near the intersection in the discharge flow path. In particular, the portion where the width of the discharge flow path is narrow is the discharge flow path At the intersection of the disperse phase and the introduction flow path.
[0049]
In addition, the microchannel structure of the present invention can industrially generate a large amount of microparticles by arranging a plurality of microchannels in the microchannel structure in a planar or three-dimensional manner. However, it is necessary to uniformly distribute the fluid to a plurality of microchannels arranged two-dimensionally or three-dimensionally. For this reason, the microchannel structure of the present invention includes an inlet for introducing a fluid and an outlet for discharging the fluid, and a common channel communicating with the inlet and the outlet on the substrate, A microchannel structure having a microchannel that communicates with a common channel at a position different from the inlet and the outlet, wherein the cross-sectional area of the common channel is closer to the outlet than the communication position with the inlet. It is preferred that the size gradually increases or becomes the same toward the communication position.
[0050]
FIG. 10 shows the most basic conceptual diagram of the microchannel structure. A common flow path inlet (32) for introducing a fluid and a common flow path discharge port (31) for discharging a fluid are provided at both ends of the common flow path (29). A microchannel (16) having an inner diameter (channel width) smaller than the common channel was disposed on the substrate between the discharge ports. Generally, the inside diameter of the microchannel is about several tens to 300 μm. On the other hand, the inner diameter of the common flow path is desirably about 500 μm to several mm. The inner diameter of the flow path connecting the common flow path inlet and the common flow path is not particularly limited, but is preferably about 500 μm to several mm similarly to the common flow path. The inner diameter of the flow path connecting the common flow path outlet and the common flow path is not particularly limited, but is preferably about several tens to 300 μm as in the case of the fine flow path.
[0051]
In addition, there is no particular limitation on the arrangement of the microchannels as long as they communicate with the common channel at a position different from the common channel inlet and the common channel outlet. To illustrate this point more specifically, as shown in FIG. 10, the microchannel Y closest to the common channel inlet is provided. 1 From the micro channel Y closest to the common channel outlet n In the common flow channel of the micro flow channel structure where n micro flow channels communicate with the common flow channel, the position of communication with the common flow channel inlet is X 0 , The microchannel Y closest to the common channel inlet 1 The communication position of X 1 , Communication position X 0 And communication position X 1 A along the common flow path between 1 , The communication position with the common channel outlet is X n + 1 , The microchannel Y closest to the common channel outlet n The communication position of X n , Communication position X n And communication position X n + 1 A along the common flow path between n + 1 And Y 1 To Y n Fluid can be uniformly distributed in the microchannels up to and the generation of microdroplets can be performed efficiently. 2 From a n Are preferably set to be equal to each other. Furthermore, a 1 ~ A n + 1 This effect can be further improved by making all of them equal.
[0052]
Further, in such a minute channel structure, a structure in which a plurality of common channels are provided on the substrate and each common channel is communicated with the minute channel may be employed.
[0053]
11 to 14 show conceptual diagrams of some embodiments of the present invention. It is needless to say that the present invention is not limited to only these forms, and can be arbitrarily changed without departing from the gist of the invention.
[0054]
FIG. 11 shows an example in which the inner diameter of the common channel (19) gradually increases from the common channel inlet (32) toward the common channel outlet (31). In this case, the inner diameter (shown by b) of the common flow path near the common flow inlet is about 500 μm to 1 mm, and the inner diameter (shown by c) of the common flow path near the common flow outlet is several mm. It is about.
[0055]
FIG. 12 shows that two common flow paths (29) 1 To Y n This is an example in which the minute flow path (16) indicated by "" is drawn out and merged in a Y-shape. By introducing the continuous phase and the dispersed phase used in the method for producing microparticles of the present invention into two common channels using the microchannel structure shown in FIG. 12, a plurality of Y-shaped microchannels are introduced. The continuous phase and the dispersed phase can be evenly distributed in the channels, and under the same conditions in all of the microchannels, extremely fine particle systems can be generated. This mode is effective when a large number of microchannels are planarly integrated when the microchannel substrate is a square substrate.
[0056]
FIG. 13 shows an example in which the common flow paths (29) are arranged in an arc shape. In this case, the microchannels (16) were arranged radially at an equal angle d from the center of the arc. This mode is effective when a large number of minute channels are planarly integrated when the minute channel substrate is a disk-shaped substrate. In this case, as in FIG. 10, the communication position with the common flow channel introduction port (32) is set to X. 0 , The microchannel Y closest to the common channel inlet 1 The communication position of X 1 , Communication position X 0 And communication position X 1 A along the common flow path between 1 And so on, a 1 ~ A n + 1 Means the length along the center of the arc-shaped common flow path.
[0057]
FIG. 14 shows an example in which a microchannel substrate (1) having a microchannel (16) is overlapped, and a common channel (29) is configured to penetrate the microchannel substrate. This mode is effective when the microchannel substrates are stacked and a large number of microchannels are three-dimensionally integrated. The size of the inner diameter of the through-hole may gradually increase from the fluid common flow channel inlet (32) to the fluid common flow channel outlet (31) as in FIG.
[0058]
Further, in the various embodiments of the present invention shown in FIGS. 10 to 14, the fluid is generally introduced into the common flow channel introduction port (32) using a liquid feed pump such as a syringe pump, but is arranged in the common flow channel. The fluid discharged from the common channel discharge port (31) that has been collected can be collected and returned to the liquid supply pump again to transmit the liquid again. That is, each of the plurality of common channels is communicated with the minute flow channel, The structure may be such that the fluid discharged from the passage discharge port is returned to the respective common flow path introduction ports. In this way, the continuous phase and / or the dispersed phase to be introduced can be used without waste. Further, it is preferable to introduce and discharge the dispersed phase into at least one of the common flow paths and the continuous phase into at least one other common flow path.
[0059]
Although the microchannel structure of the present invention has the structure and performance described above, the introduction section and the introduction flow path for introducing the dispersed phase and the continuous phase, and the junction where the introduction flow path intersects A microchannel structure having a discharge channel and a discharge port for discharging a liquid covers a substrate having a microchannel formed on at least one surface and a substrate surface having a microchannel formed thereon. In addition, a cover body in which a small hole for communicating the microchannel and the outside of the microchannel structure may be laminated and integrated at a predetermined position of the microchannel. As a result, fluid can be introduced from the outside of the microchannel structure to the microchannel, and can be discharged again to the outside of the microchannel structure. It is possible to pass through the minute channel. Fluid delivery is enabled by mechanical means such as a micropump.
[0060]
As a material of the substrate and the cover body in which the minute flow path is formed, a material which can form the minute flow path, has excellent chemical resistance, and has appropriate rigidity is preferable. For example, it may be glass, quartz, ceramic, silicon, metal or resin. The size and shape of the substrate and the cover are not particularly limited, but the thickness is desirably about several mm or less. When the small hole arranged in the cover communicates the microchannel with the outside of the microchannel structure and is used as a fluid inlet or outlet, its diameter is desirably, for example, several mm or less. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.
[0061]
Further, in the microchannel structure of the present invention, the substrate on which the microchannel is formed and the cover are laminated and integrated by means such as heat bonding or bonding using an adhesive such as a photo-curing resin or a thermosetting resin. be able to.
<Solvent extraction method using microchannel structure>
By using the microchannel structure of the present invention, after the extraction solvent or the fluid containing the substance to be extracted is converted into microdroplets in the microchannel, a dispersed phase composed of the microdroplets and a continuous phase surrounding the microdroplets are formed. There is a use as a solvent extraction method in which a solvent is extracted by transferring a substance to be extracted between phases.
[0062]
In the solvent extraction method of the present invention, one of the extraction solvent and the fluid containing the substance to be extracted can be arbitrarily selected as the dispersed phase and the other as the continuous phase. Here, the substance to be extracted indicates a substance to be extracted, and the fluid containing the substance to be extracted means a liquid in which the substance to be extracted is dissolved. The extraction solvent means a liquid for extracting the substance to be extracted from the fluid containing the substance to be extracted, and is desired to be capable of dissolving the substance to be extracted and having a higher solubility for the substance to be extracted than the fluid containing the substance to be extracted. Solvent extraction means that the substance to be extracted is transferred from the fluid containing the substance to be extracted to the extraction solvent by phase transfer, and the phase transfer is the transfer from the phase of the fluid containing the substance to be extracted to the phase of the extraction solvent. Means
[0063]
In the present invention, one of the extraction solvent and the fluid containing the substance to be extracted can be arbitrarily selected as the dispersed phase and the other as the continuous phase. The size of the microdroplet is generally smaller in diameter than the width or depth of the microchannel. For example, the size of a droplet generated in a microchannel having a width of 100 μm and a depth of 50 μm is smaller than 50 μm assuming that the droplet is a perfect sphere.
[0064]
This solvent extraction method determines the extraction efficiency in the microchannel by the width of the microchannel by shortening the diffusion time longer than determined by the width of the microchannel and obtaining the size of the relative boundary area of the fluid boundary. The improvement of the efficiency beyond the required efficiency will be described with reference to FIG.
[0065]
As shown in FIG. 15, when the diameter (33) of the spherical microdroplet is D [μm], the total volume of the microdroplet is (4π / 3) × (D / 2) 3 [Μm 3 ]. The surface area of the microdroplet is 4π × (D / 2) 2 [Μm 2 ]. Therefore, the relative boundary area between the microdroplet (34) and the surrounding medium is {4π × (D / 2) 2 } / {(4π / 3) × (D / 2) 3 } = 6 × 10 4 / D [cm -1 ]. On the other hand, as shown in FIG. 1, the relative boundary area of the fluid boundary (14) formed in the microchannel (16) is 2 × 10 4 / W [cm -1 ]. Generally, since the diameter D of the microdroplet formed by the microchannel is smaller than the width (9) W of the microchannel, D <W. The specific boundary area is simply larger than the specific boundary area of the fluid boundary formed by the microchannel, and the diffusion time between the microdroplets and the surrounding solvent is simply caused by the laminar flow in the microchannel. It is shorter than the diffusion time. Therefore, if microdroplets of a fluid containing an extraction solvent or a substance to be extracted are formed in a microchannel, the diffusion time shorter than determined by the width of the microchannel and the size of the relative boundary area of the fluid boundary can be reduced. As a result, the extraction efficiency in the microchannel can be improved to be higher than the efficiency determined by the width of the microchannel.
[0066]
The target to be converted into microdroplets may be an extraction solvent or a fluid containing the substance to be extracted, but by selectively forming either of them into microdroplets, the extraction phase can be further separated after extraction. It is possible to select an object to be formed into fine droplets according to an easy mode. In the method for producing microparticles of the present invention, the liquid droplets are formed into droplets by appropriately controlling the flow rates of the respective fluids to be combined or by changing the hydrophilicity and hydrophobicity of the inner wall of the microchannel by a method known per se. It is possible to select whether the object is an extraction solvent or a fluid containing the substance to be extracted, and it is possible to select an object to be formed into microdroplets according to a mode in which the extraction phase is more easily separated after the extraction. In addition, the diameter of the microdroplets can be controlled by the flow velocity, the angle at which the microchannels meet at the junction, the width and the depth of the microchannels, or a combination of these, so that the specific boundary area can be increased. Can be controlled accurately.
[0067]
In the solvent extraction method of the present invention, the substance to be extracted is a product obtained by chemically reacting two or more kinds of fluids, and the fluid containing the substance to be extracted separately separates two or more kinds of fluids containing raw materials into fine particles. It may be a fluid obtained by being introduced into and brought into contact with a flow channel. By doing so, the product obtained by the reaction in the microchannel can be promptly extracted with the solvent immediately after the production, and it is possible to suppress side reactions and control the equilibrium reaction. .
[0068]
FIG. 16 shows that the fluid containing the substance to be extracted introduces fluid A (35) and fluid B (36) having raw materials separately into the microchannel (16) and mixes them in the reaction phase (37) in the microchannel. FIG. 5 is a diagram showing a concept in the case of a fluid that has been reacted. In the example of FIG. 16, the fluid containing the substance to be extracted was the continuous phase (10), and the extraction solvent (38) was the dispersed phase (15).
[0069]
In the solvent extraction method of the present invention, the extraction target material obtained by separately introducing two or more kinds of fluids containing the raw material and the extraction solvent into the microchannel and bringing the two or more kinds of fluids containing the raw material into contact with each other is used. In the method of extracting into an extraction solvent phase, two or more fluids containing a raw material form a laminar flow, and a substance to be extracted is generated at a boundary between the fluids, and the extraction solvent is two or more fluids containing the raw material. A liquid droplet may be formed on the fluid boundary by being sheared at the junction, and the generated substance to be extracted may be extracted into liquid droplets of the extraction solvent. By doing so, a solvent other than the solvent used in the reaction system can be introduced as the extraction solvent, and for example, a solvent having a higher product extraction efficiency can be used as the extraction solvent. In addition, since a product generated by a reaction generated at a fluid boundary can be promptly extracted with a solvent immediately after the generation, a side reaction can be suppressed and an equilibrium reaction can be controlled.
[0070]
FIG. 17 shows a fluid A (35) and a fluid B (36) having raw materials as continuous phases (10) in a microchannel (16) for obtaining a product by a reaction occurring at a fluid boundary (14). FIG. 3 is a diagram illustrating a concept of extracting a product generated at a fluid boundary by forming a microdroplet (34) at a fluid boundary by shearing an extraction solvent (38) at a fluid boundary in a continuous phase.
[0071]
Further, the solvent extraction method as a use of the microparticles of the present invention, after performing the solvent extraction in the microchannel, by hardening at least the surface of the microdroplets, even if the continuous phase and the dispersed phase can be separated good. In this way, the dispersed phase of the microdroplets and the continuous phase surrounding the microdroplets can be more easily separated, and the extraction solvent and the fluid containing the substance to be extracted can be easily separated. Can be.
[0072]
For example, as shown in FIG. 18, a fluid containing a substance to be extracted is formed into a fine droplet by dispersing the fluid into a dispersed phase (15), and the substance to be extracted is extracted into a continuous phase (10) by an interphase transfer. 39), the microparticles (17) are formed by curing at least the surface of the microdroplets (34) by irradiation with ultraviolet light (21), so that the liquid phase of the continuous phase and the solid phase of the microparticles are formed. Can be easily separated using a method such as filtration, and the substance to be extracted can be easily recovered. In the example of FIG. 18, the liquid containing the substance to be extracted as the disperse phase is selected from a liquid that is cured by ultraviolet irradiation.
[0073]
Conversely, as shown in FIG. 19, the extraction-substance-containing fluid is converted into a continuous phase (10), and the extraction solvent (38) is converted into microdroplets to form a dispersed phase (15). After the extraction (39), if at least the surface of the microdroplets (34) is cured by irradiation with ultraviolet rays to form the microparticles (17), the liquid phase of the continuous phase and the solid phase of the microparticles are similarly formed. It can be easily separated using a technique such as filtration. In this case, the surface having the substance to be extracted is hardened, and the surface of the fine particles may be divided by any method, chemical or mechanical, to extract the substance to be extracted present inside the fine particles. In the example of FIG. 19, as the extraction solvent as the disperse phase, a liquid that is cured by irradiation with ultraviolet rays can be selected.
[0074]
In the examples of FIGS. 18 and 19 described above, the means for curing the surface of the microdroplets is irradiated with ultraviolet rays. However, in addition to the irradiation of ultraviolet rays, crosslinking and polymerization are performed by heating or a chemical reaction as shown in FIG. For example, it may be selected according to the material of the dispersed phase to be cured.
[0075]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, examples of the present invention will be described, and embodiments of the present invention will be described in more detail. It is needless to say that the present invention is not limited to the following embodiments, and can be arbitrarily changed without departing from the gist of the present invention.
[0076]
(Example 1)
FIG. 20 shows a microchannel in the first embodiment of the present invention. The microchannels are formed on a 70 mm × 20 mm × 1 t (thickness) Pyrex (registered trademark) glass, and a continuous phase introduction channel (2), a dispersed phase introduction channel (4), and a discharge channel corresponding to the microchannels. Each of (7) has a width of 220 μm, a depth of 80 μm, an aspect ratio of a microchannel = 0.36, a length of a discharge channel of 30 mm, a continuous phase introduction channel (3) and a dispersed phase introduction channel ( 5), one Y-shaped flow path having a merging portion intersecting at an angle of 44 ° was formed. The width and depth of the microchannel depend on the particle size of the generated microparticles, but it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0.
As shown in FIG. 21, the microchannel structure having the microchannels has a microchannel formed on one surface of a glass substrate having a thickness of 1 mm and a size of 70 mm × 20 mm by general photolithography and wet etching. Then, a small hole having a diameter of 0.6 mm was previously formed on the surface of the glass substrate having the microchannels having the microchannels at positions corresponding to the introduction port (11) and the discharge port (8) of the microchannels by a mechanical method. A glass cover body (30) having a thickness of 1 mm and a size of 70 mm × 20 mm, which was provided by using processing means, was manufactured by thermal bonding. The manufacturing method and the substrate material are not limited to these.
[0077]
Next, the method for producing fine particles of the present invention will be described. As shown in FIG. 22, a liquid is supplied to the microchannel structure (19) by a holder (23) or the like so that the liquid can be sent to the microchannel structure (19), and a Teflon (registered trademark) tube (27) and a fillet joint (40) are held by the holder. Fixed to. The other end of the Teflon tube is connected to a microsyringe (42). This enables liquid to be sent to the microchannel structure. Next, a mixed solution of divinylbenzene and butyl acetate is injected into a dispersed phase for generating fine particles, and a 3% aqueous solution of polyvinyl alcohol is injected into each microsyringe into a continuous phase, and the liquid is sent by a microsyringe pump (41). Was. The liquid sending speed is 20 μl / min for both the dispersed phase and the continuous phase. In a state where the liquid sending speeds were both stable, generation of fine particles as shown in FIG. 23 was observed at the junction where the dispersed phase and the continuous phase of the fine channel structure intersect. Observation of the generated fine particles revealed that the average particle size was 200 μm and the CV value (%) indicating the degree of dispersion of the particle size was 9.8%, as shown in FIG. When the liquid sending speed was 1 μl / min for both the dispersed phase and the continuous phase, the average particle size of the generated fine particles was 230 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 9.5%. , And were extremely uniform fine particles. Thus, the dispersed phase and the continuous phase are performed at the same liquid sending speed, so that uniform fine particles can be generated without excessively sending the continuous phase.
[0078]
(Example 2)
FIG. 25 shows a microchannel in the second embodiment of the present invention. The micro channels are formed on a 70 mm × 40 mm × 1 t (thickness) Pyrex (registered trademark) glass, a continuous phase introduction channel (3), a dispersed phase introduction channel (5), and a discharge channel corresponding to the micro channels. Each of (7) has a width of 185 m, a depth of 75 μm, an aspect ratio of the microchannel = 0.41, a length of the discharge channel (7) of 30 mm, and a continuous phase introduction channel and a dispersed phase introduction channel. Formed two Y-shaped flow paths having a junction where they intersect at angles of 22 ° and 44 °. The width and depth of the microchannel depend on the particle size of the generated microparticles, but it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.
[0079]
Next, the microchannel structure is held by a holder, and a mixed solution of a monomer (styrene), divinylbenzene, butyl acetate, and benzoyl peroxide is added to the dispersed phase for generating microparticles in the same manner as in Example 1. Then, a 3% aqueous solution of polyvinyl alcohol was poured into the microsyringe into the continuous phase, and the solution was fed by a microsyringe pump. The crossing angle between the continuous phase introduction channel and the dispersed phase introduction channel was 44 ° and 22 °. went. The liquid sending speed is 20 μl / min for both the dispersed phase and the continuous phase. With both the flow rates stable, generation of fine particles was observed at the junction where the dispersed phase and the continuous phase of the microchannel structure intersect. Observing the generated microparticles, when the merging portions intersect at an angle of 22 °, the average particle size is 180 μm, the CV value (%) indicating the degree of dispersion of the particle size is 8.7%, and when the confluence is 44 °, the average is 44%. The particle size was 160 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 9.2%. In addition, when the microparticles generated when the dispersion phase and the continuous phase were both performed at 5 μl / min were observed, the average particle diameter was 250 μm and the degree of dispersion of the particle diameter was determined when the confluence part intersected at 22 °. The CV value (%) indicated was 9.4%, the average particle diameter was 220 μm at 44 °, the CV value (%) indicating the degree of dispersion of the particle diameter was 8.5%, and the angle of the junction was 22%. When the angle of the confluence is 44 °, the particle diameter becomes 0.89 times that in the case of °. Thus, the width and depth of the introduction channel are constant, and the particle size can be reduced by changing only the angle of the junction of the introduction channel without changing the conditions of the liquid feeding speed of the dispersed phase and the continuous phase to be introduced. Control becomes possible.
[0080]
(Comparative Example 1)
FIG. 26 shows a microchannel in Comparative Example 1. The micro flow path is formed on a Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness), and the width of the continuous phase introduction flow path (3), the dispersed phase introduction flow path (5), and the discharge flow path (7) is set. Each of them is 130 μm, depth 35 μm, the aspect ratio of the microchannel is 0.27, the length of the discharge channel is 30 mm, and the continuous phase introduction channel and the dispersed phase introduction channel intersect at an angle of 44 °. One Y-shaped channel having a portion was formed. This microchannel structure was manufactured in the same manner as in Example 1.
[0081]
Next, the microchannel structure was held by a holder, and a mixed solution of divinylbenzene and butyl acetate was used as a dispersed phase for generating microparticles in the same manner as in Example 1, and a 3% aqueous solution of polyvinyl alcohol was used as a continuous phase. The solution was injected into a microsyringe and fed. The liquid sending speed is 5 μl / min for both the dispersed phase and the continuous phase. Observation of the junction where the dispersed phase and the continuous phase of the microchannel structure intersect in a state where the flow rates are both stable shows that microparticles can be generated, but separation and coalescence occur in the discharge channel, and the particles are generated. Observation of the microparticles showed that the CV value (%) indicating the degree of dispersion of the particle diameter was 36.5%, indicating that the microparticles had poor dispersibility. In the case where fine particles having good dispersibility are generated by the fine channel structure having this aspect ratio, the liquid sending speed is set to a continuous phase> disperse phase, specifically a flow rate ratio of 5: 1 or more, It is necessary to send the continuous phase in excess.
[0082]
(Example 3)
FIG. 27A shows a microchannel according to the third embodiment of the present invention. The micro channels are formed on a 70 mm × 40 mm × 1 t (thickness) Pyrex (registered trademark) glass, a continuous phase introduction channel (3), a dispersed phase introduction channel (5), and a discharge channel corresponding to the micro channels. (7) each had a width of 146 μm, a depth of 55 μm, an aspect ratio of the microchannel = 0.38, a length of the discharge channel of 30 mm, and a continuous phase introduction channel and a dispersed phase introduction channel of 44 °. And a part of the width of the discharge channel as shown in the enlarged view of FIG. 27 (b) is formed as a projection at the junction of the dispersed phase introduction channel and the discharge channel. A Y-shaped channel was formed. The width and depth of the microchannel depend on the particle size of the generated microparticles, but it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. The size of the protrusion may be appropriately adjusted depending on the particle size of the fine particles and the pumping ability for the internal pressure of the introduction channel. In this case, the width KK ′ shown in FIG. 27B is 116 μm. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.
[0083]
Next, the microchannel structure was held by a holder, and a mixed solution of divinylbenzene and butyl acetate was used as a dispersed phase for generating microparticles in the same manner as in Example 1, and a 3% aqueous solution of polyvinyl alcohol was used as a continuous phase. The liquid is injected into a microsyringe, and the liquid is sent by a microsyringe pump. The liquid is supplied through a flow path having no projection shown in FIG. 27 (c) at the intersection of the continuous phase introduction flow path, the dispersed phase introduction flow path and the discharge flow path. A comparison was made. The liquid sending speed was the same for both the dispersed phase and the continuous phase, and the flow rate at which fine particles could be generated was measured. The flow rate at which fine particles could be generated at the microchannel structure having protrusions was 10 μl / min. In the case of the microchannel structure having no projection as shown in (c), the flow rate was 8 μl / min.
Observing the microparticles generated in the microchannel structure having protrusions, the average particle diameter is 110 μm, and the CV value (%) indicating the degree of dispersion of the particle diameter is 6.3%. Have been obtained. This makes it possible to maintain a good degree of dispersion and increase the amount of generated fine particles by providing projections in the discharge flow path.
[0084]
(Example 4)
FIG. 28 shows a microchannel according to the fourth embodiment of the present invention. The microchannel is composed of two continuous phase introduction channels (3) and one dispersed phase introduction channel (3) corresponding to the microchannel on Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness). 5) and the width of the discharge channel (7) are both 140 μm, the depth is 60 μm, the aspect ratio of the microchannel is 0.43, the length of the discharge channel is 30 mm, and the continuous phase introduction channel and the dispersed phase introduction. One flow path having a confluent portion each intersecting at an angle of 22 ° was formed so that the flow path sandwiched one dispersed phase introduction flow path with two continuous phase introduction flow paths. The width and depth of the microchannel depend on the particle size of the generated microparticles, but it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.30 or more and less than 3.0. Note that this microchannel structure was manufactured in the same manner as in Example 1.
[0085]
Next, a microchannel structure was held by a holder in the same manner as in Example 1, and a mixed solution of divinylbenzene and butyl acetate was added to the dispersed phase for generating microparticles in the same manner as in Example 1; , A 3% aqueous solution of polyvinyl alcohol was injected into the microsyringe, and the solution was sent by a microsyringe pump. The dispersed phase was introduced from the central dispersed phase introduction channel, and the continuous phase was introduced from the continuous phase introduction channels on both sides of the dispersed phase introduction channel. The liquid sending speed is 6 μl / min for both the dispersed phase and the continuous phase. In a state where the liquid sending speeds were both stable, generation of fine particles was observed at the junction where the dispersed phase and the continuous phase of the fine channel structure for manufacturing fine particles intersect. Observation of the generated fine particles revealed that the average particle size was 77 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 7.0%, indicating that the particles were extremely uniform.
[0086]
(Example 5)
As a fifth embodiment, a microchannel structure having four channels as shown in FIG. 29 was manufactured. The formed microchannel (16) has a width of 100 μm and a depth of 40 μm, and is connected to the fluid inlet A (43), the fluid inlet B (44), the fluid inlet C (45), and the fluid inlet. The laminar flow channel (46) and the micro flow channel connected to the laminar flow channel were respectively joined at an angle of 44 °. A microchannel structure having this microchannel was manufactured in the same manner as in Example 1. A mixed solution of organic phase divinylbenzene and butyl acetate is sent as a dispersed phase from the fluid inlet A of the microchannel, and a 3% aqueous solution of polyvinyl alcohol in the aqueous phase is sent from the fluid inlet B. From the inlet C, a 3% aqueous polyvinyl alcohol aqueous solution was fed as a continuous phase. The liquid was supplied to the microsyringe in the same manner as in Example 1, and the liquid was sent using a microsyringe pump. The liquid was sent at a rate of 5 μl / min from the fluid inlet A and the fluid inlet B and at 10 μl / min from the fluid inlet C. Laminar flow was observed from the laminar junction (47) of the fluid introduction ports A and B to the junction (6) in a state where the liquid sending speeds were both stable. Also, generation of fine particles was confirmed at the junction of the continuous phases. Observation of the generated fine particles showed that the average particle size was 110 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 8.2%, indicating uniform fine particles.
[0087]
(Example 6)
FIG. 20 shows a microchannel in the sixth embodiment of the present invention. The microchannels are formed on a Pyrex (registered trademark) glass of 70 mm × 20 mm × 1t (thickness), and the continuous phase introduction channel (3), the dispersed phase introduction channel (5), and the discharge channel corresponding to the microchannels. (7) The width of each is 220 μm, the depth is 80 μm, the aspect ratio of the microchannel is 0.36, the length of the discharge channel is 30 mm, and the continuous phase introduction channel and the dispersed phase introduction channel are 44 °. One Y-shaped flow path having a merging portion that intersects at an angle is formed. The width and depth of the microchannel depend on the particle diameter of the droplets or microparticles to be generated, but the aspect ratio of the microchannel may be within the range of 0.30 or more and less than 3.0. .
In the same manner as in Example 1, a mixed solution of divinylbenzene and butyl acetate was injected into a dispersed phase for producing fine particles, and a 3% aqueous solution of polyvinyl alcohol was injected into a continuous phase into each microsyringe. Performed with a syringe pump. The liquid sending speed is 2 μl / min for both the dispersed phase and the continuous phase. With both the liquid sending speeds stable, generation of fine particles was observed at the junction where the dispersed phase and the continuous phase of the microchannel structure intersect. After the generation of the fine particles, as shown in FIG. 8 (b), the position of the discharge channel (7) 10 mm away from the discharge port (8) is set as the center of the light irradiation spot (20), and the light irradiation (21) by ultraviolet light is performed. The microparticles were cured. The size of the light irradiation spot was about 10 mm in diameter. A mask (22) was provided so that light irradiation was not performed on portions other than the light irradiation spot. From the outlet, fine particles were discharged using an aqueous solution of polyvinyl alcohol as a medium. Observation of the generated fine particles revealed that the average particle size was 200 μm, and the CV value (%) indicating the degree of dispersion of the particle size was 8.5%, which was extremely uniform. Also, instead of irradiating light after generating the microparticles in the microseparator, a portion of the Teflon (registered trademark) tube (27) outside the microchannel structure from the outlet (8) shown in FIG. Was heated to 65 ° C. by a heater (28) to cure the fine particles. Fine particles using an aqueous solution of polyvinyl alcohol as a medium were discharged to the beaker (26). Observation of the generated fine particles revealed that the CV value (%) indicating the degree of dispersion of the particle diameter was 8.5%, with an average particle diameter of 200 μm, which was extremely uniform.
[0088]
(Example 7)
As a seventh example, a microchannel structure having a microchannel (16) as shown in FIG. 30 was manufactured. The position of the common flow channel inlet such that the flow channel depth is 80 μm and the flow channel width is 0.5 mm at the position of the common flow channel inlet (32) and 2 mm at the position of the common flow channel outlet (31). From the two common flow paths (29) whose flow path widths are gradually increased toward the position of the common flow path discharge port, a micro flow path having a width of 220 μm and a depth of 80 μm is drawn out and merged in a Y-shape. Four channels are placed at regular intervals of 6 mm (a 1 ~ A 5 Are all 6 mm). The shape of the Y-shaped minute flow path is the same as that of the first embodiment. The common channel inlet was 0.5 mm wide and 80 μm deep, and the common channel outlet was 200 μm wide and 80 μm deep. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.
[0089]
Pure water is supplied to each of the two common flow paths of the micro flow path structure at a flow rate of 2.5 ml / min for 5 minutes to each of the common flow paths in the same manner as in the first embodiment. The amount of liquid discharged from the fluid discharge port of the micro flow path after passing through the Y-shaped micro flow path was compared in each flow path, and the results shown in Table 1 were obtained. 1 ~ Y 4 The liquid could be sent uniformly to each of the microchannels.
[0090]
[Table 1]
Figure 2004122107
Further, a 3% aqueous solution of polyvinyl alcohol was sent to one common channel, and a mixed solution of divinylbenzene and butyl acetate was sent to the other common channel at a rate of 100 μl / min in the same manner as in Example 1. As a result of measuring and averaging the particle diameters of the ten microparticles generated in the flow channel with a microscope, the results shown in Table 2 were obtained, and the average value of the particle diameter of the fine particles discharged from each microchannel was 101. The CV value (%) indicating 0 μm and the degree of dispersion of the particle diameter was 8.7%, and uniform microparticles could be generated in each microchannel.
[0091]
[Table 2]
Figure 2004122107
(Comparative Example 2)
As a second comparative example, a microchannel structure having a microchannel (16) as shown in FIG. 31 was manufactured. The position of the common flow channel inlet such that the flow channel depth is 80 μm and the flow channel width is 2 mm at the position of the common flow channel inlet (32) and 0.5 mm at the position of the common flow channel outlet (31). From the two common flow paths (29) whose width is gradually narrowed toward the position of the common flow path discharge port, a minute flow path having a width of 220 μm and a depth of 80 μm was drawn out and merged in a Y-shape. Four micro channels are placed at equal intervals of 6 mm (a 1 ~ A 5 Are all 6 mm). The shape of the microchannel is the same as that of the first embodiment. The common channel inlet was 0.5 mm wide and 80 μm deep, and the common channel outlet was 220 μm wide and 80 μm deep. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.
[0092]
Pure water was supplied to each of the two common channels of the microchannel structure at a flow rate of 2.5 ml / min using a liquid feed pump in the same manner as in the first embodiment. The liquid was sent for 5 minutes, passed through the Y-shaped fine flow path, and the amount of liquid discharged from the fluid discharge port of the fine flow path was compared in each flow path. The result shown in Table 1 was obtained. 1 ~ Y 4 The liquid could not be sent uniformly to each of the microchannels.
[0093]
In addition, a 3% aqueous solution of polyvinyl alcohol was sent to one common channel, and a mixed solution of divinylbenzene and butyl acetate was sent to the other common channel at 100 μl / min by a liquid sending pump as in Example 1. As a result of measuring and averaging the particle diameters of ten microparticles generated in each microchannel with a microscope, the results shown in Table 2 are obtained, and microparticles having a uniform particle diameter are generated in each microchannel. I couldn't do that.
[0094]
(Example 8)
As an eighth embodiment, a microchannel structure having microchannels as shown in FIG. 20 was manufactured. The width W of the formed microchannel is 220 [μm], the depth d of the microchannel is 80 [μm], the length of the microchannel is 30 [mm], and two microchannels connected to the inlet (11) are provided. Were joined at an angle of 44 °. The microchannel structure having the microchannel was manufactured in the same manner as in Example 1.
[0095]
In the same manner as in Example 1, an aqueous phase containing phenol as a substance to be extracted was sent from one of the fluid inlets of the microchannel, and ethyl acetate as an extraction solvent was sent from the other fluid inlet. The organic phase was sent. Experiments were carried out when the laminar flow was formed to extract phenol on the ethyl acetate side by adjusting the liquid sending rate, and when the organic phase of ethyl acetate was formed into fine particles and extracted with the aqueous phase. The liquid sending speed when the laminar flow was formed was 20 μl / min for both the aqueous phase and the organic phase. When the organic phase of divinylbenzene was made into fine particles by the aqueous phase, the liquid sending speed was 2 μl / min for both the aqueous phase and the organic phase.
[0096]
In this microchannel, the relative boundary area obtained when a laminar flow is formed is 2 × 10 because the width W of the microchannel is about 220 [μm]. 4 / W [cm -1 ] = About 2 × 10 4 / 220 [cm -1 ] = About 90 [cm] -1 ]. The average particle size of the fine particles when the organic phase of ethyl acetate was made fine particles by the aqueous phase was measured using a high-speed camera, and the diameter D of the fine particles was determined to be about 200 [μm]. The relative area in this case is 6 × 10 4 / D [cm -1 ] = About 6 × 10 4 / 200 [cm -1 ] = About 300 [cm] -1 ]. From this, it is presumed that when the organic phase of ethyl acetate was made into fine particles by the aqueous phase, the non-boundary area became larger and the extraction efficiency was increased than when the laminar flow was formed by the aqueous phase and the organic phase. You.
[0097]
Actually, the fluid discharged from the fluid outlet was collected in a test tube, only the organic phase was taken out, and the phenol concentration was measured using high performance liquid chromatography. The longer the time the organic phase and the aqueous phase are in contact, the greater the amount of substance extracted, so the measurement result is calculated based on the residence time in the microchannel calculated from the liquid sending rate of the organic phase as the extraction solvent. Divided and corrected. As a result, the concentration of phenol was higher when the organic phase of ethyl acetate was finely divided and extracted. From the above, it was confirmed that by making the extraction solvent into fine particles, the extraction efficiency was improved beyond the efficiency determined by the width of the microchannel.
[0098]
【The invention's effect】
In the method for producing microparticles of the present invention, a dispersed phase and a continuous phase are introduced into a microchannel structure having a microchannel from its introduction channel, and the dispersed phase is sheared in the continuous phase at a junction where the two are merged to form a microparticle. Particles are generated, and the diameter of the generated fine particles is controlled by changing the angle at which the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase intersect. Is possible. This is easier to control in the production of microparticles using a conventional microchannel structure than changing the introduction speed of the dispersed phase and continuous phase, and is suitable for industrial mass production. In particular, when the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, it is sufficient in terms of cost, such as preparing one introduction device. Therefore, by the method for producing microparticles of the present invention, the generation of microparticles having a stable particle size eliminates the need to supply an excessive amount of continuous phase. Becomes possible.
[0099]
Further, by providing an introduction channel for introducing a plurality of dispersed phases and / or continuous phases, the dispersed phase and / or the continuous phase can be formed into a laminar flow of a plurality of fluids, or a mixed solution or suspension (emulsion). By doing so, microparticles having a multilayer structure or microparticles containing various types of microparticles can be formed, and composite microcapsules and multiple microcapsules can be produced.
[0100]
Also, when the microparticles generated at the confluence of the microchannels are microdroplets and the microdroplets are cured, the microdroplets pass through the discharge channel to make the particle size of the hardened microparticles uniform. After exiting from the discharge part, the discharge part of the fine flow path structure may be sequentially and sequentially cured in a fine flow path provided outside the micro flow path structure, and the particles of the hardened fine particles may be further cured. In order to make the diameter more uniform, immediately after the microdroplets are generated at the confluence of the microchannels, they may be hardened in the microchannels, that is, the discharge channels in the microchannel structure, and this is done. If the microparticles generated at the confluence of the microchannels are microdroplets, they are collected in a beaker or the like outside the microchannels, and when the microdroplets are cured by crosslinking polymerization, the microdroplets are collected. Before curing, the shape of the microparticles collapses, or coalescence of the microparticles occurs Because, there is no the variation of the particle diameter of the cured microparticles is large, it is possible particle size to obtain a uniform fine particles. Further, the hardening of the microdroplets facilitates separation from the medium.
In addition, as a mode for producing a large amount of microparticles by parallelizing and / or laminating a large number of the microchannels, an inlet for introducing a fluid and an outlet for discharging the fluid are provided. A microchannel structure having a common channel communicating with the inlet and the outlet on the substrate, and one or more microchannels communicating with the common channel at a position different from the inlet and the outlet. Wherein the cross-sectional area of the common flow path is gradually increased from the communication position with the introduction port toward the communication position with the discharge port or is the same as that of the micro-flow path structure, It is possible to uniformly distribute the fluid to a plurality of micro flow channels arranged two-dimensionally or three-dimensionally.
[0101]
Examples of the use of the fine particles produced by the method for producing fine particles of the present invention include a filler for a column for high performance liquid chromatography, an adhesive such as a seal lock agent, insulating particles of metal particles, a pressure measurement film, Carbon (pressure-sensitive copying) paper, toner, thermal expansion agent, heat medium, light control glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoretic capsule, pesticide, artificial feed, artificial seed , Fragrance, massage cream, lipstick, vitamin capsules, activated carbon, enzyme-containing capsules, microcapsules and gels such as DDS (drug delivery system).
[0102]
Further, in the solvent extraction method using the microchannel structure of the present invention, the efficiency of the reaction and extraction is determined by the width of the microchannel by using the microparticles for solvent extraction in the microchannel. The above can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a conventional microchannel for generating microparticles. FIG. 1R is a cross-sectional view taken along line AA ′ of FIG. FIG.
2 (a) is a conceptual diagram showing a laminar flow in a Y-shaped microchannel, and FIG. 2 (b) is an enlarged three-dimensional cross section of a circle which is a part of FIG. 2 (a). FIG.
FIG. 3 is a conceptual diagram showing a method in which a continuous phase shears a dispersed phase to form microparticles near a confluence of a microchannel.
FIG. 4 is a conceptual diagram showing a method of forming microparticles by shearing a continuous phase on both sides so as to sandwich a central dispersed phase in the vicinity of a confluence of a microchannel.
FIG. 5 is a conceptual diagram showing a method in which a central continuous phase shears dispersions on both sides to form fine particles in the vicinity of a merging portion of a microchannel.
FIG. 6: In the vicinity of the confluence of the microchannel, a dispersed phase is linearly introduced from one side and a continuous phase is introduced from the other side, and the dispersed phase is sheared by the continuous phase to generate microparticles. It is a conceptual diagram showing a method of discharging in the direction of.
FIG. 7 is a diagram illustrating a disperse phase introduction channel for introducing a plurality of dispersed phases and / or continuous phases and / or a continuous phase introduction channel for laminar flow or mixing of a dispersed phase and / or a continuous phase with a plurality of fluids. FIGS. 7A to 7C are some conceptual diagrams showing a method of forming a microparticle by shearing a dispersed phase in a continuous phase in the vicinity of a confluence of a microchannel as a liquid or a suspension (emulsion). g) shows each embodiment.
8A and 8B are schematic views showing a method for curing fine particles by light irradiation. FIG. 8A shows a case where light irradiation means is provided outside, and FIG. 8B shows light irradiation using a mask. FIG.
9A and 9B are schematic views showing a method of curing microparticles by heating. FIG. 9A shows a case where a heating unit is provided outside, and FIG. 9B shows a case where the heating unit is provided inside the microchannel structure. It is a schematic diagram in the case of having provided.
FIG. 10 is a conceptual diagram showing the most basic shape of a microchannel for uniformly sending a fluid to a plurality of microchannels arranged two-dimensionally or three-dimensionally.
FIG. 11 is a cross-sectional view showing a cross section of a common flow channel from a common flow channel introduction port to a common flow channel discharge channel in a micro flow channel shape for uniformly sending a fluid to a plurality of micro flow channels arranged two-dimensionally or three-dimensionally. It is the conceptual diagram which showed the example which becomes large gradually toward an exit.
FIG. 12 is a schematic view showing a microchannel shape for uniformly sending a fluid to a plurality of microchannels arranged two-dimensionally or three-dimensionally. It is the conceptual diagram which showed the example which sent liquid.
FIG. 13 is a conceptual diagram showing an example in which a common flow path is arranged in an arc shape among fine flow path shapes for uniformly sending a fluid to a plurality of fine flow paths arranged two-dimensionally or three-dimensionally. .
FIG. 14 is a view showing a structure in which a microchannel substrate having microchannels is overlapped and a common channel is formed in a microchannel shape for uniformly sending a fluid to a plurality of microchannels arranged two-dimensionally or three-dimensionally. This is an example in which the microchannel substrate is penetrated, and the upper part of FIG. 14 is a cross-sectional view taken along the line DD ′ and EE ′, showing the lamination integration.
FIG. 15 is a conceptual diagram showing microparticles in a microchannel.
FIG. 16 is a microparticle according to the present invention when the fluid containing the substance to be extracted is a fluid in which two fluids having raw materials are separately introduced into a microchannel and mixed and reacted in a reaction phase in the microchannel. FIG. 3 is a conceptual diagram of a solvent extraction method as a use of the method.
FIG. 17: In a microchannel for generating a product by a reaction occurring at a fluid boundary, two fluids having raw materials are made into a continuous phase, and the extraction solvent is sheared at the fluid boundary by the continuous phase, so that the microfluid is formed at the fluid boundary. It is a conceptual diagram which extracts the product produced | generated at the fluid boundary by forming a droplet and making it into a dispersed phase.
FIG. 18 shows that a fluid containing a substance to be extracted is converted into fine droplets to form a dispersed phase, and a phase is transferred to an extraction solvent that is a continuous phase to perform solvent extraction, and then at least the surface of the fine droplets is cured. It is a conceptual diagram which shows separating an to-be-extracted substance.
FIG. 19 shows that a fluid containing a substance to be extracted is made into a continuous phase, and the solvent is extracted by performing phase-to-phase transfer to an extraction solvent that has been formed into microdroplets to form a dispersed phase, and then at least the surface of the microdroplets is cured. It is a conceptual diagram which shows separating an to-be-extracted substance.
FIG. 20 is a schematic view showing a microchannel in Examples 1, 6 and 8.
FIG. 21 is a schematic view showing a microchannel structure in Example 1.
FIG. 22 is a schematic diagram showing a method for producing fine particles in Example 1.
FIG. 23 is a schematic view showing a state of generating fine particles in Example 1.
FIG. 24 is a diagram showing the generated fine particles in Example 1.
25 is a schematic diagram showing a microchannel in Example 2, and FIG. 25 right is a cross-sectional view taken along line GG ′ of FIG. 25 left.
26 is a schematic view showing a microchannel in Comparative Example 1, and the right side of FIG. 26 is a cross-sectional view taken along line HH ′ of HH ′ on the left side of FIG.
27 (a) is a schematic view showing a microchannel in Example 3, and FIGS. 27 (b) and 27 (c) are enlarged views of a portion 6 in FIG. 27 (a). .
28 is a schematic diagram showing a microchannel in Example 4, and FIG. 28 right is a cross-sectional view taken along line MM ′ of line MM ′ in FIG. 28 left.
29 is a schematic diagram showing a microchannel in Example 5, and FIG. 29 right is a cross-sectional view taken along line NN ′ of NN ′ shown in FIG. 29 left.
FIG. 30 is a schematic view of the shape of the microchannel shown in Example 7.
FIG. 31 is a schematic view of the shape of the microchannel shown in Comparative Example 2.
FIGS. 32 (a) to (e) are some conceptual diagrams showing examples in which one or more projections are formed from any one or more of the bottom, top, and side surfaces of a flow channel. It is.
[Explanation of symbols]
1: Microchannel substrate
2: Continuous phase inlet
3: Continuous phase introduction channel
4: Dispersed phase inlet
5: Dispersed phase introduction channel
6: junction
7: discharge channel
8: outlet
9: Width of micro channel
10: continuous phase
11: Inlet
12: Organic phase
13: Water phase
14: Fluid boundary
15: Disperse phase
16: micro channel
17: microparticle
18: diameter of microparticle
19: Microchannel structure
20: Light irradiation spot
21: Light irradiation
22: Mask
23: Holder
24: Unit length of microchannel
25: Depth of micro channel
26: Beaker
27: Teflon (registered trademark) tube
28: heater
29: Common channel
30: Cover body
31: Common channel outlet
32: Common channel inlet
33: diameter of microdroplet
34: micro droplet
35: Fluid A
36: Fluid b
37: Reaction phase
38: Extraction solvent
39: Solvent extraction
40: Fillet joint
41: Micro syringe pump
42: Micro syringe
43: Fluid inlet A
44: Fluid inlet B
45: Fluid inlet C
46: Laminar flow channel
47: Laminar junction
48: Introductory channel

Claims (41)

分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなる微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、前記2つの導入流路が任意の角度で排出流路へと繋がる構造であることを特徴とする微小流路構造体。An introduction port and an introduction flow path for introducing a dispersed phase, an introduction port and an introduction flow path for introducing a continuous phase, a discharge flow path for discharging fine particles generated by the dispersed phase and the continuous phase, and A microchannel structure comprising a microchannel having an outlet, and the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase intersect at an arbitrary angle, A microchannel structure wherein the two introduction channels are connected to a discharge channel at an arbitrary angle. 流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上3.0未満であることを特徴とする請求項1に記載の微小流路構造体。2. The microchannel structure according to claim 1, wherein an aspect ratio (ratio of depth / width of the channel) of the channel cross section is 0.30 or more and less than 3.0. 3. 分散相を導入するための導入流路と連続相を導入するための導入流路の幅及び深さが等しいことを特徴とする請求項1又は請求項2に記載の微小流路構造体。3. The microchannel structure according to claim 1, wherein the width and depth of the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase are equal. 導入流路の幅と排出流路の幅との関係において、導入流路の幅≧排出流路の幅であることを特徴とする請求項1〜3のいずれかに記載の微小流路構造体。The microchannel structure according to any one of claims 1 to 3, wherein, in the relationship between the width of the introduction channel and the width of the discharge channel, the width of the introduction channel ≥ the width of the discharge channel. . 分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっていることを特徴とする請求項1〜4のいずれかに記載の微小流路構造体。The width of the discharge channel is reduced at a part of the discharge channel from the intersection of the dispersed phase and the continuous phase to the discharge port, wherein the width of the discharge channel is reduced. The microchannel structure according to any one of the preceding claims. 排出流路の幅が狭くなっている部位が、排出流路中の交差部又はその近傍にあることを特徴とする請求項5に記載の微小流路構造体。6. The microchannel structure according to claim 5, wherein the portion where the width of the discharge channel is narrowed is at or near an intersection in the discharge channel. 排出流路の幅が狭くなっている部位が、排出流路の交差部の分散相の導入流路側にあることを特徴とする請求項5又は請求項6記載の微小流路構造体。7. The microchannel structure according to claim 5, wherein the portion where the width of the discharge channel is narrow is located at the crossing portion of the discharge channel on the side of the introduction channel of the dispersed phase. 分散相と連続相とが合流した位置の近傍において、流路の底面、上面及び/または側面から、1以上の突起が形成されていることを特徴とする請求項1〜7のいずれかに記載の微小流路構造体。8. One or more protrusions are formed from the bottom surface, the top surface, and / or the side surface of the flow channel in the vicinity of the position where the dispersed phase and the continuous phase have joined. Micro channel structure. 流体を導入するための導入口及び流体を排出するための排出口を備え、基板上に前記導入口及び排出口と連通する共通流路と、前記導入口及び排出口とは異なる位置で前記共通流路と連通する1以上の微小流路とを有した微小流路構造体であって、前記共通流路の断面積が導入口との連通位置より排出口との連通位置に向かって次第に大きくなるかあるいは同じであることを特徴とする微小流路構造体。An inlet for introducing a fluid and an outlet for discharging the fluid, a common flow path communicating with the inlet and the outlet on the substrate, and the common channel at a different position from the inlet and the outlet. A microchannel structure having at least one microchannel communicating with the channel, wherein a cross-sectional area of the common channel gradually increases from a position communicating with the inlet toward a position communicating with the outlet. Or a microchannel structure characterized by being the same or the same. 前記導入口に最も近い微小流路Yから前記排出口に最も近い微小流路Yまでn本の微小流路が共通流路と連通した微小流路構造体において、導入口との連通位置をX、導入口に最も近い微小流路Yの連通位置をX、XとXとの間の共通流路に沿った長さをa、排出口との連通位置をXn+1、排出口に最も近い微小流路Yの連通位置をX、XとXn+1との間の共通流路に沿った長さをan+1としたとき、aからaがすべて等しいことを特徴とする請求項9記載の微小流路構造体。Communication position with the in microchannels n present the fine channel Y 1 is closest to the inlet to the nearest fine channel Y n to the outlet common passage and communication with fine channel, inlet Is X 0 , the communication position of the micro flow path Y 1 closest to the inlet is X 1 , the length along the common flow path between X 0 and X 1 is a 1 , and the communication position with the discharge port is X n + 1, the communicating position X n nearest fine channel Y n to the outlet, when the common flow path lengths along between X n and X n + 1 was a n + 1, a n is everything from a 2 The microchannel structure according to claim 9, wherein the microchannel structure is equal. 〜an+1がすべて等しいことを特徴とする請求項10記載の微小流路構造体。fine channel according to claim 10, wherein a 1 ~a n + 1 is characterized in that all equal. 前記微小流路構造体が微小流路を有する1つ以上の微小流路基板を重ねあわせて構成されており、共通流路が微小流路基板を貫通してなることを特徴とする請求項9〜11のいずれかに記載の微小流路構造体。10. The microchannel structure according to claim 9, wherein one or more microchannel substrates having microchannels are overlapped, and a common channel penetrates the microchannel substrate. 12. The microchannel structure according to any one of items 11 to 11. 前記微小流路構造体において、各々の共通流路の排出口から排出された流体を各々の導入口へ戻す構造となっていることを特徴とする請求項9〜12のいずれかに記載の微小流路構造体。13. The microchannel according to claim 9, wherein the microchannel structure has a structure in which a fluid discharged from an outlet of each common channel is returned to each inlet. Channel structure. 前記微小流路構造体が複数の共通流路を有し、各々の共通流路が微小流路と連通していることを特徴とする請求項9〜13のいずれかに記載の微小流路構造体。The microchannel structure according to any one of claims 9 to 13, wherein the microchannel structure has a plurality of common channels, and each common channel communicates with the microchannel. body. 前記微小流路構造体の共通流路の少なくとも1つに分散相を、別の少なくとも1つに連続相を導入し排出することを特徴とする請求項14記載の微小流路構造体。15. The microchannel structure according to claim 14, wherein a dispersed phase is introduced into at least one of the common channels of the microchannel structure, and a continuous phase is introduced and discharged into at least another one of the common channels. 分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路構造体を用いて微小粒子を生成する方法であって、分散相と連続相とを合流させて分散相を微小粒子化することを特徴とする微小粒子製造方法。An introduction port and an introduction flow path for introducing a dispersed phase, an introduction port and an introduction flow path for introducing a continuous phase, a discharge flow path for discharging fine particles generated by the dispersed phase and the continuous phase, and A method for producing microparticles using a microchannel structure provided with an outlet, wherein the dispersion phase is converted into microparticles by merging a dispersed phase and a continuous phase. . 分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御することを特徴とする請求項16に記載の微小粒子製造方法。17. The particle size of the microparticles generated by changing the angle at which the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase intersect is controlled, according to claim 16, wherein A method for producing fine particles. 分散相の導入速度と連続相の導入速度とが実質的に同じであることを特徴とする請求項請求項16又は請求項17に記載の微小粒子製造方法。18. The method for producing fine particles according to claim 16, wherein the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same. 前記生成した微小粒子を含む流体を、前記連続相と前記分散相が合流した位置より任意の方向へ排出させることを特徴とする請求項16〜18のいずれかに記載の微小粒子製造方法。19. The method for producing fine particles according to claim 16, wherein the fluid containing the generated fine particles is discharged in an arbitrary direction from a position where the continuous phase and the dispersed phase have joined. 前記生成した微小粒子を含む流体を、前記連続相と前記分散相が合流した位置より任意の2以上の方向へ排出させることを特徴とする請求項16〜19のいずれかに記載の微小粒子製造方法。20. Microparticle production according to any one of claims 16 to 19, wherein the fluid containing the generated microparticles is discharged in any two or more directions from a position where the continuous phase and the dispersed phase merge. Method. 前記生成した微小粒子を含む流体を、再度合流させて回収することを特徴とする請求項20記載の微小粒子製造方法。21. The method for producing fine particles according to claim 20, wherein the fluid containing the generated fine particles is combined again and collected. 前記連続相と前記分散相は実質的に相溶性が無い流体であることを特徴とする請求項16〜21のいずれかに記載の微小粒子製造方法。The method according to any one of claims 16 to 21, wherein the continuous phase and the dispersed phase are substantially incompatible fluids. 前記連続相及び/または分散相が2以上の流体からなる層流であることを特徴とする請求項16〜22のいずれかに記載の微小粒子製造方法。The method according to any one of claims 16 to 22, wherein the continuous phase and / or the dispersed phase are laminar flows composed of two or more fluids. 前記連続相及び/または分散相が2以上の流体の混合液または懸濁液(エマルション)からなる流体であることを特徴とする請求項16〜23のいずれかに記載の微小粒子製造方法。The method according to any one of claims 16 to 23, wherein the continuous phase and / or the dispersed phase is a fluid composed of a mixture or suspension (emulsion) of two or more fluids. 前記連続相及び/または前記分散相に微小な粉末を含むことを特徴とする請求項16〜24のいずれかに記載の微小粒子製造方法。The method for producing fine particles according to any one of claims 16 to 24, wherein the continuous phase and / or the dispersed phase contains fine powder. 分散相がゲル製造用原料を含む媒体であることを特徴とする請求項16〜25のいずれかに記載の微小粒子製造方法。The method for producing fine particles according to any one of claims 16 to 25, wherein the dispersed phase is a medium containing a raw material for producing a gel. 連続相がゲル製造用分散剤を含む媒体であることを特徴とする請求項16〜26のいずれかに記載の微小粒子製造方法。The method for producing fine particles according to any one of claims 16 to 26, wherein the continuous phase is a medium containing a dispersant for producing a gel. ゲル製造用分散剤がポリビニルアルコールであることを特徴とする請求項16〜27のいずれかに記載の微小粒子製造方法。The method for producing microparticles according to any one of claims 16 to 27, wherein the gel producing dispersant is polyvinyl alcohol. 微小粒子が微小液滴であることを特徴とする請求項16〜28のいずれかに記載の微小粒子製造方法。The method for producing microparticles according to any one of claims 16 to 28, wherein the microparticles are microdroplets. 微小粒子を微小流路中及び/又は微小流路の外において硬化させることを特徴とする請求項16〜29のいずれかに記載の微小粒子製造方法。The method for producing microparticles according to any one of claims 16 to 29, wherein the microparticles are cured in the microchannel and / or outside the microchannel. 微小粒子に光を照射して硬化させることを特徴とする請求項30記載の微小粒子製造方法。The method for producing fine particles according to claim 30, wherein the fine particles are cured by irradiating light. 微小粒子に紫外線を照射して硬化させることを特徴とする請求項31記載の微小粒子製造方法。The method for producing microparticles according to claim 31, wherein the microparticles are cured by irradiating the microparticles with ultraviolet rays. 微小粒子を加熱して硬化させることを特徴とする請求項30記載の微小粒子製造方法。The method for producing fine particles according to claim 30, wherein the fine particles are cured by heating. 分散相がゲル製造用原料を含む媒体であり、分散相を導入するための導入口及び導入流路と、連続相がゲル製造用分散剤を含む媒体であり、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路構造体を用いて微小粒子を生成する方法であって、分散相と連続相とを合流させて分散相を微小粒子化し、前記分散相を導入するための導入流路と前記連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御し、微小粒子を微小流路中及び/又は微小流路の外において、光照射及び/又は加熱により硬化させることを特徴とする微小粒子製造方法。The dispersed phase is a medium containing a raw material for gel production, and an inlet and an introduction channel for introducing the dispersed phase, and the continuous phase is a medium containing a dispersant for gel production, and introduced for introducing a continuous phase. A method for producing microparticles using a microchannel structure provided with a mouth and an introduction channel, and a discharge channel and a discharge port for discharging microparticles generated by the dispersed phase and the continuous phase, The dispersion phase and the continuous phase are merged to form the dispersed phase into fine particles. A method for producing microparticles, comprising controlling the particle size of microparticles to be formed, and curing the microparticles by light irradiation and / or heating in and / or outside the microchannel. 微小粒子がマイクロカプセルであることを特徴とする請求項16〜34のいずれかに記載の微小粒子製造方法。The method for producing fine particles according to any one of claims 16 to 34, wherein the fine particles are microcapsules. 微小粒子がゲルであることを特徴とする請求項16〜34のいずれかに記載の微小粒子製造方法。The method for producing fine particles according to any one of claims 16 to 34, wherein the fine particles are a gel. 請求項1〜15のいずれかに記載の微小流路構造体を用いて、微小流路内において抽出溶媒あるいは被抽出物質含有の流体を微小液滴化した後、前記微小液滴からなる分散相と前記微小液滴を囲む連続相との間で被抽出物質の相間移動により溶媒抽出を行なうことを特徴とする溶媒抽出方法としての前記微小粒子の用途。A dispersion phase comprising the microdroplets after using the microchannel structure according to any one of claims 1 to 15 to convert a fluid containing an extraction solvent or a substance to be extracted into microdroplets in the microchannels. Use of the microparticles as a solvent extraction method, wherein solvent extraction is performed by interphase movement of a substance to be extracted between the microparticles and a continuous phase surrounding the microdroplets. 前記溶媒抽出方法において、被抽出物質含有の流体を連続相とし、抽出溶媒を分散相とすることを特徴とする請求項37記載の溶媒抽出方法としての前記微小粒子の用途。The use of the microparticles as a solvent extraction method according to claim 37, wherein in the solvent extraction method, the fluid containing the substance to be extracted is a continuous phase, and the extraction solvent is a dispersed phase. 前記溶媒抽出方法において、被抽出物質含有の流体を分散相とし、抽出溶媒を連続相とすることを特徴とする請求項37記載の溶媒抽出方法としての前記微小粒子の用途。The use of the microparticles as a solvent extraction method according to claim 37, wherein in the solvent extraction method, the fluid containing the substance to be extracted is a dispersed phase, and the extraction solvent is a continuous phase. 前記被抽出物質が原材料を含有する2種以上の流体を化学反応させて得られる生成物であることを特徴とする請求項37〜39のいずれか記載の溶媒抽出方法としての前記微小粒子の用途。The use of the microparticles as a solvent extraction method according to any one of claims 37 to 39, wherein the substance to be extracted is a product obtained by chemically reacting two or more fluids containing raw materials. . 微小流路内で溶媒抽出を行なったあと、請求項29〜33のいずれかに記載の微小粒子製造方法により、前記微小液滴の少なくとも表面を硬化することにより、連続相と分散相を分離することを特徴とする請求項37〜40いずれかに記載の溶媒抽出方法としての前記微小粒子の用途。After performing the solvent extraction in the microchannel, the continuous phase and the dispersed phase are separated by hardening at least the surface of the microdroplet by the microparticle production method according to any one of claims 29 to 33. The use of the microparticles as the solvent extraction method according to any one of claims 37 to 40.
JP2003117123A 2002-04-25 2003-04-22 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure Expired - Fee Related JP4193561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117123A JP4193561B2 (en) 2002-04-25 2003-04-22 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002123835 2002-04-25
JP2002158093 2002-05-30
JP2002215180 2002-07-24
JP2002219913 2002-07-29
JP2002228470 2002-08-06
JP2003117123A JP4193561B2 (en) 2002-04-25 2003-04-22 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007140401A Division JP4743165B2 (en) 2002-04-25 2007-05-28 Micro channel structure
JP2008191265A Division JP2008264784A (en) 2002-04-25 2008-07-24 Fine channel structure and solvent extraction method using fine channel structure

Publications (2)

Publication Number Publication Date
JP2004122107A true JP2004122107A (en) 2004-04-22
JP4193561B2 JP4193561B2 (en) 2008-12-10

Family

ID=32303848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117123A Expired - Fee Related JP4193561B2 (en) 2002-04-25 2003-04-22 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure

Country Status (1)

Country Link
JP (1) JP4193561B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059802A (en) * 2002-07-30 2004-02-26 Japan Science & Technology Corp Preparation method of solid fine particulate and its apparatus
JP2004067953A (en) * 2002-08-09 2004-03-04 Toshiro Higuchi Process and apparatus for producing monodisperse resin particle
JP2004154745A (en) * 2002-09-10 2004-06-03 Tosoh Corp Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP2004195337A (en) * 2002-12-17 2004-07-15 Tosoh Corp Particle production method and minute channel structure for the same
JP2004195338A (en) * 2002-12-17 2004-07-15 Tosoh Corp Particle production method and minute channel structure for the same
JP2004202476A (en) * 2002-11-06 2004-07-22 Tosoh Corp Particle production method and microchannel structure therefor
JP2004237177A (en) * 2003-02-04 2004-08-26 Japan Science & Technology Agency Double emulsion microcapsule former
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2005152740A (en) * 2003-11-25 2005-06-16 National Food Research Institute Method and apparatus for manufacturing emulsion
JP2005185877A (en) * 2003-12-24 2005-07-14 Tosoh Corp Fine particle production apparatus and method for producing fine particle by using the same
WO2005089921A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency Method and device for producing micro-droplets
JP2005319409A (en) * 2004-05-10 2005-11-17 Fuji Xerox Co Ltd Method and apparatus for feeding particulate dispersion
JP2006026610A (en) * 2004-07-21 2006-02-02 Fuji Xerox Co Ltd Liquid sending method of particulate dispersion, and liquid sending apparatus of particulate dispersion
JP2006035132A (en) * 2004-07-28 2006-02-09 Tosoh Corp Method for producing solid-state particle using micropath structural body and capsule for display obtained thereby
JP2006053060A (en) * 2004-08-12 2006-02-23 Tosoh Corp Fine particle manufacturing method, and micro flow passage structure therefor
JP2006095481A (en) * 2004-09-30 2006-04-13 Tosoh Corp Apparatus and method for producing fine particle
JP2006300946A (en) * 2005-04-19 2006-11-02 Commissariat A L'energie Atomique System for transferring method and mass of micro fluid between two types of immiscible phases
JP2006343627A (en) * 2005-06-10 2006-12-21 Ricoh Co Ltd Method for manufacturing toner, and toner
JP2007009074A (en) * 2005-06-30 2007-01-18 Sanyo Chem Ind Ltd Method for producing resin particle
JP2007031604A (en) * 2005-07-28 2007-02-08 Sanyo Chem Ind Ltd Production method for resin particle
JP2007031603A (en) * 2005-07-28 2007-02-08 Sanyo Chem Ind Ltd Method for producing resin particle
JP2007038223A (en) * 2006-09-27 2007-02-15 Japan Science & Technology Agency Double emulsion microcapsule former
JP2007038117A (en) * 2005-08-02 2007-02-15 Fujifilm Holdings Corp Particle manufacturing method
JP2007090306A (en) * 2005-09-30 2007-04-12 Kri Inc Method for manufacturing microstructure and microreactor
JP2007216206A (en) * 2006-01-18 2007-08-30 Ricoh Co Ltd Microchannel structure, microdroplet production method, microdroplet production system, microparticle and microcapsule
JP2007269547A (en) * 2006-03-31 2007-10-18 Gunze Ltd Fine-grained potassium ferricyanide and its producing method
JP2008007612A (en) * 2006-06-29 2008-01-17 Kri Inc Coloring material particle, and manufacturing method and manufacturing apparatus therefor
JP2008007613A (en) * 2006-06-29 2008-01-17 Kri Inc Acrylic particle, its manufacturing method and microreactor
JP2008080330A (en) * 2006-09-01 2008-04-10 Tosoh Corp Microchannel structure and fine-particle production method using the same
JP2008080250A (en) * 2006-09-27 2008-04-10 Fujifilm Corp Fluid dispersion production apparatus and fluid dispersion production method
WO2008053988A1 (en) * 2006-11-02 2008-05-08 National University Corporation Nagoya University Method of producing microcapsules
JP2008168175A (en) * 2007-01-09 2008-07-24 National Agriculture & Food Research Organization Method and device for manufacturing shelled micro-bubble
JP2008528284A (en) * 2005-02-04 2008-07-31 キュー チップ リミテッド Apparatus and method for forming a segmented flow into a sphere
WO2008114755A1 (en) * 2007-03-16 2008-09-25 National University Corporation Okayama University Micromixer
JP2009014377A (en) * 2007-07-02 2009-01-22 Tosoh Corp Cellulose particles and their manufacturing method
JP2009178698A (en) * 2008-02-01 2009-08-13 Kanagawa Acad Of Sci & Technol Monodisperse emulsion produced by membrane emulsification method, method for producing the same and method for producing polymer fine particle and composite particle by using the method
WO2009098795A1 (en) 2008-02-08 2009-08-13 Covalent Materials Corporation Process for producing ceramic microparticle and ceramic microparticle producing apparatus therefor
WO2009119578A1 (en) * 2008-03-25 2009-10-01 国立大学法人岡山大学 Micro-droplet dispensing device
JP2009537687A (en) * 2006-05-23 2009-10-29 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing polyether polyol
JP2010505391A (en) * 2006-10-02 2010-02-25 キュー チップ リミテッド Beads used for polynucleotide amplification reaction and / or synthesis reaction, apparatus and method for producing the beads
JP2010083696A (en) * 2008-09-30 2010-04-15 Gunze Ltd Fine-grained potassium ferricyanide and producing method of the same
JP2012133326A (en) * 2010-12-22 2012-07-12 Samsung Mobile Display Co Ltd Device and method for manufacturing liquid crystal capsules, and liquid crystal display device including the liquid crystal capsules
JP2012196599A (en) * 2011-03-18 2012-10-18 Kobe Steel Ltd Flow channel structure, and mixing method, extraction method, and reaction method for fluid
US8524173B2 (en) 2006-09-01 2013-09-03 Tosoh Corporation Microchannel structure and fine-particle production method using the same
JP2014228319A (en) * 2013-05-20 2014-12-08 株式会社フジクラ Droplet generation device
US9192901B2 (en) 2010-05-25 2015-11-24 Ucl Business Plc Co-current mixer, apparatus, reactor and method for precipitating nanoparticles
JP2016538115A (en) * 2013-11-25 2016-12-08 エルジー・ケム・リミテッド Fine channel reactor
JP2017203134A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Method for producing porous polymer particles
JP2017537900A (en) * 2014-11-24 2017-12-21 ザ プロクター アンド ギャンブル カンパニー Method for encapsulation of active substance in droplets and other compartments
CN112573703A (en) * 2020-12-09 2021-03-30 陕西金禹科技发展有限公司 Method and device for treating arsenic-containing wastewater through microchannel reaction
CN112573702A (en) * 2020-12-09 2021-03-30 陕西金禹科技发展有限公司 Method and device for treating heavy metal in wastewater through microchannel reaction
CN112755933A (en) * 2021-01-13 2021-05-07 广东工业大学 Multi-stage reaction micro-channel structure, micro-fluidic chip and heterogeneous reaction method
CN115038517A (en) * 2020-01-21 2022-09-09 苏州恒瑞宏远医疗科技有限公司 Reaction device and processing method thereof, and preparation equipment and preparation method of embolism microsphere

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059802A (en) * 2002-07-30 2004-02-26 Japan Science & Technology Corp Preparation method of solid fine particulate and its apparatus
JP2004067953A (en) * 2002-08-09 2004-03-04 Toshiro Higuchi Process and apparatus for producing monodisperse resin particle
JP2004154745A (en) * 2002-09-10 2004-06-03 Tosoh Corp Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP2004202476A (en) * 2002-11-06 2004-07-22 Tosoh Corp Particle production method and microchannel structure therefor
JP2004195337A (en) * 2002-12-17 2004-07-15 Tosoh Corp Particle production method and minute channel structure for the same
JP2004195338A (en) * 2002-12-17 2004-07-15 Tosoh Corp Particle production method and minute channel structure for the same
JP2004237177A (en) * 2003-02-04 2004-08-26 Japan Science & Technology Agency Double emulsion microcapsule former
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2005152740A (en) * 2003-11-25 2005-06-16 National Food Research Institute Method and apparatus for manufacturing emulsion
JP2005185877A (en) * 2003-12-24 2005-07-14 Tosoh Corp Fine particle production apparatus and method for producing fine particle by using the same
US9782736B2 (en) 2004-03-23 2017-10-10 Japan Science And Technology Agency Method and device for producing microdroplets
US8741192B2 (en) 2004-03-23 2014-06-03 Japan Science And Technology Agency Method and device for producing micro-droplets
CN100431679C (en) * 2004-03-23 2008-11-12 独立行政法人科学技术振兴机构 Method and device for producing micro-droplets
JP4777238B2 (en) * 2004-03-23 2011-09-21 独立行政法人科学技術振興機構 Method and apparatus for generating microdroplets
WO2005089921A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency Method and device for producing micro-droplets
JPWO2005089921A1 (en) * 2004-03-23 2008-01-31 独立行政法人科学技術振興機構 Method and apparatus for generating microdroplets
JP2005319409A (en) * 2004-05-10 2005-11-17 Fuji Xerox Co Ltd Method and apparatus for feeding particulate dispersion
JP2006026610A (en) * 2004-07-21 2006-02-02 Fuji Xerox Co Ltd Liquid sending method of particulate dispersion, and liquid sending apparatus of particulate dispersion
JP2006035132A (en) * 2004-07-28 2006-02-09 Tosoh Corp Method for producing solid-state particle using micropath structural body and capsule for display obtained thereby
JP2006053060A (en) * 2004-08-12 2006-02-23 Tosoh Corp Fine particle manufacturing method, and micro flow passage structure therefor
JP2006095481A (en) * 2004-09-30 2006-04-13 Tosoh Corp Apparatus and method for producing fine particle
US8114319B2 (en) 2005-02-04 2012-02-14 Q Chip Limited Device and method for producing spherical segmented flow
JP2008528284A (en) * 2005-02-04 2008-07-31 キュー チップ リミテッド Apparatus and method for forming a segmented flow into a sphere
JP2006300946A (en) * 2005-04-19 2006-11-02 Commissariat A L'energie Atomique System for transferring method and mass of micro fluid between two types of immiscible phases
JP2006343627A (en) * 2005-06-10 2006-12-21 Ricoh Co Ltd Method for manufacturing toner, and toner
JP2007009074A (en) * 2005-06-30 2007-01-18 Sanyo Chem Ind Ltd Method for producing resin particle
JP2007031604A (en) * 2005-07-28 2007-02-08 Sanyo Chem Ind Ltd Production method for resin particle
JP2007031603A (en) * 2005-07-28 2007-02-08 Sanyo Chem Ind Ltd Method for producing resin particle
JP2007038117A (en) * 2005-08-02 2007-02-15 Fujifilm Holdings Corp Particle manufacturing method
JP2007090306A (en) * 2005-09-30 2007-04-12 Kri Inc Method for manufacturing microstructure and microreactor
US8821006B2 (en) 2006-01-18 2014-09-02 Ricoh Company, Ltd. Microscopic flow passage structure, microscopic liquid droplet generating method, microscopic liquid droplet generating system, particles, and microcapsules
JP2007216206A (en) * 2006-01-18 2007-08-30 Ricoh Co Ltd Microchannel structure, microdroplet production method, microdroplet production system, microparticle and microcapsule
JP4713397B2 (en) * 2006-01-18 2011-06-29 株式会社リコー Microchannel structure and microdroplet generation system
JP2007269547A (en) * 2006-03-31 2007-10-18 Gunze Ltd Fine-grained potassium ferricyanide and its producing method
JP2009537687A (en) * 2006-05-23 2009-10-29 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing polyether polyol
JP2008007612A (en) * 2006-06-29 2008-01-17 Kri Inc Coloring material particle, and manufacturing method and manufacturing apparatus therefor
JP2008007613A (en) * 2006-06-29 2008-01-17 Kri Inc Acrylic particle, its manufacturing method and microreactor
JP2008080330A (en) * 2006-09-01 2008-04-10 Tosoh Corp Microchannel structure and fine-particle production method using the same
KR101419312B1 (en) * 2006-09-01 2014-07-14 도소 가부시키가이샤 Microchannel structure and fine-particle production method using the same
US8524173B2 (en) 2006-09-01 2013-09-03 Tosoh Corporation Microchannel structure and fine-particle production method using the same
JP2007038223A (en) * 2006-09-27 2007-02-15 Japan Science & Technology Agency Double emulsion microcapsule former
JP2008080250A (en) * 2006-09-27 2008-04-10 Fujifilm Corp Fluid dispersion production apparatus and fluid dispersion production method
JP2010505391A (en) * 2006-10-02 2010-02-25 キュー チップ リミテッド Beads used for polynucleotide amplification reaction and / or synthesis reaction, apparatus and method for producing the beads
WO2008053988A1 (en) * 2006-11-02 2008-05-08 National University Corporation Nagoya University Method of producing microcapsules
US8920845B2 (en) 2006-11-02 2014-12-30 National University Corporation Nagoya University Method of producing microcapsules
JP2008168175A (en) * 2007-01-09 2008-07-24 National Agriculture & Food Research Organization Method and device for manufacturing shelled micro-bubble
WO2008114755A1 (en) * 2007-03-16 2008-09-25 National University Corporation Okayama University Micromixer
JP2009014377A (en) * 2007-07-02 2009-01-22 Tosoh Corp Cellulose particles and their manufacturing method
JP2009178698A (en) * 2008-02-01 2009-08-13 Kanagawa Acad Of Sci & Technol Monodisperse emulsion produced by membrane emulsification method, method for producing the same and method for producing polymer fine particle and composite particle by using the method
US8206623B2 (en) 2008-02-08 2012-06-26 Covalent Materials Corporation Process for producing ceramic fine particles, and ceramic fine particle producing apparatus used therein
WO2009098795A1 (en) 2008-02-08 2009-08-13 Covalent Materials Corporation Process for producing ceramic microparticle and ceramic microparticle producing apparatus therefor
JP5470642B2 (en) * 2008-03-25 2014-04-16 国立大学法人 岡山大学 Micro droplet preparation device
WO2009119578A1 (en) * 2008-03-25 2009-10-01 国立大学法人岡山大学 Micro-droplet dispensing device
JP2010083696A (en) * 2008-09-30 2010-04-15 Gunze Ltd Fine-grained potassium ferricyanide and producing method of the same
US9192901B2 (en) 2010-05-25 2015-11-24 Ucl Business Plc Co-current mixer, apparatus, reactor and method for precipitating nanoparticles
JP2012133326A (en) * 2010-12-22 2012-07-12 Samsung Mobile Display Co Ltd Device and method for manufacturing liquid crystal capsules, and liquid crystal display device including the liquid crystal capsules
JP2012196599A (en) * 2011-03-18 2012-10-18 Kobe Steel Ltd Flow channel structure, and mixing method, extraction method, and reaction method for fluid
US8986546B2 (en) 2011-03-18 2015-03-24 Kobe Steel, Ltd. Flow channel structure, and mixing method, extraction method, and reaction method for fluids
JP2014228319A (en) * 2013-05-20 2014-12-08 株式会社フジクラ Droplet generation device
US10232338B2 (en) 2013-11-25 2019-03-19 Lg Chem, Ltd. Micro-channel reactor
JP2016538115A (en) * 2013-11-25 2016-12-08 エルジー・ケム・リミテッド Fine channel reactor
JP2017537900A (en) * 2014-11-24 2017-12-21 ザ プロクター アンド ギャンブル カンパニー Method for encapsulation of active substance in droplets and other compartments
JP2017203134A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Method for producing porous polymer particles
CN115038517A (en) * 2020-01-21 2022-09-09 苏州恒瑞宏远医疗科技有限公司 Reaction device and processing method thereof, and preparation equipment and preparation method of embolism microsphere
CN112573703A (en) * 2020-12-09 2021-03-30 陕西金禹科技发展有限公司 Method and device for treating arsenic-containing wastewater through microchannel reaction
CN112573702A (en) * 2020-12-09 2021-03-30 陕西金禹科技发展有限公司 Method and device for treating heavy metal in wastewater through microchannel reaction
CN112573702B (en) * 2020-12-09 2024-01-19 陕西金禹科技发展有限公司 Method and device for treating heavy metals in wastewater by micro-channel reaction
CN112573703B (en) * 2020-12-09 2024-01-19 陕西金禹科技发展有限公司 Method and device for treating arsenic-containing wastewater through microchannel reaction
CN112755933A (en) * 2021-01-13 2021-05-07 广东工业大学 Multi-stage reaction micro-channel structure, micro-fluidic chip and heterogeneous reaction method
CN112755933B (en) * 2021-01-13 2023-12-26 广东工业大学 Multistage reaction micro-channel structure, micro-fluidic chip and heterogeneous reaction method

Also Published As

Publication number Publication date
JP4193561B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
US7718099B2 (en) Fine channel device, fine particle producing method and solvent extraction method
Liu et al. Why microfluidics? Merits and trends in chemical synthesis
US8524173B2 (en) Microchannel structure and fine-particle production method using the same
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP3777427B2 (en) Emulsion production method and production apparatus
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
Boskovic et al. Synthesis of polymer particles and capsules employing microfluidic techniques
JP5072057B2 (en) Microcapsule manufacturing method using microchannel structure
JP4305145B2 (en) Particle production method using micro flow channel
JP2004154745A (en) Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP4639624B2 (en) Micro channel structure
JP4743165B2 (en) Micro channel structure
US10807054B2 (en) Mixing of fluids
JP2004202476A (en) Particle production method and microchannel structure therefor
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP4144302B2 (en) Droplet generation method
JP4356312B2 (en) Microchannel structure
JP5625900B2 (en) Microchannel structure and method for producing microparticles using the same
JP4385886B2 (en) Method for producing solid particles using microchannel structure
JP2004195337A (en) Particle production method and minute channel structure for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R151 Written notification of patent or utility model registration

Ref document number: 4193561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees