JP4042683B2 - Microchannel structure and microparticle manufacturing method using the same - Google Patents

Microchannel structure and microparticle manufacturing method using the same Download PDF

Info

Publication number
JP4042683B2
JP4042683B2 JP2003386796A JP2003386796A JP4042683B2 JP 4042683 B2 JP4042683 B2 JP 4042683B2 JP 2003386796 A JP2003386796 A JP 2003386796A JP 2003386796 A JP2003386796 A JP 2003386796A JP 4042683 B2 JP4042683 B2 JP 4042683B2
Authority
JP
Japan
Prior art keywords
channel
continuous phase
dispersed phase
phase
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003386796A
Other languages
Japanese (ja)
Other versions
JP2005144356A (en
Inventor
裕樹 高宮
晃治 片山
達 二見
英昭 桐谷
明 川井
朋裕 大川
恵一郎 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003386796A priority Critical patent/JP4042683B2/en
Publication of JP2005144356A publication Critical patent/JP2005144356A/en
Application granted granted Critical
Publication of JP4042683B2 publication Critical patent/JP4042683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Micromachines (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、分取・分離用カラム充填剤に用いられる微小粒子や医薬品、含酵素カプセル、化粧品、香料、表示・記録材料、接着剤、農薬等に利用されるマイクロカプセルに用いられる微小粒子の生成に好適な微小流路構造体及びこれを用いた微小粒子の製造方法に関する。   The present invention relates to microparticles used in preparative / separation column fillers and microparticles used in microcapsules used in pharmaceuticals, enzyme-containing capsules, cosmetics, fragrances, display / recording materials, adhesives, agricultural chemicals, and the like. The present invention relates to a microchannel structure suitable for generation and a method for producing microparticles using the microchannel structure.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより微小粒子の生成を行う研究が注目されており、界面張力の異なる2種類の液体を、前記2種類の流体の交差部が存在する流路に導入することにより微小粒子を生成することができる(例えば、特許文献1、非特許文献1参照)。なおここでいう微小粒子とは、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した微小粒子(以下、「半硬化」という。)や、非常に粘性が高い半固体状の微小粒子も含む。   In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research has been attracting attention for the production of microparticles, and the creation of microparticles by introducing two types of liquids with different interfacial tensions into the channel where the intersection of the two types of fluid exists. (For example, refer to Patent Document 1 and Non-Patent Document 1). The microparticles here are solid microparticles, microdroplets, microparticles obtained by curing only the surface of microdroplets (hereinafter referred to as “semi-cured”), and extremely high viscosity. Also includes semi-solid fine particles.

例えば、特許文献1あるいは非特許文献1に示されている手法は図1及びその流路の一部断面図である図2に示すように、基板(1)に連続相導入口(2)、連続相を導入する流路(以下、連続相導入流路(3)という)、分散相導入口(4)、分散相を導入する流路(以下、分散相導入流路(5)という)、連続相中に微小粒子化した分散相を排出する流路(以下、排出流路(7)という)及び排出口(8)を有したT字型の流路を有し、基板の流路面側にカバー体を接合した微小流路構造体であり、マイクロチャンネル中を流れる連続相に対し、分散相を前記連続相の流れに交差する向きで分散相供給口より排出し、前記連続相のせん断力によって、前記分散相の供給チャンネルの幅より径の小さい微小液滴を得ている。ここで、マイクロチャンネルである連続相導入流路の幅は、特許文献1では100μm、非特許文献1では500μmと記載されている。また、分散相が流れる分散相導入流路の幅は、特許文献1及び非特許文献1ともに100μmであり、マイクロチャンネルである連続相導入流路の深さ及び分散相が流れる分散相導入流路の深さは、特許文献1及び非特許文献1ともに100μmである。以下では、導入された連続相と分散相とが交差する部分を以下、交差部(6)という。なお、特許文献1及び非特許文献1では、連続相導入流路はマイクロチャンネルと記載されているが、分散相導入流路は特にマイクロチャンネルであるとの記載はない。本手法を用い、分散相と連続相の流速を制御して送液を行うと、数百μm以下の微小液滴の生成が可能となる。また、分散相及び連続相の流量を制御することで生成する微小液滴の粒径を制御することが可能となる。得られた微小液滴の粒径としては、特許文献1では分散相の送液圧を2.45kPaに固定し、連続相の送液圧を4.85〜5.03kPaに変化させることで5〜25μmの粒径の微小液滴を得ていることが示されている。また、非特許文献1では分散相と連続相の送液圧を約20〜約250kPaの範囲で変化させることで最小約80μmから最大約数百μmの粒径の微小液滴を得ていることが示されている。   For example, the technique shown in Patent Document 1 or Non-Patent Document 1 is shown in FIG. 1 and FIG. 2, which is a partial cross-sectional view of the flow path thereof, as shown in FIG. A flow path for introducing a continuous phase (hereinafter referred to as continuous phase introduction flow path (3)), a dispersed phase introduction port (4), a flow path for introducing a dispersed phase (hereinafter referred to as dispersed phase introduction flow path (5)), It has a T-shaped channel having a channel (hereinafter referred to as “discharge channel (7)”) and a discharge port (8) for discharging the dispersed phase into microparticles in the continuous phase, and the channel surface side of the substrate Is a micro-channel structure in which a cover body is joined to the continuous phase, and the dispersed phase is discharged from the dispersed phase supply port in a direction intersecting the flow of the continuous phase with respect to the continuous phase flowing in the microchannel, and the continuous phase is sheared Due to the force, micro droplets having a diameter smaller than the width of the supply channel of the dispersed phase are obtained. Here, the width of the continuous phase introduction flow path which is a microchannel is described as 100 μm in Patent Document 1 and 500 μm in Non-Patent Document 1. In addition, the width of the dispersed phase introduction channel through which the dispersed phase flows is 100 μm in both Patent Document 1 and Non-Patent Document 1, and the depth of the continuous phase introduction channel, which is a microchannel, and the dispersed phase introduction channel through which the dispersed phase flows. The depth of both is 100 μm in both Patent Document 1 and Non-Patent Document 1. Hereinafter, the portion where the introduced continuous phase and the dispersed phase intersect is hereinafter referred to as the intersection (6). In Patent Document 1 and Non-Patent Document 1, the continuous phase introduction flow path is described as a microchannel, but the dispersed phase introduction flow path is not particularly described as a microchannel. When this method is used and liquid feeding is performed by controlling the flow rates of the dispersed phase and the continuous phase, it is possible to generate micro droplets of several hundred μm or less. In addition, it is possible to control the particle size of the fine droplets generated by controlling the flow rates of the dispersed phase and the continuous phase. Regarding the particle diameter of the obtained microdroplets, in Patent Document 1, the liquid feeding pressure of the dispersed phase is fixed to 2.45 kPa, and the liquid feeding pressure of the continuous phase is changed to 4.85 to 5.03 kPa. It is shown that microdroplets with a particle size of ˜25 μm are obtained. Further, in Non-Patent Document 1, microdroplets having a particle size of about 80 μm minimum to about several hundred μm maximum are obtained by changing the liquid feeding pressure of the dispersed phase and the continuous phase in the range of about 20 to about 250 kPa. It is shown.

しかしながら前述した特許文献1及び非特許文献1では、生成された微小液滴の粒径の分布(以下、粒径分散度という。)に関しては一切記述されていない。ここで、粒径分散度とは、粒径の標準偏差を粒径の平均値(以下、平均粒径という。)で割った値であると定義する。そこで、実際に本発明者らが特許文献1及び非特許文献1に記載された微小流路構造体と同様な微小流路構造体を製作して微小液滴を生成する実験を行ったところ、確かに平均粒径が数十μm〜数百μmの微小液滴を得ることができたが、生成した微小液滴の粒径分散度は20〜30%以上と満足すべきものではなかった。特に、得られた微小液滴の平均粒径の20〜30%程度以下の粒径を有する平均粒径よりさらに微小な微小液滴(以下、平均粒径の20〜30%程度以下の粒径の微小液滴を第1種準微小液滴、さらに10μm未満の粒径の微小液滴を第2種準微小液滴といい、特に断りが無いときは、第1種準微小液滴と第2種準微小液滴をあわせて準微小液滴という。)が生成されてしまい、この準微小液滴の存在が粒径分散度を悪くしており、粒径分散度を向上させる改善が求められていた。なお、本発明において粒径分散度が良いとは、粒径分散度が10%未満であることを意味する。   However, Patent Document 1 and Non-Patent Document 1 described above do not describe at all the particle size distribution (hereinafter referred to as particle size dispersion) of the generated microdroplets. Here, the particle size dispersion is defined as a value obtained by dividing the standard deviation of the particle size by the average value of the particle size (hereinafter referred to as the average particle size). Therefore, when the present inventors actually conducted an experiment to produce a microdroplet by producing a microchannel structure similar to the microchannel structure described in Patent Document 1 and Non-Patent Document 1, Certainly, microdroplets having an average particle size of several tens of μm to several hundreds of μm could be obtained, but the particle size dispersion of the generated microdroplets was not satisfactory at 20 to 30% or more. In particular, fine droplets (hereinafter referred to as 20 to 30% or less of the average particle size) having a particle size of 20 to 30% or less of the average particle size of the obtained fine droplets. The first type of quasi-microdroplet is referred to as a first type quasi-microdroplet, and the microdroplet having a particle diameter of less than 10 μm is referred to as a second-type quasi-microdroplet. The two types of quasi-microdroplets are combined to form a quasi-microdroplet), and the presence of the quasi-microdroplets deteriorates the particle size dispersion, and improvements to improve the particle size dispersion are desired. It was done. In the present invention, “good particle size dispersion” means that the particle size dispersion is less than 10%.

WO02/068104WO02 / 068104

西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行Takashi Nishisako et al., “Liquid microdroplet generation in microchannels”, Proceedings of the 4th Chemistry and Microsystem Study Group, 59 pages, 2001

以上のように従来技術による流路内における微小粒子生成の課題は、マイクロチャンネル中を流れる分散相と交差する連続相との交差部において、粒径分散度10%未満の均一な粒径を有する微小粒子を生成することであり、そのために特に、平均粒径の20〜30%程度以下の粒径の準微小液滴の発生を抑えることである。   As described above, the problem of microparticle generation in the flow channel according to the prior art is that the particle size dispersion degree is less than 10% at the intersection between the dispersed phase flowing in the microchannel and the continuous phase. This is to generate fine particles, and in particular, to prevent the generation of quasi-micro droplets having a particle size of about 20 to 30% or less of the average particle size.

本発明の目的は、上記課題を鑑みてなされたもので、マイクロチャンネル中を流れる分散相と交差する連続相との交差部において流路で生成する微小粒子の粒径分散度を10%未満の均一な粒径を有する微小粒子を生成する微小流路構造体及び、それを用いた微小粒子製造方法を提供することにある。   The object of the present invention has been made in view of the above problems, and the particle size dispersion degree of the microparticles generated in the flow path at the intersection between the dispersed phase flowing in the microchannel and the continuous phase is less than 10%. An object of the present invention is to provide a microchannel structure that generates microparticles having a uniform particle diameter and a microparticle manufacturing method using the microchannel structure.

上記課題を解決する本発明の微小流路構造体は、分散相を導入するための導入口及び分散相導入流路と、連続相を導入するための導入口及び連続相導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた流路からなることを特徴とする微小流路構造体であって、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から微小粒子を生成し、該微小粒子の径を制御することを特徴とする微小流路構造体である。   The microchannel structure of the present invention that solves the above problems includes an inlet for introducing a dispersed phase and a dispersed phase introducing channel, an inlet for introducing a continuous phase and a continuous phase introducing channel, and a dispersion A microchannel structure comprising a channel having a discharge channel and a discharge port for discharging microparticles generated by a phase and a continuous phase, the dispersed phase flowing in the microchannel On the other hand, the continuous phase is discharged from the continuous phase supply port in a direction intersecting the flow of the dispersed phase at an arbitrary angle, and fine particles are generated from the dispersed phase by the shearing force of the continuous phase and the wall surface in the flow path. A fine channel structure characterized by controlling the diameter of the fine particles.

また、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きいことを特徴とする微小流路構造体である。   Further, the depth and / or width of the discharge channel from the intersection where the dispersed phase flowing in the microchannel intersects with the continuous phase intersects to the discharge port is larger than the depth and / or width of the channel through which the dispersed phase flows. It is a microchannel structure characterized by being large.

また、前記分散相と連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きくなる位置が、生成した微小液滴が前記微小液滴よりも小さい第1種準微小液滴に分解する前の位置にあることを特徴とする微小流路構造体である。   Further, the position where the depth and / or width of the discharge flow path from the intersection where the dispersed phase and the continuous phase intersect to the discharge port is larger than the depth and / or width of the flow path through which the dispersed phase flows, A microchannel structure characterized in that the generated microdroplet is in a position before being decomposed into first-type quasi-microdroplets smaller than the microdroplets.

また、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっており、かつ排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部又はその近傍にあることを特徴とする微小流路構造体である。   In addition, the width of the discharge flow path is narrow at a part of the discharge flow path from the intersection where the dispersed phase flowing in the microchannel intersects the continuous phase to the discharge port, and the discharge flow path This is a microchannel structure characterized in that the portion where the width of the channel is narrow is at or near the intersection where the dispersed phase flowing through the microchannel intersects with the continuous phase.

また、排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部の分散相導入流路側にあることを特徴とする微小流路構造体である。   The microchannel structure characterized in that the part where the width of the discharge channel is narrow is on the dispersed phase introduction channel side of the intersecting portion where the dispersed phase flowing in the microchannel intersects with the continuous phase intersecting It is.

また、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部近傍において、流路の底面、上面及び/または側面から、1以上の突起が形成されていることを特徴とする微小流路構造体である。   Further, in the vicinity of the intersection where the disperse phase flowing in the microchannel intersects with the continuous phase, one or more protrusions are formed from the bottom surface, top surface, and / or side surface of the flow path. It is a road structure.

また本発明の微小粒子製造方法は、前述したいずれかの形態を有する微小流路構造体を用いて微小粒子を生成する微小粒子製造方法であって、さらに、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御することを特徴とする微小粒子製造方法である。以下、本発明をさらに詳細に説明する。   The microparticle production method of the present invention is a microparticle production method for producing microparticles using a microchannel structure having any one of the forms described above, and further introduces a flow for introducing a dispersed phase. It is a method for producing microparticles characterized by controlling the particle size of microparticles generated by changing the angle at which a path and an introduction flow path for introducing a continuous phase intersect. Hereinafter, the present invention will be described in more detail.

本発明において用いられる微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路を示し、微小流路はマイクロチャンネルと言うこともある。また以下では、前述のように定義した微小流路と微小流路より大きい幅と深さの流路を総じて、流路ということもある。また、排出流路は連続相導入流路と実質的に連続しており、連続相導入流路の延長として排出流路が存在する。本発明では、分散相導入流路はマイクロチャンネルであるが、連続相導入流路は特にマイクロチャンネルに限定されておらず、マイクロチャンネルであっても良いし、マイクロチャンネルでなくても良い。従って、連続相導入流路と実質的に連続している排出流路もマイクロチャンネルに限定されておらず、排出流路はマイクロチャンネルであっても良いし、マイクロチャンネルでなくても良い。むしろ、後述するように本発明の目的である微小粒子の粒径分散度を向上させるためには、連続相導入流路及び排出流路はマイクロチャンネルでないこと好ましく、特に排出流路をマイクロチャンネルにしないことがさらに好ましい。   The microchannel used in the present invention generally indicates a channel having a width of 500 μm or less and a depth of 300 μm or less, and the microchannel may be referred to as a microchannel. In the following, the microchannel defined as described above and the channel having a width and depth larger than the microchannel may be collectively referred to as a channel. The discharge channel is substantially continuous with the continuous phase introduction channel, and the discharge channel exists as an extension of the continuous phase introduction channel. In the present invention, the dispersed phase introduction flow path is a microchannel, but the continuous phase introduction flow path is not particularly limited to a microchannel, and may be a microchannel or not a microchannel. Therefore, the discharge flow path substantially continuous with the continuous phase introduction flow path is not limited to the microchannel, and the discharge flow path may be a microchannel or not a microchannel. Rather, as will be described later, in order to improve the particle size dispersion of the fine particles, which is the object of the present invention, the continuous phase introduction flow path and the discharge flow path are preferably not microchannels, and in particular, the discharge flow paths are microchannels. More preferably not.

また本発明における微小粒子とは、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から生成される微小粒子であり、その微小粒子サイズは、一般的に直径が微小流路の幅あるいは深さよりも小さい。例えば、幅が100μm、深さが50μmの微小流路で生成される微小粒子の大きさは、微小粒子が完全球体であると仮定するとその直径は少なくとも100μmより小さい。また本発明により得られる微小粒子は、固体状の微小粒子の他にも微小液滴や微小液滴の表面だけが硬化した半硬化の微小粒子や、非常に粘性が高い半固体状の微小粒子も含む。   Further, the fine particles in the present invention mean that the continuous phase is discharged from the continuous phase supply port in a direction intersecting the flow of the dispersed phase at an arbitrary angle with respect to the dispersed phase flowing in the microchannel, and the continuous phase and the flow. The fine particles are generated from the dispersed phase by the shearing force of the wall surface in the channel, and the size of the fine particles is generally smaller than the width or depth of the fine channel. For example, the size of a microparticle generated in a microchannel having a width of 100 μm and a depth of 50 μm is smaller than at least 100 μm, assuming that the microparticle is a perfect sphere. In addition to solid microparticles, the microparticles obtained by the present invention are microdroplets, semi-cured microparticles that are cured only on the surface of the microdroplets, and semisolid microparticles that are very viscous. Including.

また、本発明において用いられる分散相とは、微小粒子を生成させるための液状物であり、例えば、スチレンなどの重合用のモノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。ここで分散相としては、本発明が微小な微小粒子を効率的に生成させることを目的としており、この目的を達成させるためであれば微小流路構造体中のマイクロチャンネルを送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分も特に制限されない。また、分散相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。   In addition, the dispersed phase used in the present invention is a liquid material for generating fine particles, for example, a monomer for polymerization such as styrene, a crosslinking agent such as divinylbenzene, and a gel for producing a gel such as a polymerization initiator. It refers to a medium in which raw materials are dissolved in a suitable solvent. Here, as the dispersed phase, the purpose of the present invention is to efficiently generate fine microparticles, and the microchannel in the microchannel structure can be fed to achieve this purpose. There is no particular limitation as long as it is fine, and the components are not particularly limited as long as fine particles can be formed. Further, it may be in the form of a slurry in which a solid phase such as a fine powder is mixed in the dispersed phase, or the dispersed phase may be a laminar flow formed from a plurality of fluids. It may be a mixed fluid formed from these fluids or a suspension (emulsion).

また、本発明において用いられる連続相とは、分散相をせん断して微小粒子を生成させるために用いられる液状物であり、例えば、ポリビニルアルコールのゲル製造用の分散剤を適当な溶媒に溶解した媒体を指す。ここで連続相としては分散相と同様に、微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに微小粒子を形成させることができればその成分は特に制限されない。また、連続相中に例えば微小な粉末の様な固体状物が混在したスラリー状のものであっても差し支えないし、分散相が複数の流体から形成される層流であっても良いし、複数の流体から形成される混合流体であっても懸濁液(エマルション)であっても良い。生成する微小粒子組成の観点から見た場合は、微小粒子の最外層が有機相であれば連続相の最外層は水相となり、微小粒子の最外層が水相であれば連続相の最外層は有機相となる。   In addition, the continuous phase used in the present invention is a liquid material used to generate fine particles by shearing the dispersed phase. For example, a dispersant for producing a gel of polyvinyl alcohol is dissolved in an appropriate solvent. Refers to the medium. Here, as in the case of the dispersed phase, the continuous phase is not particularly limited as long as it can feed the flow path in the micro flow path structure, and the component is not particularly limited as long as micro particles can be formed. Further, it may be a slurry in which a solid material such as a fine powder is mixed in the continuous phase, or the dispersed phase may be a laminar flow formed from a plurality of fluids. It may be a mixed fluid formed from these fluids or a suspension (emulsion). From the viewpoint of the composition of the fine particles to be generated, if the outermost layer of the fine particles is an organic phase, the outermost layer of the continuous phase is an aqueous phase, and if the outermost layer of the fine particles is an aqueous phase, the outermost layer of the continuous phase Becomes the organic phase.

さらに、分散相と連続相とは微小粒子を生成させるために、実質的に交じり合わないあるいは相溶性がないことがさらに好ましく、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相が用いられることとなる。また、連続相として水相を用いた場合にはその逆となる。   Further, it is more preferable that the dispersed phase and the continuous phase do not substantially cross each other or have no compatibility in order to generate fine particles. For example, when the aqueous phase is used as the dispersed phase, An organic phase such as butyl acetate that is substantially insoluble in water will be used. Moreover, the reverse is true when an aqueous phase is used as the continuous phase.

本発明の微小粒子製造方法は、前述した分散相と連続相とを後述する本発明における微小流路構造体へ各々の導入流路より導入し、両者が交差する交差部で分散相を連続相と流路内の壁面のせん断力し微小粒子を生成させるものであるが、マイクロチャンネル中を流れる分散相を導入するための分散相導入流路と連続相を導入するための連続相導入流路とが交わる角度を変化させることで、生成する微小粒子の粒径を制御することが可能である。これは、従来の微小流路構造体を使った微小粒子の生成における分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適している。特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、導入装置を1個用意することで足りるなどコスト面においても優れている。尚、ここでいう分散相の導入速度と連続相の導入速度とが実質的に同じとは、それぞれの相の導入速度に多少変動があっても生成する微小粒子の粒径には大きな影響を与えない(粒径分散度が変化しない)ことを意味している。このようにすることで、安定した粒径の微小粒子を生成することができる。また、連続相を過剰に供給する必要がなくなり、例えばゲル製造における連続相の低コスト化、工業的な量産が可能となる。   The method for producing fine particles of the present invention introduces the above-mentioned dispersed phase and continuous phase from the respective introduction flow channels into the micro flow channel structure according to the present invention, which will be described later. In order to generate fine particles by shearing the wall surface in the channel, a dispersed phase introduction channel for introducing a dispersed phase flowing in the microchannel and a continuous phase introduction channel for introducing a continuous phase are introduced. It is possible to control the particle size of the generated microparticles by changing the angle at which the crosses. This is easier to control than the case of changing the introduction speed of the dispersed phase and the continuous phase in the generation of microparticles using the conventional microchannel structure, and is suitable for industrial mass production. In particular, if the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, it is excellent in terms of cost, for example, it is sufficient to prepare one introduction device. Note that the introduction rate of the dispersed phase and the introduction rate of the continuous phase here are substantially the same, even if there is some variation in the introduction rate of each phase, the particle size of the generated fine particles is greatly affected. This means that the particle size dispersion is not changed. By doing in this way, the microparticle of the stable particle size can be produced | generated. Further, it is not necessary to supply the continuous phase excessively. For example, the cost of the continuous phase in gel production can be reduced, and industrial mass production can be achieved.

本発明におけるマイクロチャンネル中を流れる分散相の分散相導入流路と連続相が流れる連続相導入流路との交差の方式としては、基本的には図6に示すようなY字型の流路において、分散相導入口(4)から分散相を導入し、連続相導入口(2)から連続相を導入し、分散相と連続相との交差部(6)で分散相を連続相と壁面によるせん断力によりせん断して微小粒子(17)を生成する。しかしながら本発明はこの方式に限定されるものではなく、図7に示すように、分散相導入流路(5)中を流れる分散相(15)をその分散相の両側から連続相(10)が挟み込むように交差させて分散相と連続相の交差部(6)において連続相と流路の上下壁面とのせん断力でせん断して微小粒子(17)を生成する方式でも良いし、図8に示すように、連続相(10)が2以上の分散相(15)と交差して、その交差部(6)で連続相と流路の内壁の壁面とのせん断力で分散相がせん断されて微小粒子(17)を生成する方式でも良いし、図9に示すように、直線状に流路(16)の一方の側より分散相(15)を、もう一方の側より連続相(10)を導入し、連続相と分散相の交差部(6)において連続相と流路の内壁のせん断力で分散相をせん断させることで微小粒子(17)を生成させ、交差部(6)より1又は2以上の任意の方向の排出流路に排出させる方式でも良い。このようにすることで、微小粒子をより効率的に生成させることができる。なお、図9の方式の場合、生成した微小粒子を含む流体を、再度交差させて生成した微小粒子を回収することができる。   As a method of intersecting the dispersed phase introduction flow path of the dispersed phase flowing through the microchannel and the continuous phase introduction flow path through which the continuous phase flows in the present invention, basically a Y-shaped flow path as shown in FIG. , The dispersed phase is introduced from the dispersed phase introduction port (4), the continuous phase is introduced from the continuous phase introduction port (2), and the dispersed phase is separated from the continuous phase and the wall surface at the intersection (6) of the dispersed phase and the continuous phase. The fine particles (17) are generated by shearing by the shearing force of. However, the present invention is not limited to this method, and as shown in FIG. 7, the continuous phase (10) flows from both sides of the dispersed phase into the dispersed phase (15) flowing in the dispersed phase introduction flow path (5). A method of generating fine particles (17) by crossing so as to sandwich and shearing with a shearing force between the continuous phase and the upper and lower wall surfaces of the flow path at the intersection (6) of the dispersed phase and the continuous phase may be used. As shown, the continuous phase (10) intersects with two or more disperse phases (15), and the disperse phase is sheared by the shearing force between the continuous phase and the wall of the inner wall of the flow path at the intersection (6). A method of generating fine particles (17) may be used, and as shown in FIG. 9, the dispersed phase (15) is linearly formed from one side of the flow path (16) and the continuous phase (10) is formed from the other side. Is introduced by the shear force of the continuous phase and the inner wall of the flow path at the intersection (6) of the continuous phase and the dispersed phase. To produce that in fine particles to be sheared phase (17), or in a manner to be discharged to the discharge passage for any direction of one or more than intersections (6). By doing in this way, microparticles can be generated more efficiently. In the case of the method of FIG. 9, the microparticles generated by intersecting the fluid containing the generated microparticles again can be collected.

また、図10〜図13に示すように、複数の分散相(15)を導入する分散相導入流路(5)や複数の連続相(10)を導入する連続相導入流路(3)を設けることで、分散相や連続相を、複数の流体の層流または混合液または懸濁液(エマルション)とすることができる。   Further, as shown in FIGS. 10 to 13, a dispersed phase introduction channel (5) for introducing a plurality of dispersed phases (15) and a continuous phase introduction channel (3) for introducing a plurality of continuous phases (10) are provided. By providing, a disperse phase or a continuous phase can be made into a laminar flow of plural fluids, a mixed liquid, or a suspension (emulsion).

図10は分散相を2液の2相層流とした場合であり、この分散相を連続相でせん断することで、2相構造の微小粒子を形成できる。この場合、分散相は2液の2相層流に限定されず、2以上であってもよい。例えば図13に示すような分散相が4液からなる4相層流であっても良く、この場合は、微粒子を4層構造にすることが可能となる。また図11に示すように、分散相が2液を反応させた反応液であっても良い。この場合、微小流路内で生じる反応生成物から構成される微小粒子を生成することが可能となる。また、反応させる流体は2液以上であっても良いことは言うまでもない。また、図12に示すように、分散相と連続相が2液を反応させた反応液であっても良い。この場合、微小流路内で生じる反応生成物からなえう連続層により、微小流路内で生じる反応生成物から構成される分散相をせん断し微小粒子を生成することが可能となる。この場合も分散相及び連続相で反応させる流体は2液以上であっても良いことは言うまでもない。   FIG. 10 shows a case where the dispersed phase is a two-phase two-phase laminar flow, and the dispersed phase is sheared with a continuous phase, whereby fine particles having a two-phase structure can be formed. In this case, the dispersed phase is not limited to a two-liquid two-phase laminar flow, and may be two or more. For example, as shown in FIG. 13, the dispersed phase may be a four-phase laminar flow composed of four liquids. In this case, the fine particles can have a four-layer structure. Further, as shown in FIG. 11, the dispersed phase may be a reaction liquid obtained by reacting two liquids. In this case, it is possible to generate microparticles composed of reaction products generated in the microchannel. Needless to say, the reaction fluid may be two or more liquids. Further, as shown in FIG. 12, a reaction liquid obtained by reacting two liquids in a dispersed phase and a continuous phase may be used. In this case, it is possible to generate fine particles by shearing the dispersed phase composed of the reaction product generated in the microchannel by the continuous layer formed from the reaction product generated in the microchannel. In this case as well, it goes without saying that the fluid to be reacted in the dispersed phase and the continuous phase may be two or more liquids.

以上、図10〜図13のような態様にすることで、多層構造の微小粒子や、異なった多種の微小粒子を含有した微小粒子を形成することができ、複合マイクロカプセルや多重マイクロカプセルを生成することができる。なお、連続相、分散相あるいはその両者には微小な粉末を含んでいてもよい。   As described above, by adopting the embodiments as shown in FIGS. 10 to 13, it is possible to form a microparticle having a multilayer structure or a microparticle containing various kinds of microparticles, and generate a composite microcapsule or a multiple microcapsule. can do. Note that the continuous phase, the dispersed phase, or both may contain fine powder.

また本発明において、流路の交差部で生成した微小粒子が微小液滴であって微小液滴を硬化させる場合、流路中及び/又は流路の外において硬化させても良い。さらに、硬化した微小粒子の粒径を均一にするために、微小液滴が排出流路を通過して排出部から出た後、微小流路構造体の排出部から微小流路構造体の外部に設けられた流路で連続的に硬化しても良い。さらに、硬化した微小粒子の粒径をより均一にするためには、流路の交差部で微小液滴が生成した直後に、微小流路構造体中の排出流路で硬化させることがより好ましい。   In the present invention, when the microparticles generated at the intersection of the channels are microdroplets and the microdroplets are cured, they may be cured in the channel and / or outside the channel. Furthermore, in order to make the particle size of the hardened microparticles uniform, after the microdroplet passes through the discharge channel and exits the discharge unit, the microchannel structure is discharged from the discharge unit to the outside of the microchannel structure. It may be continuously cured in the flow path provided in the. Furthermore, in order to make the particle size of the hardened microparticles more uniform, it is more preferable that the microparticles are cured in the discharge channel in the microchannel structure immediately after the microdroplet is generated at the intersection of the channels. .

本発明における微小液滴を硬化する手段の一つは、微小液滴に光を照射することにより硬化させるものであり、この場合の光は硬化させる微小液滴の材質を比較的多くの材質から選択できることから、紫外線であることが好ましい。光照射(21)は、図14に示すように微小流路構造体(19)の排出口(8)から微小液滴が微小流路構造体の外部に出た後に行なっても良いが、微小粒子の粒径をより均一にするためには、図15に示すように、流路の交差部(6)で微小液滴が生成した直後に光照射(21)を行ない微小流路構造体(19)の中の排出流路(7)で硬化することがより好ましい。しかしながら、微小流路構造体中の排出流路において光照射を行なう場合は、微小液滴が生成される前に分散相に光照射されて硬化しないように、微小液滴が生成される前の排出流路の部分と、光照射して微小液滴を硬化させる排出流路の部分は、図15に示すように、微小流路構造体の必要なところだけに光照射スポット(20)があたるようにマスク(22)を設置しておく必要がある。   One of the means for curing the microdroplets in the present invention is to cure by irradiating the microdroplets with light. In this case, the light is cured from a relatively large number of materials. Since it can be selected, ultraviolet rays are preferable. The light irradiation (21) may be performed after the fine droplets are discharged from the discharge port (8) of the microchannel structure (19) as shown in FIG. In order to make the particle size of the particles more uniform, as shown in FIG. 15, light irradiation (21) is performed immediately after the microdroplet is generated at the intersection (6) of the channel, and the microchannel structure ( It is more preferable to harden in the discharge flow path (7) in 19). However, when light irradiation is performed in the discharge channel in the microchannel structure, before the microdroplet is generated, the dispersed phase is not irradiated and cured before the microdroplet is generated. As shown in FIG. 15, the portion of the discharge channel and the portion of the discharge channel that cures the micro-droplet by irradiating light is irradiated with the light irradiation spot (20) only at the necessary portion of the micro-channel structure. Thus, it is necessary to install a mask (22).

また本発明における微小液滴を硬化する別の手段は、微小液滴を加熱することにより硬化させる手段を用いた微小粒子製造方法である。図16に示すように微小流路構造体(19)の排出口(8)から微小液滴が微小流路構造体の外部に出た後にヒーター(28)などにより加熱を行なっても良いが、微小粒子の粒径をより均一にするためには、図17に示すように、流路の交差部(6)で微小液滴が生成した直後にヒーター(28)などにより加熱を行ない微小流路構造体中の排出流路(7)で硬化することがより好ましい。しかしながら、微小流路構造体中の排出流路において加熱を行なう場合は、微小液滴が生成される前に分散相が加熱されて硬化しないように、微小液滴が生成される前の排出流路の部分と、加熱して微小液滴を硬化させる排出流路の部分は、断熱材などを微小流路構造体の中に埋め込むなどの既知の断熱手法により熱的に絶縁しておく必要がある。   Another means for curing the microdroplets in the present invention is a method for producing microparticles using a means for curing the microdroplets by heating. As shown in FIG. 16, heating may be performed by a heater (28) or the like after a micro droplet comes out of the micro channel structure from the outlet (8) of the micro channel structure (19). In order to make the particle size of the microparticles more uniform, as shown in FIG. 17, the microchannel is heated by a heater (28) or the like immediately after the microdroplet is generated at the intersection (6) of the channel. It is more preferable to harden in the discharge channel (7) in the structure. However, when heating is performed in the discharge channel in the microchannel structure, the discharge flow before the microdroplet is generated so that the dispersed phase is not heated and hardened before the microdroplet is generated. The part of the channel and the part of the discharge channel that cures the micro droplets by heating must be thermally insulated by a known heat insulation method such as embedding a heat insulating material in the micro channel structure. is there.

なお、本発明において光照射あるいは加熱により微小液滴を硬化させる場合は、微小液滴全体を硬化させても良いが、半硬化させるなどにより、微小液滴の形状が崩れない程度に、また微小液滴同士の合一が生じない程度に硬化させても良い。この場合、半硬化させた微小粒子をビーカー等で回収し、再度光照射や加熱により完全に硬化させることで、粒径分散度の良い均一な微小粒子を得ることができる。   In the present invention, when the microdroplet is cured by light irradiation or heating, the entire microdroplet may be cured. It may be cured to such an extent that the droplets do not coalesce. In this case, semi-cured microparticles are collected with a beaker or the like, and completely cured again by light irradiation or heating, whereby uniform microparticles with a good particle size dispersion can be obtained.

このようにすることで流路の交差部で生成した微小粒子が微小液滴の場合、流路の外部でビーカーなどにより収集し、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小粒子の形状が崩れたり、微小粒子同士の合一が生じるため、硬化した微小粒子の粒径分散度が大きくなってしまうことが無くなり、粒径分散度の良いが均一な微小粒子を得ることができる。また、微小液滴を硬化することにより媒体から分離することが容易になる。   In this way, if the microparticles generated at the intersection of the flow channels are microdroplets, they are collected by a beaker etc. outside the flow channel, and when the microdroplets are cured by cross-linking polymerization, the microdroplets are collected. Since the shape of the microparticles collapses or coalesces between the microparticles before curing, the particle size dispersion of the cured microparticles is not increased, and the particle size dispersion is good. Can obtain uniform fine particles. Moreover, it becomes easy to separate from the medium by curing the fine droplets.

本発明の微小粒子製造方法において、微小粒子の用途の例として、高速液体クロマトグラフィー用カラムの充填剤、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などのマイクロカプセルやゲルが挙げられる。   In the method for producing microparticles of the present invention, examples of the use of microparticles include packing materials for high-performance liquid chromatography columns, pressure measurement films, carbonless (pressure-sensitive copying) paper, toners, thermal expansion agents, thermal media, preparations. Light glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoresis capsule, pesticide, artificial feed, artificial seed, fragrance, massage cream, lipstick, vitamins capsule, activated carbon, enzyme-containing capsule And microcapsules and gels such as DDS (drug delivery system).

また本発明の微小流路構造体は、分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた流路からなることを特徴とする微小流路構造体であって、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から微小粒子を生成し、該微小粒子の径を制御することを特徴とする微小流路構造体である。なお、本発明の微小流路構造体は図6〜図17の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。 ここで、分散相を導入するための導入口は分散相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて分散相を連続的に導入する機構としてもよい。同様に、連続相を導入するための導入口についても、連続相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて連続相を連続的に導入する機構としてもよい。   Moreover, the microchannel structure of the present invention is generated by the inlet and the inlet channel for introducing the dispersed phase, the inlet and the inlet channel for introducing the continuous phase, and the dispersed phase and the continuous phase. A microchannel structure comprising a channel having a discharge channel and a discharge port for discharging microparticles, wherein the continuous phase is dispersed with respect to the dispersed phase flowing in the microchannel. Discharge from the continuous phase supply port in a direction that intersects the phase flow at an arbitrary angle, generates fine particles from the dispersed phase by the shear force of the continuous phase and the wall surface in the flow path, and controls the diameter of the fine particles This is a microchannel structure characterized in that Needless to say, the microchannel structure of the present invention is not limited to the examples of FIGS. 6 to 17 and can be arbitrarily changed without departing from the gist of the present invention. Here, the introduction port for introducing the dispersed phase means an opening for introducing the dispersed phase, and a mechanism for continuously introducing the dispersed phase by providing an appropriate attachment at the introduction port. Similarly, the introduction port for introducing the continuous phase also means an opening for introducing the continuous phase, and further, as a mechanism for continuously introducing the continuous phase with an appropriate attachment at the introduction port. Good.

分散相を導入するための分散相導入流路は、導入口と連通したマイクロチャンネルであり、分散相が導入されこの導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その流路幅は500μm以下であり,好ましくは300μm以下である。また、連続相導入流路及び排出流路と任意の角度で交差する形状となっておればよい。また、連続相を導入するための連続相導入流路は連続相導入口と連通しており連続相が導入され、この導入流路に沿って送液される。導入流路の形状は微小粒子の形状、粒径を制御するにおいて影響を与えるが、その流路は特にマイクロチャンネルに限定されておらず、連続相導入流路の流路幅はマイクロチャンネルに相当する幅でなくても良いし、マイクロチャンネルに相当する幅であっても良い。また、排出流路は連続相導入流路と実質的に連続しており、連続相導入流路の延長として排出流路が存在する。従って、連続相導入流路と実質的に連続している排出流路もマイクロチャンネルに限定されておらず、排出流路の排出幅はマイクロチャンネルに相当する幅でなくても良いし、マイクロチャンネルに相当する幅であっても良い。むしろ、本発明の目的である微小粒子の粒径分散度を向上させるためには、連続相導入流路及び排出流路はマイクロチャンネルでないこと好ましく、特に排出流路をマイクロチャンネルにしないことがさらに好ましい。さらに分散相と連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きく、また、その深さ/幅が大きくなる位置が、生成した微小液滴が前記微小液滴よりも小さい第1種準微小液滴に分解する前の位置にある形態がより好ましい。   The dispersed phase introduction flow path for introducing the dispersed phase is a microchannel communicating with the introduction port, and the dispersed phase is introduced and fed along the introduction flow path. The shape of the introduction channel affects the shape and particle size of the fine particles, but the channel width is 500 μm or less, preferably 300 μm or less. Moreover, what is necessary is just to become a shape which cross | intersects a continuous phase introduction flow path and a discharge flow path at arbitrary angles. In addition, the continuous phase introduction flow path for introducing the continuous phase communicates with the continuous phase introduction port, and the continuous phase is introduced and fed along the introduction flow path. The shape of the introduction channel has an effect on controlling the shape and particle size of the microparticles, but the channel is not particularly limited to the microchannel, and the channel width of the continuous phase introduction channel corresponds to the microchannel. The width may not be a width to be used, or may be a width corresponding to a microchannel. The discharge channel is substantially continuous with the continuous phase introduction channel, and the discharge channel exists as an extension of the continuous phase introduction channel. Therefore, the discharge flow path substantially continuous with the continuous phase introduction flow path is not limited to the microchannel, and the discharge width of the discharge flow path may not be a width corresponding to the microchannel. It may be a width corresponding to. Rather, in order to improve the particle size dispersion of the microparticles, which is the object of the present invention, it is preferable that the continuous phase introduction flow path and the discharge flow path are not microchannels. preferable. Further, the depth and / or width of the discharge channel from the intersection where the dispersed phase and the continuous phase intersect to the discharge port are larger than the depth and / or width of the channel through which the dispersed phase flows, and the depth. More preferably, the position where the width becomes larger is the position before the generated microdroplet is decomposed into the first type quasi-microdroplet smaller than the microdroplet.

この理由を図を用いて以下にさらに詳細に説明する。   The reason for this will be described in more detail below with reference to the drawings.

本発明者らが鋭意検討した結果、マイクロチャンネル中を流れる連続相に対し、分散相を連続相の流れに交差する向きで分散相供給口より排出し、連続相のせん断力によって分散相から微小液滴を生成した場合、微小液滴はマイクロチャンネルの連続相を引き続き流れていく。この場合、生成された微小液滴の粒径が、マイクロチャンネルである連続相の幅または深さに対して大きいか小さいかで、以下に記述する現象がおきる。   As a result of intensive studies by the present inventors, the dispersed phase is discharged from the dispersed phase supply port in the direction intersecting the continuous phase flow with respect to the continuous phase flowing in the microchannel, and the dispersed phase is minutely separated from the dispersed phase by the shear force of the continuous phase. When a droplet is generated, the microdroplet continues to flow through the continuous phase of the microchannel. In this case, the phenomenon described below occurs depending on whether the particle size of the generated microdroplets is larger or smaller than the width or depth of the continuous phase that is a microchannel.

まず第1のケースとして、図3に示すように生成された微小液滴(34)の粒径が、マイクロチャンネルである連続相導入流路(3)と排出流路(7)の幅または深さに対して大きい場合、微小液滴と微小液滴を取り囲む連続相(10)との界面張力差から生じるせん断応力および流路の内壁(25)のせん断応力が微小液滴にはたらき、微小液滴の主に後部が図3に示すように次第に崩れてくる。この崩れた部分が微小液滴から分解し、平均粒径の20〜30%程度以下の粒径を有する平均粒径よりさらに微小な微小液滴である第1種準微小液滴(12)となる。   First, as a first case, as shown in FIG. 3, the particle size of the generated microdroplet (34) is the width or depth of the continuous phase introduction channel (3) and the discharge channel (7) which are microchannels. If it is larger than the thickness, the shear stress resulting from the difference in interfacial tension between the microdroplet and the continuous phase (10) surrounding the microdroplet and the shear stress of the inner wall (25) of the flow channel act on the microdroplet, The main rear part of the droplet gradually collapses as shown in FIG. The collapsed portion is decomposed from the microdroplet, and the first type quasi-microdroplet (12) which is a microdroplet further smaller than the average particle size having a particle size of about 20 to 30% or less of the average particle size; Become.

次に第2のケースとして、生成された微小液滴(34)の粒径が、マイクロチャンネルである連続相導入流路(3)と排出流路(7)の幅または深さに対して小さい場合、微小液滴と微小液滴を取り囲む連続相(10)との界面張力差から生じるせん断応力が微小液滴にはたらき、第1のケースと同様に微小液滴の主に後部が図4に示すように次第に崩れてくる。この崩れた部分が微小液滴から分解し、平均粒径の20〜30%程度以下の粒径を有する平均粒径よりさらに微小な微小液滴である第1種準微小液滴(12)となる。ただし、第2のケースの場合は第1のケースに比べて流路の内壁(25)のせん断応力がはたらかないため、微小液滴の後部が崩れはじめてくる位置(14)は、分散相と連続相が交差した位置からより離れた位置となる。   Next, as a second case, the particle diameter of the generated micro droplet (34) is smaller than the width or depth of the continuous phase introduction channel (3) and the discharge channel (7) which are micro channels. In this case, the shear stress resulting from the interfacial tension difference between the microdroplet and the continuous phase (10) surrounding the microdroplet acts on the microdroplet, and the rear part of the microdroplet is mainly shown in FIG. 4 as in the first case. It gradually collapses as shown. The collapsed portion is decomposed from the microdroplet, and the first type quasi-microdroplet (12) which is a microdroplet further smaller than the average particle size having a particle size of about 20 to 30% or less of the average particle size; Become. However, in the case of the second case, since the shear stress of the inner wall (25) of the flow path does not work compared to the case of the first case, the position (14) where the rear part of the micro droplet starts to collapse is the disperse phase. The position is further away from the position where the continuous phases intersect.

いずれのケースにおいても、微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力により、微小液滴が分解することにより、より小さい第1種準微小液滴が生じることにより生成した微小液滴の粒径分散度は20〜30%以上と非常に悪くなってしまう。従って、生成した微小液滴の粒径分散度を向上させるためには、前述したような生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じないようにすることで、微小液滴が分解することなく排出口から微小液滴を連続相とともに微小流路構造体から排出すれば良い。
そこで本発明の微小流路構造体は、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から微小粒子を生成し、該微小粒子の径を制御することを特徴とする微小流路構造体であるとすることで、分散相を導入するための分散相導入流路が導入口と連通したマイクロチャンネルであることにより平均粒径が数百μm以下の微小粒子を生成することができ、生成した微小液滴が微小流路構造体から排出される排出口までに連続相とともに運ばれる排出流路及び、実質的に排出流路と連続している連続相導入流路をマイクロチャンネルに限定しないことで、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じないようにすることが可能となった。ここで、連続相導入流路と排出流路はマイクロチャンネルに限定しないだけであって、図18及び図18中のB−B’断面図である図19に示すようにその流路幅(39)と流路深さ(40)が生成した微小液滴(34)の平均粒子径よりも十分大きければマイクロチャンネルであっても良い。しかしながら、微小液滴の平均粒径を数百μm以下と定義した場合、本発明の目的である微小粒子の粒径分散度を向上させるためには、むしろ、図20及び図20中のC−C’断面図である図21、D−D’断面図である図22に示すように連続相導入流路(3)及び排出流路(7)はマイクロチャンネルでないこと好ましく、特に排出流路をマイクロチャンネルにしないことがさらに好ましい。さらに、図23及び図23中のE−E’断面図である図24、F−F’断面図である図25に示すように分散相(15)と連続相(10)とが交わる交差部(6)より排出口(8)に至る排出流路(7)の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きくすることが好ましい。さらに図26及び図27には、排出流路の深さ及び/または幅が途中から大きくなる場合の微小粒子の生成を示した。図26は排出流路の深さ及び/または幅が大きくなる位置が、生成した微小液滴が前記微小液滴の後部が崩れはじめてくる位置よりも分散相と連続相とが交わる交差部により離れた位置にある場合の微小粒子の生成を示した概念図であり、図27は分散相と連続相とが交わる交差部により近い位置にある場合の微小粒子の生成を示した概念図である。なお、図26及び図27中の補助線(破線)は両図の位置関係に対応するものである。従って図26及び図27に示すように、排出流路(7)の深さ及び/または幅が大きくなる位置(24)が、生成した微小液滴(34)が前記微小液滴の後部が崩れはじめてくる位置(14)よりも、分散相(15)と連続相(10)とが交わる交差部(6)により近い位置にある形態が最も好ましく、このようにすることで、生成した微小液滴に微小液滴を取り囲む連続相(10)との界面張力から生じるせん断応力と流路の内壁(25)のせん断応力が生じないようにすることができ、排出流路で微小液滴が分解することなく排出口から微小液滴を連続相とともに微小流路構造体から排出させることが可能となる。なお、分散相と連続相の界面張力の差の大きさによって、上述した微小液滴が分解する位置が異なることはいうまでもなく、一般に、分散相と連続相の界面張力の差が大きいほど、微小液滴が生成される交差部により近い位置で微小液滴が分解する。
In either case, the microdroplet decomposes due to the shear stress generated from the interfacial tension between the microdroplet and the continuous phase surrounding the microdroplet and the shear stress of the inner wall of the flow path, thereby reducing the first type The particle size dispersion degree of the fine droplets generated by the generation of the fine droplets is very poor at 20 to 30% or more. Therefore, in order to improve the particle size dispersion degree of the generated microdroplets, the shear stress generated from the interfacial tension between the generated microdroplets and the continuous phase surrounding the microdroplets and the inner wall of the flow path By preventing shear stress from occurring, the microdroplet may be discharged from the microchannel structure together with the continuous phase from the outlet without being decomposed.
Therefore, the microchannel structure of the present invention discharges the continuous phase from the continuous phase supply port in a direction intersecting the flow of the dispersed phase at an arbitrary angle with respect to the dispersed phase flowing in the microchannel, In order to introduce the disperse phase, the microchannel structure is characterized in that microparticles are generated from the disperse phase by the shearing force of the wall surface in the channel and the diameter of the microparticles is controlled. Since the dispersed phase introduction flow path is a microchannel communicating with the introduction port, it is possible to generate microparticles having an average particle size of several hundred μm or less, and the generated microdroplets are discharged from the microchannel structure. By not limiting the discharge channel that is carried along with the continuous phase to the discharge port and the continuous phase introduction channel that is substantially continuous with the discharge channel to the microchannel, The boundary with the surrounding continuous phase Shear stress of the inner wall of the shear stress and the flow path resulting from the tension has become possible to prevent the occurrence. Here, the continuous-phase introduction flow path and the discharge flow path are not limited to microchannels, and as shown in FIG. 19 which is a cross-sectional view taken along the line BB ′ in FIGS. ) And the channel depth (40) may be microchannels as long as they are sufficiently larger than the average particle size of the generated microdroplets (34). However, when the average particle size of the fine droplets is defined as several hundred μm or less, in order to improve the particle size dispersion degree of the fine particles, which is the object of the present invention, rather, C− in FIG. 20 and FIG. As shown in FIG. 21 which is a C ′ sectional view and FIG. 22 which is a DD ′ sectional view, it is preferable that the continuous phase introduction flow path (3) and the discharge flow path (7) are not microchannels. More preferably, the microchannel is not used. Furthermore, as shown in FIG. 24 which is a cross-sectional view taken along the line EE ′ in FIG. 23 and FIG. 23 and FIG. 25 which is a cross-sectional view taken along the line FF ′, the intersecting portion where the dispersed phase (15) and the continuous phase (10) intersect. It is preferable that the depth and / or width of the discharge channel (7) from (6) to the discharge port (8) is larger than the depth and / or width of the channel through which the dispersed phase flows. Further, FIG. 26 and FIG. 27 show the generation of microparticles when the depth and / or width of the discharge channel increases from the middle. In FIG. 26, the position where the depth and / or width of the discharge channel increases is farther away from the intersection where the dispersed phase and the continuous phase intersect than the position where the generated microdroplet starts to collapse. FIG. 27 is a conceptual diagram showing the generation of microparticles in a position closer to the intersection where the dispersed phase and the continuous phase intersect. In addition, the auxiliary line (broken line) in FIG.26 and FIG.27 respond | corresponds to the positional relationship of both figures. Accordingly, as shown in FIG. 26 and FIG. 27, the position (24) where the depth and / or width of the discharge channel (7) increases, the generated microdroplet (34) collapses at the rear of the microdroplet. A form that is closer to the intersection (6) where the dispersed phase (15) and the continuous phase (10) intersect is more preferable than the starting position (14). Therefore, it is possible to prevent the shear stress generated from the interfacial tension with the continuous phase (10) surrounding the micro droplet and the inner wall (25) of the flow channel from being generated, and the micro droplet is decomposed in the discharge flow channel. Therefore, it is possible to discharge the micro droplet from the micro flow channel structure together with the continuous phase from the discharge port. In addition, it goes without saying that the position at which the fine droplets are decomposed differs depending on the magnitude of the difference in interfacial tension between the dispersed phase and the continuous phase. Generally, the greater the difference in interfacial tension between the dispersed phase and the continuous phase, the greater the difference. The micro droplet is decomposed at a position closer to the intersection where the micro droplet is generated.

以上のような微小流路構造体とすることで、平均粒径の20〜30%程度以下の第1種準微小液滴の生成を抑えることができ、粒径分散度を10%未満に向上させることができるようになった。   By using the microchannel structure as described above, it is possible to suppress the generation of the first type quasi-microdroplets having an average particle size of about 20 to 30% or less, and to improve the particle size dispersion to less than 10%. It became possible to let you.

なお、排出流路は任意の角度で交差部から別れた2以上の排出流路であっても良い。さらに排出口は、生成された微小粒子を排出させるための開口部を意味し、さらにこの排出口に適当なアタッチメントを備えて生成された微小粒子を含む相を連続的に排出する機構としてもよい。   In addition, the discharge flow path may be two or more discharge flow paths separated from the intersection at an arbitrary angle. Further, the discharge port means an opening for discharging the generated fine particles, and a mechanism for continuously discharging the phase containing the generated fine particles with an appropriate attachment provided at the discharge port. .

また本発明の微小流路構造体は、分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっており、かつ排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と連続相の交差部又はその近傍にあること、及び/または排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と連続相の交差部の分散相の導入流路側にあることが好ましい。さらにマイクロチャンネル中を流れる分散相と連続相との交差部近傍において、流路の底面、上面及び/または側面から、1以上の突起が形成されていることが好ましい。   Further, in the microchannel structure of the present invention, the width of the discharge channel is narrow at a part of the discharge channel from the intersection where the dispersed phase and the continuous phase intersect to the discharge port, and the discharge channel is discharged. The part where the width of the flow path is narrow is at or near the intersection of the dispersed phase and the continuous phase flowing in the microchannel, and / or the part where the width of the discharge flow path is narrow is the microchannel. It is preferably on the introduction flow path side of the dispersed phase at the intersection of the dispersed phase flowing through and the continuous phase. Furthermore, it is preferable that one or more protrusions are formed from the bottom surface, top surface, and / or side surface of the flow channel in the vicinity of the intersection between the dispersed phase and the continuous phase flowing in the microchannel.

ここで図28〜図36に流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成した例を示す。   Here, FIGS. 28 to 36 show an example in which one or more protrusions are formed from any one or two or more of the bottom, top, and side surfaces of the flow path.

図28は、流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成した微小流路構造体の例を示した概念図である。図28の連続相導入流路と分散相導入流路の交差部(6)を拡大した部分とその断面図の例を図29〜図36に示してある。図29は、流路の底面から1以上の突起を形成した微小流路構造の例を示した概念図である。図30は図29における流路のG−G’断面図である。図31は、流路の上面から1以上の突起を形成した微小流路構造の例を示した概念図である。図32は図31における流路のH−H’断面図である。図33は、流路の底面及び側面から1以上の突起を形成した微小流路構造の例を示した概念図である。図34は図33における流路のJ−J’断面図である。図35は、流路の底面、上面、側面から1以上の突起を形成した微小流路構造の例を示した概念図である。図36は図35における流路のK−K’断面図である。   FIG. 28 is a conceptual diagram showing an example of a microchannel structure in which one or more protrusions are formed from any one or two or more of the bottom, top, and side surfaces of the channel. Examples of an enlarged portion of the intersection (6) between the continuous phase introduction flow path and the dispersed phase introduction flow path in FIG. 28 and its cross-sectional view are shown in FIGS. FIG. 29 is a conceptual diagram showing an example of a microchannel structure in which one or more protrusions are formed from the bottom surface of the channel. FIG. 30 is a G-G ′ cross-sectional view of the flow path in FIG. 29. FIG. 31 is a conceptual diagram showing an example of a micro-channel structure in which one or more protrusions are formed from the upper surface of the channel. 32 is a cross-sectional view taken along the line H-H ′ in FIG. 31. FIG. 33 is a conceptual diagram showing an example of a micro-channel structure in which one or more protrusions are formed from the bottom and side surfaces of the channel. 34 is a cross-sectional view of the flow path in FIG. 33 taken along the line J-J ′. FIG. 35 is a conceptual diagram showing an example of a micro-channel structure in which one or more protrusions are formed from the bottom, top, and side surfaces of the channel. FIG. 36 is a K-K ′ sectional view of the flow path in FIG. 35.

このようにすることで、連続相の送液圧力に加えて、流路内が狭くなっていることによる内圧の上昇により、分散相をより容易にせん断することが可能となり、せん断する際に生じる図3及び図4に示すような微小液滴(34)の尾引き(31)を抑制することができ、図5に示すように尾引きのない微小液滴(34)を生成することが可能となる。なお、尾引きとは図2(c)に示すような、分散相(15)が連続相(10)のせん断によってちぎれる際に、分散相と連続相の界面張力の差によって、分散相がちぎれようとするときに生じる微小液滴の後部から続く、連続相で周囲を囲まれた細長く伸びた線状の分散相のことをいう。この微小液滴の尾引きは、図3及び図4に示すように分散相がせん断されて液滴になる際に尾の部分がばらばらにちぎれて、10μm未満の第2種準微小液滴(13)が発生し、粒径分散度を悪化させる要因の一つとなる。すなわち、上述したような流路構造を有する微小流路構造体を用いることにより、この微小液滴の尾引きを抑制することにより、本発明の目的である微小粒子の粒径分散度を10%未満の均一な粒径を有する微小粒子を生成する微小流路構造体とそれを用いた微小粒子製造方法を提供することがはじめて可能となる。   By doing in this way, in addition to the liquid feeding pressure of the continuous phase, it is possible to shear the dispersed phase more easily due to the increase in internal pressure due to the narrow inside of the flow path, which occurs when shearing The tailing (31) of the microdroplet (34) as shown in FIGS. 3 and 4 can be suppressed, and the microdroplet (34) without the tailing can be generated as shown in FIG. It becomes. As shown in FIG. 2C, tailing means that when the dispersed phase (15) is broken by the shear of the continuous phase (10), the dispersed phase is broken due to the difference in interfacial tension between the dispersed phase and the continuous phase. It refers to a long and thin linear dispersed phase surrounded by a continuous phase and continuing from the rear of the micro droplet generated when trying to do so. As shown in FIGS. 3 and 4, the tailing of the microdroplet is a second-type quasi-microdroplet (less than 10 μm) because the tail portion is broken when the dispersed phase is sheared to become a droplet. 13) occurs, which is one of the factors that deteriorate the particle size dispersion degree. That is, by using the microchannel structure having the channel structure as described above, the tailing of the microdroplets is suppressed, so that the particle size dispersion degree of the microparticles which is the object of the present invention is 10%. For the first time, it is possible to provide a microchannel structure that generates microparticles having a uniform particle size of less than 1 and a microparticle manufacturing method using the microchannel structure.

さらに、本発明の微小流路構造体においては、分散相を導入するための分散相導入流路と連続相を導入するための連続相導入流路とが任意の角度で交わると共に、これらの導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような2つの導入流路の交差する角度が任意の角度とすることで、交差部で生成する微小粒子を所望の粒径へと制御することが可能となる。交差角度の設定については、目的とする微小粒子の粒径に応じて適宜決めればよい。   Furthermore, in the microchannel structure according to the present invention, the dispersed phase introduction channel for introducing the dispersed phase and the continuous phase introduction channel for introducing the continuous phase intersect at an arbitrary angle, and these introductions It is preferable that the flow path be connected to the discharge flow path at an arbitrary angle. By setting the angle at which the two introduction channels intersect to be an arbitrary angle, it is possible to control the fine particles generated at the intersection to a desired particle size. What is necessary is just to determine suitably about the setting of a crossing angle according to the particle size of the target fine particle.

また、本発明の微小流路構造体は、微小流路構造体の中に複数の微小流路を平面的あるいは立体的に配置することで工業的に大量の微小粒子を生成することができる。図51及び図51中のO−O’断面図である図52、P−P’断面図である図53には、上記形態の一例を示した。流路(35)を有する基板(1)を重ねあわせ、共通流路(29)を前記基板を貫通させて構成した例である。この形態は、基板を積層し、立体的に多数の微小流路を集積する際に効果的である。なお本発明は、この形態のみに限定されるものではなく、1枚の基板に任意の配置で複数の流路を配置しても良く、発明の要旨を逸脱しない範囲で任意に変更が可能であることは言うまでもない
また本発明の様々な形態において、流体導入口には一般にシリンジポンプなどの送液ポンプを用いて流体を導入するが、流路に配置された流路排出口から排出された流体を回収し、再び送液ポンプに戻して再度送液しても良い。このようにすることで、導入する連続相及び/または分散相を無駄無く使用することができる。
In addition, the microchannel structure of the present invention can industrially generate a large amount of microparticles by arranging a plurality of microchannels planarly or three-dimensionally in the microchannel structure. FIG. 52, which is a cross-sectional view taken along line OO ′ in FIG. 51 and FIG. 51, and FIG. 53, which is a cross-sectional view taken along line PP ′, show an example of the above embodiment. This is an example in which a substrate (1) having a channel (35) is overlapped, and a common channel (29) is formed through the substrate. This form is effective when stacking substrates and stacking a large number of three-dimensional microchannels. The present invention is not limited to this embodiment, and a plurality of flow paths may be arranged in any arrangement on a single substrate, and can be arbitrarily changed without departing from the gist of the invention. Needless to say, in various forms of the present invention, the fluid is generally introduced into the fluid inlet using a liquid feed pump such as a syringe pump, but the fluid is discharged from the outlet of the passage arranged in the passage. The fluid may be collected, returned to the liquid feed pump, and fed again. By doing in this way, the continuous phase and / or disperse phase to introduce can be used without waste.

本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、分散相と連続相を導入するための導入部及び導入流路と、導入流路が交わる交差部と、液体を排出させるための排出流路及び排出口を備えた微小流路構造体が、少なくとも一方の面に流路が形成された基板と、流路が形成された基板面を覆うように、流路の所定の位置に、流路と微小流路構造体外部とを連通するための小穴が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して流路内を通過させることが可能となる。流体の送液は、シリンジポンプやマイクロポンプなどの機械的手段によって可能となる。   The microchannel structure according to the present invention has the structure and performance described above, but includes an introduction part and an introduction channel for introducing a dispersed phase and a continuous phase, and an intersection where the introduction channel intersects. The micro flow channel structure having a discharge flow channel and a discharge port for discharging the liquid covers the substrate having the flow channel formed on at least one surface and the substrate surface on which the flow channel is formed. A cover body in which small holes for communicating the flow channel and the outside of the micro flow channel structure are arranged at a predetermined position of the flow channel may be laminated and integrated. As a result, the fluid can be introduced from the outside of the microchannel structure into the channel and discharged again to the outside of the microchannel structure, and the fluid can be stably flowed even if the amount of fluid is small. It is possible to pass through the road. The fluid can be fed by mechanical means such as a syringe pump or a micro pump.

流路が形成された基板及びカバー体の材質としては、流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数百μm程度から数mm程度であることが望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。   As the material of the substrate and the cover body on which the flow path is formed, it is desirable that the flow path can be formed, has excellent chemical resistance, and has an appropriate rigidity. For example, glass, quartz, ceramic, silicon, or metal or resin may be used. The size and shape of the substrate and cover body are not particularly limited, but the thickness is preferably about several mm or less. The small hole arranged in the cover body communicates the flow path and the outside of the micro flow path structure and has a diameter of, for example, about several hundred μm to several mm when used as a fluid inlet or outlet. It is desirable. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.

また本発明の微小流路構造体は、流路が形成された基板とカバー体とを熱処理接合あるいは熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。   In the microchannel structure of the present invention, the substrate on which the channel is formed and the cover body can be laminated and integrated by means such as heat bonding or bonding using an adhesive such as a thermosetting resin.

本発明の微小流路構造体は、分散相を導入するための導入口及び分散相導入流路と、連続相を導入するための導入口及び連続相導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた流路からなることを特徴とする微小流路構造体であって、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から微小粒子を生成し、該微小粒子の径を制御することを特徴とする微小流路構造体であり、また、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きいことを特徴とする微小流路構造体であり、さらに前記分散相と連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きくなる位置が、生成した微小液滴が前記微小液滴よりも小さい第1種準微小液滴に分解する前の位置にあることを特徴とする微小流路構造体である。このような微小流路構造体とすることにより、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じないようにすることができ、排出流路で微小液滴が分解することなく排出口から微小液滴を連続相とともに排出させることが可能となり、平均粒径の20〜30%程度以下の第1種準微小液滴の生成を抑えることができ、粒径分散度を10%未満に向上させ、均一な粒径の微小粒子を生成することが可能となる。   The microchannel structure according to the present invention includes an introduction port for introducing a dispersed phase and a dispersed phase introduction channel, an introduction port for introducing a continuous phase and a continuous phase introduction channel, and a dispersed phase and a continuous phase. A microchannel structure comprising a channel having a discharge channel and a discharge port for discharging the generated microparticles, wherein the continuous phase is different from the dispersed phase flowing in the microchannel. Is discharged from the continuous phase supply port in a direction intersecting with the flow of the dispersed phase at an arbitrary angle, and fine particles are generated from the dispersed phase by the shear force of the continuous phase and the wall surface in the flow path. And a depth of the discharge channel from the intersection where the disperse phase flowing through the microchannel intersects with the continuous phase intersects the discharge port and / or Width is the depth of the flow path through which the dispersed phase flows and Or a microchannel structure characterized by being larger than the width, and the depth and / or width of the discharge channel from the intersection where the dispersed phase and the continuous phase intersect to the discharge port are The position where the depth and / or width of the flowing channel is larger than the depth of the flow path is a position before the generated micro droplet is decomposed into the first type quasi-micro droplet smaller than the micro droplet. This is a microchannel structure. By using such a microchannel structure, it is possible to prevent the generated microdroplet from generating shear stress resulting from the interfacial tension between the continuous phase surrounding the microdroplet and the inner wall of the channel. It is possible to discharge the microdroplet together with the continuous phase from the outlet without decomposing the microdroplet in the discharge channel, and the first type quasi-microdroplet of about 20 to 30% or less of the average particle diameter. Generation can be suppressed, the degree of particle size dispersion can be improved to less than 10%, and fine particles with a uniform particle size can be generated.

また本発明の微小流路構造体は、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっており、かつ排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部又はその近傍にあることを特徴とする微小流路構造体であり、また、排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部の分散相導入流路側にあることを特徴とする微小流路構造体であり、さらに、マイクロチャンネル中を流れる分散相と交差する連続相とが交わる交差部近傍において、流路の底面、上面及び/または側面から、1以上の突起が形成されていることを特徴とする微小流路構造体である。このような微小流路構造体とすることにより、尾引きのない微小液滴を生成することが可能となり、分散相がせん断されて液滴になる際に尾の部分がばらばらにちぎれて、10μm未満の第2種準微小液滴が発生しすることを抑えることが可能となり、微小粒子の粒径分散度が10%未満の非常に均一な粒径の微小粒子を生成することが可能となる。   Further, in the microchannel structure of the present invention, the discharge channel has a width at a part of the discharge channel from the intersection where the dispersed phase flowing in the microchannel intersects with the continuous phase intersects to the discharge port. A micro-channel structure characterized in that the portion where the width of the discharge channel is narrow is in the vicinity of or near the intersection where the dispersed phase flowing through the micro-channel and the continuous phase intersect And the portion where the width of the discharge channel is narrow is on the disperse phase introduction channel side of the intersecting portion where the disperse phase flowing in the microchannel intersects the continuous phase. In the vicinity of the intersection where the dispersed phase flowing in the microchannel intersects with the continuous phase intersecting, one or more protrusions are formed from the bottom, top and / or side surfaces of the channel. That A fine channel device according to symptoms. By making such a microchannel structure, it becomes possible to generate microdroplets without tailing, and when the dispersed phase is sheared into droplets, the tail portion is separated and becomes 10 μm. It is possible to suppress the generation of less than the second type quasi-microdroplets, and it is possible to generate microparticles having a very uniform particle size with a particle size dispersion degree of less than 10%. .

また、本発明の微小粒子製造方法は、前述したいずれかの形態を有する微小流路構造体を用いて微小粒子を生成する微小粒子製造方法であって、さらに、分散相を導入するための導入流路と連続相を導入するための導入流路の交わる角度を変化させて生成する微小粒子の粒径を制御することを特徴とする微小粒子製造方法であり、このような製造方法にすることで、平均粒径を自由に制御し、粒径分散度が10%未満の非常に均一な平均粒径を有する微小粒子を生成する方法を提供することが可能となる。   The method for producing microparticles of the present invention is a microparticle production method for producing microparticles using a microchannel structure having any one of the forms described above, and is further used for introducing a dispersed phase. A method for producing microparticles, characterized by controlling the particle size of the microparticles generated by changing the angle at which the flow channel and the introduction flow channel for introducing the continuous phase intersect. Thus, it is possible to provide a method for freely controlling the average particle size and producing fine particles having a very uniform average particle size with a particle size dispersion of less than 10%.

以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.

本発明の第1の実施例における微小流路を図37及び図37中のL−L’断面図である図38、M−M’断面図である図39に示す。70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、幅600μm、深さ100μmの連続相導入流路(3)、幅200μm、深さ100μmの微小流路に相当する分散相導入流路(4)及び幅600μm、深さ100μm、長さが30mmの排出流路(7)であり連続相導入流路(3)と分散相導入流路(5)とが44°の角度にて交わる交差部を持ったY字形状の流路を1本形成した基板(1)を作製した。従って本実施例は、連続相導入流路と排出流路の幅を本発明で定義している微小流路の幅、すなわち500μmよりも大きく、分散相導入流路は微小流路とした場合の例である。   The microchannels in the first embodiment of the present invention are shown in FIGS. 37 and 38, which are L-L 'cross-sectional views in FIG. 37 and FIG. On a Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness), a dispersed phase corresponding to a continuous phase introduction channel (3) having a width of 600 μm and a depth of 100 μm, and a microchannel having a width of 200 μm and a depth of 100 μm An introduction channel (4) and a discharge channel (7) having a width of 600 μm, a depth of 100 μm, and a length of 30 mm, and an angle of 44 ° between the continuous phase introduction channel (3) and the dispersed phase introduction channel (5) A substrate (1) on which one Y-shaped channel having an intersecting portion intersecting with each other was formed. Therefore, in this embodiment, the width of the continuous phase introduction channel and the discharge channel is larger than the width of the micro channel defined in the present invention, that is, 500 μm, and the dispersed phase introduction channel is a micro channel. It is an example.

この流路を有する微小流路構造体は、図40に示すように、厚さ1mmで70mm×20mmのガラス基板の一方の面に、微小流路を一般的なフォトリソグラフィーとウェットエッチングによりガラス基板に形成し、この基板(1)の流路を有する面に、流路の導入口(11)と排出口(8)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体(30)を熱接合し製作した。   As shown in FIG. 40, the microchannel structure having the channel is formed on one surface of a glass substrate having a thickness of 1 mm and a size of 70 mm × 20 mm by a general photolithography and wet etching. A small hole having a diameter of 0.6 mm is formed in advance on the surface of the substrate (1) having the flow path at positions corresponding to the inlet (11) and the outlet (8) of the flow path using mechanical processing means. A provided glass cover body (30) having a thickness of 1 mm and a size of 70 mm × 20 mm was thermally bonded.

次に本実施例の微小液滴製造方法について説明する。図41に示すように微小流路構造体(19)に液体が送液可能なようにホルダー(23)などで保持すると共に、テフロン(登録商標)チューブ(27)及びフィレットジョイント(36)をホルダーに固定する。テフロン(登録商標)チューブのもう一方はマイクロシリンジ(38)に接続する。これで微小流路構造体に液体の送液が可能となる。   Next, the microdroplet manufacturing method of the present embodiment will be described. As shown in FIG. 41, the microchannel structure (19) is held by a holder (23) or the like so that liquid can be fed, and the Teflon (registered trademark) tube (27) and fillet joint (36) are held by the holder. Secure to. The other end of the Teflon tube is connected to a microsyringe (38). Thus, liquid can be fed to the microchannel structure.

次に微小液滴を生成するための分散相にジビニルベンゼン、酢酸ブチルの混合溶液を、連続相にポリビニルアルコール3%水溶液をそれぞれのマイクロシリンジに注入し、マイクロシリンジポンプ(37)で送液を行った。送液速度は分散相及び連続相は共に3μl/minである。送液速度が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて、図42に示すような微小液滴の生成が観察された。生成された微小液滴を観察すると図43に示すように平均粒径80μm、粒径分散度を示すCV値(%)は8.1%であり、粒径分散度が10%未満の極めて均一な微小液滴(34)であった。この実施例1において、平均粒径80μmの約30%以下、すなわち、粒径約25μm以下の第1種準微小液滴は実質的に観察されなかった。しかしながら、粒径10μm未満の第2種準微小液滴が観察された。本実施例1で示すように、連続相導入流路と排出流路の幅を本発明で定義している微小流路の幅、すなわち500μmよりも大きく、分散相導入流路は微小流路とすることで、後述する比較例よりも分散度が向上していることから、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じないようにすることができ、排出流路で微小液滴が分解することなく排出口から微小液滴を連続相とともに排出させることが可能となり、平均粒径の20〜30%程度以下の第1種微小液滴の生成を抑えることができ、粒径分散度を10%未満に向上させることができるようになった。   Next, a mixed solution of divinylbenzene and butyl acetate is injected into the dispersed phase for generating microdroplets, and a 3% aqueous solution of polyvinyl alcohol is injected into each microsyringe as the continuous phase, and the solution is fed by the microsyringe pump (37). went. The liquid feeding speed is 3 μl / min for both the dispersed phase and the continuous phase. In the state where both the liquid feeding speeds were stable, the generation of microdroplets as shown in FIG. 42 was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect. When the generated fine droplets are observed, as shown in FIG. 43, the average particle size is 80 μm, the CV value (%) indicating the particle size dispersion is 8.1%, and the particle size dispersion is less than 10%, which is extremely uniform. Fine droplets (34). In Example 1, approximately 30% or less of the average particle size of 80 μm, that is, substantially no first-type quasi-microdroplets having a particle size of about 25 μm or less was observed. However, type 2 quasi-microdroplets with a particle size of less than 10 μm were observed. As shown in Example 1, the width of the continuous phase introduction channel and the discharge channel is larger than the width of the micro channel defined in the present invention, that is, 500 μm, and the dispersed phase introduction channel is a micro channel. As a result, the degree of dispersion is higher than that of the comparative example described later. Therefore, the shear stress generated from the interfacial tension between the generated microdroplet and the continuous phase surrounding the microdroplet and the shear stress of the inner wall of the flow path are The microdroplets can be discharged from the discharge port together with the continuous phase without being decomposed in the discharge flow path, and the average particle diameter is about 20 to 30% or less. It was possible to suppress the generation of one kind of fine droplets and to improve the particle size dispersion to less than 10%.

本発明の第2の実施例における微小流路を図45に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも200μm、深さ300μmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる交差部(6)を持ったY字形状の流路を形成した。従って本実施例は、連続相導入流路、分散相導入流路、排出流路の幅を微小流路の幅とし、深さを生成する微小液滴の粒径よりも約2倍以上になるように十分大きくした場合の例である。   FIG. 45 shows a microchannel according to the second embodiment of the present invention. The microchannel is a Pyrex (registered trademark) glass having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the microchannel, a dispersed phase introduction channel (5), and a discharge channel. Each of the widths of (7) is 200 μm and the depth is 300 μm, and a Y-shaped channel having an intersection (6) where the continuous phase introduction channel and the dispersed phase introduction channel intersect at an angle of 44 °. Formed. Therefore, in this embodiment, the width of the continuous phase introduction channel, the dispersed phase introduction channel, and the discharge channel is set to the width of the micro channel, which is about twice or more than the particle size of the micro droplet that generates the depth. This is an example when it is made sufficiently large.

なお微小流路は、一般的なフォトリソグラフィーとドライエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(11)と排出口(8)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The micro-channel is formed by general photolithography and dry etching, and corresponds to the inlet (11) and the outlet (8) of the channel on the surface of the glass substrate on which the channel is formed. A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided with a small hole having a diameter of 0.6 mm in advance at a position using mechanical processing means was manufactured by thermal bonding in the same manner as in Example 1.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は1μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小液滴の生成が観察された。生成された微小液滴を観察すると平均粒径98.3μm、粒径の分散度を示すCV値(%)は8.5%であり、粒径分散度が10%未満の極めて均一な微小液滴であった。この実施例2において、平均粒径98.3μmの約30%以下、すなわち、粒径約30μm以下の第1種準微小液滴は実質的に観察されなかった。しかしながら、粒径10μm未満の第2種準微小液滴が観察された。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is used as a dispersed phase for generating microdroplets in the same manner as in Example 1. Was injected into a microsyringe as a continuous phase, and the solution was fed with a microsyringe pump to produce fine droplets. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. Observing the generated microdroplets, the average particle size is 98.3 μm, the CV value (%) indicating the degree of dispersion of the particle size is 8.5%, and the extremely uniform micro liquid with a particle size dispersion of less than 10%. It was a drop. In Example 2, substantially no first-type quasi-microdroplets having an average particle size of 98.3 μm or less, ie, about 30% or less, that is, a particle size of about 30 μm or less were not observed. However, type 2 quasi-microdroplets with a particle size of less than 10 μm were observed.

本実施例2で示すように、連続相導入流路、分散相導入流路、排出流路の幅が本発明で定義している微小流路サイズであっても、微小流路の深さを生成する微小液滴の粒径よりも十分大きく(例えば約2倍以上に)することで、後述する比較例よりも分散度が向上していることから、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じないようにすることができ、排出流路で微小液滴が分解することなく排出口から微小液滴を連続相とともに排出させることが可能となり、平均粒径の20〜30%程度以下の第1種準微小液滴の生成を抑えることができ、粒径分散度を10%未満に向上させることができるようになった。   As shown in the present Example 2, even if the width of the continuous phase introduction channel, the dispersed phase introduction channel, and the discharge channel is the micro channel size defined in the present invention, the depth of the micro channel is reduced. By making it sufficiently larger than the particle size of the generated microdroplets (for example, about twice or more), the degree of dispersion is improved compared to the comparative example described later. The shear stress generated from the interfacial tension with the surrounding continuous phase and the shear stress of the inner wall of the flow path can be prevented, and the micro liquid droplets can be removed from the discharge port without decomposition in the discharge flow path. So that the generation of the first type quasi-microdroplets of about 20 to 30% or less of the average particle size can be suppressed, and the degree of particle size dispersion can be improved to less than 10%. became.

本発明の第3の実施例における微小流路を図48に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)の幅がいずれも200μm、深さ100μmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる交差部(6)を持ったY字形状の流路を形成した。排出流路は、連続相導入流路と分散相導入流路の交差部から3mmの位置までは幅200μm、深さ100μmの微小流路とし、それ以降は、幅600μm、深さ250μmの流路とした。従って本実施例は、連続相導入流路と分散相導入流路を微小流路にし、排出流路の途中までを微小流路とし、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じて、排出流路で微小液滴が分解する前に排出流路の幅と深さを生成する微小液滴に比べて約2倍以上に十分大きくした場合の例である。   FIG. 48 shows a microchannel according to the third embodiment of the present invention. The microchannels are on Pyrex (registered trademark) glass of 70 mm × 40 mm × 1 t (thickness), and the widths of the continuous phase introduction channel (3) and the dispersed phase introduction channel (5) corresponding to the microchannels are any. Further, a Y-shaped channel having an intersection (6) where the continuous phase introduction channel and the dispersed phase introduction channel intersect at an angle of 44 ° was formed with a depth of 200 μm and a depth of 100 μm. The discharge channel is a micro channel having a width of 200 μm and a depth of 100 μm from the intersection of the continuous phase introduction channel and the dispersed phase introduction channel to a position of 3 mm, and thereafter, a channel having a width of 600 μm and a depth of 250 μm. It was. Therefore, in this embodiment, the continuous phase introduction flow path and the dispersed phase introduction flow path are micro flow paths, and the middle of the discharge flow path is the micro flow path, and the generated micro liquid droplets are surrounded by the continuous phase. Shear stress caused by interfacial tension and shear stress of the inner wall of the flow path are generated, and the width and depth of the discharge flow path are generated before the micro liquid droplets are decomposed in the discharge flow path. This is an example in the case where it is sufficiently large.

なお流路は、一般的なフォトリソグラフィーとウェットエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(11)にあたる位置に予め直径0.6mmの小穴を、排出口(8)にあたる位置に予め直径2mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The channel is formed by general photolithography and wet etching, and a diameter of 0.6 mm is previously provided at a position corresponding to the inlet (11) of the channel on the surface of the glass substrate on which the channel is formed. In the same manner as in Example 1, a glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided in advance using a mechanical processing means is provided in a position corresponding to the discharge port (8). I made it.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は6μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小液滴の生成が観察された。生成された微小液滴を観察すると平均粒径120.8μm、粒径の分散度を示すCV値(%)は8.3%であり、粒径分散度が10%未満の極めて均一な微小液滴であった。この実施例3において、平均粒径120.8μmの約30%以下、すなわち、粒径約35μm以下の第1種準微小液滴は実質的に観察されなかった。しかしながら、粒径10μm未満の第2種準微小液滴が観察された。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is used as a dispersed phase for generating microdroplets in the same manner as in Example 1. Was injected into a microsyringe as a continuous phase, and the solution was fed with a microsyringe pump to produce fine droplets. The liquid feeding speed is 6 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. When the generated microdroplets are observed, the average particle size is 120.8 μm, the CV value (%) indicating the degree of dispersion of the particle size is 8.3%, and the extremely uniform minute liquid having a particle size dispersion of less than 10%. It was a drop. In Example 3, substantially no first-type quasi-microdroplets having an average particle diameter of 120.8 μm or less, that is, approximately 30% or less, that is, a particle diameter of approximately 35 μm or less were not observed. However, type 2 quasi-microdroplets with a particle size of less than 10 μm were observed.

本実施例3で示すように、連続相導入流路、分散相導入流路、排出流路の幅が本発明で定義している微小流路であっても、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じて、排出流路で微小液滴が分解する前に排出流路の途中から排出流路の幅と深さを生成する微小液滴に比べて十分大きく(例えば約2倍以上に)することで、後述する比較例よりも分散度が向上していることから、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力がはたらいて、微小液滴が分解する前に排出口から微小液滴を連続相とともに排出させることが可能となり、平均粒径の20〜30%程度以下の第1種準微小液滴の生成を抑えることができ、粒径分散度を10%未満に向上させることができるようになった。   As shown in the third embodiment, even if the width of the continuous phase introduction channel, the dispersed phase introduction channel, and the discharge channel is the micro channel defined in the present invention, The width and depth of the discharge channel from the middle of the discharge channel before the microdroplet breaks down in the discharge channel due to the shear stress resulting from the interfacial tension with the continuous phase surrounding the droplet and the shear stress of the inner wall of the channel By making the size sufficiently large (for example, about twice or more), the degree of dispersion is improved compared to the comparative example described later. The shear stress generated by the interfacial tension with the surrounding continuous phase and the shear stress of the inner wall of the flow path work, so that the microdroplets can be discharged together with the continuous phase from the outlet before the microdroplets are decomposed. Suppresses the generation of the first type quasi-microdroplets with a diameter of 20-30% or less. Can be, it becomes the degree of particle diameter distribution to be able to improve to less than 10%.

本発明の第4の実施例における微小流路を図46及び図46中の交差部近傍の拡大図である図47に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)の幅がいずれも200μm、深さ100μmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる交差部(6)を持ったY字形状の流路を形成した。排出流路(7)は、連続相導入流路と分散相導入流路の交差部から3mmの位置までは幅200μm、深さ100μmの微小流路とし、それ以降は、幅600μm、深さ250μmの流路とした。また、連続相導入流路と分散相導入流路の交差部直後の排出流路において、分散相導入流路側の排出流路の壁面に、図47に示すような、流路幅200μmに対して最大で約50μm内側に張り出した突起を形成した。従って本実施例は、連続相導入流路、分散相導入流路とを微小流路とし、排出流路の途中まで微小流路とし、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じて、排出流路で微小液滴が分解する前に排出流路の幅と深さを生成する微小液滴に比べて約2倍以上に十分大きくし、なおかつ、連続相導入流路と分散相導入流路の交差部直後の排出流路において、分散相導入流路側の排出流路の壁面に突起を形成した場合の例である。   FIG. 47, which is an enlarged view of the vicinity of the intersection in FIGS. 46 and 46, shows the micro flow path in the fourth embodiment of the present invention. The microchannels are on Pyrex (registered trademark) glass of 70 mm × 40 mm × 1 t (thickness), and the widths of the continuous phase introduction channel (3) and the dispersed phase introduction channel (5) corresponding to the microchannels are any. Further, a Y-shaped channel having an intersection (6) where the continuous phase introduction channel and the dispersed phase introduction channel intersect at an angle of 44 ° was formed with a depth of 200 μm and a depth of 100 μm. The discharge channel (7) is a micro channel having a width of 200 μm and a depth of 100 μm from the intersection of the continuous phase introduction channel and the dispersed phase introduction channel to a position of 3 mm, and after that, a width of 600 μm and a depth of 250 μm. It was set as the flow path. Further, in the discharge channel immediately after the intersection of the continuous phase introduction channel and the dispersed phase introduction channel, the wall surface of the discharge channel on the dispersed phase introduction channel side has a channel width of 200 μm as shown in FIG. A protrusion protruding to the inside of about 50 μm at the maximum was formed. Therefore, in this embodiment, the continuous phase introduction flow path and the dispersed phase introduction flow path are micro flow paths, and the micro flow path is formed halfway through the discharge flow path. Shear stress caused by interfacial tension and shear stress of the inner wall of the flow path are generated, and the width and depth of the discharge flow path are generated before the micro liquid droplets are decomposed in the discharge flow path. This is an example in which the protrusion is formed on the wall surface of the discharge channel on the side of the dispersed phase introduction channel in the discharge channel immediately after the intersection of the continuous phase introduction channel and the dispersed phase introduction channel. .

なお流路は、一般的なフォトリソグラフィーとウェットエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(11)に予め直径0.6mmの小穴を、排出口(8)にあたる位置に予め直径2mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The channel is formed by general photolithography and wet etching, and a small hole having a diameter of 0.6 mm is previously formed in the inlet (11) of the channel on the surface of the glass substrate on which the channel is formed. A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided in advance using a mechanical processing means is thermally bonded in the same manner as in Example 1 to a position corresponding to the discharge port (8). did.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は6μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小液滴の生成が観察された。生成された微小液滴を観察すると図47に示すように、図3及び図4に示した微小液滴(34)がせん断により形成される瞬間に生じる尾引き(31)の現象は実質上観察されなかった。また、生成した微小液滴は、平均粒径118.2μm、粒径の分散度を示すCV値(%)は4.8%であり、粒径分散度が5%未満の極めて均一な微小液滴であった。この実施例4において、平均粒径118.2μmの約30%以下、すなわち、粒径約35μm以下の第1種準微小液滴は実質的に観察されなかった。さらに、粒径10μm未満の第2種準微小液滴も実質的に観察されなかった。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is used as a dispersed phase for generating microdroplets in the same manner as in Example 1. Was injected into a microsyringe as a continuous phase, and the solution was fed with a microsyringe pump to produce fine droplets. The liquid feeding speed is 6 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. When the generated microdroplets are observed, as shown in FIG. 47, the phenomenon of tailing (31) that occurs at the moment when the microdroplets (34) shown in FIGS. 3 and 4 are formed by shearing is substantially observed. Was not. The produced microdroplets have an average particle size of 118.2 μm, a CV value (%) indicating the degree of dispersion of the particle size of 4.8%, and an extremely uniform microfluid having a particle size dispersion of less than 5%. It was a drop. In Example 4, substantially no first-type quasi-microdroplets having an average particle size of 118.2 μm or less, that is, about 30% or less, that is, a particle size of about 35 μm or less were not observed. Furthermore, substantially no second-type quasi-microdroplets having a particle size of less than 10 μm were observed.

本実施例4で示すように、連続相導入流路、分散相導入流路とを微小流路とし、排出流路の途中まで微小流路とし、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力が生じて、排出流路で微小液滴が分解する前に排出流路の幅と深さを生成する微小液滴に比べて十分大きく(例えば約2倍以上に)し、なおかつ、連続相導入流路と分散相導入流路の交差部直後の排出流路において、分散相導入流路側の排出流路の壁面に突起を形成することで、微小液滴が連続相と流路の内壁のせん断でせん断されるときに生じる微小液滴の尾引きを抑えることができたため、前述した実施例1〜3及び後述する比較例1よりも分散度が非常に良くなっていることから、生成した微小液滴に微小液滴を取り囲む連続相との界面張力から生じるせん断応力と流路の内壁のせん断応力がはたらいて、微小液滴が分解する前に排出口から微小液滴を連続相とともに排出し、さらに連続相導入流路と分散相導入流路の交差部直後の排出流路において、分散相導入流路側の排出流路の壁面に突起を形成することで、微小液滴が連続相と流路の内壁のせん断でせん断されるときに生じる微小液滴の尾引きを抑えることができたため、平均粒径の20〜30%程度以下の第1種準微小液滴及び粒径10%未満の第2種準微小液滴の生成を抑えることができ、粒径分散度を5%未満に大きく向上させることができるようになった。   As shown in the fourth embodiment, the continuous phase introduction flow path and the dispersed phase introduction flow path are micro flow paths, and the micro flow paths are formed halfway along the discharge flow path, and the generated micro liquid droplets are continuously surrounded by the micro liquid droplets. Compared to the microdroplet that generates the width and depth of the discharge channel before the microdroplet breaks down in the discharge channel due to the shear stress caused by the interfacial tension with the phase and the shear stress of the inner wall of the channel A protrusion is formed on the wall of the discharge channel on the dispersed phase introduction channel side in the discharge channel immediately after the intersection of the continuous phase introduction channel and the dispersed phase introduction channel. As a result, the tailing of the microdroplet that occurs when the microdroplet is sheared by the shearing of the continuous phase and the inner wall of the flow path can be suppressed. Since the degree of dispersion is much better than The shear stress generated from the interfacial tension with the surrounding continuous phase and the shear stress of the inner wall of the channel work, and before the micro droplet breaks down, the micro droplet is discharged together with the continuous phase, and the continuous phase introduction channel By forming protrusions on the wall of the discharge channel on the side of the dispersed phase introduction channel at the discharge channel immediately after the intersection of the dispersed phase introduction channel and the dispersed phase introduction channel, microdroplets are sheared by the shear of the continuous phase and the inner wall of the channel Since the tailing of the micro droplets generated when the first type is performed can be suppressed, the first type quasi-micro droplets having a mean particle size of about 20 to 30% or less and the second type quasi-micro droplets having a particle size of less than 10% are used. The particle size dispersion degree can be greatly improved to less than 5%.

比較例Comparative example

本発明の比較例における微小流路を図49に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス製の基板(1)上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも200μm、深さ100μmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる交差部(6)を持ったY字形状の流路を形成した。排出流路の長さは30mmである。   FIG. 49 shows a microchannel in a comparative example of the present invention. The micro-channel is formed on a Pyrex (registered trademark) glass substrate (1) having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the micro-channel, and a dispersed phase introduction channel ( 5) The width of the discharge flow path (7) is 200 μm and the depth is 100 μm, and the cross-phase (6) where the continuous phase introduction flow path and the dispersed phase introduction flow path intersect at an angle of 44 °. A letter-shaped channel was formed. The length of the discharge channel is 30 mm.

なお微小流路は、一般的なフォトリソグラフィーとウエットエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(11)と排出口(8)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。 次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は1μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小液滴の生成が観察された。生成された微小液滴を観察すると、図50に示すように、連続相導入流路と分散相導入流路の交差部から約4mmを過ぎた位置から、微小液滴の後部が崩れはじめ、微小液滴が分解していく様子が観察された。その結果、平均粒径89.5μm、粒径の分散度を示すCV値(%)は22.5%であり、粒径分散度が20%以上の比較的不均一な粒径の微小液滴であった。   The micro flow path is formed by general photolithography and wet etching, and the flow path of the glass substrate on which the flow path is formed corresponds to the flow path inlet (11) and the discharge port (8). A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided with a small hole having a diameter of 0.6 mm in advance at a position using mechanical processing means was manufactured by thermal bonding in the same manner as in Example 1. Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is used as a dispersed phase for generating microdroplets in the same manner as in Example 1. Was injected into a microsyringe as a continuous phase, and the solution was fed with a microsyringe pump to produce fine droplets. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. When the generated microdroplets are observed, as shown in FIG. 50, the rear part of the microdroplets starts to collapse from a position after about 4 mm from the intersection of the continuous phase introduction flow path and the dispersed phase introduction flow path. It was observed that the droplets decomposed. As a result, the average particle size is 89.5 μm, the CV value (%) indicating the degree of dispersion of the particle size is 22.5%, and the micro droplets having a relatively non-uniform particle size with a particle size dispersion of 20% or more. Met.

本発明の第5の実施例における微小流路を図44に示す。微小流路は70mm×40mm×1t(厚さ)のパイレックス(登録商標)ガラス製の基板(1)上に、微小流路に相当する連続相導入流路(3)、分散相導入流路(5)及び排出流路(7)の幅がいずれも200μm、深さ300μmで、連続相導入流路と分散相導入流路とが44°の角度にて交わる交差部(6)を持ったY字形状の流路と、連続相導入流路と分散相導入流路とが22°の角度にて交わる交差部(6)を持ったY字形状の流路の2本の微小流路を形成した。従って本実施例は、実施例2において、連続相導入流路と分散相導入流路の交差部における角度を変えた場合の例である。   FIG. 44 shows a microchannel according to the fifth embodiment of the present invention. The micro-channel is formed on a Pyrex (registered trademark) glass substrate (1) having a size of 70 mm × 40 mm × 1 t (thickness), a continuous phase introduction channel (3) corresponding to the micro-channel, and a dispersed phase introduction channel ( 5) The width of the discharge channel (7) is 200 μm and the depth is 300 μm, and Y has an intersection (6) where the continuous phase introduction channel and the dispersed phase introduction channel intersect at an angle of 44 °. Two micro-channels are formed: a Y-shaped channel, and a Y-shaped channel having an intersection (6) where the continuous phase introducing channel and the dispersed phase introducing channel intersect at an angle of 22 °. did. Therefore, the present embodiment is an example in which the angle at the intersection of the continuous phase introduction flow path and the dispersed phase introduction flow path is changed in the second embodiment.

なお微小流路は、一般的なフォトリソグラフィーとドライエッチングにより形成し、この流路が形成されたガラス基板の流路を有する面に、流路の導入口(11)と排出口(8)にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラス製のカバー体を実施例1と同様に熱接合し製作した。   The micro-channel is formed by general photolithography and dry etching, and corresponds to the inlet (11) and the outlet (8) of the channel on the surface of the glass substrate on which the channel is formed. A glass cover body having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided with a small hole having a diameter of 0.6 mm in advance at a position using mechanical processing means was manufactured by thermal bonding in the same manner as in Example 1.

次に微小流路構造体をホルダーで保持し、実施例1と同様な方法で、微小液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し、マイクロシリンジポンプで送液を行って微小液滴を生成した。送液速度は分散相は1μl/min、連続相は15μl/minである。流速が共に安定した状態で、微小流路構造体の分散相及び連続相が交わる交差部にて微小液滴の生成が観察された。生成された微小液滴を観察すると、交差部が22°の角度で交わる場合は、平均粒径110.5μm、粒径の分散度を示すCV値(%)は8.7%であり、交差部が44°の角度で交わる場合は、平均粒径87.8μm、粒径の分散度を示すCV値(%)は8.9%であり、いずれも粒径分散度が10%未満の極めて均一な微小液滴であった。   Next, the microchannel structure is held by a holder, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide is used as a dispersed phase for generating microdroplets in the same manner as in Example 1. Was injected into a microsyringe as a continuous phase, and the solution was fed with a microsyringe pump to produce fine droplets. The liquid feeding speed is 1 μl / min for the dispersed phase and 15 μl / min for the continuous phase. Formation of microdroplets was observed at the intersection where the dispersed phase and continuous phase of the microchannel structure intersect, with both flow rates stabilized. When the generated micro droplets are observed, when the intersecting portions intersect at an angle of 22 °, the average particle diameter is 110.5 μm, and the CV value (%) indicating the degree of dispersion of the particle diameter is 8.7%. When the parts intersect at an angle of 44 °, the average particle size is 87.8 μm, the CV value (%) indicating the degree of dispersion of the particle size is 8.9%, and both have a particle size dispersion of less than 10%. Uniform fine droplets.

本実施例5で示すように、分散相及び連続相の送液速度の条件を変えることなく、分散相導入流路と連続相導入流路の交差部の角度を変えることで粒径をコントロールすることが可能であることがわかる。   As shown in Example 5, the particle size is controlled by changing the angle of the intersection of the dispersed phase introduction channel and the continuous phase introduction channel without changing the conditions of the liquid feeding speed of the dispersed phase and the continuous phase. It can be seen that it is possible.

従来の微小粒子を生成する微小流路を示す概略図である。It is the schematic which shows the microchannel which produces the conventional microparticles. 図1の従来の微小粒子を生成する微小流路中のA−A’断面図である。It is A-A 'sectional drawing in the microchannel which produces | generates the conventional microparticle of FIG. 微小液滴が生成されるとき及び生成された後の状態を示す概念図であり、微小液滴の平均粒径が流路の幅または深さに対して大きい場合で、微小液滴が生成されるときに尾引きを生じ、連続相と流路の内壁のせん断応力によって微小液滴の後部が次第に崩れてくる様子を示した概念図である。It is a conceptual diagram showing a state when a micro droplet is generated and after it is generated, and when the average particle size of the micro droplet is larger than the width or depth of the channel, the micro droplet is generated. FIG. 6 is a conceptual diagram showing a state in which tailing occurs when the liquid droplets are crushed and the rear part of the micro droplet gradually collapses due to the shear stress of the continuous phase and the inner wall of the flow path. 微小液滴が生成されるとき及び生成された後の状態を示す概念図であり、微小液滴の平均粒径が流路の幅または深さに対して小さい場合で、微小液滴が生成されるときに尾引きを生じ、連続相のせん断応力によって微小液滴の後部が次第に崩れてくる様子を示した概念図である。It is a conceptual diagram which shows the state when a microdroplet is produced | generated and after it is produced | generated, and a microdroplet is produced | generated when the average particle diameter of a microdroplet is small with respect to the width | variety or depth of a flow path. FIG. 6 is a conceptual diagram showing a state in which tailing occurs when the liquid droplets fall and the rear part of the micro droplet gradually collapses due to the shear stress of the continuous phase. 微小液滴が生成される時と生成された後の状態を示す概念図であり、微小液滴の平均粒径が流路の幅または深さに対して小さくかつ液滴生成時に流路の内径を絞り、さらに連続相のせん断応力によって微小液滴の後部が次第に崩れる前に流路の幅と深さを大きくした場合で、微小液滴が生成されるときに尾引きが発生せず、微小液滴が崩れない様子を示した概念図である。It is a conceptual diagram which shows the state when a microdroplet is generated and after it is generated, and the average particle diameter of the microdroplet is smaller than the width or depth of the channel and the inner diameter of the channel at the time of droplet generation When the flow path width and depth are increased before the rear part of the microdroplet gradually collapses due to the shear stress of the continuous phase, no tailing occurs when the microdroplet is generated. It is the conceptual diagram which showed a mode that a droplet did not collapse. 流路の交差部近傍において、分散相を連続相と流路の内壁によるせん断力でせん断して微小粒子を形成する方法を示す概念図である。It is a conceptual diagram which shows the method of forming a microparticle by shearing a disperse phase by the shear force by the continuous phase and the inner wall of a flow path in the crossing part vicinity of a flow path. 流路の交差部近傍において両側の連続相が中央の分散相を挟み込むようにして、分散相を前記両側の連続相と流路の上下の内壁とのせん断力でせん断して微小粒子を形成する方法を示す概念図である。The continuous phase on both sides sandwiches the central dispersed phase in the vicinity of the intersection of the channels, and the dispersed phase is sheared by the shear force between the continuous phases on both sides and the upper and lower inner walls of the channel to form microparticles. It is a conceptual diagram which shows a method. 流路の交差部近傍において中央の連続相が両側の分散を前記連続相と流路の内壁のせん断力でせん断して微小粒子を形成する方法を示す概念図である。It is a conceptual diagram showing a method in which a central continuous phase in the vicinity of an intersection of flow paths shears the dispersion on both sides with the shear force of the continuous phase and the inner wall of the flow path to form fine particles. 流路の交差部近傍において直線状に一方の側より分散相を、もう一方の側より連続相を導入し、分散相を連続相と流路の内壁のせん断力でせん断して微小粒子を生成し、任意の方向へ排出させる方法を示す概念図である。In the vicinity of the intersection of the channels, a dispersed phase is introduced linearly from one side and a continuous phase is introduced from the other side, and the dispersed phase is sheared by the shearing force of the continuous phase and the inner wall of the channel to generate fine particles. It is a conceptual diagram showing a method of discharging in an arbitrary direction. 分散相を2液の2相層流とした場合に、流路の交差部近傍において分散相を前記連続相と流路の内壁でせん断力して微小粒子を形成する方法を示す概念図である。When the dispersed phase is a two-phase two-layer laminar flow, it is a conceptual diagram showing a method of forming fine particles by shearing the dispersed phase between the continuous phase and the inner wall of the channel near the intersection of the channels. . 分散相が2液を反応させた反応液として、流路の交差部近傍において分散相を前記連続相と流路の内壁でせん断力して微小粒子を形成する方法を示す概念図である。FIG. 5 is a conceptual diagram showing a method of forming microparticles by shearing a dispersed phase between the continuous phase and the inner wall of the flow path in the vicinity of the intersection of flow paths as a reaction liquid obtained by reacting 2 liquids in the dispersed phase. 分散相と連続相が2液を反応させた反応液として、流路の交差部近傍において分散相を前記連続相と流路の内壁でせん断力して微小粒子を形成する方法を示す概念図である。A conceptual diagram showing a method for forming a microparticle by shearing a dispersed phase between the continuous phase and the inner wall of the flow path in the vicinity of the intersection of the flow paths as a reaction liquid obtained by reacting two liquids of the dispersed phase and the continuous phase. is there. 分散相が4液からなる4相層流として、流路の交差部近傍において分散相を前記連続相と流路の内壁でせん断力して微小粒子を形成する方法を示す概念図である。It is a conceptual diagram which shows the method of forming a microparticle by shearing a dispersed phase by the said continuous phase and the inner wall of a flow path in the vicinity of the cross | intersection part of a flow path as 4 phase laminar flow which a dispersed phase consists of 4 liquids. 外部に光照射手段を設け、光照射により微小粒子を硬化させる方法を示した概略図である。It is the schematic which showed the method of providing a light irradiation means outside and hardening a microparticle by light irradiation. マスクを使って流路への光照射により微小粒子を硬化させる方法を示した概略図である。It is the schematic which showed the method of hardening a microparticle by the light irradiation to a flow path using a mask. 外部に加熱手段を設け、加熱により微小粒子を硬化させる方法を示した概略図である。It is the schematic which showed the method of providing a heating means outside and hardening a microparticle by heating. 微小流路構造体内に加熱手段を設け、加熱により微小粒子を硬化させる方法を示した概略図である。It is the schematic which showed the method of providing a heating means in a microchannel structure, and hardening a microparticle by heating. 流路幅と流路深さが生成した微小液滴の平均粒子径よりも十分大きい流路の場合の微小粒子の生成の様子を示した概念図である。It is the conceptual diagram which showed the mode of the production | generation of a microparticle in the case of a flow path in which the flow path width and flow path depth are sufficiently larger than the average particle diameter of the produced | generated microdroplet. 図18における流路のB−B’断面図である。It is B-B 'sectional drawing of the flow path in FIG. 連続相導入流路及び排出流路がマイクロチャンネルでない場合の微小粒子の生成の様子を示した概念図である。It is the conceptual diagram which showed the mode of the production | generation of a microparticle when a continuous phase introduction flow path and a discharge flow path are not microchannels. 図20における流路のC−C’断面図である。It is C-C 'sectional drawing of the flow path in FIG. 図20における流路のD−D’断面図である。It is D-D 'sectional drawing of the flow path in FIG. 分散相と連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が、分散相が流れる流路の深さ及び/または幅よりも大きくした場合の微小粒子の生成を示した概念図である。Generation of microparticles when the depth and / or width of the discharge channel from the intersection where the dispersed phase and continuous phase intersect to the discharge port is larger than the depth and / or width of the channel through which the dispersed phase flows It is the conceptual diagram which showed. 図23における流路のE−E’断面図である。It is E-E 'sectional drawing of the flow path in FIG. 図23における流路のF−F’断面図である。It is F-F 'sectional drawing of the flow path in FIG. 排出流路の深さ及び/または幅が途中から大きくなる場合の微小粒子の生成を示した概念図であり、排出流路の深さ及び/または幅が大きくなる位置が、生成した微小液滴が前記微小液滴の後部が崩れはじめてくる位置よりも分散相と連続相とが交わる交差部により離れた位置にある場合の微小粒子の生成を示した概念図であり、図26中の2本の補助線(破線)は図27の補助線(破線)に対応するものである。It is the conceptual diagram which showed the production | generation of the microparticle when the depth and / or width of a discharge channel become large from the middle, and the position where the depth and / or width of a discharge channel becomes large is the produced | generated microdroplet. FIG. 27 is a conceptual diagram showing generation of microparticles in a case where the microparticles are located at a position separated by a crossing portion where a dispersed phase and a continuous phase intersect rather than a position where the rear part of the microdroplet begins to collapse. The auxiliary line (broken line) corresponds to the auxiliary line (broken line) in FIG. 排出流路の深さ及び/または幅が途中から大きくなる場合の微小粒子の生成を示した概念図であり、分散相と連続相とが交わる交差部により近い位置にある場合の微小粒子の生成を示した概念図であり、図27中の2本の補助線(破線)は図26の補助線(破線)に対応するものである。It is the conceptual diagram which showed the production | generation of the microparticle when the depth and / or width | variety of a discharge channel become large from the middle, and the production | generation of a microparticle when it exists in the position closer to the cross | intersection part where a disperse phase and a continuous phase cross The two auxiliary lines (broken lines) in FIG. 27 correspond to the auxiliary lines (broken lines) in FIG. 流路の底面、上面、側面のいずれか1面あるいは2面以上から1以上の突起を形成した微小流路構造の例を示した概念図である。It is the conceptual diagram which showed the example of the microchannel structure which formed the 1 or more protrusion from any one of the bottom face of a flow path, an upper surface, and a side surface, or 2 or more surfaces. 図28の交差部6近傍の拡大図であり、流路の底面から1以上の突起を形成した微小流路構造の例を示した概念図である。FIG. 29 is an enlarged view of the vicinity of the intersection 6 in FIG. 28, and is a conceptual diagram illustrating an example of a microchannel structure in which one or more protrusions are formed from the bottom surface of the channel. 図29における流路のG−G’断面図である。FIG. 30 is a G-G ′ sectional view of the flow path in FIG. 29. 図28の交差部6近傍の拡大図であり、流路の上面から1以上の突起を形成した微小流路構造の例を示した概念図である。FIG. 29 is an enlarged view of the vicinity of the intersection 6 in FIG. 28, and is a conceptual diagram illustrating an example of a micro-channel structure in which one or more protrusions are formed from the upper surface of the channel. 図31における流路のH−H’断面図である。FIG. 32 is a cross-sectional view taken along the line H-H ′ of FIG. 31. 図28の交差部6近傍の拡大図であり、流路の底面及び側面から1以上の突起を形成した微小流路構造の例を示した概念図である。FIG. 29 is an enlarged view of the vicinity of the intersection 6 in FIG. 28, and is a conceptual diagram illustrating an example of a micro-channel structure in which one or more protrusions are formed from the bottom and side surfaces of the channel. 図33における流路のJ−J’断面図である。It is J-J 'sectional drawing of the flow path in FIG. 図28の交差部6近傍の拡大図であり、流路の底面、上面、側面から1以上の突起を形成した微小流路構造の例を示した概念図である。FIG. 29 is an enlarged view of the vicinity of the intersection 6 in FIG. 28, and is a conceptual diagram illustrating an example of a micro-channel structure in which one or more protrusions are formed from the bottom, top, and side surfaces of the channel. 図35における流路のK−K’断面図である。FIG. 36 is a K-K ′ sectional view of the flow path in FIG. 35. 第1の実施例における微小流路を示す概念図である。It is a conceptual diagram which shows the microchannel in a 1st Example. 図37における流路のL−L’断面図である。It is L-L 'sectional drawing of the flow path in FIG. 図37における流路のM−M’断面図である。It is M-M 'sectional drawing of the flow path in FIG. 第1の実施例における微小流路構造体を示す概念図である。It is a conceptual diagram which shows the microchannel structure in a 1st Example. 第1の実施例における微小液滴製造方法について説明した図である。It is a figure explaining the micro droplet manufacturing method in a 1st Example. 第1の実施例において観察された微小液滴の生成の様子を示す図である。It is a figure which shows the mode of the production | generation of the micro droplet observed in the 1st Example. 第1の実施例において生成された微小液滴である。It is the micro droplet produced | generated in the 1st Example. 実施例5における微小流路を示す概念図である。FIG. 10 is a conceptual diagram showing a micro flow channel in Example 5. 実施例2における微小流路を示す概念図である。FIG. 5 is a conceptual diagram showing a micro flow channel in Example 2. 実施例4における微小流路を示す概念図である。FIG. 6 is a conceptual diagram showing a microchannel in Example 4. 図46の流路中の交差部6近傍の拡大図である。It is an enlarged view of the cross | intersection part 6 vicinity in the flow path of FIG. 実施例3における微小流路を示す概念図である。FIG. 6 is a conceptual diagram showing a micro flow channel in Example 3. 比較例における微小流路を示す概念図である。It is a conceptual diagram which shows the microchannel in a comparative example. 図49の流路中の交差部6近傍の拡大図であり、微小液滴の生成の様子を示す図である。FIG. 50 is an enlarged view of the vicinity of the intersection 6 in the flow path of FIG. 49, and shows a state of generation of microdroplets. 流路を有する基板を立体的に重ねあわせて構成した微小流路構造体の例である。It is an example of the micro channel structure which constituted the substrate which has a channel in three dimensions. 図51の微小流路構造体中のO−O’断面図である。It is O-O 'sectional drawing in the microchannel structure of FIG. 図51の微小流路構造体中のP−P’断面図である。It is P-P 'sectional drawing in the microchannel structure of FIG.

符号の説明Explanation of symbols

1:基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:交差部
7:排出流路
8:排出口
9:微小流路の幅
10:連続相
11:導入口
12:第1種準微小液滴
13:第2種準微小液滴
14:微小液滴の後部が崩れはじめてくる位置
15:分散相
16:微小流路
17:微小粒子
18:微小粒子の直径
19:微小流路構造体
20:光照射スポット
21:光照射
22:マスク
23:ホルダー
24:流路の深さ及び/または幅が大きくなる位置
25:流路の内壁
26:ビーカー
27:テフロン(登録商標)チューブ
28:ヒーター
29:共通流路
30:カバー体
31:尾引き
32:上カバー体
33:下カバー体
34:微小液滴
35:流路
36:フィレットジョイント
37:マイクロシリンジポンプ
38:マイクロシリンジ
39:流路幅
40:流路深さ
1: Substrate 2: Continuous phase introduction port 3: Continuous phase introduction channel 4: Dispersed phase introduction port 5: Dispersed phase introduction channel 6: Intersection 7: Discharge channel 8: Discharge port 9: Microchannel width 10 : Continuous phase 11: Inlet 12: Type 1 quasi-microdroplet 13: Type 2 quasi-microdroplet 14: Position where the rear part of the microdroplet begins to collapse 15: Dispersed phase 16: Microchannel 17: Microparticle 18: Diameter of fine particles 19: Micro-channel structure 20: Light irradiation spot 21: Light irradiation 22: Mask 23: Holder 24: Position where the depth and / or width of the channel increases 25: Inner wall 26 of the channel : Beaker 27: Teflon (registered trademark) tube 28: Heater 29: Common channel 30: Cover body 31: Trailing 32: Upper cover body 33: Lower cover body 34: Micro droplet 35: Channel 36: Fillet joint 37 : Micro syringe pump 38: Micro syringe 39: flow channel width 40: channel depth

Claims (6)

分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた流路からなる微小流路構造体であって、マイクロチャンネル中を流れる分散相に対し、連続相を前記分散相の流れに対し任意の角度で交差する向きで連続相供給口より排出し、前記連続相と流路内の壁面のせん断力によって分散相から微小粒子を生成し、該微小粒子の径を制御するとともに、分散相と連続相とが交わる交差部より排出口に至る排出流路の深さ及び/または幅が分散相が流れる流路の深さ及び/または幅よりも大きく、かつ分散相が流れる流路の深さ及び/または幅よりも大きくなる位置が生成した微小液滴が前記微小液滴よりも小さい微小液滴に分解する前の位置にあることを特徴とする微小流路構造体。 An introduction port and an introduction channel for introducing a dispersed phase, an introduction port and an introduction channel for introducing a continuous phase, a discharge channel for discharging fine particles generated by the dispersed phase and the continuous phase, and A micro-channel structure comprising a channel having a discharge port, and supplying a continuous phase in a direction that intersects the dispersed phase flowing through the microchannel at an arbitrary angle with respect to the flow of the dispersed phase. The fine particles are generated from the dispersed phase by the shearing force of the continuous phase and the wall surface in the flow path, the diameter of the fine particles is controlled , and the discharge port from the intersection where the dispersed phase and the continuous phase intersect A position where the depth and / or width of the discharge flow channel leading to is larger than the depth and / or width of the flow channel through which the dispersed phase flows and larger than the depth and / or width of the flow channel through which the dispersed phase flows. The generated microdroplet is smaller than the microdroplet. Fine channel device, characterized in that there are in the position before disassembling the microdroplets. 分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっており、かつ排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と連続相の交差部又はその近傍にあることを特徴とする請求項1に記載の微小流路構造体。 In a part of the discharge flow path from the intersection where the dispersed phase and the continuous phase intersect to the discharge port, the width of the discharge flow path is narrow and the width of the discharge flow path is narrow 2. The microchannel structure according to claim 1 , wherein the microchannel structure is at or near the intersection of a dispersed phase and a continuous phase flowing in the microchannel. 排出流路の幅が狭くなっている部位が、マイクロチャンネル中を流れる分散相と連続相の交差部の分散相の導入流路側にあることを特徴とする請求項2記載の微小流路構造体。 3. The microchannel structure according to claim 2 , wherein the portion where the width of the discharge channel is narrow is on the introduction channel side of the dispersed phase at the intersection of the dispersed phase flowing in the microchannel and the continuous phase. . マイクロチャンネル中を流れる分散相と連続相との交差部近傍において、流路の底面、上面及び/または側面から、1以上の突起が形成されていることを特徴とする請求項1〜3のいずれかに記載の微小流路構造体。 In the vicinity of an intersection of the dispersed and continuous phases flowing in microchannels, the bottom surface of the flow path, from the top and / or side, more of claims 1 to 3, characterized in that one or more projections are formed A microchannel structure according to any one of the above. 請求項1〜4のいずれかに記載の微小流路構造体を用いて微小粒子を生成する微小粒子製造方法。 The microparticle manufacturing method which produces | generates a microparticle using the microchannel structure in any one of Claims 1-4 . 分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させて生成する微小粒子の粒径を制御することを特徴とする請求項5に記載の微小粒子製造方法。 According to claim 5, characterized in that controlling the particle size of the fine particles produced by changing the angle of the introduction channel crosses for introducing a continuous phase and a dispersed phase introduction channel for introducing A method for producing fine particles.
JP2003386796A 2003-11-17 2003-11-17 Microchannel structure and microparticle manufacturing method using the same Expired - Fee Related JP4042683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386796A JP4042683B2 (en) 2003-11-17 2003-11-17 Microchannel structure and microparticle manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386796A JP4042683B2 (en) 2003-11-17 2003-11-17 Microchannel structure and microparticle manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2005144356A JP2005144356A (en) 2005-06-09
JP4042683B2 true JP4042683B2 (en) 2008-02-06

Family

ID=34694381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386796A Expired - Fee Related JP4042683B2 (en) 2003-11-17 2003-11-17 Microchannel structure and microparticle manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP4042683B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777427B2 (en) * 2003-11-25 2006-05-24 独立行政法人食品総合研究所 Emulsion production method and production apparatus
AU2006220816A1 (en) 2005-03-04 2006-09-14 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
JP2007009074A (en) * 2005-06-30 2007-01-18 Sanyo Chem Ind Ltd Method for producing resin particle
JP2007031604A (en) * 2005-07-28 2007-02-08 Sanyo Chem Ind Ltd Production method for resin particle
JP2007031603A (en) * 2005-07-28 2007-02-08 Sanyo Chem Ind Ltd Method for producing resin particle
JP4803495B2 (en) * 2007-01-09 2011-10-26 独立行政法人農業・食品産業技術総合研究機構 Method and apparatus for manufacturing shelled microbubbles
JP4627302B2 (en) * 2007-01-09 2011-02-09 株式会社神戸製鋼所 Method and apparatus for producing fine particles
JP4972726B2 (en) * 2007-03-28 2012-07-11 国立大学法人 岡山大学 Phase inversion temperature emulsification apparatus and emulsification method
EP2142314A4 (en) * 2007-03-30 2012-04-25 Fujifilm Corp Method of cleaning micro-flow passages
JP2009014377A (en) * 2007-07-02 2009-01-22 Tosoh Corp Cellulose particles and their manufacturing method
JP5023902B2 (en) * 2007-09-06 2012-09-12 株式会社日立プラントテクノロジー Emulsifying device
JP4572973B2 (en) * 2008-06-16 2010-11-04 ソニー株式会社 Microchip and flow-feeding method in microchip
JP5196304B2 (en) 2008-07-29 2013-05-15 大日本印刷株式会社 Emulsion-forming microchip and method for producing the same
US9713802B2 (en) 2009-01-13 2017-07-25 Kobe Steel, Ltd. Method and apparatus for manufacturing liquid microspheres
US20120199226A1 (en) * 2009-09-02 2012-08-09 Basf Se Multiple emulsions created using junctions
CN102574078B (en) 2009-09-02 2016-05-18 哈佛学院院长等 Use and spray the multiple emulsion producing with other technology
JP5691195B2 (en) 2010-03-01 2015-04-01 ソニー株式会社 Microchip and fine particle analyzer
EP2714254B1 (en) 2011-05-23 2017-09-06 President and Fellows of Harvard College Control of emulsions, including multiple emulsions
WO2013006661A2 (en) 2011-07-06 2013-01-10 President And Fellows Of Harvard College Multiple emulsions and techniques for the formation of multiple emulsions
JP6140524B2 (en) * 2013-05-20 2017-05-31 株式会社フジクラ Droplet generator
JP5897681B2 (en) * 2014-10-08 2016-03-30 ソニー株式会社 Microchip and fine particle analyzer
KR101961526B1 (en) * 2016-12-13 2019-03-25 경희대학교 산학협력단 Anisotropic particle and manufacturing method thereof
US20220331769A1 (en) * 2020-01-21 2022-10-20 Suzhou Hengrui Hongyuan Medical Technology Co., Ltd. Reaction apparatus and processing method thereof, and preparation device of microspheres for embolization and preparation method thereof
JP7390078B2 (en) * 2020-03-13 2023-12-01 国立研究開発法人科学技術振興機構 Micro droplet/bubble generation device
WO2022107898A1 (en) * 2020-11-20 2022-05-27 国立大学法人東京工業大学 Micro two-phase liquid droplet generation device
CN112755933B (en) * 2021-01-13 2023-12-26 广东工业大学 Multistage reaction micro-channel structure, micro-fluidic chip and heterogeneous reaction method
CN113952903A (en) * 2021-11-17 2022-01-21 上海东富龙拓溥科技有限公司 Preparation method of medicinal microcapsule
CN116237095B (en) * 2023-02-18 2024-06-04 四川大学 Microfluidic method for controllably preparing monodisperse emulsion based on infiltration principle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097692B (en) * 1981-01-10 1985-05-22 Shaw Stewart P D Combining chemical reagents
TW593122B (en) * 2001-02-13 2004-06-21 Qinetiq Ltd Microchannel device
DE60214604T2 (en) * 2001-02-23 2006-12-28 Japan Science And Technology Agency, Kawaguchi Apparatus and method for producing microcapsules
JP4193561B2 (en) * 2002-04-25 2008-12-10 東ソー株式会社 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
JP4122959B2 (en) * 2002-12-13 2008-07-23 旭硝子株式会社 Method for producing inorganic spherical body
JP4356312B2 (en) * 2002-12-17 2009-11-04 東ソー株式会社 Microchannel structure
JP2005127864A (en) * 2003-10-23 2005-05-19 Japan Science & Technology Agency Micromixing device

Also Published As

Publication number Publication date
JP2005144356A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
TWI439410B (en) Microchannel structure and fine-particle production method using the same
US7718099B2 (en) Fine channel device, fine particle producing method and solvent extraction method
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP3777427B2 (en) Emulsion production method and production apparatus
JP4639624B2 (en) Micro channel structure
JP4305145B2 (en) Particle production method using micro flow channel
JP2004154745A (en) Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
US10807054B2 (en) Mixing of fluids
JP2007054681A (en) Manufacturing method of microcapsule using microflow channel structure and microcapsule obtained thereby
JP4144302B2 (en) Droplet generation method
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP4743165B2 (en) Micro channel structure
JP4356312B2 (en) Microchannel structure
JP4470640B2 (en) Fine particle manufacturing method and microchannel structure therefor
JP5625900B2 (en) Microchannel structure and method for producing microparticles using the same
JP2004195337A (en) Particle production method and minute channel structure for the same
JP2005297150A (en) Microscopic flow passage structure and droplet generating method using this structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R151 Written notification of patent or utility model registration

Ref document number: 4042683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees