JP5023902B2 - Emulsifying device - Google Patents

Emulsifying device Download PDF

Info

Publication number
JP5023902B2
JP5023902B2 JP2007230922A JP2007230922A JP5023902B2 JP 5023902 B2 JP5023902 B2 JP 5023902B2 JP 2007230922 A JP2007230922 A JP 2007230922A JP 2007230922 A JP2007230922 A JP 2007230922A JP 5023902 B2 JP5023902 B2 JP 5023902B2
Authority
JP
Japan
Prior art keywords
channel
phase inflow
continuous phase
dispersed
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007230922A
Other languages
Japanese (ja)
Other versions
JP2009061382A (en
Inventor
美緒 鈴木
盛典 富樫
哲郎 宮本
喜重 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007230922A priority Critical patent/JP5023902B2/en
Priority to CNA2008102106433A priority patent/CN101380553A/en
Priority to EP08014632A priority patent/EP2033706B1/en
Publication of JP2009061382A publication Critical patent/JP2009061382A/en
Application granted granted Critical
Publication of JP5023902B2 publication Critical patent/JP5023902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles

Description

本発明は、乳化装置に関するものである。   The present invention relates to an emulsifying device.

エマルションには一般的に水と油のように、互いに溶解しない2液に対し剪断力を加えることによって、例えば水(連続相ともいう)中に油(分散相ともいう)が分散するO/W型や、油(連続相ともいう)中に水(分散相ともいう)が分散するW/O型となって形成されるものである。   In general, in an emulsion, an oil (also referred to as a dispersed phase) is dispersed in water (also referred to as a continuous phase) by applying a shearing force to two liquids that do not dissolve each other, such as water and oil. It is formed into a mold or W / O type in which water (also referred to as a dispersed phase) is dispersed in oil (also referred to as a continuous phase).

従来のエマルション形成法としては、分散法を用いたバッチ式の方法が知られている。これは大型の容器に水と油を投入し、回転攪拌装置で一度に大量のエマルションを得るものである。しかしこの方法では剪断力が液体に対し均一に加わらないことから、作成されるエマルションの粒子径が不均一であることと、作成に時間を要するといった問題がある。   As a conventional emulsion forming method, a batch method using a dispersion method is known. In this method, water and oil are put into a large container, and a large amount of emulsion is obtained at once with a rotary stirring device. However, in this method, since the shearing force is not uniformly applied to the liquid, there are problems that the particle diameter of the emulsion to be produced is non-uniform and that the production takes time.

これに対し上記の課題を解決する方法として、近年マイクロ液体チップを用いたエマルション作成が提唱されている。
例えば特許文献1では油と水を多数の流れに分割し、それらを交互に配することで液体間の接触面積を高め、流路を段階的に絞り込むことで流路壁面との間に生じる液体剪断速度を利用する方法がある。
On the other hand, as a method for solving the above-described problem, recently, an emulsion preparation using a micro liquid chip has been proposed.
For example, in Patent Document 1, oil and water are divided into a number of flows, and these are alternately arranged to increase the contact area between the liquids, and the liquid generated between the channel walls by narrowing the channels in stages. There is a method using a shear rate.

また特許文献2では乳化させる2液を予め混合し、混合液を装置に流入させて装置内で分岐・流路壁面への衝突の繰り返し及び圧力降下によるキャビテーション降下作用によってエマルションを得る方法がある。   Further, in Patent Document 2, there is a method in which two liquids to be emulsified are mixed in advance, the mixed liquid is introduced into the apparatus, and an emulsion is obtained by cavitation lowering action due to repeated branching and collision with the flow path wall surface and pressure drop.

一方、非特許文献1では分散相を内側に、連続相を外側にしたシースフローを形成し、そこからシースフローの内側を流れる分散相が分断されることでエマルションを得る方法がある。   On the other hand, in Non-Patent Document 1, there is a method of obtaining an emulsion by forming a sheath flow with the dispersed phase on the inside and the continuous phase on the outside, and then dividing the dispersed phase flowing inside the sheath flow.

特開2004−81924号公報JP 2004-81924 A 特開1999−42431号公報JP 1999-42431 A J. Micromech. Microeng. 16 (2006) 23362344J. Micromech. Microeng. 16 (2006) 23362344

特許文献1及び2に記載された乳化方法については、エマルションの粒子径分布についてはバッチ式よりは改善するものの、ある程度の広がりが出る。また比較的粒子径の大きいエマルションを作成しにくいといった課題が残る。また特許文献2に記載の方法では、エマルション化させたい2液を予め装置に混合させておくための機構が別途必要となる。   Regarding the emulsification methods described in Patent Documents 1 and 2, although the particle size distribution of the emulsion is improved as compared with the batch method, a certain degree of spread appears. Moreover, the subject that it is difficult to produce an emulsion with a comparatively large particle diameter remains. Further, in the method described in Patent Document 2, a mechanism for previously mixing two liquids to be emulsified in an apparatus is necessary.

一方、非特許文献1に記載の装置では、粒子径を均一に揃えることが可能であり、また比較的粒子径の大きなエマルション粒子を得ることも可能であるが、この方法では液体の処理量が毎分1mL程度と少なく、処理量を増大させるためには流路の並列化が必須となる。   On the other hand, in the apparatus described in Non-Patent Document 1, it is possible to make the particle diameters uniform, and it is possible to obtain emulsion particles having a relatively large particle diameter. In order to increase the throughput by as little as about 1 mL per minute, parallel flow paths are essential.

ところで、非特許文献1に記載の装置では、2種類の液体の導入流路及び合流流路,シースフローを形成する流路及びシースフローが分断され粒子が形成される流路すべてを積層させた部材の積層平面上に形成させる構造となっている。このため積層させる板材の枚数を変えずに流路の並列化を行える方向は1方向に限られるため、処理量を効率的に増大させることができない。   By the way, in the apparatus described in Non-Patent Document 1, two kinds of liquid introduction flow paths and a merge flow path, a flow path forming a sheath flow, and a flow path where the sheath flow is divided and all the flow paths where particles are formed are stacked. The structure is formed on the lamination plane of the members. For this reason, since the direction in which the flow paths can be paralleled without changing the number of stacked plate members is limited to one direction, the processing amount cannot be increased efficiently.

また2方向に流路を並列化したい場合には1方向に並列化した構成を更に積み上げることになるため、並列化する流路数を増大させるに伴い積層化枚数が増大することになる。このことから加工に要する工程が増大し、かつ微細構造を有する装置のため位置決め精度の問題が生じ加工が困難となることも課題となる。   Further, when it is desired to parallelize the flow paths in two directions, a configuration in which the flow paths are paralleled in one direction is further stacked, so that the number of stacked layers increases as the number of flow paths to be parallelized is increased. For this reason, the number of steps required for processing increases, and it becomes a problem that processing becomes difficult due to a problem of positioning accuracy due to a device having a fine structure.

また非特許文献1に記載の装置における上記流路はフォトリソグラフィーにより溝を形成した上で積層して形成されているため、流路形成そのものについても加工は複雑なプロセスが必要である。   In addition, since the flow path in the apparatus described in Non-Patent Document 1 is formed by stacking grooves formed by photolithography, the processing of the flow path formation itself requires a complicated process.

さらに、非特許文献1に記載するようなシースフローを形成させて粒子を得る方法では、粒子径を制御する方法として流速の変更あるいは分散相/連続相の流量比変更及びシースフロー流路の流路幅変更があり、この中で粒子径を大幅に変更する場合にはシースフロー流路の流路幅を変更するのが望ましい。   Further, in the method for obtaining particles by forming a sheath flow as described in Non-Patent Document 1, as a method for controlling the particle diameter, the flow velocity is changed or the dispersed phase / continuous phase flow ratio is changed and the flow of the sheath flow channel is changed. When there is a change in the channel width, and the particle diameter is to be significantly changed, it is desirable to change the channel width of the sheath flow channel.

しかしながら非特許文献1に記載の構成では前述の通りシースフローを形成する流路とその他の流路が同一部材上に存在する構造となっているため、シースフロー流路の流路幅を変更し粒子径を調整するためには流路全体を作り変える必要が生じる。   However, in the configuration described in Non-Patent Document 1, since the flow path forming the sheath flow and the other flow path exist on the same member as described above, the flow width of the sheath flow flow path is changed. In order to adjust the particle diameter, it is necessary to recreate the entire flow path.

本発明の目的は、均一な粒子径のエマルション作成のための処理量を増大させることが可能な乳化装置を提供することにある。   An object of the present invention is to provide an emulsifying apparatus capable of increasing the throughput for preparing an emulsion having a uniform particle size.

上記目的は、導入部材と、該導入部材と連結する第1部材と、該第1部材と連結する第2部材と、該第2部材と連結する第3部材と、該第部材と連結する導出部材と、を積層するように備えた乳化装置であって、前記導入部材と前記第1部材を積層方向に貫通し、第1の液体が通流する分散相流入流路と、前記第1部材と前記第2部材の間に設けられ、第2の液体が通流する連続相流入流路と、前記第2部材を積層方向に貫通し、前記前記分散相流入流路から流入する第1の液体を内側に、前記連続相流入流路から流入し、前記第1の液体と溶解することのない第2の液体を外側とする混合液が流れるシースフローを形成する混合流路と、前記第部材と前記導出部材を積層方向に貫通し、前記混合流路よりも流路幅の広い拡大混合流路と、の各流路のうち、前記分散相流入流路、前記混合流路、前記拡大混合流路が同軸上になるように設けられ、前記混合流路と前記拡大混合流路は、それぞれ別部材上に形成されており、前記混合液に含まれる前記第1の液体が、前記混合流路および前記拡大混合流路を流れる中で分断され、エマルション粒子となることにより乳化が行われることにより達成される。
The above object is connected to the introducing member, a first member coupling with said introducing member, a second member connected to the first member, a third member connected to the second member, a third member An emulsifying device provided to stack the lead-out member, the dispersed phase inflow channel passing through the introduction member and the first member in the stacking direction and allowing the first liquid to flow therethrough, and the first A continuous-phase inflow passage provided between the member and the second member, through which the second liquid flows, and a first through the second member in the stacking direction and inflow from the dispersed-phase inflow passage. A mixing flow path that forms a sheath flow in which the liquid mixture flows inward from the continuous phase inflow flow path, and the second liquid that does not dissolve with the first liquid flows outside, said lead-out member and the third member penetrating in the stacking direction, and a wide enlarged mixing flow path of the flow path width than the mixing channel Are provided so that the dispersed-phase inflow channel, the mixing channel, and the expansion mixing channel are coaxial, and the mixing channel and the expansion mixing channel are respectively provided on different members. The first liquid contained in the mixed liquid is divided while flowing through the mixing flow path and the enlarged mixing flow path, and is emulsified by becoming emulsion particles. The

また上記目的は、前記連続相流入流路は少なくとも2つ以上形成され、前記分散相流入流路と前記混合流路の軸に対し軸対称となるよう配置されることにより達成される。   The above-mentioned object is achieved by forming at least two continuous phase inflow channels and being symmetrical about the axes of the dispersed phase inflow channel and the mixing channel.

また上記目的は、前記混合流路と前記拡大混合流路は別部材上に形成されていることにより達成される。   Moreover, the said objective is achieved by the said mixing flow path and the said expansion mixing flow path being formed on another member.

また上記目的は、前記連続相流入流路を有する平面上に、連続相流入流路を結ぶ連続相分岐流路が形成されていることにより達成される。

The above object, on the plane with the continuous phase inlet flow channel, a continuous phase dividing flow channel connecting the continuous phase inlet flow channel is achieved by being formed.

また上記目的は、前記分散相流入流路と前記連続相流入流路と前記混合流路及び前記拡大混合流路は、それらを形成する積層部材内に複数個配置されることにより達成される。   The above object is achieved by arranging a plurality of the dispersed phase inflow channel, the continuous phase inflow channel, the mixing channel, and the enlarged mixing channel in a laminated member forming them.

また上記目的は、前記分散相流入流路を形成する部材あるいは前記部材と隣接し積層された別部材の少なくともどちらか一方の積層平面上に、複数の前記分散相流入流路に分散相を分配する分散相分岐流路と前記混合流路を形成する部材あるいは前記拡大混合流路を形成する部材あるいは前記いずれかの部材と隣接し積層された別部材の少なくともどちらか一方の積層平面上に、複数の前記混合流路あるいは前記拡大混合流路を流れる液体を合流させる混合液合流流路を形成することにより達成される。   Further, the object is to distribute the dispersed phases to the plurality of dispersed phase inflow channels on at least one of the lamination planes of the member forming the dispersed phase inflow channel or another member laminated adjacent to the member. On the laminating plane of at least one of the dispersed phase branching channel and the member forming the mixing channel or the member forming the expanded mixing channel or another member stacked adjacent to any of the members, This is achieved by forming a mixed liquid merging flow path for merging liquids flowing through the plurality of mixed flow paths or the enlarged mixed flow paths.

本発明によれば、エマルジョンの作成時間を短縮させた乳化装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the emulsification apparatus which shortened the preparation time of the emulsion can be provided.

以下、本発明の一実施例を図に沿って説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施例を備えた乳化装置を含むシステムの構成図である。
なお本実施例においては連続相として界面活性剤を含有した水、分散相として油を用いO/Wエマルションを作成する事例で説明を行う。
FIG. 1 is a configuration diagram of a system including an emulsification apparatus including an embodiment of the present invention.
In this embodiment, an example in which an O / W emulsion is prepared using water containing a surfactant as a continuous phase and oil as a dispersed phase will be described.

図1において、原料タンク101A及び101Bにはそれぞれ水,油が貯留されている。この原料タンク101A及び101Bよりポンプ102A及び102Bを用いて液体の送液を行う。このポンプ102A及び102Bは目的に応じシリンジポンプあるいはギアポンプなど使い分けることが好ましい。ポンプ102A及び102Bによって送液された各液体は導入チューブ103A及び103Bを通じて乳化装置104へと流入し、この乳化装置104においてエマルションが作成される。作成されたエマルションは導出チューブ105を通じてエマルションタンク106に貯留される。なお、エマルション作成にあたり温度調節が必要な場合には、例えば恒温槽107内に乳化装置104を設置して恒温槽107内部を熱媒で満たし温度調整を行うといった方法を取ることが可能である。あるいは乳化装置104の外側にペルチェ素子等を設置してもよい。   In FIG. 1, water and oil are stored in the raw material tanks 101A and 101B, respectively. Liquid is fed from the raw material tanks 101A and 101B using the pumps 102A and 102B. These pumps 102A and 102B are preferably used properly, such as a syringe pump or a gear pump, depending on the purpose. The liquids sent by the pumps 102A and 102B flow into the emulsifying device 104 through the introduction tubes 103A and 103B, and an emulsion is created in the emulsifying device 104. The created emulsion is stored in the emulsion tank 106 through the outlet tube 105. In addition, when temperature adjustment is needed for emulsion preparation, it is possible to take the method of installing the emulsification apparatus 104 in the thermostat 107, for example, filling the thermostat 107 inside with a heat medium, and adjusting temperature. Alternatively, a Peltier element or the like may be installed outside the emulsifying device 104.

次に図2から図6を用いて乳化装置104の構成及び乳化装置104内での液体の流れについて説明する。   Next, the configuration of the emulsifying device 104 and the flow of the liquid in the emulsifying device 104 will be described with reference to FIGS.

図2は乳化装置104の分解構造を連続相及び分散相の導入部側から示した斜視図である。
図3はエマルション導出部側から示した斜視図である。
図4は図2,図3に示す合流流路部202をエマルション導出部側から示した斜視図である。
FIG. 2 is a perspective view showing the decomposition structure of the emulsifying device 104 from the introduction side of the continuous phase and the dispersed phase.
FIG. 3 is a perspective view shown from the emulsion outlet side.
FIG. 4 is a perspective view showing the merging channel portion 202 shown in FIGS. 2 and 3 from the emulsion outlet portion side.

図5は図2,図3に示す乳化装置104の各部材を合体させ図2に示すA−A切断線に沿った断面図である。   FIG. 5 is a cross-sectional view taken along the line AA shown in FIG. 2 by combining the members of the emulsifying device 104 shown in FIGS.

図6は図5中のBで示す丸印内の拡大図である。   FIG. 6 is an enlarged view in a circle indicated by B in FIG.

図1に示した乳化装置104は図2,図3,図5で示すように液体導入部201,合流流路部202,シース流路部203,拡大流路部204,液体導出部205で構成され、これらはねじ穴206を貫通するねじ(図示せず)を用いて締結される。締結される各部材にはシール用溝207が形成され、このシール用溝207でシール部材(図示せず)を挟み込むことによって液体の漏れを防止している。または必要に応じて各部材間を接着あるいは接合させて使用しても良い。また乳化装置104を構成する各部材の材質については、送液する液体の種類に応じ金属あるいは樹脂,ガラス等が用いられる。また各部材の材質はすべて同一である必要はなく、加工の特性,熱伝達性などに応じて部材ごとに材質を変えることも可能である。   The emulsifying device 104 shown in FIG. 1 includes a liquid introducing portion 201, a merging passage portion 202, a sheath passage portion 203, an enlarged passage portion 204, and a liquid outlet portion 205 as shown in FIGS. These are fastened using screws (not shown) that penetrate the screw holes 206. Each member to be fastened is provided with a sealing groove 207, and a sealing member (not shown) is sandwiched between the sealing grooves 207 to prevent liquid leakage. Alternatively, the members may be bonded or bonded as necessary. Moreover, about the material of each member which comprises the emulsification apparatus 104, a metal, resin, glass, etc. are used according to the kind of liquid to send. Further, the material of each member does not have to be the same, and the material can be changed for each member in accordance with processing characteristics, heat transfer properties, and the like.

連続相となる水及び分散相となる油はそれぞれ連続相導入口208及び分散相導入口209より液体導入部201へと導入される。連続相導入口208及び分散相導入口209には継手(図示せず)を用いて図1に示す導入チューブ103A,103Bを接続し、ポンプ102A及び102Bによって各液体を乳化装置104内に送液する。   Water serving as a continuous phase and oil serving as a dispersed phase are introduced into the liquid introduction unit 201 from a continuous phase introduction port 208 and a dispersed phase introduction port 209, respectively. Inlet tubes 103A and 103B shown in FIG. 1 are connected to continuous phase inlet 208 and dispersed phase inlet 209 using a joint (not shown), and each liquid is fed into emulsifier 104 by pumps 102A and 102B. To do.

乳化装置104内に導入された水は連続相導入流路210を経由して合流流路部202の積層平面上に形成された連続相分岐流路301(図3,図4,図5に示す)にて分配される。ここで分配された水は連続相分岐流路301と同一平面上かつ分散相流入流路211の軸に対し軸対称に形成された連続相流入流路302(図3,図4に示す)へと外側から導入される。一方、分散相導入口209(図5に示す)より導入された油は分散相導入流路303(図3,図5に示す)を経由し、更に合流流路部202内に部材の積層平面に対し垂直方向となるよう形成された分散相流入流路211(図4に示す)を経て連続相流入流路302の合流地点へと流れ込み、ここで2液は合流する。   The water introduced into the emulsifying device 104 passes through the continuous phase introduction flow path 210, and the continuous phase branch flow path 301 (shown in FIGS. 3, 4 and 5) formed on the lamination plane of the merge flow path section 202. ). The water distributed here is to a continuous phase inflow channel 302 (shown in FIGS. 3 and 4) formed on the same plane as the continuous phase branch channel 301 and symmetrical about the axis of the dispersed phase inflow channel 211. And introduced from the outside. On the other hand, the oil introduced from the dispersed phase introduction port 209 (shown in FIG. 5) passes through the dispersed phase introduction flow path 303 (shown in FIGS. 3 and 5), and is further laminated in the joining flow path section 202. Flows into the joining point of the continuous-phase inflow channel 302 through the dispersed-phase inflow channel 211 (shown in FIG. 4) formed so as to be in the vertical direction, where the two liquids merge.

換言すると、液体導入部201,合流流路部202,シース流路部203,拡大流路部204,液体導出部205が積層される方向に延びた分散相導入流路303から分散相(油)が合流流路部202に設けられた分散相流入流路211へと流れる。合流流路部202には分散相流入流路211と交差し、連続相(水)が流れる連続相流入流路302が設けられている。この交差する部分で油と水が合流する。   In other words, the dispersed phase (oil) from the dispersed phase introducing channel 303 extending in the direction in which the liquid introducing unit 201, the joining channel unit 202, the sheath channel unit 203, the enlarged channel unit 204, and the liquid outlet unit 205 are laminated. Flows into the dispersed phase inflow channel 211 provided in the merge channel unit 202. The confluence channel section 202 is provided with a continuous phase inflow channel 302 that intersects with the dispersed phase inflow channel 211 and through which a continuous phase (water) flows. Oil and water merge at this intersection.

連続相流入流路302で合流した水と油は、シース流路部203内に分散相流入流路211と同軸上かつ部材の積層平面に対し垂直方向となるよう形成されたシース流路212に流れ込み、ここで分散相である油を内側、連続相である水を外側としたシースフローを形成する。更にこのシースフローはシース流路部203の下流に位置する拡大流路部204内にシース流路212と同軸上かつ部材の積層平面に対し垂直方向となるよう形成された拡大流路213へと流れ込み、ここでO/Wのエマルションが形成される。形成されたO/Wエマルションはそこからエマルション導出流路214を経由してエマルション導出口304から取り出される。   The water and oil merged in the continuous phase inflow channel 302 enter the sheath channel 212 formed in the sheath channel 203 so as to be coaxial with the disperse phase inflow channel 211 and perpendicular to the plane of lamination of the members. In this case, a sheath flow is formed with the oil as the dispersed phase inside and the water as the continuous phase outside. Further, this sheath flow is transferred to an enlarged flow channel 213 formed in the enlarged flow channel portion 204 located downstream of the sheath flow channel portion 203 so as to be coaxial with the sheath flow channel 212 and to be perpendicular to the plane of lamination of the members. Flow, where an O / W emulsion is formed. The formed O / W emulsion is taken out from the emulsion outlet 304 through the emulsion outlet passage 214.

拡大流路213において、流速の変化を利用し効率的にエマルションを得るにはシース流路212の流路幅を最も微細とし、その他の流路幅はシース流路212の流路幅よりも広く取ることが望ましい。また連続相流入流路302へと水を分配する連続相分岐流路301については、複数個の連続相流入流路302に均等に水を分配するために連続相分岐流路301の流路幅を連続相流入流路302の流路幅に対し十分に広く取ることで、連続相流入流路302で発生する圧力損失が支配的になるように設計することが望ましい。   In the enlarged flow channel 213, in order to obtain an emulsion efficiently by using a change in flow velocity, the flow channel width of the sheath flow channel 212 is made the smallest, and the other flow channel widths are wider than the flow channel width of the sheath flow channel 212. It is desirable to take. In addition, for the continuous phase branch flow path 301 that distributes water to the continuous phase inflow flow path 302, the flow width of the continuous phase branch flow path 301 in order to distribute water evenly to the plurality of continuous phase inflow flow paths 302. It is desirable to design so that the pressure loss generated in the continuous phase inflow channel 302 becomes dominant by taking a sufficient width with respect to the channel width of the continuous phase inflow channel 302.

また各流路の断面形状については、本実施例に示す形状に限るものではなく、例えば連続相導入流路210,シース流路212,拡大流路213の断面形状は矩形でも構わない。ただし安定したシースフローを形成し、均一なエマルション粒子を得るためにはシース流路212,拡大流路213の断面形状は流路の軸に対し軸対称となることが望ましい。   Further, the cross-sectional shape of each flow path is not limited to the shape shown in the present embodiment. For example, the cross-sectional shapes of the continuous phase introduction flow path 210, the sheath flow path 212, and the expansion flow path 213 may be rectangular. However, in order to form a stable sheath flow and obtain uniform emulsion particles, it is desirable that the cross-sectional shapes of the sheath channel 212 and the enlarged channel 213 are axisymmetric with respect to the axis of the channel.

また図3及び図4では、合流流路部202内に形成される分散相流入流路211に対し2つの連続相流入流路302を分散相流入流路211の軸に対し軸対称となるよう配した図を示しているが、この連続相流入流路302については分散相流入流路211の軸に対し軸対称となる配置を満たしていれば配置個数及び詳細形状は図3及び図4に示すとおりである必要はない。   3 and 4, the two continuous phase inflow channels 302 are symmetrical with respect to the axis of the disperse phase inflow channel 211 with respect to the disperse phase inflow channel 211 formed in the merging channel unit 202. As shown in FIG. 3 and FIG. 4, the arrangement number and the detailed shape of the continuous phase inflow channel 302 are shown in FIGS. 3 and 4 as long as the arrangement is symmetrical with respect to the axis of the dispersed phase inflow channel 211. It does not have to be as shown.

次に、図7で連続相流入流路302の配置本数ないし形状を変更した場合の例を説明する。
図7(a)(b)は形状が異なる連続相流入流路の斜視図である。
図7(a)では連続相流入流路302を分散相流入流路211に対し4つ配置し連続相が4方向から流入する形状となっている。図7(b)では連続相流入流路302が8つ構成され、かつ8つの流路が途中で一体となっている。よって連続相が中心の分散相流入流路211に向けて平面状の全方向から合流する形状となる。いずれの形状においても連続相流入流路302の配置は分散相流入流路211の軸に対し軸対称となり、同一平面上に形成された連続相分岐流路301によって連続相が分配されるように構成されている。
Next, an example in which the arrangement number or shape of the continuous phase inflow channel 302 is changed in FIG. 7 will be described.
FIGS. 7A and 7B are perspective views of continuous-phase inflow channels having different shapes.
In FIG. 7A, four continuous phase inflow channels 302 are arranged with respect to the dispersed phase inflow channel 211, and the continuous phase flows from four directions. In FIG. 7B, eight continuous phase inflow channels 302 are configured, and the eight channels are integrated in the middle. Thus, the continuous phase is joined from all directions in a planar direction toward the dispersed phase inflow channel 211 having the center. In any shape, the arrangement of the continuous phase inflow channel 302 is axially symmetric with respect to the axis of the dispersed phase inflow channel 211 so that the continuous phase is distributed by the continuous phase branch channel 301 formed on the same plane. It is configured.

次に図8でシース流路212の流路内における液体の状態を説明する。
図8はシース流路の拡大模式断面図である。
図8において、分散相流入流路211から吐出された油は連続相流入流路302内を外側より流れてくる水と合流し、油を内側としたシースフロー801を形成する。この油を内側としたシースフロー801はシース流路212及びその下流の拡大流路213を流れる中で分断され、エマルション粒子802が形成される。
Next, the state of the liquid in the flow path of the sheath flow path 212 will be described with reference to FIG.
FIG. 8 is an enlarged schematic cross-sectional view of the sheath channel.
In FIG. 8, the oil discharged from the dispersed phase inflow channel 211 merges with water flowing from the outside in the continuous phase inflow channel 302 to form a sheath flow 801 with the oil inside. The oil-inward sheath flow 801 is divided while flowing through the sheath flow channel 212 and the enlarged flow channel 213 downstream thereof, so that emulsion particles 802 are formed.

このエマルション粒子802の粒子径を制御する方法について図8,図5,図6を用いて説明する。
図において、エマルション粒子802は、油を内側としたシースフロー801の油の流路内に占める幅の増大に伴い粒子径が大きくなる。よってエマルション粒子802の粒子径を制御する方法としては、それぞれ連続相導入口208及び分散相導入口209より導入される水と油の流量比を変更するか或いはシース流路212の流路幅を変更して、シースフロー801内の油が流路内に占める幅の増大或いは短縮させることが考えられる。
A method for controlling the particle diameter of the emulsion particles 802 will be described with reference to FIGS.
In the figure, the particle diameter of emulsion particles 802 increases as the width of the sheath flow 801 occupying the oil in the oil flow path increases. Therefore, as a method for controlling the particle diameter of the emulsion particles 802, the flow rate ratio of water and oil introduced from the continuous phase introduction port 208 and the dispersed phase introduction port 209 is changed, or the flow channel width of the sheath flow channel 212 is increased. It can be considered that the width of the oil in the sheath flow 801 occupied in the flow path is increased or shortened.

ここで本発明においては、シース流路212を備えるシース流路部203は他の部材と独立した部材で構成されているため、エマルション粒子802の粒子径を変更したい場合には、このシース流路212の内径が異なる数種類のシース流路部203を作成しておき、希望の粒子径に応じてこのシース流路部203を交換するだけで対応可能となる。   Here, in the present invention, since the sheath channel portion 203 including the sheath channel 212 is configured by a member independent of other members, this sheath channel is used when it is desired to change the particle diameter of the emulsion particles 802. Several types of sheath channel portions 203 with different inner diameters 212 are prepared, and this sheath channel portion 203 can be handled only by exchanging them according to the desired particle diameter.

次に、乳化装置104内にてシースフローを形成しエマルションを得る流路を複数並列化した場合の装置構成及び詳細形状及び乳化装置104内での液体の流れを図9〜図12を用いて説明する。
図9は他の実施例を備えた乳化装置の分解斜視図である。
図10は図9の乳化装置をエマルション導出部側から見た斜視図である。
図11は合流流路部をエマルション導出部側から見た斜視図である。
図12は図11の破線で示したC部分の拡大斜視図である。
図において、乳化装置104は図9,図10に示すように液体導入部201,合流流路部202,シース流路部203,拡大流路部204,液体導出部205で構成され、これらをねじ穴206を貫通するねじ(図示せず)を用いて締結される。各部材にはシール用溝207が形成され、シール部材(図示せず)を挟み込むことによって液体の漏れを防止している。または必要に応じて各部材間を接着あるいは接合させて使用しても良い。また乳化装置104を構成する各部材の材質については、送液する液体の種類に応じ金属あるいは樹脂,ガラス等が用いられる。また各部材の材質はすべて同一である必要はなく、加工の特性,熱伝達性などに応じて部材ごとに材質を変えることも可能である。
Next, with reference to FIGS. 9 to 12, the apparatus configuration, detailed shape, and flow of liquid in the emulsifying device 104 when a plurality of flow paths for forming a sheath flow in the emulsifying device 104 are obtained in parallel are used. explain.
FIG. 9 is an exploded perspective view of an emulsification apparatus provided with another embodiment.
FIG. 10 is a perspective view of the emulsifying device of FIG. 9 as viewed from the emulsion outlet portion side.
FIG. 11 is a perspective view of the merging channel section viewed from the emulsion outlet section side.
FIG. 12 is an enlarged perspective view of a portion C indicated by a broken line in FIG.
As shown in FIGS. 9 and 10, the emulsifying device 104 includes a liquid introduction part 201, a merging channel part 202, a sheath channel part 203, an enlarged channel part 204, and a liquid outlet part 205, which are screwed. Fastened using a screw (not shown) that passes through hole 206. Each member is provided with a seal groove 207 to prevent liquid leakage by sandwiching a seal member (not shown). Alternatively, the members may be bonded or bonded as necessary. Moreover, about the material of each member which comprises the emulsification apparatus 104, a metal, resin, glass, etc. are used according to the kind of liquid to send. Further, the material of each member does not have to be the same, and the material can be changed for each member in accordance with processing characteristics, heat transfer properties, and the like.

連続相となる水及び分散相となる油はそれぞれ連続相導入口208及び分散相導入口209より液体導入部201へと導入される。連続相導入口208及び分散相導入口209には継手(図示せず)を用いて図1に示す導入チューブ103を接続し、ポンプ102によって各液体を乳化装置104内に送液する。   Water serving as a continuous phase and oil serving as a dispersed phase are introduced into the liquid introduction unit 201 from a continuous phase introduction port 208 and a dispersed phase introduction port 209, respectively. The continuous tube inlet 208 and the dispersed phase inlet 209 are connected to the inlet tube 103 shown in FIG. 1 using a joint (not shown), and each liquid is fed into the emulsifier 104 by the pump 102.

導入された水は連続相導入流路210を経由して合流流路部202の積層平面上に形成された連続相分岐流路301(図10に示す)にて分配される。この連続相分岐流路301が形成される平面上には連続相流入流路302が複数個配置されており、ここで連続相である水は分岐されて連続相流入流路302へと流れ込む。   The introduced water is distributed via a continuous phase introduction flow path 210 in a continuous phase branch flow path 301 (shown in FIG. 10) formed on the lamination plane of the merge flow path section 202. A plurality of continuous-phase inflow channels 302 are arranged on the plane where the continuous-phase branch channel 301 is formed. Here, water as a continuous phase is branched and flows into the continuous-phase inflow channel 302.

一方、分散相導入口209より導入された油は分散相導入流路303を経由する。その後液体導入部201の積層平面上に形成された分散相分岐流路1001によって分配され合流流路部202内に積層平面に対し垂直となるよう複数個形成された分散相流入流路211を経由する。その後分散相流入流路211の軸に対し軸対称となるよう配置されている連続相流入流路302の合流部へと流れ込む。   On the other hand, the oil introduced from the dispersed phase introduction port 209 passes through the dispersed phase introduction flow path 303. Thereafter, the liquid is distributed by the dispersed phase branch flow channel 1001 formed on the lamination plane of the liquid introduction unit 201 and passes through the dispersed phase inflow channel 211 formed in the merging channel unit 202 so as to be perpendicular to the lamination plane. To do. After that, it flows into the joining portion of the continuous phase inflow channel 302 arranged so as to be axially symmetric with respect to the axis of the dispersed phase inflow channel 211.

各連続相流入流路302及び分散相流入流路211の合流部で合流した水と油はシース流路部203内に分散相流入流路211と同軸上かつ部材の積層平面に対し垂直方向となるよう複数個形成されたシース流路212に流れ込む。流れ込んだ水と油は油を内側、水を外側としたシースフローが形成される。更にこのシースフローはシース流路部203の下流に位置する拡大流路部204内にシース流路212と同軸上で、部材の積層平面に対し垂直方向となるよう複数個形成された拡大流路213へと流れ込み、O/Wのエマルションが形成される。形成されたO/Wエマルションはその下流に位置する液体導出部205の積層平面上に形成されたエマルション合流流路901によって集約され、エマルション導出流路214を経由してエマルション導出口304から取り出される。   Water and oil merged at the merging portion of each continuous phase inflow channel 302 and dispersed phase inflow channel 211 are coaxial with the disperse phase inflow channel 211 and perpendicular to the plane of lamination of the members in the sheath channel 203. It flows into the sheath flow channel 212 formed in plural. The flowing water and oil form a sheath flow with oil inside and water outside. Further, a plurality of expanded flow paths are formed in the expanded flow path portion 204 positioned downstream of the sheath flow path section 203 so that the sheath flow is coaxial with the sheath flow path 212 and perpendicular to the laminating plane of the members. It flows into 213 and an O / W emulsion is formed. The formed O / W emulsion is aggregated by the emulsion merging channel 901 formed on the laminating plane of the liquid outlet 205 located downstream thereof, and taken out from the emulsion outlet 304 via the emulsion outlet channel 214. .

拡大流路213において、流速の変化を利用し効率的にエマルションを得るには、シース流路212の流路幅を最も微細としその他の流路の幅はシース流路212の流路幅よりも広く取ることが望ましい。また複数個の連続相流入流路302へと水を分配する連続相分岐流路301及び複数個の分散相吐出口へと油を分配する分散相分岐流路1001については、均等に水ないし油を分配する必要がある。そのため、連続相分岐流路301及び分散相分岐流路1001の流路幅を連続相流入流路302及び分散相流入流路211の流路幅に対し十分に広く取ることで連続相流入流路302及び分散相流入流路211で発生する圧力損失が支配的になるように設計することが望ましい。   In the enlarged flow channel 213, in order to obtain an emulsion efficiently by using a change in flow rate, the flow channel width of the sheath flow channel 212 is made the smallest, and the widths of the other flow channels are larger than the flow channel width of the sheath flow channel 212. It is desirable to take it widely. In addition, the continuous phase branch flow path 301 for distributing water to the plurality of continuous phase inflow paths 302 and the dispersed phase branch flow path 1001 for distributing oil to the plurality of dispersed phase discharge ports are equally water or oil. Need to be distributed. Therefore, the continuous-phase inflow channel is formed by making the channel widths of the continuous-phase branch channel 301 and the dispersed-phase branch channel 1001 sufficiently wider than the channel widths of the continuous-phase inflow channel 302 and the dispersed-phase inflow channel 211. It is desirable to design so that the pressure loss generated in 302 and the dispersed phase inflow channel 211 is dominant.

また各流路の断面形状については、本実施例に示す形状に限るものではない。例えば連続相導入流路210,シース流路212,拡大流路213の断面形状は矩形でも構わない。ただし安定したシースフローを形成し、均一なエマルション粒子を得るためにはシース流路212,拡大流路213の断面形状は流路の軸に対し軸対称の形状であることが望ましい。   Further, the cross-sectional shape of each flow path is not limited to the shape shown in the present embodiment. For example, the cross-sectional shapes of the continuous phase introduction channel 210, the sheath channel 212, and the enlarged channel 213 may be rectangular. However, in order to form a stable sheath flow and obtain uniform emulsion particles, the cross-sectional shapes of the sheath channel 212 and the enlarged channel 213 are desirably axisymmetric with respect to the axis of the channel.

また図10,図11及び図12では、合流流路部202内に形成される1つの分散相流入流路211に対し2つの連続相流入流路302を分散相流入流路211の軸に対し軸対称となるよう配した図を示している。しかしこの連続相流入流路302については個々の図に示すとおりの形状である必要はなく、例えば連続相流入流路302を分散相流入流路211の軸に対し軸対称となるよう4本配置した形状でも構わない。いずれの形状としても分散相流入流路211の軸に対し軸対称となる配置を満たすように形成されていれば本特許はその詳細形状に限定されるものではない。   In FIGS. 10, 11, and 12, two continuous-phase inflow channels 302 are connected to the axis of the disperse-phase inflow channel 211 with respect to one disperse-phase inflow channel 211 formed in the merging channel unit 202. The figure arranged so that it may become axially symmetrical is shown. However, the continuous phase inflow channel 302 does not have to have a shape as shown in each figure. For example, four continuous phase inflow channels 302 are arranged so as to be axially symmetric with respect to the axis of the dispersed phase inflow channel 211. It does not matter if the shape is As long as any shape is formed so as to satisfy an axially symmetric arrangement with respect to the axis of the dispersed phase inflow channel 211, the present patent is not limited to the detailed shape.

本発明は換言すると、非特許文献に記載されているような分散相流入流路と連続相流入流路が同一平面上にある場合において、エマルション処理量を増やすために分散相流入流路と連続相流入流路との数を増やすには限度がある。つまり、特に分散相流入流路が紙面方向に延びているため分散相流入流路と連続相流入流路を複数並列に並べると全体的に乳化装置が大型化してしまう。   In other words, in the case where the dispersed phase inflow channel and the continuous phase inflow channel as described in the non-patent document are on the same plane, the present invention is continuous with the dispersed phase inflow channel to increase the amount of emulsion treatment. There is a limit to increasing the number of phase inflow channels. That is, in particular, since the dispersed phase inflow channel extends in the paper surface direction, if a plurality of dispersed phase inflow channels and a plurality of continuous phase inflow channels are arranged in parallel, the emulsifier becomes large overall.

そこで、本発明では分散相流入流路を図12に示すように紙面の奥行き方向に延びる構造としたので分散相流入流路と連続相流入流路を複数並べても分散相流入流路の長さを気にすることなく配置することができるものである。   Therefore, in the present invention, since the dispersed phase inflow channel has a structure extending in the depth direction of the paper surface as shown in FIG. 12, even if a plurality of dispersed phase inflow channels and continuous phase inflow channels are arranged, the length of the dispersed phase inflow channel is long. It can be arranged without worrying about.

従って、本発明では連続相流入流路の数を配慮するだけで分散相流入流路と連続相流入流路を複数配置することができるので、その分エマルションの作成処理量を増やすことができるものである。   Therefore, in the present invention, a plurality of dispersed-phase inflow channels and continuous-phase inflow channels can be arranged only by considering the number of continuous-phase inflow channels, so that the amount of emulsion creation processing can be increased accordingly. It is.

本発明以上のごとく、互いに溶解しない2種類の液体で形成されるシースフローを部材の積層方向に形成することが可能となるので、シースフロー方式による均一な粒子径、かつある程度大きな粒子径を有するエマルションが作成可能となる。   As in the present invention, a sheath flow formed of two kinds of liquids that do not dissolve in each other can be formed in the stacking direction of the members. Therefore, the sheath flow method has a uniform particle size and a somewhat large particle size. An emulsion can be created.

また構成する部材の枚数を変更することなく流路を一度に2方向へと複数配置することが可能になり、よって処理量を増大させる乳化装置を構成することが容易となる。また構成する部材枚数を変更する必要がないため位置決め精度の問題も解消される。   In addition, it is possible to arrange a plurality of flow paths in two directions at a time without changing the number of constituent members, and thus it is easy to configure an emulsification apparatus that increases the throughput. Further, since it is not necessary to change the number of members constituting, the problem of positioning accuracy is solved.

また、概連続相流入流路を有する平面上に概連続相流入流路へ連続相を分配して導入する連続相分岐流路を形成することで、連続相を分岐させた後に各連続相流入流路に連続相を導入するための流路を形成する必要がなくなるため流路加工が容易となり、よって処理量を増大させる乳化装置を構成することがより容易となる。   In addition, by forming a continuous phase branch channel that distributes and introduces the continuous phase to the substantially continuous phase inflow channel on a plane having the almost continuous phase inflow channel, each continuous phase inflow is made after the continuous phase is branched. Since there is no need to form a flow path for introducing a continuous phase into the flow path, flow path processing is facilitated, and thus it is easier to construct an emulsification apparatus that increases the throughput.

またこれらの特徴を有することで、部材毎に必要な加工は穴あけ加工あるいは単純な溝加工のみとなり、機械加工のみの簡易なプロセスで複数のシース流路を形成させることが可能となる。   Further, by having these features, the machining required for each member is only drilling or simple grooving, and a plurality of sheath channels can be formed by a simple process only by machining.

またこれらの特徴を有することで、シースフローを形成する流路とその他の流路は分解することが可能となり、混合流路を有する部材のみを異なった流路幅の混合流路を有する部材に置き換えるだけでシースフロー流路の流路幅を変更しエマルション粒子の粒子径制御を行うことが可能となる。   Further, by having these characteristics, the flow path forming the sheath flow and other flow paths can be disassembled, and only the member having the mixed flow path is changed to the member having the mixed flow path having different flow widths. It is possible to control the particle size of the emulsion particles by changing the channel width of the sheath flow channel simply by replacement.

本発明の一実施例を備えた乳化装置を含むシステムの構成図である。It is a block diagram of the system containing the emulsification apparatus provided with one Example of this invention. 乳化装置の分解構造を連続相及び分散相の導入部側から示した斜視図である。It is the perspective view which showed the decomposition | disassembly structure of the emulsification apparatus from the introduction part side of the continuous phase and the dispersed phase. エマルション導出部側から示した斜視図である。It is the perspective view shown from the emulsion derivation part side. 図2,図3に示す合流流路部202をエマルション導出部側から示した斜視図である。It is the perspective view which showed the confluence | merging flow path part 202 shown in FIG. 2, FIG. 3 from the emulsion derivation | leading-out part side. 図2,図3に示す乳化装置104の各部材を合体させ図2に示すA−A切断線に沿った断面図である。FIG. 4 is a cross-sectional view taken along the line AA shown in FIG. 2 by combining the members of the emulsifying device 104 shown in FIGS. 2 and 3. 図5中のBで示す丸印内の拡大図である。FIG. 6 is an enlarged view inside a circle indicated by B in FIG. 5. (a)(b)は形状が異なる連続相流入流路の斜視図である。(A) (b) is a perspective view of the continuous phase inflow flow path from which a shape differs. シース流路の拡大模式断面図である。It is an expansion schematic cross section of a sheath channel. 他の実施例を備えた乳化装置の分解斜視図である。It is a disassembled perspective view of the emulsification apparatus provided with the other Example. 図9の乳化装置をエマルション導出部側から見た斜視図である。It is the perspective view which looked at the emulsification device of Drawing 9 from the emulsion derivation part side. 合流流路部をエマルション導出部側から見た斜視図である。It is the perspective view which looked at the confluence | merging flow path part from the emulsion derivation | leading-out part side. 図11の破線で示したC部分の拡大斜視図である。It is an expansion perspective view of C section shown with the broken line of FIG.

符号の説明Explanation of symbols

101 原料タンク
102 ポンプ
103 導入チューブ
104 乳化装置
105 導出チューブ
106 エマルションタンク
107 恒温槽
201 液体導入部
202 合流流路部
203 シース流路部
204 拡大流路部
205 液体導出部
206 ねじ穴
207 シール用溝
208 連続相導入口
209 分散相導入口
210 連続相導入流路
211 分散相流入流路
212 シース流路
213 拡大流路
214 エマルション導出流路
301 連続相分岐流路
302 連続相流入流路
303 分散相導入流路
304 エマルション導出口
801 油を内側としたシースフロー
802 エマルション粒子
901 エマルション合流流路
1001 分散相分岐流路
DESCRIPTION OF SYMBOLS 101 Raw material tank 102 Pump 103 Introducing tube 104 Emulsifier 105 Deriving tube 106 Emulsion tank 107 Constant temperature bath 201 Liquid introducing part 202 Confluence channel part 203 Sheath channel part 204 Enlarged channel part 205 Liquid outlet part 206 Screw hole 207 Sealing groove 208 Continuous phase inlet 209 Dispersed phase inlet 210 Continuous phase inlet channel 211 Dispersed phase inlet channel 212 Sheath channel 213 Expansion channel 214 Emulsion outlet channel 301 Continuous phase branch channel 302 Continuous phase inlet channel 303 Dispersed phase Introduction channel 304 Emulsion outlet 801 Sheath flow with oil inside 802 Emulsion particle 901 Emulsion merge channel 1001 Dispersed phase branch channel

Claims (5)

導入部材と、
該導入部材と連結する第1部材と、
該第1部材と連結する第2部材と、
該第2部材と連結する第3部材と、
該第部材と連結する導出部材と、を積層するように備えた乳化装置であって、
前記導入部材と前記第1部材を積層方向に貫通し、第1の液体が通流する分散相流入流路と、
前記第1部材と前記第2部材の間に設けられ、前記第1の液体と溶解することのない第2の液体が通流する連続相流入流路と、
前記第2部材を積層方向に貫通し、前記分散相流入流路から流入する第1の液体を内側に、前記連続相流入流路から流入する第2の液体を外側とする混合液が流れるシースフローを形成する混合流路と、
前記第部材と前記導出部材を積層方向に貫通し、前記混合流路よりも流路幅の広い拡大混合流路と、
の各流路のうち、前記分散相流入流路、前記混合流路、前記拡大混合流路が同軸上になるように設けられ、前記混合流路と前記拡大混合流路は、それぞれ別部材上に形成されており、
前記混合液に含まれる前記第1の液体が、前記混合流路および前記拡大混合流路を流れる中で分断され、エマルション粒子となることにより乳化が行われることを特徴とする乳化装置。
An introduction member;
A first member connected to the introduction member;
A second member coupled to the first member;
A third member coupled to the second member;
An emulsifying device provided to stack the lead member connected to the third member,
A dispersed phase inflow passage that penetrates the introduction member and the first member in the stacking direction, and through which the first liquid flows;
A continuous phase inflow channel that is provided between the first member and the second member and through which the second liquid that does not dissolve with the first liquid flows;
A sheath that flows through the second member in the laminating direction, and in which a mixed liquid flows with the first liquid flowing in from the dispersed-phase inflow channel on the inside and the second liquid flowing in from the continuous-phase inflow channel on the outside A mixing channel forming a flow;
An enlarged mixing channel that penetrates the third member and the outlet member in the stacking direction and has a wider channel width than the mixing channel;
Are provided so that the dispersed-phase inflow channel, the mixing channel, and the expansion mixing channel are coaxial, and the mixing channel and the expansion mixing channel are respectively provided on different members. Is formed,
The emulsification apparatus is characterized in that the first liquid contained in the mixed liquid is divided while flowing through the mixing flow path and the enlarged mixing flow path to become emulsion particles, whereby emulsification is performed.
請求項1に記載の乳化装置において、
前記連続相流入流路は少なくとも2つ以上形成され、前記分散相流入流路と前記混合流路の軸に対し軸対称となるよう配置されることを特徴とする乳化装置。
The emulsifying device according to claim 1,
At least two or more continuous phase inflow channels are formed, and the emulsification apparatus is arranged so as to be axisymmetric with respect to the axes of the dispersed phase inflow channel and the mixing channel.
請求項1または2に記載の乳化装置において、
前記連続相流入流路を有する平面上に、各連続相流入流路を結ぶ連続相分岐流路が形成されていることを特徴とする乳化装置。
The emulsification apparatus according to claim 1 or 2,
An emulsifying apparatus, wherein a continuous phase branching channel connecting the continuous phase inflow channels is formed on a plane having the continuous phase inflow channel.
請求項1乃至3に記載の乳化装置において、
前記分散相流入流路と前記連続相流入流路と前記混合流路及び前記拡大混合流路は、それらを形成する積層部材内に複数個配置されることを特徴とする乳化装置。
In the emulsification device according to claims 1 to 3,
The emulsification apparatus, wherein a plurality of the dispersed phase inflow channel, the continuous phase inflow channel, the mixing channel, and the expansion mixing channel are arranged in a laminated member forming them.
請求項4に記載の乳化装置において、
前記分散相流入流路を形成する部材あるいは前記部材と隣接し積層された別部材の少なくともどちらか一方の積層平面上に、複数の前記分散相流入流路に分散相を分配する分散相分岐流路と前記混合流路を形成する部材あるいは前記拡大混合流路を形成する部材あるいは前記いずれかの部材と隣接し積層された別部材の少なくともどちらか一方の積層平面上に、複数の前記混合流路あるいは前記拡大混合流路を流れる液体を合流させる混合液合流流路を形成することを特徴とする乳化装置。
The emulsification device according to claim 4,
Dispersed phase branch flow for distributing dispersed phases to a plurality of dispersed phase inflow channels on at least one of the members forming the dispersed phase inflow channel or another member laminated adjacent to the members. A plurality of the mixed flows on a laminating plane of at least one of a member forming a channel and the mixing channel, a member forming the expanded mixing channel, or another member stacked adjacent to any one of the members. An emulsification apparatus characterized by forming a mixed liquid merging flow path for merging liquid flowing in a passage or the enlarged mixed flow path.
JP2007230922A 2007-09-06 2007-09-06 Emulsifying device Expired - Fee Related JP5023902B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007230922A JP5023902B2 (en) 2007-09-06 2007-09-06 Emulsifying device
CNA2008102106433A CN101380553A (en) 2007-09-06 2008-08-13 An emulsification apparatus
EP08014632A EP2033706B1 (en) 2007-09-06 2008-08-18 An emulsification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230922A JP5023902B2 (en) 2007-09-06 2007-09-06 Emulsifying device

Publications (2)

Publication Number Publication Date
JP2009061382A JP2009061382A (en) 2009-03-26
JP5023902B2 true JP5023902B2 (en) 2012-09-12

Family

ID=40121803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230922A Expired - Fee Related JP5023902B2 (en) 2007-09-06 2007-09-06 Emulsifying device

Country Status (3)

Country Link
EP (1) EP2033706B1 (en)
JP (1) JP5023902B2 (en)
CN (1) CN101380553A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090160A (en) * 2007-10-03 2009-04-30 Fujifilm Corp Manufacturing method of emulsion or dispersion and foodstuff, external preparation for dermal disease and pharmaceutical containing emulsion or dispersion
JP5081845B2 (en) 2009-02-10 2012-11-28 株式会社日立製作所 Particle production equipment
JP5143082B2 (en) 2009-05-22 2013-02-13 株式会社日立製作所 Liquid-liquid extraction system
KR101043895B1 (en) 2011-02-18 2011-06-22 최인수 The injection module for high pressure homogenizer
KR101990967B1 (en) 2016-09-30 2019-06-20 (주)아모레퍼시픽 Manufacturing Apparatus of Cosmetic Composition Comprising Emulsion Substance made in the Instance Emulsification based on Microchannels
WO2019090062A1 (en) 2017-11-03 2019-05-09 Gray Mark A Quant production and dosing
KR102023745B1 (en) * 2017-12-06 2019-09-20 (주)아모레퍼시픽 Apparatus for manufacturing cosmetic using instantaneous emulsification
KR102016312B1 (en) * 2017-12-06 2019-08-30 (주)아모레퍼시픽 Apparatus for manufacturing thin skin film forming cosmetic

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142428A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Atomization
JPH1142431A (en) 1997-07-25 1999-02-16 Jiinasu:Kk Atomizing method and device therefor
JPH1142429A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Method and device for atomization
IL135151A0 (en) * 1997-09-25 2001-05-20 Ge Bayer Silicones Gmbh & Co Device and method for producing silicone emulsions
JP3860186B2 (en) * 2001-02-23 2006-12-20 独立行政法人科学技術振興機構 Emulsion production equipment
JP2006507921A (en) * 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Method and apparatus for fluid dispersion
JP3794687B2 (en) 2002-08-23 2006-07-05 株式会社山武 Micro emulsifier
EP2266687A3 (en) * 2003-04-10 2011-06-29 The President and Fellows of Harvard College Formation and control of fluidic species
DE10318061A1 (en) * 2003-04-17 2004-10-28 Behr Gmbh & Co. Kg Device, for mixing at least two media, especially educts for subsequent chemical reaction, comprises mixing chamber having wall with tempering channel for introducing and removing energy from chamber
JP4042683B2 (en) * 2003-11-17 2008-02-06 東ソー株式会社 Microchannel structure and microparticle manufacturing method using the same
EP1757357B1 (en) * 2004-03-23 2013-04-24 Japan Science and Technology Agency Method and device for producing micro-droplets
JP4339163B2 (en) * 2004-03-31 2009-10-07 宇部興産株式会社 Microdevice and fluid merging method
JP5148811B2 (en) * 2004-06-29 2013-02-20 新日鉄住金化学株式会社 Method for producing bisphenols
EP1930070A4 (en) * 2005-09-29 2012-11-07 Fujifilm Corp Microdevice and method of making fluid merge

Also Published As

Publication number Publication date
EP2033706A3 (en) 2009-11-11
JP2009061382A (en) 2009-03-26
EP2033706B1 (en) 2012-11-28
EP2033706A2 (en) 2009-03-11
CN101380553A (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP5023902B2 (en) Emulsifying device
JP3794687B2 (en) Micro emulsifier
JP4798174B2 (en) Emulsifying device
JP4339163B2 (en) Microdevice and fluid merging method
US10159979B2 (en) Microfluidic device for high-volume production of monodisperse emulsions
KR100845200B1 (en) Apparatus for mixing and reacting at least two fluids
JP5470642B2 (en) Micro droplet preparation device
Sahin et al. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes
JP2006289250A (en) Micro mixer and fluid mixing method using the same
US20040100861A1 (en) Static mixer and process for mixing at least two fluids
US20090246086A1 (en) Microfluidic network and method
JP4777383B2 (en) Microreactor
Cui et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels
US20090034362A1 (en) Microdevice and method for joining fluids
US11872533B2 (en) Device and method for generating droplets
WO2017179353A1 (en) Microreactor, formed product manufacturing system, and microreactor manufacturing method
JP2006015272A (en) Static plate type mixing apparatus
JP2012170898A (en) Fluid mixing apparatus
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
US20110194995A1 (en) Microfluid device
CN112495269A (en) Generating device
JP4972726B2 (en) Phase inversion temperature emulsification apparatus and emulsification method
CN214076357U (en) Generating device
JP5712610B2 (en) Microreactor and mixed fluid manufacturing method
JP2012120962A (en) Flow channel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees