JP2008168175A - Method and device for manufacturing shelled micro-bubble - Google Patents

Method and device for manufacturing shelled micro-bubble Download PDF

Info

Publication number
JP2008168175A
JP2008168175A JP2007001158A JP2007001158A JP2008168175A JP 2008168175 A JP2008168175 A JP 2008168175A JP 2007001158 A JP2007001158 A JP 2007001158A JP 2007001158 A JP2007001158 A JP 2007001158A JP 2008168175 A JP2008168175 A JP 2008168175A
Authority
JP
Japan
Prior art keywords
phase
flow path
oil
water phase
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007001158A
Other languages
Japanese (ja)
Other versions
JP4803495B2 (en
Inventor
Mitsutoshi Nakajima
光敏 中嶋
Seii Kyo
晴怡 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2007001158A priority Critical patent/JP4803495B2/en
Publication of JP2008168175A publication Critical patent/JP2008168175A/en
Application granted granted Critical
Publication of JP4803495B2 publication Critical patent/JP4803495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for manufacturing shelled micro-bubbles (capsule of micro-bubble) stably for a long period of time. <P>SOLUTION: A gas phase is a dispersion phase and an oil phase is a continuous phase at the jointing point of a gas flow passage 35 and an oil phase flow passage 36, oil shells are formed outside the dispersion phase and become an aspherical particles extending in a string shape because of a high speed, the aspherical particles extending in a string shape are divided into small sizes by receiving shearing force by the flow of a water phase at a jointing point with a water phase flow passage 37 so that G/O/W emulsion is formed in which a gas phase with its outer periphery covered with the oil shells is a dispersion phase, and the water phase is a continuous phase. Then, the aspherical particles flowing through the water phase flow passage 37 reach a pool 38 and since the speed is quickly decreased they become spherical particles so that the shelled micro-bubbles (capsule of micro-bubble) are obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水相中に微細な気相が分散したシェル化したマイクロバブルの製造方法及び装置に関する。   The present invention relates to a method and apparatus for producing shelled microbubbles in which a fine gas phase is dispersed in an aqueous phase.

分散相粒子の粒径が一定となったエマルションを製造する方法(装置)が、非特許文献1及び特許文献1に提案されている。   Non-Patent Document 1 and Patent Document 1 propose a method (apparatus) for producing an emulsion in which the particle size of dispersed phase particles is constant.

非特許文献1にはマイクロチャネルを用いた二色ポリマー微粒子の生成に関する内容が開示されている。この先行技術では、ガラス基板に着色モノマー(分散相)を流す流路と、この流路に両側から合流するポリビニルアルコール水溶液(連続相)を流す流路を形成し、Y字状をなす合流部にて着色モノマーをポリビニルアルコール水溶液の剪断力で微細な液滴にしている。   Non-Patent Document 1 discloses contents relating to generation of two-color polymer fine particles using a microchannel. In this prior art, a flow path for flowing a colored monomer (dispersed phase) to a glass substrate and a flow path for flowing a polyvinyl alcohol aqueous solution (continuous phase) that merges from both sides to the flow path are formed, and a merge portion that forms a Y shape The colored monomer is made into fine droplets by the shearing force of the polyvinyl alcohol aqueous solution.

特許文献1は本発明者らが提案した技術であり、基板の一面側に互いに合流するマイクロチャネルを形成し、一方のマイクロチャネルに連続相を、他方のマイクロチャネルに分散相を流し、前記連続相と分散相とが層流状態で合流した直後に、連続相と分散相の流速を急激に低下せしめることで、連続相中に分散相粒子を顕在化せしめるようにしたものである。   Patent Document 1 is a technique proposed by the present inventors, in which a microchannel that merges with each other is formed on one side of a substrate, a continuous phase is passed through one microchannel, and a dispersed phase is passed through the other microchannel. Immediately after the phase and the dispersed phase join together in a laminar flow state, the flow velocity of the continuous phase and the dispersed phase is sharply reduced to make the dispersed phase particles appear in the continuous phase.

特許第3777427号公報Japanese Patent No. 3777427 Polymer preprints Japan Vol,52,No,5(2003)Polymer preprints Japan Vol, 52, No, 5 (2003)

特許文献1に開示した技術で水相中に微細な気相が分散したマイクロバブルの製造しようとすると、いきなり水相に気相を分散させることになり、短時間のうちに気相同士が結合し、長期間安定したマイクロバブル状態を維持することができない。   When trying to manufacture microbubbles in which a fine gas phase is dispersed in an aqueous phase with the technique disclosed in Patent Document 1, the gas phase is suddenly dispersed in the aqueous phase, and the gas phases are combined in a short time. However, a stable microbubble state cannot be maintained for a long time.

具体的には、造影剤のような場合に、安定かつ単分散マイクロバブルが求められているが、このことを満足できる方法及び装置が非特許文献1を含めて提案されていない。   Specifically, in the case of a contrast agent, stable and monodispersed microbubbles are required, but a method and apparatus that can satisfy this has not been proposed, including Non-Patent Document 1.

上記課題を解決するため本発明に係るシェル化したマイクロバブルの製造方法は、気相が流れるマイクロチャネルに油相が流れるマイクロチャネルを合流させて外側にオイルシェルが形成された非球形マイクロバブルを形成し、この後、前記合流点よりも下流側で前記マイクロチャネルを水相が流れるマイクロチャネルに合流させて、前記オイルシェルが形成された非球形マイクロバブルを水相中に分散させ、この後、水相の流速を急激に低下せしめることで、水相中に外側にオイルシェルが形成された球形マイクロバブル形成するようにした。
前記気相と油相と水相の流量比の好ましい範囲は、1:0.05〜0.5:2〜20である。
In order to solve the above problems, a method for producing a shelled microbubble according to the present invention includes a non-spherical microbubble in which an oil shell is formed outside by joining a microchannel through which an oil phase flows into a microchannel through which a gas phase flows. After that, the microchannel is joined to the microchannel through which the water phase flows downstream from the joining point, and the non-spherical microbubbles in which the oil shell is formed are dispersed in the water phase. Then, the flow rate of the aqueous phase was rapidly decreased to form spherical microbubbles with an oil shell formed outside in the aqueous phase.
A preferable range of the flow ratio of the gas phase, the oil phase, and the water phase is 1: 0.05 to 0.5: 2 to 20.

また、本発明に係るマイクロバブルの製造装置は、基板を備え、この基板には気相供給口、油相供給口、水相供給口および多相マイクロバブルの取出口が形成され、更に基板の一面側には前記気相供給口に一端がつながる気相流路と、前記油相供給口に一端がつながる油相流路と、前記水相供給口に一端がつながる水相流路が形成され、前記気相流路と油相流路とは合流し、この合流点によりも下流側にて前記気相流路と前記水相流路とが合流し、更に前記気相流路と前記水相流路との合流点よりも下流側の水相流路には水相の流速を急激に低下せしめる拡大流路が形成された構成とした。   The microbubble manufacturing apparatus according to the present invention includes a substrate, on which a gas phase supply port, an oil phase supply port, an aqueous phase supply port, and a multiphase microbubble outlet are formed. A gas phase flow path having one end connected to the gas phase supply port, an oil phase flow path having one end connected to the oil phase supply port, and a water phase flow path having one end connected to the water phase supply port are formed on one side. The gas phase flow path and the oil phase flow path are merged, and the gas phase flow path and the water phase flow path are merged on the downstream side of the merging point. In the water phase flow path downstream of the junction with the phase flow path, an enlarged flow path that rapidly reduces the flow velocity of the water phase is formed.

具体的な構成としては、前記気相流路と油相流路との合流流路と水相流路とが直交して合流し、この合流点よりも上流側の気相流路に油相流路が合流する構成が考えられ、夫々の合流点は近接してもよいし、離間してもよい。   As a specific configuration, the merged flow channel and the water phase flow channel of the gas phase flow channel and the oil phase flow channel are orthogonally merged, and the oil phase is added to the gas phase flow channel upstream of the merge point. A configuration in which the flow paths merge is conceivable, and each merge point may be close or separated.

本発明に係るエマルションの作製方法によれば、気相を微細なマイクロバブルとして水相中に長期間安定して維持することができる。したがって、造影剤、機能性成分、薬物、遺伝子の送達システムなどとしての有効利用が考えられる。   According to the method for producing an emulsion according to the present invention, the gas phase can be stably maintained for a long time in the aqueous phase as fine microbubbles. Therefore, it can be effectively used as a contrast agent, a functional component, a drug, a gene delivery system, and the like.

また本発明によれば、各相の供給流量比を変えることにより、精密且つ柔軟なコア・シェルの構造制御、例えばコア(気相)の容積やシェル(油層または高分子膜)の厚みを自由にコントロールすることが可能になり、薬物や遺伝子などの送達システムに極めて有効である。   Further, according to the present invention, precise and flexible structure control of the core and shell, for example, the volume of the core (gas phase) and the thickness of the shell (oil layer or polymer film) can be freely changed by changing the supply flow rate ratio of each phase. Therefore, it is extremely effective for delivery systems such as drugs and genes.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係るシェル化したマイクロバブルの作製に用いる装置の断面図、図2は同装置に組み込まれた基板の表面を示す図、図3は気相からシェル化したマイクロバブルに至る過程を説明した図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of an apparatus used for producing a shelled microbubble according to the present invention, FIG. 2 is a view showing a surface of a substrate incorporated in the apparatus, and FIG. It is a figure explaining the process.

マイクロバブル製造装置はケース1内に下から順に、透明板2、基板3、O−リング4、ジョイントプレート5を重ね、透明板2の下方にはシェル化したマイクロバブルの生成状況を観察するCCDカメラ6を配置している。   The microbubble manufacturing apparatus stacks a transparent plate 2, a substrate 3, an O-ring 4 and a joint plate 5 in order from the bottom in the case 1, and a CCD for observing the generation state of shelled microbubbles below the transparent plate 2. A camera 6 is arranged.

前記ジョイントプレート5には気相供給孔7、油相供給孔8、水相供給孔9、シェル化したマイクロバブル取出孔10が形成され、気相供給孔7には気相供給源11が、油相供給孔8には油相供給源12が、水相供給孔9には水相源13が、シェル化したマイクロバブル取出孔10には回収容器14がそれぞれ接続されている。   The joint plate 5 is formed with a gas phase supply hole 7, an oil phase supply hole 8, a water phase supply hole 9, and a shelled microbubble extraction hole 10. A gas phase supply source 11 is formed in the gas phase supply hole 7, An oil phase supply source 12 is connected to the oil phase supply hole 8, a water phase source 13 is connected to the water phase supply hole 9, and a recovery container 14 is connected to the microbubble extraction hole 10 formed into a shell.

前記基板3は例えばシリコン基板からなり、このシリコン基板を集積回路形成技術(エッチングなど)を応用して流路を形成している。具体的には、前記気相供給孔7と重なる位置に形成される気相供給口31、前記油相供給孔8と重なる位置に形成される油相供給口32、前記水相供給孔9と重なる位置に形成される水相供給口33、前記シェル化したマイクロバブル取出孔10と重なる位置に形成されるシェル化したマイクロバブル取出口34を備え、前記気相供給口31からは幅が約100μm、深さが約5μmの気相流路35が下流側に向って形成され、また前記油相供給口32からは同じく幅が約100μm、深さが約5μmの油相流路36が下流側に向って形成されている。 The substrate 3 is made of, for example, a silicon substrate, and a flow path is formed on the silicon substrate by applying an integrated circuit forming technique (such as etching). Specifically, a gas phase supply port 31 formed at a position overlapping with the gas phase supply hole 7, an oil phase supply port 32 formed at a position overlapping with the oil phase supply hole 8, and the water phase supply hole 9 A water phase supply port 33 formed at an overlapping position and a shelled microbubble extraction port 34 formed at a position overlapping with the shelled microbubble extraction hole 10 are provided. A gas phase channel 35 having a thickness of about 100 μm and a depth of about 5 μm is formed toward the downstream side, and an oil phase channel 36 having a width of about 100 μm and a depth of about 5 μm is also downstream from the oil phase supply port 32. It is formed toward the side.

油相流路36は気相流路35の両側に設けられ、気相流路35に対して90°以下の角度で斜めに合流している。油相が合流した気相流路は更に延びて水相流路37に合流している。この水相流路37の一端は水相供給口33につながり、他端はシェル化したマイクロバブル取出口34につながっている。この水相流路37も前記同様幅は約100μm、深さは約5μmとしている。       The oil phase flow path 36 is provided on both sides of the gas phase flow path 35, and obliquely merges with the gas phase flow path 35 at an angle of 90 ° or less. The gas phase flow path where the oil phase merges further extends and merges with the water phase flow path 37. One end of the water phase flow path 37 is connected to the water phase supply port 33, and the other end is connected to the shelled microbubble outlet 34. The water phase channel 37 has a width of about 100 μm and a depth of about 5 μm, as described above.

前記気相流路35及び油相流路36の合流点よりも上流側部分35a、36aについては流路幅を約50μmに絞って流速を上げ、水相流路37の合流点よりも上流側部分37aについても流路幅を約50μmに絞って流速を上げている。       The upstream portions 35a and 36a from the confluence of the gas phase flow path 35 and the oil phase flow path 36 are increased in flow rate by narrowing the flow path width to about 50 μm and upstream of the confluence of the water phase flow path 37. The flow rate of the portion 37a is also increased by narrowing the channel width to about 50 μm.

また、水相流路37の下流側部分には流速を低下せしめるプール38が形成されている。図示例ではプール38の幅を水相流路37の上流側部分と同じにしているが、プール38の幅を更に大きくすることで、流速を急激に低下せしめるようにしてもよい。       In addition, a pool 38 that reduces the flow velocity is formed in the downstream portion of the water phase flow path 37. In the illustrated example, the width of the pool 38 is the same as that of the upstream portion of the aqueous phase flow path 37, but the flow velocity may be drastically decreased by further increasing the width of the pool 38.

以上において、気相流路35と油相流路36との合流点において、気相が分散相で油相が連続相となったG/Oエマルションが形成される。分散相は外側にオイルシェルが形成されるが、流速が早いため糸状に延びた非球形粒子となっている。       As described above, the G / O emulsion in which the gas phase is the dispersed phase and the oil phase is the continuous phase is formed at the junction of the gas phase channel 35 and the oil phase channel 36. In the dispersed phase, an oil shell is formed on the outer side, but since the flow rate is high, non-spherical particles extending in a filament shape are formed.

前記糸状に延びた気相は水相流路37との合流点において、水相の流れによる剪断力を受けて小さく分断され、オイルシェルにて外周が被覆された気相が分散相で水相が連続相となったG/O/Wエマルションが形成される。この場合でもオイルシェルにて外周が被覆された気相は水相の流れが早いため非球形粒子となっている。       The gas phase extending in the form of a thread is divided into small portions by a shearing force due to the flow of the water phase at the junction with the water phase flow path 37, and the gas phase whose outer periphery is covered with an oil shell is the dispersed phase and the water phase. A G / O / W emulsion having a continuous phase is formed. Even in this case, the gas phase whose outer periphery is coated with an oil shell is non-spherical particles because the flow of the aqueous phase is fast.

この後、水相流路37を流れる非球形粒子(分散相)はプール38に至り、ここで急速に速度が低下するため、球形粒子となり、目的とするシェル化したマイクロバブルが得られる。       Thereafter, the non-spherical particles (dispersed phase) flowing through the water phase flow path 37 reach the pool 38, where the speed is rapidly reduced, so that the particles become spherical particles, and the desired shelled microbubbles are obtained.

(実施例)
図1乃至図3に示した構成からなるシェル化したマイクロバブル製造装置を用い、気相を空気や窒素ガス、油相を界面活性剤入りの大豆油やテトラデカンなど、水相を異なる濃度のSDS水溶液とし、気相と油相と水相の流量比が、1:0.05〜0.5:2〜20となる条件でマイクロバブルの作製を試みた。
(Example)
Using the shelled microbubble production system with the configuration shown in FIGS. 1 to 3, the water phase is different concentrations of SDS, such as air or nitrogen gas in the gas phase, soybean oil or tetradecane containing the surfactant in the oil phase. Preparation of microbubbles was attempted under the condition that the aqueous solution was used and the flow ratio of the gas phase, the oil phase, and the water phase was 1: 0.05 to 0.5: 2 to 20.

図4は上記実施例においてシェル化したマイクロバブルが作製されている様子を示す写真であり、極めて均一な単分散シェル化したマイクロバブルが得られていることが観察される。       FIG. 4 is a photograph showing how shelled microbubbles are produced in the above example, and it is observed that very uniform monodisperse shelled microbubbles are obtained.

図5は別の例でシェル化したマイクロバブルが作製されている様子を示す写真であり、この実施例では、気相流路35と油相流路36との合流点の直ぐ下流側に水相流路37との合流点を設けている。この別実施例でも極めて均一な単分散シェル化したマイクロバブルが得られていることが観察される。       FIG. 5 is a photograph showing how a microbubble formed into a shell is produced in another example. In this embodiment, water is placed immediately downstream of the confluence of the gas phase channel 35 and the oil phase channel 36. A junction point with the phase flow path 37 is provided. It is observed that even in this other example, microbubbles formed into a very uniform monodisperse shell are obtained.

本発明に係るシェル化したマイクロバブルの製造方法および製造装置は、食品工業、医薬或いは化粧品製造等に利用されるだけでなく、クロマトグラフィー担体、重合トナー、顔料、導電性スペーサー、メタリック塗料、環境浄化用微粒子、難燃剤、触媒、蓄熱剤、抗菌剤、フェロモン、食用油、生理活性物質、酵素、アルミフレーク、マイカ、肥料等を内部に充填した生分解性マイクロカプセル、薬品のカプセル化、電気泳動ディスプレイ等への応用が考えられる。   The method and apparatus for producing shelled microbubbles according to the present invention are not only used in the food industry, medicine or cosmetics production, but also chromatographic carrier, polymerized toner, pigment, conductive spacer, metallic paint, environment Biodegradable microcapsules filled with fine particles for purification, flame retardants, catalysts, heat storage agents, antibacterial agents, pheromones, edible oils, bioactive substances, enzymes, aluminum flakes, mica, fertilizers, etc. Application to electrophoretic displays is conceivable.

本発明に係るマイクロバブルの作製に用いる装置の断面図Sectional view of an apparatus used for producing microbubbles according to the present invention 同装置に組み込まれた基板の表面を示す図The figure which shows the surface of the substrate which is built into the same 気相からシェル化したマイクロバブルに至る過程を説明した図Diagram explaining the process from gas phase to shelled microbubbles 基板の具体例を示す写真Photograph showing specific example of substrate 基板の別実施例を示す写真Photograph showing another example of substrate

符号の説明Explanation of symbols

1…ケース、2…透明板、3…基板、4…O−リング、5…ジョイントプレート、6…CCD、7…気相供給孔、8…油相供給孔、9…水相供給孔、10…多相マイクロバブル取出孔、11…気相供給源、12…油相供給源、13…水相源、14…回収容器、31…気相供給口、32…油相供給口、33…水相供給口、34…マイクロバブル取出口、35…気相流路、36…油相流路、37…水相流路、35a、36a、37a…流路の絞られた部分、38…プール。   DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Transparent board, 3 ... Board | substrate, 4 ... O-ring, 5 ... Joint plate, 6 ... CCD, 7 ... Gas-phase supply hole, 8 ... Oil-phase supply hole, 9 ... Water-phase supply hole, 10 DESCRIPTION OF SYMBOLS ... Multiphase micro bubble extraction hole, 11 ... Gas phase supply source, 12 ... Oil phase supply source, 13 ... Water phase source, 14 ... Recovery container, 31 ... Gas phase supply port, 32 ... Oil phase supply port, 33 ... Water Phase supply port, 34... Micro bubble outlet, 35... Gas phase channel, 36. Oil phase channel, 37. Water phase channel, 35 a, 36 a, 37 a.

Claims (4)

気相が流れるマイクロチャネルに油相が流れるマイクロチャネルを合流させて外側にオイルシェルが形成された非球形マイクロバブルを形成し、この後、前記合流点よりも下流側で前記マイクロチャネルを水相が流れるマイクロチャネルに合流させて、前記オイルシェルが形成された非球形マイクロバブルを水相中に分散させ、この後、拡大流路により水相の流速を急激に低下せしめることで、水相中に外側にオイルシェルが形成された球形マイクロバブル形成することを特徴とするシェル化したマイクロバブルの製造方法。 The microchannel through which the oil phase flows is joined to the microchannel through which the gas phase flows to form a non-spherical microbubble having an oil shell formed on the outside, and then the microchannel is placed in the water phase downstream from the junction. The non-spherical microbubbles in which the oil shell is formed are dispersed in the water phase, and then the flow rate of the water phase is drastically reduced by the enlarged flow path. A method for producing shelled microbubbles, characterized in that spherical microbubbles having an oil shell formed outside are formed. 請求項1に記載のシェル化したマイクロバブルの製造方法において、前記気相と油相と水相の流量比は1:0.05〜0.5:2〜20とすることを特徴とするシェル化したマイクロバブルの製造方法。 2. The shelled microbubble according to claim 1, wherein a flow ratio of the gas phase, the oil phase, and the water phase is 1: 0.05 to 0.5: 2 to 20. Manufacturing method. オイルシェルで被覆された気相が水相中に分散したシェル化したマイクロバブルを製造する装置であって、この製造装置は基板を備え、この基板には気相供給口、油相供給口、水相供給口およびマイクロバブルの取出口が形成され、更に基板の一面側には前記気相供給口に一端がつながる気相流路と、前記油相供給口に一端がつながる油相流路と、前記水相供給口に一端がつながる水相流路が形成され、前記気相流路と油相流路とは合流し、この合流点によりも下流側にて前記水相流路とが合流し、更に前記気相流路と前記水相流路との合流点よりも下流側の水相流路には水相の流速を急激に低下せしめる拡大流路が形成されていることを特徴とするシェル化したマイクロバブルの製造装置。 An apparatus for producing a microbubble formed into a shell in which a gas phase covered with an oil shell is dispersed in an aqueous phase, the production apparatus comprising a substrate, the substrate comprising a gas phase supply port, an oil phase supply port, A water phase supply port and a microbubble take-out port are formed, and on one side of the substrate, a gas phase flow path connected to one end of the gas phase supply port, and an oil phase flow path connected to the oil phase supply port The water phase flow path is connected to one end of the water phase supply port, and the gas phase flow path and the oil phase flow path are merged, and the water phase flow path is merged downstream of the merge point. In addition, the water phase flow path downstream of the confluence of the gas phase flow path and the water phase flow path is formed with an enlarged flow path that rapidly reduces the flow rate of the water phase. Manufacturing equipment for shelled microbubbles. 請求項3に記載のシェル化したマイクロバブルの製造装置において、前記気相流路と水相流路とは直交することを特徴とするシェル化したマイクロバブルの製造装置。 4. The manufacturing apparatus for shelled microbubbles according to claim 3, wherein the gas phase flow path and the water phase flow path are orthogonal to each other.
JP2007001158A 2007-01-09 2007-01-09 Method and apparatus for manufacturing shelled microbubbles Expired - Fee Related JP4803495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001158A JP4803495B2 (en) 2007-01-09 2007-01-09 Method and apparatus for manufacturing shelled microbubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001158A JP4803495B2 (en) 2007-01-09 2007-01-09 Method and apparatus for manufacturing shelled microbubbles

Publications (2)

Publication Number Publication Date
JP2008168175A true JP2008168175A (en) 2008-07-24
JP4803495B2 JP4803495B2 (en) 2011-10-26

Family

ID=39696776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001158A Expired - Fee Related JP4803495B2 (en) 2007-01-09 2007-01-09 Method and apparatus for manufacturing shelled microbubbles

Country Status (1)

Country Link
JP (1) JP4803495B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025988A1 (en) * 2008-09-04 2010-03-11 Unilever Plc Method and apparatus for producing microparticles
JP2015211931A (en) * 2014-05-01 2015-11-26 学校法人同志社 Method and apparatus for producing microdroplet using microfluidic chip
CN105727857A (en) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 Microfluidic apparatus produced by 3D printing
WO2017076580A1 (en) 2015-11-06 2017-05-11 Unilever N.V. Gas-in-oil-in-water emulsion and method for its preparation
WO2019168130A1 (en) * 2018-02-28 2019-09-06 国立大学法人東京工業大学 Microdroplet/bubble generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122107A (en) * 2002-04-25 2004-04-22 Tosoh Corp Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2005152740A (en) * 2003-11-25 2005-06-16 National Food Research Institute Method and apparatus for manufacturing emulsion
JP2006523142A (en) * 2003-04-10 2006-10-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Formation and control of fluid species

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122107A (en) * 2002-04-25 2004-04-22 Tosoh Corp Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure
JP2006523142A (en) * 2003-04-10 2006-10-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Formation and control of fluid species
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2005152740A (en) * 2003-11-25 2005-06-16 National Food Research Institute Method and apparatus for manufacturing emulsion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025988A1 (en) * 2008-09-04 2010-03-11 Unilever Plc Method and apparatus for producing microparticles
JP2015211931A (en) * 2014-05-01 2015-11-26 学校法人同志社 Method and apparatus for producing microdroplet using microfluidic chip
CN105727857A (en) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 Microfluidic apparatus produced by 3D printing
WO2017076580A1 (en) 2015-11-06 2017-05-11 Unilever N.V. Gas-in-oil-in-water emulsion and method for its preparation
WO2019168130A1 (en) * 2018-02-28 2019-09-06 国立大学法人東京工業大学 Microdroplet/bubble generation device
JPWO2019168130A1 (en) * 2018-02-28 2021-03-04 国立大学法人東京工業大学 Microdroplet / bubble generation device
JP7254365B2 (en) 2018-02-28 2023-04-10 国立研究開発法人科学技術振興機構 Microdroplet/bubble generation device

Also Published As

Publication number Publication date
JP4803495B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4777238B2 (en) Method and apparatus for generating microdroplets
TWI499552B (en) Droplet-generating method and device
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
Ushikubo et al. Designing food structure using microfluidics
CN102574078B (en) Use and spray the multiple emulsion producing with other technology
JP4803495B2 (en) Method and apparatus for manufacturing shelled microbubbles
TWI439410B (en) Microchannel structure and fine-particle production method using the same
JP5335784B2 (en) Generation of monodisperse droplets
JP3777427B2 (en) Emulsion production method and production apparatus
Lin et al. Microfluidic synthesis of tail‐shaped alginate microparticles using slow sedimentation
Nurumbetov et al. A simple microfluidic device for fabrication of double emulsion droplets and polymer microcapsules
US20220184613A1 (en) Large Scale Microdroplet Generation Apparatus And Methods Of Manufacturing Thereof
Feng et al. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design
Cohen et al. Parallelised production of fine and calibrated emulsions by coupling flow-focusing technique and partial wetting phenomenon
Chen et al. Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles
Boskovic et al. Synthesis of polymer particles and capsules employing microfluidic techniques
Kang et al. Microfluidic approaches for the design of functional materials
Herrada et al. Theoretical investigation of a technique to produce microbubbles by a microfluidic T junction
Hwang et al. Robust Production of Well‐Controlled Microdroplets in a 3D‐Printed Chimney‐Shaped Milli‐Fluidic Device
JP2007187470A (en) Microflow channel structure and emulsification method using the same
Paiboon et al. Hydrodynamic control of droplet formation in narrowing jet and tip streaming regime using microfluidic flow-focusing
JP5072057B2 (en) Microcapsule manufacturing method using microchannel structure
Tian et al. Nanoparticles and nanocomposites with microfluidic technology
JP4639624B2 (en) Micro channel structure
JP2007044692A (en) Double emulsion microcapsule preparation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees