JP2006095481A - Apparatus and method for producing fine particle - Google Patents

Apparatus and method for producing fine particle Download PDF

Info

Publication number
JP2006095481A
JP2006095481A JP2004287479A JP2004287479A JP2006095481A JP 2006095481 A JP2006095481 A JP 2006095481A JP 2004287479 A JP2004287479 A JP 2004287479A JP 2004287479 A JP2004287479 A JP 2004287479A JP 2006095481 A JP2006095481 A JP 2006095481A
Authority
JP
Japan
Prior art keywords
fine particles
continuous phase
dispersed phase
channel
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287479A
Other languages
Japanese (ja)
Inventor
Akira Kawai
明 川井
Hiroki Takamiya
裕樹 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004287479A priority Critical patent/JP2006095481A/en
Publication of JP2006095481A publication Critical patent/JP2006095481A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for producing a fine particle, wherein the fine particle can be produced by producing a minute liquid droplet by using a minute flow passage and hardening the minute liquid droplet just after produced without deforming the minute liquid droplet and which are adaptable to industrial mass production. <P>SOLUTION: The apparatus for producing the fine particle is composed of: a minute flow passage structure having a dispersed phase introducing port, a dispersed phase introducing flow passage, a continuous phase introducing port, a continuous phase introducing flow passage, a discharge flow passage from an intersecting part of the dispersed phase introducing flow passage with the continuous phase introducing flow passage to a discharge port and the discharge port for discharging the fine particle produced by merging a dispersed phase with a continuous phase in the discharge flow passage; and a microwave irradiation means for hardening the produced fine particle. This method for producing the fine particle comprises the steps of: introducing both of the dispersed phase and the continuous phase into the minute flow passage to merge with each other and produce the fine particle; and irradiating the produced fine particle with a microwave to harden the fine particle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分取、分離用カラム充填剤等に用いられる微小なゲル粒子などの製造用として好適に用いられる微粒子製造装置と微粒子製造方法に関する。   The present invention relates to a fine particle production apparatus and a fine particle production method suitably used for producing fine gel particles used for sorting, separation column fillers and the like.

近年、数cm角のガラス基板あるいは樹脂製基板上に長さが数cm程度で、幅及び深さがサブμmから数百μmの微小流路を有する微小流路構造体を用いて、液体の送液により、化学反応や抽出等の化学的処理や、微小液滴や微粒子の生成を行う研究が注目されている。例えば特許文献1及び非特許文献1には化学的処理を行う例が記載されている。また例えば特許文献2、特許文献3及び非特許文献2には、微小液滴を生成する例が記載されている。   In recent years, by using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate or a resin substrate of several centimeters square and having a width and a depth of sub μm to several hundred μm, Attention has been focused on research on chemical treatment such as chemical reaction and extraction, and generation of microdroplets and fine particles by liquid transfer. For example, Patent Document 1 and Non-Patent Document 1 describe examples in which chemical treatment is performed. Further, for example, Patent Document 2, Patent Document 3, and Non-Patent Document 2 describe examples of generating micro droplets.

微小流路内における微小液滴の生成技術に関しては、例えば非特許文献2において、図1と、図1中のAA’及びBB’断面を示す図2及び図3に示すように微小流路基板1の上に、連続相導入口2、連続相導入流路3、分散相導入口4、分散相導入流路5、排出流路7及び排出口8を有したT字型の微小流路構造体を用いており、導入された連続相と分散相とが合流する部分に合流部6が存在する。各微小流路の深さは100μmであり、分散相を導入する導入流路幅が100μm、連続相を導入する導入流路幅は300〜500μmのT字型微小流路を用いて、分散相と連続相の流れの速さを制御して送液を行うと、分散相と連続相が流路を通じて合流する合流部において極めて均一な微小液滴の生成が可能となる。また、分散相及び連続相の流量を制御することで生成される微小液滴の粒径を制御することも可能となる。   Regarding the technology for generating microdroplets in the microchannel, for example, in Non-Patent Document 2, as shown in FIG. 1 and FIGS. 2 and 3 showing cross sections AA ′ and BB ′ in FIG. 1 has a T-shaped micro-channel structure having a continuous phase inlet 2, a continuous phase inlet 3, a dispersed phase inlet 4, a dispersed phase inlet 5, a discharge channel 7 and a discharge port 8. The joining part 6 exists in the part where the introduced continuous phase and the dispersed phase join. The depth of each microchannel is 100 μm, the introduction channel width for introducing the dispersed phase is 100 μm, and the introduction channel width for introducing the continuous phase is 300 to 500 μm. When the liquid is fed while controlling the flow rate of the continuous phase, it is possible to generate extremely uniform micro droplets at the junction where the dispersed phase and the continuous phase merge through the flow path. It is also possible to control the particle size of the fine droplets generated by controlling the flow rates of the dispersed phase and the continuous phase.

このようにして生成した微小液滴は、微小液滴の粒径のばらつきが比較的小さく均一であり、微小液滴を形成している化合物を架橋重合させることなどにより硬化させて、分取、分離用カラム充填剤等に用いられる粒径の均一な微小なゲル粒子などに用いることが試みられている。しかしながら、生成した微小液滴を微小流路の外部でビーカーなどに収集した後、架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小液滴の形状が崩れたり、微小液滴同士の合一が生じるため、硬化した微粒子の粒径のばらつきが大きくなってしまうという課題があった。   The microdroplets generated in this way have a relatively small variation in the particle size of the microdroplets and are cured by cross-linking polymerization of the compounds forming the microdroplets. Attempts have been made to use fine gel particles having a uniform particle size used for separation column fillers and the like. However, if the generated microdroplet is collected in a beaker or the like outside the microchannel and then cured by cross-linking polymerization or the like, the shape of the microdroplet is collected after the microdroplet is collected and cured. This causes a problem that the dispersion of the particle diameters of the hardened fine particles is increased because of the collapse of the liquid droplets or the coalescence of the fine droplets.

特開2003−225900号公報JP 2003-225900 A 国際公開WO02/068104パンフレットInternational Publication WO02 / 068104 Pamphlet 特許第3511238号公報Japanese Patent No. 3511238 H.Hisamoto et.al.(H.ひさもと ら著) 「Fast and high conversion phase−transfer synthesis exploiting the liquid−liquid interface formed in a microchannel chip」, Chem.Commun., 2001年発行, 2662−2663頁H. Hisamoto et. al. (H. Hisamoto et al.) “Fast and high conversion phase-transfer synthesis exploitation the liquid-liquid interface formed in a microchannel chip”, Chem. Commun. , 2001, 2662-2663. 西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行Takashi Nishisako et al., “Liquid microdroplet generation in microchannels”, Proceedings of the 4th Chemistry and Microsystem Study Group, 59 pages, 2001

以上のように、微小流路内における微粒子生成技術を用いて微小液滴を生成した段階では、微小液滴の粒径のばらつきが比較的小さく均一であるが、生成した微小液滴を微小流路の外部で収集し架橋重合などにより微小液滴を硬化すると、微小液滴を収集してから硬化するまでに、微小液滴の形状が崩れたり、微小液滴同士の合一が生じるため、硬化した微粒子の粒径のばらつきが大きくなってしまう。従って、分取、分離用カラム充填剤等に用いられる微粒子の粒径が均一な微小ゲル粒子などに用いるためには更なる改善が求められていた。   As described above, at the stage where microdroplets are generated using the microparticle generation technology in the microchannel, the variation in the particle size of the microdroplets is relatively small and uniform. Collecting outside the road and curing the microdroplet by cross-linking polymerization etc., the shape of the microdroplet collapses or coalesces between the microdroplet from collecting the microdroplet to curing, The variation in the particle size of the cured fine particles becomes large. Therefore, further improvement has been demanded for use in fine gel particles having a uniform particle size used for sorting, separation column packing, and the like.

本発明は上記課題鑑みてなされたものであり、微小流路を用いて生成した微小液滴の形状を崩さずに微小液滴を生成した直後に微小液滴を硬化させて微粒子を生成することができ、工業的な量産にも対応できる微粒子製造装置及び微粒子の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and generates microparticles by curing microdroplets immediately after generating microdroplets without destroying the shape of microdroplets generated using microchannels. An object of the present invention is to provide a fine particle production apparatus and a fine particle production method that can be applied to industrial mass production.

上記課題を解決できる本発明の微小粒子製造装置は、分散相を導入する分散相導入口及び分散相導入流路と、連続相を導入する連続相導入口及び連続相導入流路と、前記分散相導入流路と前記連続相導入流路とが交わる交差部より排出口に至る排出流路と、前記排出流路において分散相と連続相とが合流して生成する微粒子を排出させる排出口とを備えた微小流路構造体及び、前記微粒子を硬化させるマイクロ波照射手段から構成される微粒子製造装置である。また、本発明の微粒子の製造方法は、分散相と連続相とを微小な流路へ導入し、両者を合流させて微粒子を生成させた後、生成した微粒子にマイクロ波を照射させて硬化させる方法である。   The fine particle production apparatus of the present invention capable of solving the above problems includes a dispersed phase introduction port and a dispersed phase introduction channel for introducing a dispersed phase, a continuous phase introduction port and a continuous phase introduction channel for introducing a continuous phase, and the dispersion A discharge channel extending from an intersection where the phase introduction channel and the continuous phase introduction channel intersect to the discharge port, and a discharge port for discharging the fine particles generated by the combination of the dispersed phase and the continuous phase in the discharge channel. Is a fine particle manufacturing apparatus including a micro flow channel structure including the above and microwave irradiation means for curing the fine particles. In the method for producing fine particles of the present invention, a dispersed phase and a continuous phase are introduced into a minute flow path, and both are combined to produce fine particles, and then the produced fine particles are irradiated with microwaves and cured. Is the method.

従来のヒーターなどによる過熱では、微小液滴の外側から硬化が開始し、内側に向かって硬化していくため、硬化に時間がかかる上、硬化率が微小液滴の外側と内側で異なり、効果した微粒子の内部組成が均一でなかった。しかしながら、本発明のようにマイクロ波照射手段を備えた装置構成とし、また、生成した微粒子にマイクロ波を照射させて硬化させるという処方において、マイクロ波照射を用いることで、微小液滴の内部全体がほぼ同時に硬化するので、短時間で微小液滴を硬化させることができ、なおかつ微小液滴の外側と内側が均一に硬化し、内部組成が均一な微粒子を生成することができるようになる。   In the case of overheating with a conventional heater or the like, curing starts from the outside of the microdroplet and hardens toward the inside, so it takes time to cure and the curing rate differs between the outside and inside of the microdroplet, which is effective The internal composition of the fine particles was not uniform. However, as in the present invention, the entire structure of the microdroplet is obtained by using the microwave irradiation in the prescription in which the apparatus is provided with the microwave irradiation means and the generated fine particles are irradiated with the microwave. Are cured almost simultaneously, so that the microdroplets can be cured in a short time, and the outer and inner sides of the microdroplets are uniformly cured, and fine particles having a uniform internal composition can be generated.

なお、本発明における微粒子は特に断りのない限り微小液滴及び微小液滴を硬化させた微粒子の態様も含む。また硬化させるとは、微粒子全体を硬化させた態様のもの及び、微粒子の表面のみを硬化せせることなどにより微粒子の形状の崩れや微粒子同士の合一が生じない程度に硬化(以下、「半硬化」という。)させたものを意味する。また微小液滴は単に液滴と表現することもある。   Note that the fine particles in the present invention include fine droplets and fine particles obtained by curing the fine droplets unless otherwise specified. In addition, the term “cured” refers to a mode in which the entire fine particles are cured, and curing to such an extent that the shape of the fine particles is not broken and the particles are not coalesced by curing only the surface of the fine particles (hereinafter referred to as “semi-cured” "). A micro droplet may be simply expressed as a droplet.

また本発明の微粒子製造装置は、用いられるマイクロ波照射手段が、微小流路構造体において生成される微粒子にマイクロ波を照射する、あるいは微小流路構造体の排出口より排出される微粒子にマイクロ波を照射するものである。すなわち本発明における微粒子製造装置は、微小流路構造体の分散相導入流路と連続相導入流路とが交わる交差部で生成される微小液滴が排出流路を通過して微小流路構造体の排出口から出た後、外部のビーカーなどで収集してから加熱や光照射、マイクロ波照射などにより硬化させるのではなく、微小流路構造体中の排出流路を通過中の微小液滴にマイクロ波照射を行う、あるいは、微小流路構造体の排出口よりテフロン(登録商標)チューブ等の細管を通過中の微小液滴にマイクロ波照射を行うことにより微粒子を硬化させる装置構成となる。   Further, in the fine particle manufacturing apparatus of the present invention, the microwave irradiation means used irradiates the fine particles generated in the microchannel structure with microwaves, or the microparticles discharged from the discharge port of the microchannel structure are microscopic. It irradiates waves. That is, in the fine particle manufacturing apparatus according to the present invention, the micro droplet generated at the intersection of the dispersed phase introduction channel and the continuous phase introduction channel of the micro channel structure passes through the discharge channel and passes through the micro channel structure. Rather than being collected by an external beaker after exiting the body's discharge port and then cured by heating, light irradiation, microwave irradiation, etc., the micro liquid passing through the discharge channel in the micro channel structure An apparatus configuration that cures microparticles by irradiating the droplets with microwaves, or by irradiating the droplets with microwaves passing through a narrow tube such as a Teflon (registered trademark) tube from the outlet of the microchannel structure Become.

このようにすることで、生成した微小液滴を送液しながら連続して逐次、硬化させ微粒子を製造することができるようになり、排出流路で生成した微小液滴を一度外部に収集してから架橋重合などにより微小液滴を硬化した場合の微小液滴の形状の崩れや微小液滴同士の合一を抑制することができ、硬化した微粒子の粒径の分散度の悪化を抑制することができる。   By doing so, it becomes possible to produce fine particles by continuously curing the produced micro droplets while feeding them, and collecting the micro droplets generated in the discharge channel once outside. When the microdroplets are cured by cross-linking polymerization, etc., the shape of the microdroplets can be prevented from being deformed and the coalescence of the microdroplets can be suppressed, and deterioration of the dispersion degree of the cured fine particles can be suppressed. be able to.

なお、ここでいう微粒子の粒径の分散度(以下、「粒径分散度」という。)とは、粒径の標準偏差を粒径の平均値(以下、「平均粒径」という。)で割った値であると定義する。なお、本明細書に記述されている「粒径の分散度」と「粒径のばらつき」はともに「粒径分散度」を意味する。   Here, the dispersion degree of the particle diameter of the fine particles (hereinafter referred to as “particle diameter dispersion degree”) is the average deviation of the particle diameter (hereinafter referred to as “average particle diameter”). It is defined as the divided value. Note that “dispersion degree of particle diameter” and “variation of particle diameter” described in this specification both mean “dispersion degree of particle diameter”.

本発明は、分散相導入流路、連続相導入流路及び排出流路から形成される流路形状がY字状であることが好ましく、さらに微小流路構造体中の分散相導入流路と連続相導入流路との交わる角度が任意に制御可能であり、さらに、分散相を導入する流路と連続相を導入する流路との交わる角度を変化させることにより、生成する微粒子の粒径を制御することができる。このように流路形状をY字状とすることで、さらにはY字の角度を制御することで、目的とする微粒子の平均粒径を制御できるとともに、粒径分散度を極力小さくでき、均一の目的に応じた微粒子が製造できるのである。   In the present invention, the shape of the flow path formed from the dispersed phase introduction flow path, the continuous phase introduction flow path, and the discharge flow path is preferably Y-shaped. The angle at which the continuous phase introduction flow path intersects can be arbitrarily controlled, and the particle diameter of the generated fine particles can be changed by changing the angle at which the dispersed phase introduction flow path and the continuous phase introduction flow path intersect. Can be controlled. Thus, by making the channel shape Y-shaped, and further controlling the angle of the Y-shape, the average particle size of the target fine particles can be controlled, and the degree of particle size dispersion can be made as small as possible. Fine particles can be produced according to the purpose.

本発明で用いられるマイクロ波とは、紫外線、可視光、赤外線と比較すれば、やや長い波長有した電磁波に分類され、通常、波長が1mm〜1m程度の波長を有するものである。このため、本発明のような微小な流路に分散相と連続相とから得られる微小液滴(硬化前の微粒子)に対してマイクロ波を照射することで、対象分子の分子双極子を回転させることで熱エネルギーを発生させ(誘電加熱)、その熱エネルギーにより、例えば重合反応が生じて微小液滴を硬化させることが可能となると推定される。   The microwave used in the present invention is classified into an electromagnetic wave having a slightly longer wavelength as compared with ultraviolet rays, visible light, and infrared rays, and usually has a wavelength of about 1 mm to 1 m. For this reason, the molecular dipole of the target molecule is rotated by irradiating the minute flow channel (fine particle before curing) obtained from the dispersed phase and the continuous phase with a microwave to the minute channel as in the present invention. It is presumed that thermal energy is generated (dielectric heating) by this, and the thermal energy causes, for example, a polymerization reaction to cure the microdroplets.

また、マイクロ波照射による加熱は、エネルギーの供与がヒーター等の加熱よりも直接的(対象分子そのものを加熱)であり、対象分子が金属のような導電体以外であれば対象に限定はなく、有機物などの誘電体であれば特に限定されないといった特徴があり、本発明の微粒子製造において効果的であると考えられる。   In addition, heating by microwave irradiation is more direct than energy heating (heating the target molecule itself), and the target molecule is not limited as long as the target molecule is other than a conductor such as a metal. If it is dielectric materials, such as organic substance, it has the characteristic that it will not specifically limit, It is thought that it is effective in the microparticle manufacture of this invention.

一方、ヒーター加熱による重合は、ヒーターによる温度上昇が、液滴の重合を開始させるラジカルを発生させ、1つラジカルが発生すると、例えばラジカル重合のように連鎖的に重合が開始してしまう。つまり、ヒーターによる重合は、重合するものであれば対象物質を特に選ばないものの、熱を伝える媒体、すなわち加熱される容器から、溶媒、加熱対象分子へと熱が伝導してエネルギーを与えるため、熱効率が効率的とはいえない。   On the other hand, in the polymerization by heating with a heater, when the temperature rise by the heater generates a radical that initiates the polymerization of droplets, when one radical is generated, the polymerization starts in a chain like radical polymerization, for example. In other words, in the polymerization by the heater, the target substance is not particularly selected as long as it is polymerized, but heat is transferred from the medium that conducts heat, that is, the container to be heated, to the solvent and the molecule to be heated to give energy. Thermal efficiency is not efficient.

また、紫外線のような波長が短い、すなわち紫外線のような高エネルギーが直接対象分子にエネルギーを与えて液滴の重合を開始させるラジカルを発生させて連鎖的に重合が開始するため、対象分子に直接エネルギーを与えるのでエネルギー効率は良くなるものの、対象とする物質は、紫外線のエネルギーを吸収して重合を開始する材料(UV硬化樹脂)に限定される。   In addition, since the wavelength such as ultraviolet rays is short, that is, high energy such as ultraviolet rays directly gives energy to the target molecule to generate radicals that start polymerization of the droplets, and the polymerization starts in a chain. Although energy efficiency is improved because energy is directly applied, the target substance is limited to a material (UV curable resin) that starts polymerization by absorbing ultraviolet energy.

以上のように、マイクロ波照射による微小液滴は、液滴材料の素材の選択幅が広がるとともに、処理における熱効率等が効率化できるという優れた効果を有するのである。   As described above, micro droplets by microwave irradiation have an excellent effect that the selection range of the material of the droplet material is widened and the thermal efficiency and the like in the processing can be improved.

このような本発明の微粒子製造装置に用いられるマイクロ波照射手段におけるマイクロ波発生方式としては、主に、電子管を使用したクライストロン、静磁界でられて回転する電子と、円形にまわる電磁波との結合で発振させる方式をとる磁電管(マグネトロンともいう。)、電子なだれ現象を利用したインパットダイオード(半導体発振器)、電子と正孔の走行時間を利用して発信させる方式のガンダイオード(半導体発振器)などが挙げられるが、本発明においては、その目的を達成できるものであれば特に限定されないものの、装置の調達、コスト面からマグネトロンタイプのものが採用できる。   The microwave generation method in the microwave irradiating means used in the fine particle production apparatus of the present invention is mainly a combination of a klystron using an electron tube, a rotating electron driven by a static magnetic field, and an electromagnetic wave that rotates around a circle. Magnetotubes (also called magnetrons) that oscillate in the horn, impatt diodes (semiconductor oscillators) that use the avalanche phenomenon, Gunn diodes (semiconductor oscillators) that use the travel time of electrons and holes In the present invention, there is no particular limitation as long as the object can be achieved, but a magnetron type can be adopted from the viewpoint of procurement and cost of the apparatus.

本発明で用いられるマイクロ波の出力としては、50〜1000Wの範囲、好まくは300〜600Wの範囲のものを用いる。これは、250W未満では、重合反応による微小液滴の硬化がスムーズに進行しない場合があり、他方、650Wを越えると、効果させた微粒子中に重合による過度の分岐構造が高度に進行し所望の仕様を有するものが得られない、または着色の原因になるなど好ましくない事態が発生することがあるからである。   The microwave output used in the present invention is in the range of 50 to 1000 W, preferably in the range of 300 to 600 W. If it is less than 250 W, curing of the fine droplets due to the polymerization reaction may not proceed smoothly. On the other hand, if it exceeds 650 W, an excessive branch structure due to polymerization proceeds to a desired degree in the effected fine particles. This is because an unfavorable situation may occur such that a product having specifications cannot be obtained or coloring is caused.

また、マイクロ波照射のマグネトロン周波数としては300MHz〜300GHのものであれば可能であるが、産業、医学、化学的用途など、433.92±0.87MHz、2450±50MHz、5800±75MHz、24.125±0.125GHzが使用可能であり、さらに、一般に使用可能な2450±50MHz、5800±75MHzのものが好ましい。以下では本発明を、図を用いてさらに詳細に説明する。   Further, the magnetron frequency of microwave irradiation can be 300 MHz to 300 GH, but it can be used in industrial, medical, chemical applications, etc. 433.92 ± 0.87 MHz, 2450 ± 50 MHz, 5800 ± 75 MHz, 24. 125 ± 0.125 GHz can be used, and 2450 ± 50 MHz and 5800 ± 75 MHz which can be generally used are preferable. Hereinafter, the present invention will be described in more detail with reference to the drawings.

図4に示すように、マイクロ波照射23は微小流路構造体の排出口8から微小液滴が微小流路構造体の外部に出た後に行なっても良いし、図5に示すように、Y字型の流路(導入流路と排出流路より構成される流路)の合流部6(分散相導入流路と連続相導入流路が交差する部位)で微小液滴が生成した直後にマイクロ波照射23を行ない微小流路構造体の中に備えられた排出流路で硬化しても良い。後者の場合は前者よりもさらに微小液滴の合一、分裂を少なくすることができ、より均一な微粒子を生成することが可能となる。しかしながら後者の場合のように、流路構造体中の中に備えられた排出流路においてマイクロ波照射23を行なう場合は、微小液滴が生成される前に分散相にマイクロ波照射23されて硬化しないように、微小液滴が生成される前の流路の部分と、マイクロ波照射23して微小液滴を硬化させる流路の部分は、図5に示すように、微小流路構造体の必要なところだけにマイクロ波照射できるようにマイクロ波吸収体13を設置しておく必要がある。ここでマイクロ波吸収体の材質は、既知のものを適宜選択すればよく、例えば、フェライト系、軟磁性金属粉系、カルボニル鉄系の磁性粉をゴムや樹脂等のバインダーと混合したもの、ポリエステル上に銅メッキの下地を形成しその上にニッケルメッキを施したもの、銀をコーティングした布などがある。   As shown in FIG. 4, the microwave irradiation 23 may be performed after the micro droplet comes out of the micro channel structure from the outlet 8 of the micro channel structure, or as shown in FIG. Immediately after the micro droplet is generated at the junction 6 (the portion where the dispersed phase introduction channel and the continuous phase introduction channel intersect) of the Y-shaped channel (the channel constituted by the introduction channel and the discharge channel). Alternatively, the microwave irradiation 23 may be performed to cure in the discharge channel provided in the microchannel structure. In the latter case, it is possible to reduce the coalescence and splitting of microdroplets further than in the former case, and it is possible to generate more uniform fine particles. However, when the microwave irradiation 23 is performed in the discharge channel provided in the channel structure as in the latter case, the microwave is irradiated on the dispersed phase 23 before the micro droplet is generated. As shown in FIG. 5, the portion of the flow channel before the micro droplet is generated and the portion of the flow channel that cures the micro droplet by the microwave irradiation 23 as shown in FIG. Therefore, it is necessary to install the microwave absorber 13 so that the microwave irradiation can be performed only at the necessary locations. Here, the material of the microwave absorber may be appropriately selected from known materials, for example, ferrite, soft magnetic metal powder, carbonyl iron-based magnetic powder mixed with a binder such as rubber or resin, polyester, etc. There are a copper-plated base formed on top and nickel-plated on top, and a silver-coated cloth.

なお、本発明においてマイクロ波照射により微小液滴を硬化させる場合は、微小液滴全体を硬化させても良いが、微小液滴の表面のみを硬化させるなどにより、微小液滴の形状が崩れたり、微小液滴同士の合一が生じない程度に半硬化させても良い。このように半硬化させた場合、半硬化させた微粒子をビーカー等で回収し、再度マイクロ波照射や光照射、加熱により完全に硬化させる事で、粒径が均一な微粒子を得る事ができる。このような半硬化の場合は、マイクロ波照射部位を微小液滴が通過する時間をより短くすることができる。   In the present invention, when micro droplets are cured by microwave irradiation, the entire micro droplets may be cured. However, the shape of the micro droplets may be destroyed by curing only the surface of the micro droplets. Alternatively, it may be semi-cured to such an extent that coalescence of the microdroplets does not occur. When semi-cured in this way, the semi-cured fine particles are collected with a beaker or the like, and are completely cured again by microwave irradiation, light irradiation, or heating, whereby fine particles having a uniform particle diameter can be obtained. In the case of such semi-curing, the time required for the micro droplets to pass through the microwave irradiation site can be further shortened.

本発明において用いられる分散相とは、本発明が微粒子を効率的に生成させることを目的としており、この目的を達成させるため微小流路構造体中の流路を送液でき、微小流路構造体により微小液滴を生成させ、マイクロ波照射より硬化する物質を含む液状物であれば特に制限されない。例えば、エポキシ系、アクリル系などの光重合性または熱硬化性のモノマーや、スチレンなどの重合用モノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。また、分散相中に一部固体状物が混在したスラリー状のものであっても差し支えない。また、微粒子の用途を高速液体クロマトグラフィー用のカラムの充填剤ゲルに使用する場合などには、分散相がゲル製造用原料を含む媒体であることが好ましい。   The dispersed phase used in the present invention is for the purpose of the present invention to efficiently generate fine particles, and in order to achieve this object, the flow path in the microchannel structure can be fed, and the microchannel structure The liquid is not particularly limited as long as it is a liquid substance containing a substance that generates micro droplets by the body and is cured by microwave irradiation. For example, a photopolymerizable or thermosetting monomer such as epoxy or acrylic, a monomer for polymerization such as styrene, a crosslinking agent such as divinylbenzene, or a raw material for gel production such as a polymerization initiator is dissolved in an appropriate solvent. Refers to the media. Moreover, it may be a slurry in which a solid phase is partially mixed in the dispersed phase. In addition, when the use of fine particles is used for a filler gel of a column for high performance liquid chromatography, the dispersed phase is preferably a medium containing a raw material for gel production.

本発明において用いられる連続相とは分散相と同様に、微小流路構造体中の流路を送液できるものであり、微小流路構造体により分散相より微小液滴を生成させるために用いられる液状物であり、さらに微小液滴を形成させることができればその成分は特に制限されない。また、連続相中に一部固体状物が混在したスラリー状のものであっても差し支えない。また、微粒子の用途を高速液体クロマトグラフィー用のカラムの充填剤ゲルに使用する場合などには、連続相がゲル製造用分散剤を含む媒体であること、例えば、ポリビニルアルコールのゲル製造用の分散剤を適当な溶媒に溶解した媒体であることが好ましい。   Similar to the dispersed phase, the continuous phase used in the present invention is capable of feeding a channel in the microchannel structure, and is used to generate microdroplets from the dispersed phase by the microchannel structure. The component is not particularly limited as long as it can form liquid droplets and can form fine droplets. Further, it may be a slurry in which a solid substance is partially mixed in the continuous phase. Further, when the fine particle is used for a packing gel of a column for high performance liquid chromatography, the continuous phase is a medium containing a dispersing agent for gel production, for example, dispersion for gel production of polyvinyl alcohol. A medium in which the agent is dissolved in a suitable solvent is preferable.

さらに、分散相と連続相とは微小液滴を生成させるために、実質的に交じり合わないあるいは相溶性がないことが必要であり、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相を用いることが好ましい。また、連続相として水相を用いた場合にはその逆となる。   In addition, the dispersed phase and the continuous phase need to be substantially incompatible with each other or have no compatibility in order to generate microdroplets. For example, when an aqueous phase is used as the dispersed phase, the continuous phase It is preferable to use an organic phase such as butyl acetate that does not substantially dissolve in water. Moreover, the reverse is true when an aqueous phase is used as the continuous phase.

本発明によりゲルを製造することができることから、このような分散相、連続相を用いることで、物質の分離、精製等に有用な均一粒径を有するゲルを得ることができる。さらに、上記した本発明の微小粒子製造装置を用いることで均一粒径の微粒子を製造することができる。   Since a gel can be produced according to the present invention, a gel having a uniform particle size useful for separation and purification of substances can be obtained by using such a dispersed phase and continuous phase. Furthermore, fine particles having a uniform particle diameter can be produced by using the fine particle production apparatus of the present invention described above.

本発明の微粒子製造方法は、図6に示すように微小流路構造体15の中に備えられた微小流路10がY字型の微小流路であり、Y字型に配置された3本の微小流路のうち1つが分散相を導入する分散相導入流路5であり、残り2つの微小流路のうち1つが連続相を導入する連続相導入流路3であり、Y字型の微小流路の合流部6で分散相と連続相を合流させて微粒子を生成し、残り1つの微小流路が生成した微粒子を排出する排出流路7である微粒子製造方法であり、また、分散相を導入するための導入流路と連続相を導入するための導入流路とが合流部6で交わる角度9を変化させることにより、生成する微粒子の粒径を制御する微粒子製造方法である。このようなY字型の微小流路を用いて粒径を制御した微粒子を、マイクロ波照射により硬化させることにより、微粒子の粒径分散度をさらに向上させることができる。このY字型の微小流路を用いて、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることにより生成する微粒子の粒径を制御する方法は、従来の微小液滴あるいは微粒子の生成における分散相と連続相の導入速度を変えて微粒子の粒径を制御する場合よりも、より制御しやすく工業的な量産に適している。特に、分散相の導入速度と連続相の導入速度とが実質的に同じであれば、マイクロポンプなどの導入装置を分散相送液用と連続相送液用を共用して1個用意することで足りるなどコスト面においても優れている。尚、ここでいう導入速度が実質的に同じとは、生成される微粒子の粒径の分散度が8%未満の変動で生成される程度の導入速度の変動範囲を意味している。   In the method for producing fine particles of the present invention, as shown in FIG. 6, the microchannels 10 provided in the microchannel structure 15 are Y-shaped microchannels, and three are arranged in a Y-shape. One of the microchannels is a dispersed phase introduction channel 5 for introducing a dispersed phase, and one of the remaining two microchannels is a continuous phase introduction channel 3 for introducing a continuous phase. This is a method for producing fine particles, which is a discharge flow channel 7 in which a dispersed phase and a continuous phase are merged at a merging portion 6 of a micro flow channel to generate fine particles, and the remaining one micro flow channel discharges the generated fine particles. This is a fine particle manufacturing method in which the particle diameter of the generated fine particles is controlled by changing the angle 9 at which the introduction flow path for introducing the phase and the introduction flow path for introducing the continuous phase intersect at the junction 6. By curing such fine particles, whose particle size is controlled using such Y-shaped microchannels, by microwave irradiation, the particle size dispersion degree of the fine particles can be further improved. Using this Y-shaped microchannel, the particle size of the generated fine particles is controlled by changing the angle at which the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase intersect. This method is easier to control and suitable for industrial mass production than the conventional method of controlling the particle diameter of the fine particles by changing the introduction speed of the dispersed phase and the continuous phase in the production of fine droplets or fine particles. In particular, if the introduction speed of the dispersed phase and the introduction speed of the continuous phase are substantially the same, a single introduction device such as a micropump is used for both the dispersed phase feeding and the continuous phase feeding. It is excellent in terms of cost, such as being sufficient. Note that the introduction rate here is substantially the same means a variation range of the introduction rate such that the dispersion degree of the particle size of the generated fine particles is generated with a variation of less than 8%.

以下では、本発明の微粒子製造装置を構成する微小流路構造体について、さらに詳しく説明する。   Hereinafter, the fine channel structure constituting the fine particle production apparatus of the present invention will be described in more detail.

図7に示すように、本発明の微粒子製造装置を構成する微小流路構造体15の分散相を導入するための分散相導入口4は、分散相を入れるための開口部を意味する。この導入口には、適当な接続部であるフィレットジョイント19を備えて分散相を連続的に導入する機構としてもよい。同様に、本発明の微粒子製造装置を構成する微小流路構造体の連続相を導入するための連続相導入口2は、連続相を入れるための開口部を意味し、さらに、この導入口に適当な接続部であるフィレットジョイント19を備えて連続相を連続的に導入する機構としてもよい。   As shown in FIG. 7, the dispersed phase inlet 4 for introducing the dispersed phase of the microchannel structure 15 constituting the fine particle manufacturing apparatus of the present invention means an opening for introducing the dispersed phase. The introduction port may be provided with a fillet joint 19 that is an appropriate connection portion to provide a mechanism for continuously introducing the dispersed phase. Similarly, the continuous phase introduction port 2 for introducing the continuous phase of the microchannel structure constituting the fine particle production apparatus of the present invention means an opening for introducing the continuous phase, and further to this introduction port. It is good also as a mechanism which provides the fillet joint 19 which is a suitable connection part, and introduces a continuous phase continuously.

分散相を導入するための導入流路は導入口と連通しており、分散相が導入され、この導入流路に沿って送液される。導入流路の形状は微小液滴あるいは微粒子の形状および粒径を制御することに影響を与えるが、その幅は数100μm以下で、排出流路も含めY字型の形状となっておればよい。同様に、連続相を導入するための導入流路についても、導入口と連通しており、連続相が導入され、この導入流路に沿って送液される。導入流路の形状は微小液滴あるいは微粒子の形状および粒径を制御することにおいて影響を与えるが、その幅は数100μm以下で、排出流路も含めY字型の形状となっておればよい。   The introduction flow path for introducing the dispersed phase communicates with the introduction port, and the dispersed phase is introduced and fed along the introduction flow path. The shape of the introduction channel affects the control of the shape and particle size of the fine droplets or fine particles, but the width should be several hundreds μm or less, and it should be Y-shaped including the discharge channel. . Similarly, the introduction flow path for introducing the continuous phase is also in communication with the introduction port, and the continuous phase is introduced and fed along this introduction flow path. The shape of the introduction channel has an effect on controlling the shape and particle size of the fine droplets or fine particles, but the width should be several hundreds μm or less, and it should be Y-shaped including the discharge channel. .

排出流路は上記の2つの導入流路及び排出口と連通しており、分散相と連続相が合流後、この排出流路に沿って送液され、排出口より排出される。排出流路の形状は特に制限されないが、その幅は数100μm以下で、導入流路も含めY字型の形状となっておればよい。排出口8は、生成された微小液滴あるいはマイクロ波照射により前記液滴を硬化させた微粒子を排出させるための開口部を意味し、さらに、この排出口に適当な接続部であるフィレットジョイント19を備えて生成された微小液滴あるいはマイクロ波照射により微小液滴を硬化させた微粒子を含む相を連続的に排出する機構としてもよい。尚、これら流路は本明細書においては微小流路ということがある。   The discharge channel communicates with the above two introduction channels and the discharge port, and after the dispersed phase and the continuous phase merge, the liquid is fed along the discharge channel and discharged from the discharge port. The shape of the discharge channel is not particularly limited, but the width may be several hundreds μm or less, and it may be Y-shaped including the introduction channel. The discharge port 8 means an opening for discharging the generated fine droplets or fine particles obtained by curing the droplets by microwave irradiation, and further, a fillet joint 19 which is an appropriate connection portion to the discharge port. It is good also as a mechanism which discharges | emits continuously the phase containing the microparticles | fine-particles which were provided with, or the microparticles | fine-particles which hardened the microdroplets by microwave irradiation. Note that these channels are sometimes referred to as minute channels in this specification.

さらに、本発明の微小流路構造体においては、図6に示すように分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度9で交わると共に、これら2つの導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような2つの導入流路の交差する角度が任意の角度とすることで、合流部で生成する微小液滴を所望の粒径へと制御することが可能となり、すなわち、この粒径が制御された微小液滴をマイクロ波照射により硬化させることにより、微粒子の粒径分散度をさらに向上させる事ができる。交差角度の設定については、目的とする微小液滴の粒径に応じて適宜決めればよい。   Furthermore, in the microchannel structure of the present invention, as shown in FIG. 6, the introduction channel for introducing the dispersed phase and the introduction channel for introducing the continuous phase intersect at an arbitrary angle 9; It is preferable that these two introduction flow paths are connected to the discharge flow path at an arbitrary angle. By setting the angle at which the two introduction flow paths intersect to be an arbitrary angle, it is possible to control the micro droplets generated at the merging portion to a desired particle size, that is, the particle size is controlled. By curing the formed fine droplets by microwave irradiation, the particle size dispersion degree of the fine particles can be further improved. The setting of the crossing angle may be appropriately determined according to the target particle size of the fine droplets.

また、図10に示した微小流路の合流部6近傍の排出流路7の形状の態様として、図11に示すように、分散相と連続相とが交わる交差部6より排出口に至る排出流路7中の一部の部位において、排出流路の幅が狭くなっていることが好ましい。図11の態様のほかにも、図12〜図19に示すように合流部6において排出流路7を部分的に狭くする、分散相流路に沿った流路構成壁を凸状に形成する、あるいはこれらの態様の両方により、送液流速を増加させ合流部6において均一な液滴生成が可能となる。   Further, as an aspect of the shape of the discharge flow path 7 in the vicinity of the junction 6 of the micro flow path shown in FIG. 10, as shown in FIG. 11, discharge from the intersection 6 where the dispersed phase and the continuous phase intersect to the discharge port It is preferable that the width of the discharge flow path is narrow at a part of the flow path 7. In addition to the mode shown in FIG. 11, the flow path constituting wall along the dispersed phase flow path is formed in a convex shape so as to partially narrow the discharge flow path 7 at the junction 6 as shown in FIGS. Alternatively, both of these modes can increase the liquid feeding flow velocity and enable uniform droplet generation at the junction 6.

さらに排出流路の幅が狭くなっている部位が、排出流路中の交差部又はその近傍にあることが好ましく、特に、排出流路の幅が狭くなっている部位が、排出流路の交差部の分散相の導入流路側にあることが好ましい。   Furthermore, it is preferable that the portion where the width of the discharge channel is narrow is at or near the intersection in the discharge channel, and in particular, the portion where the width of the discharge channel is narrow is the intersection of the discharge channel. It is preferable to be on the introduction flow path side of the dispersed phase of the part.

本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、図6に示すように分散相を導入するための分散相導入口4及び分散相導入流路5、連続相を導入するための連続相導入口2及び連続相導入流路3、2つの導入流路が交わる合流部6、微小液滴あるいは微粒子を含む液体を排出させるための排出流路7及び排出口8を備えた微小流路構造体15が、少なくとも一方の面に微小流路が形成された微小流路基板13と、微小流路が形成された面を覆うように微小流路の所定の位置に、微小流路と微小流路構造体外部とを連通するための少なくとも3つの小穴が配置されたカバー体14とが積層一体化されていてもよい。これにより、微小流路構造体外部から微小流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して微小流路内を通過させる事が可能となる。この場合流体の送液は、マイクロポンプなどの機械的手段によって可能となる。   The microchannel structure of the present invention has the structure and performance described above. As shown in FIG. 6, the dispersed phase introduction port 4 and the dispersed phase introduction channel 5 for introducing the dispersed phase, Continuous phase introduction port 2 and continuous phase introduction flow path 3 for introducing a continuous phase, merge section 6 where two introduction flow paths intersect, discharge flow path 7 for discharging liquid containing microdroplets or fine particles, and discharge The micro-channel structure 15 having the outlet 8 has a micro-channel substrate 13 in which the micro-channel is formed on at least one surface and a predetermined micro-channel so as to cover the surface on which the micro-channel is formed. The cover body 14 in which at least three small holes for communicating the microchannel and the microchannel structure outside may be laminated and integrated at the position. As a result, the fluid can be introduced from the outside of the microchannel structure into the microchannel and discharged again to the outside of the microchannel structure. It is possible to pass through the minute flow path. In this case, the fluid can be fed by mechanical means such as a micropump.

微小流路が形成された微小流路基板及びカバー体の材質としては、マイクロ波照射を微小流路構造体の外に備えられた排出流路で行う場合は、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。ただし、排出流路は、例えば石英ガラスやパイレックス(登録商標)ガラス等のガラスや、ポリプロピレンなどの樹脂等、マイクロ波が通過できる材質であることが好ましい。一方、マイクロ波照射を微小流路構造体の中に備えられた微小流路または排出流路で行う場合は、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えており、かつマイクロ波が通過できる材質、すなわち石英ガラスやパイレックス(登録商標)ガラス等のガラスや、ポリプロピレンなどの樹脂等であることが好ましい。   The material of the micro-channel substrate and the cover body on which the micro-channel is formed can be formed by processing the micro-channel when the microwave irradiation is performed in the discharge channel provided outside the micro-channel structure. However, it is desirable to have excellent chemical resistance and appropriate rigidity. For example, glass, quartz, ceramic, silicon, or metal or resin may be used. However, the discharge channel is preferably made of a material that allows microwaves to pass, such as glass such as quartz glass and Pyrex (registered trademark) glass, and resin such as polypropylene. On the other hand, when microwave irradiation is performed in the microchannel or discharge channel provided in the microchannel structure, the microchannel can be formed and processed with excellent chemical resistance and moderate rigidity. And a material through which microwaves can pass, that is, glass such as quartz glass and Pyrex (registered trademark) glass, resin such as polypropylene, and the like are preferable.

また、微小流路基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、微小流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数mm以下である事が望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。   The size and shape of the microchannel substrate and the cover body are not particularly limited, but the thickness is preferably about several mm or less. The small holes arranged in the cover body communicate with the microchannel and the outside of the microchannel structure, and when used as a fluid inlet or outlet, the diameter is preferably, for example, several mm or less. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.

また本発明の微小流路構造体は、微小流路が形成された微小流路基板とカバー体は、熱処理接合あるいは光硬化樹脂や熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。微小流路は微小流路基板上に1本形成しても良いし、複数形成して集積化してもよい。また、微小流路を有する微小流路基板を複数枚積層しても良い。   In the microchannel structure of the present invention, the microchannel substrate on which the microchannels are formed and the cover body are laminated by means such as heat treatment bonding or adhesion using an adhesive such as a photo-curing resin or a thermosetting resin. Can be integrated. One microchannel may be formed on the microchannel substrate, or a plurality of microchannels may be formed and integrated. A plurality of microchannel substrates having microchannels may be stacked.

本発明の微粒子製造装置は、分散相を導入する分散相導入口及び分散相導入流路と、連続相を導入する連続相導入口及び連続相導入流路と、前記分散相導入流路と前記連続相導入流路とが交わる交差部より排出口に至る排出流路と、前記微小流路において分散相と連続相とが合流して生成する微粒子を排出させる排出口とを備えた微小流路構造体及び、前記微粒子を硬化させるマイクロ波照射手段から構成される微粒子製造装置である。   The fine particle production apparatus of the present invention includes a dispersed phase introduction port and a dispersed phase introduction channel for introducing a dispersed phase, a continuous phase introduction port and a continuous phase introduction channel for introducing a continuous phase, the dispersed phase introduction channel, and the A micro flow path comprising a discharge flow path from an intersection where the continuous phase introduction flow path intersects to a discharge opening, and a discharge opening for discharging fine particles generated by the combination of the dispersed phase and the continuous phase in the micro flow path. It is a fine particle manufacturing apparatus including a structure and microwave irradiation means for curing the fine particles.

このようにすることで、分散相と連続相とを微小流路の合流部で合流させて、分散相を極めて均一な粒径の微小液滴にした後、生成した微小液滴をマイクロ波照射で連続的に逐次硬化することで、短時間に微小液滴を硬化あるいは半硬化させることができ、さらに硬化させた微粒子の内部構造が非常に均一な微粒子を効率よく生成することが可能となる。   In this way, the dispersed phase and the continuous phase are merged at the merging portion of the micro flow path to form the dispersed phase into micro droplets with a very uniform particle size, and then the generated micro droplets are irradiated with microwaves. With continuous sequential curing, microdroplets can be cured or semi-cured in a short time, and fine particles with a very uniform internal structure of the cured particles can be efficiently generated. .

また本発明の微粒子製造方法は、分散相と連続相とを微小流路へ導入し、両者を合流させて微粒子を生成させた後、生成した微粒子にマイクロ波を照射させて硬化させる微粒子の製造方法である。   In addition, the method for producing fine particles of the present invention is a method for producing fine particles in which a dispersed phase and a continuous phase are introduced into a microchannel, and both are combined to produce fine particles, and then the produced fine particles are irradiated with microwaves to be cured. Is the method.

このようにすることで、生成した微小液滴を送液しながら連続して逐次、硬化させ微粒子を製造することができるようになり、微小流路で生成した微小液滴を一度外部に収集してから架橋重合などにより微小液滴を硬化した場合の微小液滴の形状の崩れや微小液滴同士の合一を抑制することができ、硬化した微粒子の粒径の分散度の悪化を抑制することができる。   In this way, it is possible to produce fine particles by continuously curing the produced micro droplets while feeding them, and collect the micro droplets generated in the micro flow channel once outside. When the microdroplets are cured by cross-linking polymerization, etc., the shape of the microdroplets can be prevented from being deformed and the coalescence of the microdroplets can be suppressed, and deterioration of the dispersion degree of the cured fine particles can be suppressed. be able to.

また本発明の微粒子製造装置は、分散相導入流路、連続相導入流路及び排出流路から形成される流路形状がY字状であり、また、微小流路構造体中の分散相導入流路と連続相導入流路との交わる角度が任意に制御可能である。   In the fine particle production apparatus of the present invention, the shape of the flow path formed from the dispersed phase introduction flow path, the continuous phase introduction flow path, and the discharge flow path is Y-shaped, and the dispersed phase introduction in the micro flow path structure is performed. The angle at which the flow path and the continuous phase introduction flow path can be arbitrarily controlled.

このようにすることで、連続相と分散相の送液速度を変化させずに、分散相と連続相の合流角度を調整することで微粒子の粒径を制御することができる。また逆に分散相と連続相の送液速度が多少変動したとしても、微粒子の粒径が大きく変化しないようにすることができる。   By doing so, the particle diameter of the fine particles can be controlled by adjusting the merging angle of the dispersed phase and the continuous phase without changing the liquid feeding speed of the continuous phase and the dispersed phase. Conversely, even if the liquid feeding speed of the dispersed phase and the continuous phase varies somewhat, the particle size of the fine particles can be prevented from changing greatly.

以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Examples of the present invention will be described below, and the embodiments of the present invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.

また、実施例においては1枚の微小流路基板上に1本の微小流路を形成したが、工業的に量産する場合は、1枚の微小流路基板上に多数の微小流路を形成する、あるいは多数形成した1枚の微小流路基板を積層することで可能となる。   In the embodiment, one microchannel is formed on one microchannel substrate. However, in the case of mass production industrially, a large number of microchannels are formed on one microchannel substrate. Or by stacking a large number of formed micro flow path substrates.

(実施例)
本発明の実施例における微粒子生成用微小流路を図6に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも220μm、深さ80μm、微小流路のアスペクト比=0.36、排出流路7の長さが30mmであるY字形状とし、連続相導入流路3と分散相導入流路5との角度9が44度で交わる合流部を持ったY字形状の流路を1本形成した。このY字形状の微小流路は、一般的なフォトリソグラフィーとウエットエッチングを用いて形成した。
(Example)
FIG. 6 shows a microchannel for generating fine particles according to an embodiment of the present invention. The microchannels are on Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness), and the widths of the continuous phase introduction channel 3, the dispersed phase introduction channel 5, and the discharge channel 7 corresponding to the microchannels are the same. In any case, the Y-shape is 220 μm, the depth is 80 μm, the aspect ratio of the micro flow path is 0.36, and the length of the discharge flow path 7 is 30 mm, and the continuous phase introduction flow path 3 and the dispersed phase introduction flow path 5 are One Y-shaped flow path having a merging portion where the angle 9 intersects at 44 degrees was formed. This Y-shaped microchannel was formed using general photolithography and wet etching.

この微小流路が形成された微小流路基板13の微小流路を有する面に、微小流路の流体導入口(連続相導入口2、分散相導入口4)と流体排出口8にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラスカバー体14を熱接合し、図6に示すように微小流路を備えた微粒子生成用微小流路構造体を製作した。本実施例においては、微小流路を形成する微小流路基板及びカバー体にガラス基板を用いたが、これに限定するものではない。   On the surface of the microchannel substrate 13 on which the microchannel is formed, on the surface having the microchannel, at positions corresponding to the fluid inlet (continuous phase inlet 2 and dispersed phase inlet 4) and the fluid outlet 8 of the microchannel. A glass cover body 14 having a thickness of 1 mm and a thickness of 70 mm × 20 mm previously provided with a small hole having a diameter of 0.6 mm using a mechanical processing means is thermally bonded, and as shown in FIG. A microchannel structure was fabricated. In this embodiment, the glass substrate is used for the micro-channel substrate and the cover body that form the micro-channel, but the present invention is not limited to this.

次に図7に示すように微粒子生成用微小流路構造体15に液体が送液可能なようにホルダー16などで保持すると共に、内径400μmのテフロン(登録商標)チューブ18及びフィレットジョイント19をホルダー16に固定した。テフロン(登録商標)チューブ18のもう一方はマイクロシリンジ21、22に接続した。このようにすることで微粒子生成用微小流路構造体15に液体の送液が可能とした。また、図7に示すように排出口8から連通したテフロン(登録商標)チューブ18の一部にマイクロ波照射装置12を設置して微粒子製造装置を構成した。   Next, as shown in FIG. 7, the microparticle structure 15 for generating fine particles is held by a holder 16 or the like so that a liquid can be fed, and a Teflon (registered trademark) tube 18 having an inner diameter of 400 μm and a fillet joint 19 are attached to the holder. 16 was fixed. The other end of the Teflon (registered trademark) tube 18 was connected to the microsyringes 21 and 22. In this way, liquid can be sent to the micro-channel structure 15 for generating fine particles. Moreover, as shown in FIG. 7, the microwave irradiation apparatus 12 was installed in a part of Teflon (trademark) tube 18 connected from the discharge port 8, and the microparticle manufacturing apparatus was comprised.

次に微粒子のもととなる液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び重合開始剤として過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジ21、22に注入し、マイクロシリンジポンプ20で送液を行った。送液流速は分散相及び連続相は共に2μl/minである。送液流速が共に安定した状態で、微粒子生成用微小流路構造体15の分散相及び連続相が交わる合流部にて図8に示すような液滴生成が観察された。液滴生成後、排出口8から連通したテフロン(登録商標)チューブ18の一部に設置したマイクロ波照射装置12により液滴を硬化させた。マイクロ波照射部位は、マイクロ波の出力が600W、マイクロ波照射のマグネトロン周波数が2.45GHzのものを用い、マイクロ波が照射されるテフロン(登録商標)チューブの長さを70mmとし、液滴を含んだポリビニルアルコールの水溶液スラリーを連続的に送液してマイクロ波照射時間が約60秒となるように設定し、液滴を硬化させ微粒子を生成した。生成された微粒子を観察し、100個の微粒子の粒径を測定し平均した平均粒径200μm、粒径の標準偏差を平均粒径で割った値である粒径分散度は5.8%となり、極めて均一な微粒子であった。   Next, a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide as a polymerization initiator is used as a dispersion phase for generating droplets that form fine particles, and a 3% aqueous solution of polyvinyl alcohol is used as a continuous phase. The solution was injected into the microsyringes 21 and 22, and the liquid was fed by the microsyringe pump 20. The liquid feeding flow rate is 2 μl / min for both the dispersed phase and the continuous phase. In a state where both the liquid feeding flow rates were stable, droplet generation as shown in FIG. 8 was observed at the junction where the dispersed phase and the continuous phase of the microchannel structure 15 for generating fine particles intersect. After the droplets were generated, the droplets were cured by the microwave irradiation device 12 installed in a part of the Teflon (registered trademark) tube 18 communicated from the discharge port 8. The microwave irradiation part is one having a microwave output of 600 W and a microwave irradiation magnetron frequency of 2.45 GHz. The length of the Teflon (registered trademark) tube irradiated with the microwave is 70 mm, and the droplet is The aqueous slurry of polyvinyl alcohol contained therein was continuously fed to set the microwave irradiation time to about 60 seconds, and the droplets were cured to produce fine particles. Observe the generated fine particles, measure the particle size of 100 fine particles, average the average particle size 200 μm, and the particle size dispersion, which is the value obtained by dividing the standard deviation of the particle size by the average particle size, is 5.8%. Very fine particles.

(比較例)
本発明の比較例として、実施例に用いたものと同一の微小流路構造体を用い、図9に示すような微粒子製造装置を用いた。実施例と同様に微粒子のもととなる液滴を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び重合開始剤として過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジ21、22に注入し、マイクロシリンジポンプ20で送液を行った。送液流速は分散相及び連続相は共に2μl/minとした。送液流速が共に安定した状態で、微粒子生成用微小流路構造体15の分散相及び連続相が交わる合流部にて図6に示すような液滴生成が観察された。液滴生成後、図9に示すように排出口8から連通したテフロン(登録商標)チューブ18を介してビーカーに液滴を含んだポリビニルアルコールの水溶液スラリーを1mL回収した。その後、回収したビーカーをヒーターで65℃に加熱しながら、生成した液滴を壊さないようにゆっくりと1時間程度攪拌し液滴を硬化させ微粒子を生成した。生成された微粒子を実施例と同様に観察すると平均粒径は213μm、粒径分散度は9.8%であった。
(Comparative example)
As a comparative example of the present invention, the same microchannel structure as that used in the example was used, and a fine particle production apparatus as shown in FIG. 9 was used. In the same manner as in the examples, a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide as a polymerization initiator is used as a dispersion phase for generating droplets that form fine particles, and polyvinyl alcohol 3 is used as a continuous phase. % Aqueous solution was injected into the microsyringes 21 and 22, and the microsyringe pump 20 was used for liquid feeding. The liquid feeding flow rate was 2 μl / min for both the dispersed phase and the continuous phase. Droplet generation as shown in FIG. 6 was observed at the junction where the dispersed phase and the continuous phase of the micro-channel structure 15 for fine particle generation intersect in a state where both liquid feeding flow rates were stable. After producing the droplets, 1 mL of an aqueous slurry of polyvinyl alcohol containing droplets in a beaker was collected through a Teflon (registered trademark) tube 18 communicating from the discharge port 8 as shown in FIG. Thereafter, the collected beaker was heated to 65 ° C. with a heater, and slowly stirred for about 1 hour so as not to break the generated droplets, thereby curing the droplets and generating fine particles. When the produced fine particles were observed in the same manner as in the Examples, the average particle size was 213 μm, and the particle size dispersion degree was 9.8%.

一般的な液滴生成用微小流路を示す概略図である。It is the schematic which shows the general microchannel for droplet generation. 図1中のAA’断面である。It is AA 'cross section in FIG. 図1中のBB’断面である。It is a BB 'cross section in FIG. 微小流路構造体の排出口と連通する細管(テフロン(登録商標)チューブ)でマイクロ波照射により液滴を硬化させる方法を示した概念図である。It is the conceptual diagram which showed the method of hardening a droplet by microwave irradiation with the thin tube (Teflon (trademark) tube) connected with the discharge port of a microchannel structure. 微小流路構造体の排出流路でマイクロ波照射により液滴を硬化させる方法を示した概念図である。It is the conceptual diagram which showed the method of hardening a droplet by microwave irradiation in the discharge flow path of a microchannel structure. 本発明における微小流路構造体の概念図である。It is a conceptual diagram of the micro channel structure in the present invention. 実施例における微粒子製造装置の概念図である。It is a conceptual diagram of the fine particle manufacturing apparatus in an Example. 実施例における液滴生成状況を示す図である。It is a figure which shows the droplet production | generation condition in an Example. 比較例における微粒子製造装置の概念図である。It is a conceptual diagram of the microparticle manufacturing apparatus in a comparative example. 本発明における微小流路の概念図である。It is a conceptual diagram of the micro channel in the present invention. 本発明における微小流路の交差部の態様の1つを示す概念図である。It is a conceptual diagram which shows one of the aspects of the cross | intersection part of the microchannel in this invention. 本発明における微小流路の交差部の態様の1つを示す概念図である。It is a conceptual diagram which shows one of the aspects of the cross | intersection part of the microchannel in this invention. 図12中のCC’断面である。It is CC 'cross section in FIG. 本発明における微小流路の交差部の態様の1つを示す概念図である。It is a conceptual diagram which shows one of the aspects of the cross | intersection part of the microchannel in this invention. 図14中のDD’断面である。It is DD 'cross section in FIG. 本発明における微小流路の交差部の態様の1つを示す概念図である。It is a conceptual diagram which shows one of the aspects of the cross | intersection part of the microchannel in this invention. 図16中のEE’断面である。It is EE 'cross section in FIG. 本発明における微小流路の交差部の態様の1つを示す概念図である。It is a conceptual diagram which shows one of the aspects of the cross | intersection part of the microchannel in this invention. 図18中のFF’断面である。It is FF 'cross section in FIG.

符号の説明Explanation of symbols

1:微小流路基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:合流部
7:排出流路
8:排出口
9:角度
10:微小流路
11:マイクロ波照射部位
12:マイクロ波照射装置
13:マイクロ波吸収体
14:カバー体
15:微小流路構造体
16:ホルダー
17:ビーカー
18:テフロン(登録商標)チューブ
19:フィレットジョイント
20:マイクロシリンジポンプ
21:マイクロシリンジ(連続相)
22:マイクロシリンジ(分散相)
23:マイクロ波照射
1: Micro-channel substrate 2: Continuous phase introduction port 3: Continuous phase introduction channel 4: Dispersed phase introduction port 5: Dispersed phase introduction channel 6: Junction section 7: Discharge channel 8: Discharge port 9: Angle 10: Microchannel 11: Microwave irradiation site 12: Microwave irradiation device 13: Microwave absorber 14: Cover body 15: Microchannel structure 16: Holder 17: Beaker 18: Teflon (registered trademark) tube 19: Fillet joint 20: Micro syringe pump 21: Micro syringe (continuous phase)
22: Micro syringe (dispersed phase)
23: Microwave irradiation

Claims (11)

分散相を導入する分散相導入口及び分散相導入流路と、連続相を導入する連続相導入口及び連続相導入流路と、前記分散相導入流路と前記連続相導入流路とが交わる交差部より排出口に至る排出流路と、前記排出流路において分散相と連続相とが合流して生成する微粒子を排出させる排出口とを備えた微小流路構造体及び、前記微粒子を硬化させるマイクロ波照射手段から構成される微粒子製造装置。 The dispersed phase introduction port and the dispersed phase introduction channel for introducing the dispersed phase, the continuous phase introduction port and the continuous phase introduction channel for introducing the continuous phase, and the dispersed phase introduction channel and the continuous phase introduction channel intersect. A micro-channel structure including a discharge channel extending from an intersection to a discharge port, and a discharge port for discharging fine particles generated by the combination of a dispersed phase and a continuous phase in the discharge channel, and curing the fine particles An apparatus for producing fine particles comprising microwave irradiation means. マイクロ波照射手段が、前記微小流路構造体において生成される微粒子にマイクロ波を照射するものであることを特徴とする請求項1記載の微粒子製造装置。 2. The fine particle manufacturing apparatus according to claim 1, wherein the microwave irradiation means irradiates the fine particles generated in the microchannel structure with microwaves. マイクロ波照射手段が、前記微小流路構造体の排出口より排出される微粒子にマイクロ波を照射するものであることを特徴とする請求項1記載の微粒子製造装置。 2. The fine particle manufacturing apparatus according to claim 1, wherein the microwave irradiation means irradiates the fine particles discharged from the discharge port of the microchannel structure with microwaves. 分散相導入流路、連続相導入流路及び排出流路から形成される流路形状がY字状であることを特徴とする請求項1〜3のいずれかに記載の微粒子製造装置。 The fine particle manufacturing apparatus according to any one of claims 1 to 3, wherein a channel shape formed from the dispersed phase introduction channel, the continuous phase introduction channel, and the discharge channel is Y-shaped. 微小流路構造体中の分散相導入流路と連続相導入流路との交わる角度が任意に制御可能であることを特徴とする請求項4記載の微粒子製造装置。 5. The fine particle production apparatus according to claim 4, wherein an angle at which the dispersed phase introduction channel and the continuous phase introduction channel intersect in the microchannel structure can be arbitrarily controlled. 分散相と連続相とを微小な流路へ導入し、両者を合流させて微粒子を生成させた後、生成した微粒子にマイクロ波を照射させて硬化させることを特徴とする微粒子の製造方法。 A method for producing fine particles, wherein a dispersed phase and a continuous phase are introduced into a minute flow path, and both are joined to produce fine particles, and then the produced fine particles are irradiated with microwaves to be cured. 分散相を導入する流路と連続相を導入する流路との交わる角度を変化させることにより、生成する微粒子の粒径を制御することを特徴とする請求項6記載の微粒子の製造方法。 7. The method for producing fine particles according to claim 6, wherein the particle diameter of the fine particles to be produced is controlled by changing the angle at which the flow path for introducing the dispersed phase and the flow path for introducing the continuous phase intersect. 分散相がゲル製造用原料を含む媒体である請求項6又は請求項7記載の微粒子の製造方法。 The method for producing fine particles according to claim 6 or 7, wherein the dispersed phase is a medium containing a raw material for gel production. 連続相がゲル製造用分散剤を含む媒体である請求項6又は請求項7記載の微粒子の製造方法。 The method for producing fine particles according to claim 6 or 7, wherein the continuous phase is a medium containing a dispersant for producing a gel. ゲル製造用分散剤がポリビニルアルコールである請求項9記載の微粒子の製造方法。 The method for producing fine particles according to claim 9, wherein the dispersant for producing the gel is polyvinyl alcohol. 請求項1〜5のいずれかに記載の微小粒子製造装置を用いることを特徴とする請求項6〜10のいずれかに記載の微粒子の製造方法。
The method for producing fine particles according to any one of claims 6 to 10, wherein the apparatus for producing fine particles according to any one of claims 1 to 5 is used.
JP2004287479A 2004-09-30 2004-09-30 Apparatus and method for producing fine particle Pending JP2006095481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287479A JP2006095481A (en) 2004-09-30 2004-09-30 Apparatus and method for producing fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287479A JP2006095481A (en) 2004-09-30 2004-09-30 Apparatus and method for producing fine particle

Publications (1)

Publication Number Publication Date
JP2006095481A true JP2006095481A (en) 2006-04-13

Family

ID=36235797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287479A Pending JP2006095481A (en) 2004-09-30 2004-09-30 Apparatus and method for producing fine particle

Country Status (1)

Country Link
JP (1) JP2006095481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154138A (en) * 2007-12-28 2009-07-16 Satoshi Horikoshi Method for accelerating chemical reaction and chemical reaction device of micro-wave
JP2015047535A (en) * 2013-08-30 2015-03-16 独立行政法人産業技術総合研究所 Chemical substance synthesizing device and method
CN113952892A (en) * 2021-12-03 2022-01-21 花安堂生物科技集团有限公司 Method for preparing suspended micro-droplets by utilizing negative pressure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279486A (en) * 1991-10-29 1993-10-26 Xerox Corp Method for forming bichromal ball
JP2004122107A (en) * 2002-04-25 2004-04-22 Tosoh Corp Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279486A (en) * 1991-10-29 1993-10-26 Xerox Corp Method for forming bichromal ball
JP2004122107A (en) * 2002-04-25 2004-04-22 Tosoh Corp Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154138A (en) * 2007-12-28 2009-07-16 Satoshi Horikoshi Method for accelerating chemical reaction and chemical reaction device of micro-wave
JP2015047535A (en) * 2013-08-30 2015-03-16 独立行政法人産業技術総合研究所 Chemical substance synthesizing device and method
CN113952892A (en) * 2021-12-03 2022-01-21 花安堂生物科技集团有限公司 Method for preparing suspended micro-droplets by utilizing negative pressure
CN113952892B (en) * 2021-12-03 2023-10-10 花安堂生物科技集团有限公司 Method for preparing suspension micro-droplets by utilizing negative pressure

Similar Documents

Publication Publication Date Title
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
EP2812709B1 (en) High-speed on demand droplet generation and single cell encapsulation driven by induced cavitation
EP1992403B1 (en) Microfluidic self-sustaining oscillating mixers and devices and methods utilizing same
EP3072937A1 (en) Rapidly curing adhesives using encapsulated catalyst and focused ultrasound
CN110496657A (en) A kind of micro-fluidic chip and preparation method thereof forming liquid metal droplet
US20170189909A1 (en) Enhanced cell/bead encapsulation methods and apparatuses
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4305145B2 (en) Particle production method using micro flow channel
JP2006095481A (en) Apparatus and method for producing fine particle
JP4639624B2 (en) Micro channel structure
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
JP4356312B2 (en) Microchannel structure
Xie et al. Microfluidic synthesis as a new route to produce novel functional materials
JP2006258508A (en) Bonding method of plastic member, and biochip and micro analysis chip manufactured using method
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP4306243B2 (en) Particle production method
US20170151537A1 (en) Mixing of Fluids
JP2004098225A (en) Microflow passage structure for generating liquid droplet, method for generating liquid droplet by using structure, and its product
JP4743165B2 (en) Micro channel structure
DE102006016482A1 (en) Passive micro-mixer for single- or multi-phase fluids has two inlets and an outlet plus numerous mixer elements located in different three-dimensional planes
JP4419419B2 (en) Method for carrying out chemical reactions using microdroplets
Hu et al. Digital Microfluidics for Terahertz Digital and Programmable Metamaterials: A Proof-of-Concept Study
JP2004359822A (en) Method and apparatus for forming droplet
JP2011183235A (en) Method for producing chemical substance and reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202