JP2006258508A - Bonding method of plastic member, and biochip and micro analysis chip manufactured using method - Google Patents

Bonding method of plastic member, and biochip and micro analysis chip manufactured using method Download PDF

Info

Publication number
JP2006258508A
JP2006258508A JP2005074084A JP2005074084A JP2006258508A JP 2006258508 A JP2006258508 A JP 2006258508A JP 2005074084 A JP2005074084 A JP 2005074084A JP 2005074084 A JP2005074084 A JP 2005074084A JP 2006258508 A JP2006258508 A JP 2006258508A
Authority
JP
Japan
Prior art keywords
joining
plastic
bonding
protrusion
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005074084A
Other languages
Japanese (ja)
Inventor
Masaru Ota
賢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005074084A priority Critical patent/JP2006258508A/en
Publication of JP2006258508A publication Critical patent/JP2006258508A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for laminating a plastic biochip or a micro analysis chip firmly at a low temperature, and the plastic biochip or the micro analysis chip laminated thereby. <P>SOLUTION: This bonding method of plastic members, which is a bonding method of two or more board-like plastic members, has characteristics wherein a fine circuit is formed on the bonding surface side of at least one board-like plastic member, and a projection-shaped portion is formed on a part of on the bonding surface of at least one board-like plastic member, and bonding is performed by deformation of the projection-shaped portion at the bonding time. The method also has a characteristic wherein, preferably, the bonding method is one or a composite method between a laser bonding, bonding by overheating and ultrasonic bonding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はプラスチック製バイオチップもしくはマイクロ分析チップを良好に接合させる方法に関するものであり、その方法を利用することにより得られたプラスチック製のバイオチップまたはマイクロ分析チップに関するものである。   The present invention relates to a method for satisfactorily bonding a plastic biochip or microanalysis chip, and relates to a plastic biochip or microanalysis chip obtained by using the method.

近年、創薬研究や臨床検査のハイスループット化を達成する手段として、生理活性物質を固層基板上に固定化したデバイスであるバイオチップが注目されている。固定化される生理活性物質としては、核酸、たんぱく質、抗体、糖鎖、糖タンパク、アプタマーなどが代表的なものであり、特に核酸を固定化したバイオチップである核酸マイクロアレイはすでに多数の商品が上市されている。チップの形態としては、平板の基板上に各種生理活性物質がスポットされ固定化されている形態であり、主に研究機関における研究分析用に活用されている。   In recent years, biochips, which are devices in which a physiologically active substance is immobilized on a solid substrate, have attracted attention as means for achieving high throughput in drug discovery research and clinical tests. Typical examples of the physiologically active substance to be immobilized include nucleic acids, proteins, antibodies, sugar chains, glycoproteins, aptamers, etc. Nucleic acid microarrays, which are biochips on which nucleic acids are immobilized, are already available in many products. It is on the market. The form of the chip is a form in which various physiologically active substances are spotted and immobilized on a flat substrate, and are mainly used for research analysis in research institutions.

さらに近年、マイクロ分析チップとか、μTAS(micro total analytical system)とか、ラボオンチップと呼ばれる、微細加工技術を利用した化学反応や分離、分析システムの微小化の研究が盛んになっており、マイクロチャネル(微細流路)上で各種の化学反応、特に生理学的反応を行うことが可能となっている。このシステムにおいては、微少量のサンプルを迅速分析できるため、この特長を生かした次期のバイオチップ、特に医療機関における診断用バイオチップとして商品化されることが期待されており、注目されている(これ以降、これらのシステムを、マイクロ分析チップと称する)。   In recent years, research on miniaturization of chemical reaction, separation, and analysis system using microfabrication technology called micro analysis chip, μTAS (micro total analytical system), or lab-on-chip has become active. Various chemical reactions, particularly physiological reactions, can be performed on the (fine channel). In this system, since a very small amount of sample can be analyzed quickly, it is expected to be commercialized as a next-generation biochip that takes advantage of this feature, particularly as a diagnostic biochip in a medical institution ( Hereinafter, these systems are referred to as micro-analysis chips).

このバイオチップや、マイクロ分析チップは、現在はガラス製のものが主流である。ガラス基板でマイクロ分析チップを作成するためには、たとえば、基板に金属、フォトレジスト樹脂をコートし、マイクロチャネルのパターンを焼いた後にエッチング処理を行う方法がある。しかしガラスは大量生産に向かず非常に高コストであり、プラスチック化が望まれている。   Currently, these biochips and microanalysis chips are mainly made of glass. In order to produce a micro-analysis chip with a glass substrate, for example, there is a method in which a substrate is coated with a metal or a photoresist resin, and a microchannel pattern is baked, followed by an etching process. However, glass is not suitable for mass production and is very expensive, and plasticization is desired.

プラスチック製のバイオチップやマイクロ分析チップは、種々のプラスチックを用いて射出成形等の各種の成形方法で製造することが可能であり、効率よく経済的なチップ製造が可能であるため、大量生産に向いている。しかしプラスチック製バイオチップもしくはマイクロ分析チップにはまだ技術上の欠点が多数あり、ガラス製に取って代わるだけの認知を得てはいない。特にマイクロフルイデックスと総称されるバイオチップもしくはマイクロ分析チップは、チップの内部に微小の流路が設けられていることを特徴とする分析用チップであるが、プラスチック製はおろかガラス製に関しても現時点では多くの欠点がありいまだ研究段階である。プラスチック製のマイクロフルイデックスにおいて、特に問題なのは、微細流路を加工したプラスチック板の上に別のプラスチックの板を貼り付けて微細流路に蓋をする必要があるのだが、その接合方法で安価・簡便・確実な方式がいまだ見つかっていないことがその実用化を妨げている大きな要因のひとつであると思われる。     Plastic biochips and microanalysis chips can be manufactured by various molding methods such as injection molding using various plastics, and efficient and economical chip manufacturing is possible. It is suitable. However, plastic biochips or microanalytical chips still have many technical drawbacks and have not gained recognition to replace glass. In particular, the biochip or microanalysis chip collectively called microfluidics is an analysis chip characterized by a micro flow path provided inside the chip. There are many drawbacks, and it is still in the research stage. The problem with plastic microfluidics is that it is necessary to attach another plastic plate on a plastic plate that has been processed into a fine flow path, and to cover the fine flow path.・ The fact that a simple and reliable method has not yet been found is considered to be one of the major factors hindering its practical application.

プラスチック製バイオチップもしくはマイクロ分析チップにおける張り合わせ工程では、接着剤を用いるか、加熱や超音波やレーザーにより熱圧着するなどの方式で、主に張り合わせが行われている(特許文献1参照)。ところが、接着剤の使用は、基板の間より余剰分が出やすく、マイクロチャネルの封鎖や内壁の汚染が生じやすい。加熱による融着は、後述する過熱による生理活性物質の失活問題発生しやすい。超音波による熱溶着は、数ミリメートル角の面の接合は可能であるが、数センチ角の面の熱溶着には不向きであり、溶着不足が生じやすい。レーザー照射では、照射面ならともかく、2枚のプラスチックの張り合わせ面などプラスチックの中心部のみの過熱は非常に困難であり、現時点では実用に値しない。   In the bonding process for plastic biochips or microanalysis chips, bonding is mainly performed by using an adhesive or by thermocompression bonding with heating, ultrasonic waves, or laser (see Patent Document 1). However, the use of an adhesive tends to cause an excess portion between the substrates, and the microchannel is likely to be blocked or the inner wall is contaminated. The fusion by heating is likely to cause a deactivation problem of the physiologically active substance due to overheating described later. Although heat welding by ultrasonic waves can join surfaces of several millimeters square, it is unsuitable for heat welding of surfaces of several centimeters square, and insufficient welding tends to occur. With laser irradiation, it is very difficult to overheat only the central part of the plastic, such as the two plastic bonding surfaces, regardless of the irradiated surface, and it is not practical at this time.

さらにバイオチップやマイクロ分析チップにこだわらず、プラスチック製品の貼り付けについて見てみるならば、上記以外の接合方式として、接合させようと考えている部品の接合面の一部に突起をつけ、それを接合すべき別の面にはめ込んで、なおかつ超音波振動によりその部分を熱融着して接合させる方式の提案がある(特許文献2参照)。しかしこの方式が利用できるのは、あまり微細でない、比較的大きな成形品に対してのみであり、微細な構造を有するバイオチップやマイクロ分析チップについてはその方式は対象となっていない。   Furthermore, if you look at the sticking of plastic products regardless of biochips or microanalysis chips, as a joining method other than the above, you can make a protrusion on the part of the joining surface of the part you are going to join, There is a proposal of a method in which a part is bonded to another surface to be joined and the part is thermally fused by ultrasonic vibration (see Patent Document 2). However, this method can be used only for relatively small molded products that are not very fine, and the method is not intended for biochips and microanalysis chips having a fine structure.

さらに、分析用のチップ、特にバイオチップへの応用を考える場合、検出用の部位に各種の物質、特に核酸、たんぱく質、抗体、糖鎖、糖タンパク、アプタマーをコーティングもしくは固定化する場合が多く、これらの生理活性物質は加熱に弱く化学的に失活する可能性があるため、高温にさらされる接合プロセスは、バイオチップ及びマイクロ分析チップの製造には不向きである。以上より、比較的低温で、接触面同士を完全に接着でき、プラスチック製バイオチップやマイクロ分析チップの張り合わせに使用できる技術は、いまだ見出されていない。プラスチック製バイオチップやマイクロ分析チップの実用化のために、低温接合技術はより重要になると考えられている。   In addition, when considering application to analysis chips, particularly biochips, various substances such as nucleic acids, proteins, antibodies, sugar chains, glycoproteins, and aptamers are often coated or immobilized on detection sites. Since these physiologically active substances are vulnerable to heating and can be chemically deactivated, the bonding process exposed to high temperatures is unsuitable for the production of biochips and microanalytical chips. From the above, there has not yet been found a technique that can completely bond contact surfaces at a relatively low temperature and can be used for bonding plastic biochips and microanalysis chips. For the practical application of plastic biochips and microanalytical chips, low temperature bonding technology is considered to be more important.

特開2002−139419号公報JP 2002-139419 A 特開平5−16241号公報JP-A-5-16241

本発明は、プラスチック製バイオチップやマイクロ分析チップを、比較的低温で、安価簡便に、かつ強固確実に張り合わせるためのプロセスを提供し、さらにはそれにより張り合わされたプラスチック製バイオチップやマイクロ分析チップを提供することを目的とするものである。   The present invention provides a process for bonding plastic biochips and microanalysis chips at a relatively low temperature, inexpensively, simply, and firmly, and further, the plastic biochips and microanalysis bonded thereby. The purpose is to provide a chip.

本発明者らは、上記課題を達成すべく鋭意検討した結果、接合を想定される部位の一部に突起を設け、接合の際にそれを変形させるプロセスを経ることにより、比較的低温で、迅速に、十分な結合強度で張り合わせられることができることを見出した。またそれを利用して加工したプラスチック製バイオチップやプラスチック製マイクロ分析チップが実現可能であることを確認し、本発明に至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have provided a protrusion on a part of a portion that is assumed to be bonded, and undergoes a process of deforming it at the time of bonding, at a relatively low temperature, It has been found that it can be quickly laminated with sufficient bond strength. Moreover, it was confirmed that a plastic biochip and a plastic microanalysis chip processed using the same could be realized, and the present invention was achieved.

すなわち本発明は、
(1)2枚以上の板状プラスチック部材の接合方法であって、少なくとも1枚の板状プラススチック部材の接合面側に微細回路が形成されており、少なくとも1枚の板状プラススチック部材の接合面の一部に突起形状の部位が形成されており、接合の際に該突起形状の部位が変形することにより接合することを特徴とする、プラスチック部材の接合方法、
(2)接合方法において、レーザー接合、過熱による接合、超音波接合、のいずれかもしくはそれらの複合の接合方法を使用することを特徴とする(1)記載のプラスチック部材の接合方法、
(3)接合の際の突起形状部位の変形において、接合前の突起形状部位の高さを100%とした場合、接合完了時に変形した突起形状部位の高さが50%以下になっていることを特徴とする、(1)又は(2)記載のプラスチック部材の接合方法、
(4)突起形状部位の材質が他の部位の材質と異なることを特徴とする(1)〜(3)いずれか記載のプラスチック部材の接合方法、
(5)突起形状部位が微細流路の近傍に配置されていることを特徴とする(1)〜(4)いずれか記載のプラスチック部材の接合方法、
(6)(1)〜(5)いずれか記載の接合方法を使用して接合されたことを特徴とするプラスチック製のバイオチップまたはマイクロ分析チップ、
(7)核酸チップ、プロテインチップ、抗体チップ、アプタマーチップ、及び糖タンパクチップから選ばれる少なくとも1つである(6)記載のプラスチック製のバイオチップ、
である。
That is, the present invention
(1) A method for joining two or more plate-like plastic members, wherein a fine circuit is formed on the joining surface side of at least one plate-like plastic member, and at least one plate-like plastic member has A method for joining plastic members, characterized in that a projection-shaped part is formed on a part of the joining surface, and the projection-shaped part is joined when deformed during joining,
(2) In the joining method, any one of laser joining, joining by overheating, ultrasonic joining, or a composite joining method thereof is used, The joining method of plastic members according to (1),
(3) In the deformation of the protrusion-shaped part at the time of joining, when the height of the protrusion-shaped part before joining is 100%, the height of the projecting-shaped part deformed when joining is completed is 50% or less. A method for joining plastic members according to (1) or (2), characterized in that
(4) The method for joining plastic members according to any one of (1) to (3), wherein the material of the protrusion-shaped part is different from the material of the other part,
(5) The method for joining plastic members according to any one of (1) to (4), wherein the protrusion-shaped part is disposed in the vicinity of the fine channel.
(6) A plastic biochip or microanalysis chip, which is bonded using the bonding method according to any one of (1) to (5),
(7) The plastic biochip according to (6), which is at least one selected from a nucleic acid chip, a protein chip, an antibody chip, an aptamer chip, and a glycoprotein chip,
It is.

プラスチック製バイオチップやマイクロ分析チップを張り合わせる場合、加熱による樹脂の接合を行うと、たんぱく質や抗体などは加熱によりその生理活性を失活するため、加熱を伴う接合処理は利用できなかったが、本発明の方法は従来方式と比較して、100℃以下の比較的低温で貼り付け処理が可能であり、特にプラスチック製バイオチップやマイクロ分析チップの製造技術として有効な技術である。   When attaching plastic biochips and microanalysis chips, when resin is joined by heating, proteins and antibodies deactivate their physiological activity by heating, so joining treatment with heating could not be used. Compared with the conventional method, the method of the present invention can be applied at a relatively low temperature of 100 ° C. or less, and is particularly effective as a technology for producing plastic biochips and microanalysis chips.

以下、本発明の実施形態について詳細に説明する。
本特許は、プラスチック製バイオチップもしくはマイクロ分析チップにおいて、接合面の一部に突起形状を設け、接合のプロセスにおいてその突起形状を変形せしめることにより、強固に接合を施すことが可能であることを見出し、特許するものである。
Hereinafter, embodiments of the present invention will be described in detail.
This patent states that, in a plastic biochip or microanalysis chip, it is possible to bond firmly by providing a protrusion shape on a part of the bonding surface and deforming the protrusion shape in the bonding process. Heading and patenting.

本発明に使用されるプラスチックとは、たとえば高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリスチレン、各種環状ポリオレフィン、ポリメチルメタクリレート、ポリノルボルネン、ポリフェニレンオキサイド、ポリカーボネート、ポリアミド、ポリエステル、半硬化状態のフェノール樹脂、半硬化状態のエポキシ樹脂、その他各種の熱可塑性プラスチックの様に、融点とTgを有する高分子物質のことを示すが、その種類や重合度、融点やTgや弾性率などの物性に関して特に限定するものではない。   Examples of the plastic used in the present invention include high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, various cyclic polyolefins, polymethyl methacrylate, polynorbornene, polyphenylene oxide, polycarbonate, polyamide, polyester, semi-cured phenol resin, This indicates a polymer material having a melting point and Tg, such as a semi-cured epoxy resin and other various thermoplastics, but the type, polymerization degree, physical properties such as melting point, Tg, and elastic modulus are particularly limited. It is not a thing.

なお本特許は2枚以上のプラスチックを接合させることを前提とした特許であるが、加工方式はプラスチック同士のみならず、プラスチックと非プラスチックに関してもこの手法で接合が可能であると考えられる。なおここでいう非プラスチックとは、銅、アルミ、鉄、シリコン、ニッケルおよびその他の各種金属やその合金や、シリカ、アルミナ、ジルコニア、チタニア等の金属酸化物やその混合物やそのガラス製物質や、炭化珪素、窒化ホウ素などの各種セラミックや、さらにはそれらを材料とした線状の配線や箔状の配線や各種センサ、さらにはその他紙、木など、プラスチックに該当しないものが対象である。あるいは完全硬化したフェノール樹脂や完全硬化したエポキシ樹脂もその範疇に入る。   This patent is based on the premise that two or more plastics are joined. However, it is considered that the processing method is not limited to plastics but can be joined with plastics and non-plastics. Non-plastic here refers to copper, aluminum, iron, silicon, nickel and other various metals and alloys thereof, metal oxides such as silica, alumina, zirconia, titania, mixtures thereof, glass materials thereof, Various ceramics such as silicon carbide and boron nitride, linear wiring and foil-shaped wiring and various sensors made of these ceramics, various sensors, and other materials that do not fall under plastics, such as paper and wood, are targeted. Alternatively, fully cured phenolic resins and fully cured epoxy resins also fall into the category.

本発明で使用される、張り合わせ面の一部にあらかじめ設けられた突起形状とは、接合面の表面から好ましくは200μm以下の高さで飛び出した、プラスチックを素材とした、突起形状の物を指す。断面形状は矩形でも台形でも三角形でもよく、特に限定しない。突起物を上から見たときの全体の形状は、点(円、四角形、三角形、他)、線(直線、曲線、破線、一点差線、他)、面(円、四角形、三角形、他)、等があげられるが、特に限定しない。マイクロフルイデックスへの適用の場合、微細流路の近傍に平行/線状に、突起を配置することにより、突起部がシールの代わりとなり流路内を通る液体がもれにくくなり、より望ましい。なお接合面の表面に微細流路が加工されたり複雑な凹凸形状があったりすることにより、全体として複雑な形状になっている場合、対象となる部分が突起なのか、それとも他の部分が凹んでいるだけなのかの判断がつきにくい場合がある。この場合は、接合対象面の過半数の面積を占める高さを標準とし、それより凸になっている部分を突起と判断することとする。   The protrusion shape provided in advance on a part of the bonding surface used in the present invention refers to a protrusion-shaped object made of plastic and protruding from the surface of the bonding surface, preferably at a height of 200 μm or less. . The cross-sectional shape may be rectangular, trapezoidal or triangular, and is not particularly limited. When the projection is viewed from above, the overall shape is a point (circle, square, triangle, etc.), line (straight line, curve, dashed line, dot-dot line, etc.), surface (circle, square, triangle, etc.) However, it is not particularly limited. In the case of application to microfluidics, it is more preferable that the protrusions are arranged in parallel / linearly in the vicinity of the fine flow path, so that the protrusions can replace the seal and the liquid passing through the flow path is difficult to leak. In addition, if the flow path is processed on the surface of the joint surface or there is a complicated uneven shape, the target part is a protrusion or other part is recessed when it has a complicated shape as a whole. It may be difficult to determine whether or not you are just going. In this case, the height that occupies the majority of the area to be joined is set as a standard, and a portion that is more convex than that is determined as a protrusion.

本発明における突起部は、接合の際に潰れることが特徴である。何らかの方法で突起部にのみ外部からエネルギーを与えることにより、突起の先端部もしくは全体が溶融もしくは溶解することで変形し、その結果として突起部を形成するプラスチックの分子運動が盛んになり、最終的には接着対象物と良好に接合せしめることが可能となる。そして突起部は変形しても、その他の部位は加熱されず変形も無いことが特徴である。突起部が潰れる度合いに関しては特に限定はしないが、もとの突起の高さを100%とした場合、接合完了時に変形した突起の高さが95%以下になることが望ましく、さらには50%以下になることが接合強度の向上のためにはより望ましい。また突起部の組成は、他の部位の組成と異なっていても問題は無い。より接合に最適な柔軟性、融点、熱変形温度、溶融粘度を有する材質を適宜選択することがより好ましいと考えられる。   The protrusion in the present invention is characterized in that it is crushed during bonding. By applying energy from the outside only to the protrusions in some way, the tip or the entire protrusion is deformed by melting or dissolving, and as a result, the molecular motion of the plastic forming the protrusions becomes active and finally Can be bonded well to the object to be bonded. And even if a projection part deform | transforms, it is the characteristics that another site | part does not heat and does not deform | transform. The degree of collapse of the protrusion is not particularly limited, but when the height of the original protrusion is 100%, the height of the protrusion deformed upon completion of bonding is desirably 95% or less, and more preferably 50%. The following is more desirable for improving the bonding strength. Further, there is no problem even if the composition of the protrusions is different from the composition of other parts. It is considered more preferable to appropriately select a material having flexibility, melting point, heat distortion temperature, and melt viscosity more optimal for bonding.

本発明における接合の方法は特に限定しない。一例としては、接着剤による接合や、超音波接合、振動接合、レーザー接合、溶剤接合、過熱による接合、などが利用可能である。突起部分のみを集中的に加熱/溶融を可能とする加工方法、たとえばレーザーや超音波や、あるいは微小領域のみを加熱することのできるスポットヒーターを利用した過熱による接合、などがより好適に使用される。   The joining method in the present invention is not particularly limited. As an example, bonding by an adhesive, ultrasonic bonding, vibration bonding, laser bonding, solvent bonding, bonding by overheating, and the like can be used. A processing method that enables heating / melting of only the protrusions in a concentrated manner, such as laser or ultrasonic waves, or joining by overheating using a spot heater that can heat only a minute region is more preferably used. The

本発明のプラスチック接合方法を利用すると、比較的低温のプロセスで、強固に、汚染なく、比較的大面積を接合でき、性能良好なプラスチック製バイオチップもしくはマイクロ分析チップを安価に製造できるという特徴がある。特にマイクロフルイデックス等の微細加工を施した製品に好適に使用できる。特にそのなかで核酸チップ、プロテインチップ、抗体チップ、アプタマーチップ、糖タンパクチップ等の生理活性物質をチップ表面又は内部に固定化している製品群が挙げられる。   Using the plastic bonding method of the present invention, a relatively large area can be bonded firmly and without contamination in a relatively low-temperature process, and a plastic biochip or microanalysis chip with good performance can be manufactured at low cost. is there. In particular, it can be suitably used for products subjected to fine processing such as microfluidics. In particular, a product group in which a physiologically active substance such as a nucleic acid chip, protein chip, antibody chip, aptamer chip, glycoprotein chip, etc. is immobilized on the surface or inside of the chip can be mentioned.

以下に実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
アクリルを素材とし、図1に示す形状の成形品を、成形加工および切削加工により得た。 本成形品は、貫通孔1(直径1mm)、マイクロ流路2(長さ25mm、断面形状は矩形、深さ100μm、幅200μm)及び突起部3(材質は他の部分と同じくアクリル、高さ50μm、幅20μm、断面形状は矩形、マイクロ流路及び貫通孔より40μm離れた場所に設置)を有する。
またアクリルを素材とし、図2に示す樹脂板を、成形加工により得た。図1の成形品の加工面Aの上に、図2の成形品を乗せ、超音波ウェルダーのホーンを成形品2の上からのせて30kg重の加重をかけた状態で、周波数20kHz、振幅80μm、振動方向は面に平行方向の超音波振動を1秒間かける事で接合した。50μmの高さの突起は潰れて5μmの高さとなったが、2枚の樹脂版は接合された。接合は強固で、手でひねっても剥離しなかった。微細流路部は当初の設計どおり200μm幅で100μm深さであり、変形等は観測されなかった。微細流路部に水を流したが、流路以外に水が流れることは無く、マイクロフルイデックスとして問題なく使用できることが確認された。
Example 1
A molded product having the shape shown in FIG. 1 using acrylic as a raw material was obtained by molding and cutting. This molded product has a through-hole 1 (diameter 1 mm), a micro-channel 2 (length 25 mm, a cross-sectional shape is rectangular, a depth 100 μm, a width 200 μm), and a projection 3 (material is acrylic, height is the same as other parts) 50 μm, width 20 μm, cross-sectional shape is rectangular, and is installed at a location 40 μm away from the microchannel and through-hole).
Moreover, the resin plate shown in FIG. 2 was obtained by molding using acrylic as a raw material. The molded product shown in FIG. 2 is placed on the processed surface A of the molded product shown in FIG. 1, the horn of the ultrasonic welder is placed on the molded product 2 and a weight of 30 kg is applied, and the frequency is 20 kHz and the amplitude is 80 μm. The vibration direction was joined by applying ultrasonic vibration in a direction parallel to the surface for 1 second. The protrusion having a height of 50 μm was crushed to a height of 5 μm, but the two resin plates were joined. The bond was strong and did not peel off when twisted by hand. The microchannel portion was 200 μm wide and 100 μm deep as originally designed, and no deformation or the like was observed. Although water was allowed to flow through the fine channel portion, water did not flow outside the channel, and it was confirmed that the microfluidics can be used without any problem.

(実施例2)
黒色顔料を溶解させたポリ塩化ビニル(熱変形温度60℃)を、表面にコーティングしたアクリル板(熱変形温度100℃)を素材とし、図3に示す形状の成形品を、切削加工により得た。本成形品は、貫通孔21(直径1mm)、マイクロ流路22(長さ25mm、断面形状は矩形、深さ100μm、幅200μm)及び突起部23(材質はここだけ黒色顔料を溶解させたポリ塩化ビニル、高さ40μm、幅100μm、断面形状は矩形、マイクロ流路及び貫通孔より300μm離れた場所に設置)を有する。またアクリルを素材とし、図2に示す樹脂板を、成形加工により得た。図3の成形品の加工面Aの上に、図2の成形品を乗せ、30kg重の加重をかけた状態で、YAGレーザー加工機により波長1064nm、出力10WのYAGレーザーを照射して、黒色のポリ塩化ビニルの突起部のみを溶かして接合した。40μmの高さの突起は潰れて5μmの高さとなったが、2枚の樹脂版は接合された。接合は強固で、手でひねっても剥離しなかった。微細流路部は当初の設計どうり200μm幅で100μm深さであり、変形等は観測されなかった。微細流路部に水を流したが、流路以外に水が流れることは無く、マイクロフルイデックスとして問題なく使用できることが確認された。
(Example 2)
A molded product having a shape shown in FIG. 3 was obtained by cutting using a polyvinyl chloride (heat deformation temperature 60 ° C.) in which black pigment was dissolved and an acrylic plate (heat deformation temperature 100 ° C.) coated on the surface. . This molded product has a through-hole 21 (diameter 1 mm), a micro-channel 22 (length 25 mm, a cross-sectional shape is rectangular, a depth 100 μm, a width 200 μm), and a projection 23 (the material is a poly-polysiloxane having a black pigment dissolved therein) Vinyl chloride, height 40 μm, width 100 μm, cross-sectional shape is rectangular, installed at a location 300 μm away from the microchannel and through-hole). Moreover, the resin plate shown in FIG. 2 was obtained by molding using acrylic as a raw material. The molded product of FIG. 2 is placed on the processed surface A of the molded product of FIG. 3, and a YAG laser processing machine is used to irradiate a YAG laser with a wavelength of 1064 nm and an output of 10 W by applying a weight of 30 kg. Only the projections of the polyvinyl chloride were melted and joined. The protrusion having a height of 40 μm was crushed to a height of 5 μm, but the two resin plates were joined. The bond was strong and did not peel off when twisted by hand. The microchannel portion was 200 μm wide and 100 μm deep as originally designed, and no deformation or the like was observed. Although water was allowed to flow through the fine channel portion, water did not flow outside the channel, and it was confirmed that the microfluidics can be used without any problem.

(実施例3)
アクリルを素材とし、図4に示す形状の成形品を、成形加工および切削加工により得た。本成形品は、貫通孔31(直径1mm)、マイクロ流路32(長さ25mm、断面形状は矩形、深さ100μm、幅200μm)、突起部33(材質は他の部分と同じくアクリル、高さ50μm、幅20μm、断面形状は矩形、マイクロ流路及び貫通孔より40μm離れた場所に設置)及び突起部34(材質は他の場所と同様にアクリル、直径1mm、高さ850μm)を有する。またアクリルを素材とし、図5に示す樹脂板を、成形加工により得た。本成形品は、貫通孔41(直径1mm、図4の34の突起部が挿入される位置に設けられている)を有する。図1の成形品の加工面Aの上に、図5の成形品を乗せ、図4の突起部34を図5の貫通孔41に挿入した状態で、超音波ウェルダーを利用して実施例1と同様の条件で接合した。図4の突起33に関しては、50μmの高さの突起は潰れて5μmの高さとなり、図4の突起34に関しては、高さ850μmの突起が潰れて810〜800μmの高さとなったが、2枚の樹脂版は強固に接合された。微細流路部は当初の設計どうり200μm幅で100μm深さであり、変形等は観測されなかった。微細流路部に水を流したが、流路以外に水が流れることは無く、マイクロフルイデックスとして問題なく使用できることが確認された
(Example 3)
A molded product having the shape shown in FIG. 4 using acrylic as a raw material was obtained by molding and cutting. This molded product has a through-hole 31 (diameter 1 mm), a micro-channel 32 (length 25 mm, a cross-sectional shape is a rectangle, a depth 100 μm, a width 200 μm), and a protrusion 33 (the material is acrylic, height is the same as other parts) 50 μm, width 20 μm, the cross-sectional shape is rectangular, and is provided at a location 40 μm away from the microchannel and the through-hole) and the projection 34 (material is acrylic, diameter 1 mm, height 850 μm as in other locations). A resin plate shown in FIG. 5 was obtained by molding using acrylic as a raw material. This molded product has a through-hole 41 (diameter 1 mm, provided at a position where 34 protrusions in FIG. 4 are inserted). 5 is placed on the processing surface A of the molded product of FIG. 1 and the projection 34 of FIG. 4 is inserted into the through hole 41 of FIG. Bonding was performed under the same conditions. With respect to the protrusion 33 in FIG. 4, the protrusion having a height of 50 μm was crushed to a height of 5 μm, and for the protrusion 34 in FIG. 4, the protrusion having a height of 850 μm was crushed to a height of 810 to 800 μm. The resin plates were firmly joined. The microchannel portion was 200 μm wide and 100 μm deep as originally designed, and no deformation or the like was observed. Although water was allowed to flow through the microchannel, it was confirmed that water could not flow outside the channel and could be used without any problems as a microfluidic.

(比較例1)
アクリルを素材とし、図6に示す形状の成形品、成形加工と切削加工により得た。本成形品は、貫通孔51(直径1mm)及びマイクロ流路52(長さ25mm、断面形状は矩形、深さ100μm、幅200μm)を有する。実施例1と同様の条件で図6と図2の成形品を接合する実験を行った。しかし突起形状のない図6の成形品と図2の成形品を接合させることができず、マイクロフルイデックスを得ることはできなかった。
(Comparative Example 1)
Using acrylic as a raw material, the molded product having the shape shown in FIG. 6 was obtained by molding and cutting. This molded product has a through-hole 51 (diameter 1 mm) and a micro-channel 52 (length 25 mm, cross-sectional shape is rectangular, depth 100 μm, width 200 μm). Experiments were performed to join the molded products of FIGS. 6 and 2 under the same conditions as in Example 1. FIG. However, the molded product of FIG. 6 having no protrusion shape and the molded product of FIG. 2 could not be joined, and microfluidics could not be obtained.

(比較例2)
比較例1と同様に接合実験を行った。なお超音波ホーンの加重を200kg重とし、超音波印加時間を20秒にして試した。しかし突起形状のない図6の成形品と図2の成形品を接合させることができず、マイクロフルイデックスを得ることはできなかった。
(Comparative Example 2)
A joining experiment was conducted in the same manner as in Comparative Example 1. In addition, the weight of the ultrasonic horn was set to 200 kg, and the ultrasonic application time was set to 20 seconds. However, the molded product of FIG. 6 having no protrusion shape and the molded product of FIG. 2 could not be joined, and microfluidics could not be obtained.

(比較例3)
アクリルを素材とし、図6に示す形状の成形品、成形加工と切削加工により得た。また、アクリルを素材とし、図2に示す形状の成形品を成形により得た。図6の成形品の加工面Aの上に、図2の成形品を乗せ、50kg重の加重をかけた状態で、120℃に加温して30分間処理することで、図6と図2の成形品の接合品を得た。接合は極めて強固であった。なお接合完了後に徐冷したが、その後に成形品全体に反りが生じた。微細流路部に水を流したが、流路以外に水が流れることは無かった。しかし微細流路部は、当初の設計が200μm幅で100μm深さであるのに対して、接合処理後は240μm幅で70μm深さに変形しており、流路全体に高温が印加されていることが示唆された。チップ全体の反りと、流路全体が加熱されたことによる流路の変形とで、この加工方式によるバイオチップ又はマイクロ分析チップの作成は問題があることが判明した。
(Comparative Example 3)
Using acrylic as a raw material, the molded product having the shape shown in FIG. 6 was obtained by molding and cutting. Further, a molded product having the shape shown in FIG. 2 was obtained by molding using acrylic as a raw material. The molded product of FIG. 2 is placed on the processed surface A of the molded product of FIG. 6 and heated to 120 ° C. for 30 minutes in a state where a weight of 50 kg is applied. A joined product of the molded product was obtained. Bonding was extremely strong. Although it was gradually cooled after the completion of joining, the entire molded product was warped thereafter. Although water was allowed to flow through the fine channel portion, water did not flow outside the channel. However, the initial design of the fine channel part is 200 μm wide and 100 μm deep, but after the bonding process, it is deformed to 240 μm wide and 70 μm deep, and a high temperature is applied to the entire channel. It has been suggested. It has been found that there is a problem in producing a biochip or microanalysis chip by this processing method due to warpage of the entire chip and deformation of the flow path due to heating of the entire flow path.

実施例1における微細加工成形品を示す平面及び断面の模式図である。It is a schematic diagram of a plane and a cross section showing a microfabricated molded product in Example 1. 実施例1,2、比較例1〜3における成形品を示す平面及び断面の模式図である。It is a schematic diagram of the plane and cross section which show the molded article in Examples 1, 2 and Comparative Examples 1-3. 実施例2における微細加工成形品を示す平面及び断面の模式図である。It is a schematic diagram of a plane and a cross section showing a microfabricated molded article in Example 2. 実施例3における微細加工成形品を示す平面及び断面の模式図である。It is the schematic diagram of the plane and cross section which show the microfabrication molded product in Example 3. FIG. 実施例3における成形品を示す平面及び断面の模式図である。It is a schematic diagram of a plane and a section showing a molded product in Example 3. 比較例1〜3における微細加工成形品を示す平面及び断面の模式図である。It is a schematic diagram of the plane and cross section which show the microfabrication molded product in Comparative Examples 1-3.

符号の説明Explanation of symbols

1、21、31、41、51 貫通孔、
2、22、32、52 マイクロ流路、
3、23、33、34 突起部
1, 21, 31, 41, 51 through holes,
2, 22, 32, 52 microchannel,
3, 23, 33, 34 Projection

Claims (7)

2枚以上の板状プラスチック部材の接合方法であって、少なくとも1枚の板状プラススチック部材の接合面側に微細回路が形成されており、少なくとも1枚の板状プラススチック部材の接合面の一部に突起形状の部位が形成されており、接合の際に該突起形状の部位が変形することにより接合することを特徴とする、プラスチック部材の接合方法。 A method of joining two or more plate-like plastic members, wherein a fine circuit is formed on the joining surface side of at least one plate-like plastic member, and the joining surface of at least one plate-like plastic member is A method for joining plastic members, characterized in that a protrusion-shaped part is formed in a part, and the protrusion-shaped part is joined by deformation at the time of joining. 接合方法において、レーザー接合、過熱による接合、超音波接合、のいずれかもしくはそれらの複合の接合方法を使用することを特徴とする、請求項1記載のプラスチック部材の接合方法。 2. The method for joining plastic members according to claim 1, wherein any one of laser joining, joining by overheating, ultrasonic joining, or a composite joining method thereof is used as the joining method. 接合の際の突起形状部位の変形において、接合前の突起形状部位の高さを100%とした場合、接合完了時に変形した突起形状部位の高さが50%以下になっていることを特徴とする、請求項1又は2記載のプラスチック部材の接合方法。 In the deformation of the protrusion-shaped part at the time of joining, when the height of the protrusion-shaped part before joining is 100%, the height of the protrusion-shaped part deformed at the completion of joining is 50% or less. The method for joining plastic members according to claim 1 or 2. 突起形状部位の材質が他の部位の材質と異なることを特徴とする、請求項1〜3いずれか記載のプラスチック部材の接合方法。 The method for joining plastic members according to any one of claims 1 to 3, wherein the material of the protrusion-shaped part is different from the material of the other part. 突起形状部位が微細流路の近傍に配置されていることを特徴とする、請求項1〜4いずれか記載のプラスチック部材の接合方法。 The method for joining plastic members according to any one of claims 1 to 4, wherein the protrusion-shaped portion is disposed in the vicinity of the fine flow path. 請求項1〜5いずれか記載の接合方法を使用して接合されたことを特徴とする、プラスチック製のバイオチップまたはマイクロ分析チップ。 A plastic biochip or microanalysis chip, which is bonded using the bonding method according to claim 1. 核酸チップ、プロテインチップ、抗体チップ、アプタマーチップ、及び糖タンパクチップから選ばれる少なくとも1つである請求項6記載のプラスチック製のバイオチップ。 The plastic biochip according to claim 6, which is at least one selected from a nucleic acid chip, a protein chip, an antibody chip, an aptamer chip, and a glycoprotein chip.
JP2005074084A 2005-03-15 2005-03-15 Bonding method of plastic member, and biochip and micro analysis chip manufactured using method Pending JP2006258508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074084A JP2006258508A (en) 2005-03-15 2005-03-15 Bonding method of plastic member, and biochip and micro analysis chip manufactured using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074084A JP2006258508A (en) 2005-03-15 2005-03-15 Bonding method of plastic member, and biochip and micro analysis chip manufactured using method

Publications (1)

Publication Number Publication Date
JP2006258508A true JP2006258508A (en) 2006-09-28

Family

ID=37097951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074084A Pending JP2006258508A (en) 2005-03-15 2005-03-15 Bonding method of plastic member, and biochip and micro analysis chip manufactured using method

Country Status (1)

Country Link
JP (1) JP2006258508A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175795A (en) * 2006-12-21 2008-07-31 Sumitomo Bakelite Co Ltd Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2009113314A (en) * 2007-11-06 2009-05-28 Denso Corp Laser melding method of resin member
JP2011161578A (en) * 2010-02-10 2011-08-25 Fujifilm Corp Joining method, and method for manufacturing microchannel device
WO2015029691A1 (en) * 2013-08-30 2015-03-05 株式会社ニコン Biochip support member, method for manufacturing biochip support member, biochip package, screening device, and screening method
CN107775960A (en) * 2017-09-27 2018-03-09 成都微康生物科技有限公司 A kind of micro-fluidic chip bonding method and micro-fluidic chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516241A (en) * 1991-07-16 1993-01-26 Fujitsu Ltd Method for fusing plastic parts
JPH09502795A (en) * 1993-06-15 1997-03-18 フアーマシア・ビオテク・アクチエボラーグ Method of manufacturing microchannel / microcavity structure
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
JP2002243734A (en) * 2001-02-14 2002-08-28 Inst Of Physical & Chemical Res Microchip
JP2003502637A (en) * 1999-06-16 2003-01-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Small analysis system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516241A (en) * 1991-07-16 1993-01-26 Fujitsu Ltd Method for fusing plastic parts
JPH09502795A (en) * 1993-06-15 1997-03-18 フアーマシア・ビオテク・アクチエボラーグ Method of manufacturing microchannel / microcavity structure
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
JP2003502637A (en) * 1999-06-16 2003-01-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Small analysis system
JP2002243734A (en) * 2001-02-14 2002-08-28 Inst Of Physical & Chemical Res Microchip

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175795A (en) * 2006-12-21 2008-07-31 Sumitomo Bakelite Co Ltd Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2009113314A (en) * 2007-11-06 2009-05-28 Denso Corp Laser melding method of resin member
JP4678021B2 (en) * 2007-11-06 2011-04-27 株式会社デンソー Laser welding method of resin material
US8293060B2 (en) 2007-11-06 2012-10-23 Denso Corporation Laser beam welding method and mounting structure for welding light-absorption resin member and translucent resin member
JP2011161578A (en) * 2010-02-10 2011-08-25 Fujifilm Corp Joining method, and method for manufacturing microchannel device
WO2015029691A1 (en) * 2013-08-30 2015-03-05 株式会社ニコン Biochip support member, method for manufacturing biochip support member, biochip package, screening device, and screening method
JPWO2015029691A1 (en) * 2013-08-30 2017-06-22 株式会社ニコン Biochip support member, biochip support member manufacturing method, biochip package, screening apparatus, and screening method
JP2018004650A (en) * 2013-08-30 2018-01-11 株式会社ニコン Support member for biochips, method for producing support member for biochips, package for biochips, screening device, and screening method
CN107775960A (en) * 2017-09-27 2018-03-09 成都微康生物科技有限公司 A kind of micro-fluidic chip bonding method and micro-fluidic chip
CN107775960B (en) * 2017-09-27 2020-08-11 成都微康生物科技有限公司 Microfluidic chip bonding method and microfluidic chip

Similar Documents

Publication Publication Date Title
US7842157B2 (en) Method for bonding plastic micro chip
JP4751554B2 (en) Method for joining two workpieces made of plastic without using foreign matter
JP2006258508A (en) Bonding method of plastic member, and biochip and micro analysis chip manufactured using method
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP4496934B2 (en) Manufacturing method of micro chemical device
JP5933518B2 (en) Bonding method and manufacturing method of microchannel device
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP4752364B2 (en) Plastic bonding method, and biochip or microanalysis chip manufactured using the method
CN102422164B (en) Microchip
JP2012007920A (en) Manufacturing method of micro flow channel device
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
KR20110013393A (en) Microanalysis chip adhesive sheet, microanalysis chip, and manufacturing method thereof
JP2011214838A (en) Resin microchannel chip
JP2005077239A (en) Joining method of microchip substrates and microchip
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
JP2014122831A (en) Microfluidic device
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
JP2005224688A (en) Method for manufacturing microreactor chip
KR100545581B1 (en) A method for bonding plastic substrates at a low temperature using a X-ray irradiation
JP2017154349A (en) Method of manufacturing micro flow path chip
JP2008304352A (en) Channel device and method for bonding channel device-use board
JP2006247896A (en) Plastic laminating method, joining device and plastic product manufactured using plastic laminating method
JP2013044528A (en) Microchannel device
Zhang et al. Ultrasonic bonding of polymer microfluidic chips
JP2006076246A (en) Substrate lamination method, chip forming method using the lamination method and chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222