JP2006053060A - Fine particle manufacturing method, and micro flow passage structure therefor - Google Patents

Fine particle manufacturing method, and micro flow passage structure therefor Download PDF

Info

Publication number
JP2006053060A
JP2006053060A JP2004235207A JP2004235207A JP2006053060A JP 2006053060 A JP2006053060 A JP 2006053060A JP 2004235207 A JP2004235207 A JP 2004235207A JP 2004235207 A JP2004235207 A JP 2004235207A JP 2006053060 A JP2006053060 A JP 2006053060A
Authority
JP
Japan
Prior art keywords
microchannel
continuous phase
phase
dispersed phase
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004235207A
Other languages
Japanese (ja)
Other versions
JP4470640B2 (en
Inventor
Mahan Yamanaka
麻帆 山中
Hideaki Kiritani
英昭 桐谷
Tatsu Futami
達 二見
Koji Katayama
晃治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004235207A priority Critical patent/JP4470640B2/en
Publication of JP2006053060A publication Critical patent/JP2006053060A/en
Application granted granted Critical
Publication of JP4470640B2 publication Critical patent/JP4470640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro flow passage structure capable of generating a large amount of fine liquid drops of uniform particle sizes having 10μm of average particle size in a micro flow passage, and having 10% or less of particle size dispersion degree, by an inexpensive device, and a liquid drop generating method using the same. <P>SOLUTION: In this fine particle generating method, a dispersion phase is fed out into the micro flow passage with a flowing continuous phase, through a micro space, the continuous phase is intruded in between the dispersion phase and a flow passage inner wall surrounding the dispersion phase, in the vicinity of a connection part between the micro space and the micro flow passage with the flowing continuous phase, and the dispersion phase generates the fine particles of a particle size having a cross-sectional area smaller than a cross-sectional area of the micro space in a tip of the substantially conical flow, when the one or more of substantially conical flows with the sharp tip are formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、分取・分離用カラム充填剤に用いられる微粒子や医薬品、含酵素カプセル、化粧品、香料、表示・記録材料、接着剤、農薬等に利用されるマイクロカプセルに用いられる微粒子などの生成用として好適に用いられる微小流路構造体及びそれを用いた微粒子の生成方法に関する。   The present invention is the production of fine particles used in column fillers for separation / separation, fine particles used in microcapsules used in pharmaceuticals, enzyme-containing capsules, cosmetics, fragrances, display / recording materials, adhesives, agricultural chemicals, etc. The present invention relates to a micro flow channel structure that is suitably used for the purpose, and a method for producing fine particles using the same.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより微粒子の生成を行う研究が注目されている。   In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research that produces fine particles by doing so has attracted attention.

微粒子を生成する手段の一つとして、界面張力の異なる2種類の流体を、前記2種類の流体の交差部が存在する流路に導入し、一方の流体によりもう一方の流体をせん断することにより微粒子を生成できることが報告されている(例えば、特許文献1参照)。なお本発明でいう微粒子とは、固体状の微粒子の他にも微小液滴や微小液滴の表面だけが硬化した微粒子(以下、「半硬化」という。)や、粘性が高い半固体状の微粒子も含む。   As one of the means for generating fine particles, two kinds of fluids having different interfacial tensions are introduced into a flow path where an intersection of the two kinds of fluids exists, and one fluid is sheared by the other. It has been reported that fine particles can be generated (see, for example, Patent Document 1). In addition to the solid fine particles, the fine particles referred to in the present invention are fine droplets, fine particles obtained by curing only the surface of the fine droplets (hereinafter referred to as “semi-cured”), semi-solid particles having high viscosity. Also includes fine particles.

例えば、特許文献1に示されている手法は図1に示すように、基板(1)に連続相導入口(2)、連続相を導入する流路(以下、連続相導入流路(3)という)、分散相導入口(4)、分散相を導入する流路(以下、分散相導入流路(5)という)、連続相中に微小液滴化した分散相を排出する流路(以下、排出流路(7)という)及び排出口(8)を有したT字型の流路を有し、基板の流路面側にカバー体(32)を接合した微小流路構造体であり、マイクロチャンネル中を流れる連続相に対し、分散相を前記連続相の流れに交差する向きで分散相供給口より排出し、前記連続相のせん断応力によって、前記分散相の供給チャンネルの幅より径の小さい微小液滴を得ている。ここで特許文献1には、連続相導入流路の幅及び分散相導入流路の幅は100μmであり、連続相導入流路の深さ及び分散相導入流路の深さは100μmと記載されている。なお、以下では、導入された連続相と分散相とが交差する部分を交差部(6)という。特許文献1に記載された手法を用い分散相と連続相の流速を制御して送液を行うと、数μm〜数百μmの微小液滴の生成が可能であり、分散相及び連続相の流量を制御することで生成する微小液滴の粒径を制御することが可能であることが記載されている。得られた微小液滴の粒径としては、特許文献1では分散相の送液圧を2.45kPaに固定し、連続相の送液圧を4.85〜5.03kPaに変化させることで5〜25μmの粒径の微小液滴を得ていることが示されている。しかしながら、流体のせん断応力のみを用いて粒径が10μm未満であり、かつ粒径分散度が良い微小液滴を生成することは一般的に非常に難しい。   For example, as shown in FIG. 1, the technique disclosed in Patent Document 1 is a continuous phase introduction port (2) and a flow path for introducing a continuous phase (hereinafter referred to as a continuous phase introduction flow path (3)) to a substrate (1). Disperse phase introduction port (4), a flow path for introducing a disperse phase (hereinafter referred to as a disperse phase introduction flow path (5)), a flow path for discharging a disperse phase formed into microdroplets in a continuous phase (hereinafter referred to as a disperse phase) A fine channel structure having a T-shaped channel having a discharge channel (7) and a discharge port (8) and having a cover body (32) joined to the channel surface side of the substrate, With respect to the continuous phase flowing in the microchannel, the dispersed phase is discharged from the dispersed phase supply port in a direction intersecting the flow of the continuous phase, and the diameter of the dispersed phase is larger than the width of the supply channel of the dispersed phase by the shear stress of the continuous phase. Small micro droplets are obtained. Here, Patent Document 1 describes that the width of the continuous phase introduction channel and the width of the dispersed phase introduction channel are 100 μm, and the depth of the continuous phase introduction channel and the depth of the dispersed phase introduction channel are 100 μm. ing. Hereinafter, a portion where the introduced continuous phase and the dispersed phase intersect is referred to as an intersection (6). When the liquid feeding is performed by controlling the flow rates of the dispersed phase and the continuous phase using the technique described in Patent Document 1, it is possible to generate micro droplets of several μm to several hundreds of μm. It is described that it is possible to control the particle size of the generated fine droplets by controlling the flow rate. Regarding the particle size of the obtained fine droplets, in Patent Document 1, the liquid feeding pressure of the dispersed phase is fixed to 2.45 kPa, and the liquid feeding pressure of the continuous phase is changed to 4.85 to 5.03 kPa. It is shown that microdroplets with a particle size of ˜25 μm are obtained. However, it is generally very difficult to produce microdroplets having a particle size of less than 10 μm and a good degree of particle size dispersion using only the shear stress of the fluid.

また微粒子を生成する第2の手法として、中間プレートに多数形成した非円形の貫通孔を分散相が通過して連続相に押し出される時に、連続相からの不均一なせん断応力により分散相を微小液滴化する方法がある(例えば、特許文献2参照)。この手法の概略図を図2に、また図2のA−A’断面図を図3に示す。この例では、中間プレート(12)にサブミクロンオーダーから数ミクロンオーダーの非円形の貫通孔(13)を多数形成し、中間プレートの上に第1のプレート(14)を、下に第2のプレート(15)を間隔を空けて取り付け、第1のプレートと中間プレートの間に分散相(27)を流し、第2のプレートと中間プレートの間に連続相(33)を流す。分散相は中間プレートの非円形の貫通孔を通過して連続相に押し出されるときに、貫通孔が非円形であるために連続相からの不均一なせん断応力を受けて速やかに微小液滴化される。また、微小液滴を量産するために中間プレートに形成する貫通孔の数は、例えば1000個/cm以上形成する。しかしながら、材質を問わず中間プレートにサブミクロンオーダーから数ミクロンオーダーの非円形の貫通孔を1000個/cm以上もの多数形成するには、電子線照射や高密度プラズマエッチングなど大掛かりな装置を使用する方法を用いるために非常に加工コストが高くなり実用的な生産装置には向いていない。 As a second method for producing fine particles, when the dispersed phase passes through the non-circular through holes formed in the intermediate plate and is pushed out to the continuous phase, the dispersed phase is made minute by the uneven shear stress from the continuous phase. There is a method for forming droplets (see, for example, Patent Document 2). A schematic diagram of this method is shown in FIG. 2, and a cross-sectional view taken along the line AA 'of FIG. 2 is shown in FIG. In this example, a large number of non-circular through holes (13) of the order of submicron to several microns are formed in the intermediate plate (12), the first plate (14) is provided on the intermediate plate, and the second plate is provided below. Plates (15) are mounted at spaced intervals, the dispersed phase (27) flows between the first plate and the intermediate plate, and the continuous phase (33) flows between the second plate and the intermediate plate. When the dispersed phase passes through the non-circular through-holes in the intermediate plate and is pushed out to the continuous phase, the through-holes are non-circular, so that the dispersed phase rapidly undergoes microdroplets due to uneven shear stress from the continuous phase. Is done. Further, the number of through holes formed in the intermediate plate in order to mass-produce micro droplets is, for example, 1000 / cm 2 or more. However, also a number forming a non-circular through hole of the order of several microns 1000 / cm 2 or more from the submicron order on the intermediate plate regardless of the material, using a large-scale apparatus such as an electron beam irradiation and high-density plasma etching This method is very expensive and is not suitable for practical production equipment.

また、微小液滴を生成する第3の手法として、2本の流路(以下、流路A、流路Bとする)に挟まれた、前記2本の流路と連通する微小空間に、一方の流路Aから微小液滴化したい流体を送液し、毛細管現象により前記微小空間に流体を引き込んだ後、流路Aに残留する流体を取り除き、前記微小空間の容積に応じた体積の微小液滴を生成することが試みられている(例えば、特許文献3参照)。   In addition, as a third method for generating micro droplets, a micro space sandwiched between two channels (hereinafter referred to as channel A and channel B) and communicating with the two channels, A fluid to be converted into microdroplets is sent from one channel A, and after the fluid is drawn into the microspace by capillary action, the fluid remaining in the channel A is removed, and a volume corresponding to the volume of the microspace is obtained. Attempts have been made to generate microdroplets (see, for example, Patent Document 3).

特許文献3に示されている手法は図4に示すように、それぞれ所定の方向に延長される第1の流路A(9)ならびに第2の流路B(10)と、流路Aならびに流路Bのそれぞれの流路壁において開口して流路Aと流路Bとを連結する流路Aならびに流路Bの太さより細い第3の微小空間C(11)とを有し、流路Aに導入された液体が、流路Aの流路壁において開口する微小空間Cの開口部を介して毛細管現象により微小空間C内に引き込まれた後、流路Aに残留する前記液体を取り除き、前記微小空間Cの容積に応じた体積の微小液滴を生成し流路Bに送り出している。   As shown in FIG. 4, the technique disclosed in Patent Document 3 includes a first flow path A (9) and a second flow path B (10) that are each extended in a predetermined direction, a flow path A and A flow path A that opens in each flow path wall of the flow path B and connects the flow path A and the flow path B, and a third minute space C (11) that is thinner than the thickness of the flow path B. After the liquid introduced into the channel A is drawn into the minute space C by capillary action through the opening of the minute space C opened in the channel wall of the channel A, the liquid remaining in the channel A is removed. The microdroplet having a volume corresponding to the volume of the microspace C is generated and sent to the flow path B.

特許文献3では、微小空間Cの容積が実質的にnL(ナノリットル)オーダーであり、実施例にも5nLのグルコース水溶液の微小液滴を生成させる旨の記載がある。これは粒径に換算すると約200μm程度となる。さらに平均粒径の小さい微小液滴を生成するには、微小空間Cの容積を小さくする必要があり、微小空間Cの容積を0.5pL(ピコリットル)未満とすれば平均粒径が10μm未満の微小液滴を生成することが計算上可能である。しかしながら、0.5pLの断面積は、0.5pLの立方体を仮定した場合約8μmとなる。 In Patent Document 3, the volume of the minute space C is substantially on the order of nL (nanoliter), and there is a description in the examples that fine droplets of a 5 nL glucose aqueous solution are generated. This is about 200 μm in terms of particle size. Furthermore, in order to generate micro droplets having a small average particle size, the volume of the micro space C needs to be reduced. If the volume of the micro space C is less than 0.5 pL (picoliter), the average particle size is less than 10 μm. It is computationally possible to produce a microdroplet. However, the cross-sectional area of 0.5 pL is about 8 μm 3 assuming a 0.5 pL cube.

しかしながら、特許文献3の態様で微小液滴を生成した場合、微小液滴の生成速度が遅いという問題がある。実際特許文献3の例では、微小液滴を生成する原料を連続的に流す態様ではなく、微小液滴の原料となる液体を流したあと、液体を微小空間Cのみに蓄えるために流路Aから微小液滴の原料となる液体を排除し、さらに微小空間Cに蓄えられた液体を流路Bに排出するために流路Aに別の流体を送液する必要があり、これらの一連の操作によって1つの微小液滴を生成させることとなる。従って、特許文献3の方法では、平均粒径が数μm程度で分散度が10%未満の微小液滴を生成することが可能ではあるが、その生成速度が遅いために、実際の事業規模に相当するような大量生産に適用することは非常に困難であった。   However, when microdroplets are generated in the manner of Patent Document 3, there is a problem that the microdroplet generation speed is slow. In fact, in the example of Patent Document 3, the material for generating the microdroplets is not continuously flowed, but the flow path A is used to store the liquid only in the microspace C after flowing the liquid that is the raw material for the microdroplets. In order to eliminate the liquid that is the raw material of the fine droplets from the liquid and to discharge the liquid stored in the minute space C to the flow path B, it is necessary to send another fluid to the flow path A. One minute droplet is generated by the operation. Therefore, in the method of Patent Document 3, it is possible to generate micro droplets having an average particle size of about several μm and a degree of dispersion of less than 10%. However, since the generation speed is slow, the actual business scale is reduced. It was very difficult to apply to the corresponding mass production.

国際公開WO02/068104号パンフレットInternational Publication WO02 / 068104 Pamphlet 特許第3511238号公報Japanese Patent No. 3511238 特開2002−357616号公報JP 2002-357616 A

上記のように流体のせん断応力や毛細管現象により微粒子を生成する従来の技術では、平均粒径が10μm未満であり、かつ粒径分散度が10%未満の均一粒径の微粒子を、安価な生産装置で大量に生成することは非常に困難であった。ここで、粒径分散度とは、粒径の標準偏差を粒径の平均値(以下、平均粒径という。)で割った値であると定義され、本発明において粒径分散度が良いとは、粒径分散度が10%未満であることを意味する。   As described above, the conventional technology for producing fine particles by fluid shear stress or capillary action produces low-priced particles having an average particle size of less than 10 μm and a uniform particle size of less than 10%. It was very difficult to produce in large quantities with the equipment. Here, the particle size dispersion is defined as a value obtained by dividing the standard deviation of the particle size by the average value of the particle sizes (hereinafter referred to as the average particle size), and in the present invention, the particle size dispersion is good. Means that the particle size dispersion is less than 10%.

本発明は、上記課題を鑑みてなされたもので、微小流路内で平均粒径が10μm未満であり、かつ粒径分散度が10%未満の均一粒径の微粒子をより安価な装置で大量に生成することを可能とする微小流路構造体及びそれを用いた微粒子生成方法を提供することにある。   The present invention has been made in view of the above problems, and a large amount of fine particles having a uniform particle diameter having an average particle diameter of less than 10 μm and a particle size dispersion of less than 10% in a microchannel can be obtained with a cheaper apparatus. It is an object of the present invention to provide a micro flow channel structure that can be generated in a simple manner and a fine particle generation method using the same.

本発明は、上記課題を解決する手段として、連続相が流れる微小流路に分散相を、微小空間を通して押し出し、分散相の自己粒子化と連続相のせん断応力により分散相の微粒子を生成する際に、微小空間と連続相が流れる微小流路との接続部近傍において、連続相が分散相と分散相を取り囲む流路内壁との間に入りこみ、分散相が先の尖った1以上の略円錐状の流れが形成されるときに略円錐状の先端で微小空間の断面積よりも小さい断面積を有する粒径の微粒子を生成する微粒子生成方法を提供するものである。また本発明は、前記微粒子生成方法を具現化するために、第1の微小流路基板と第2の微小流路基板から構成され、第1の微小流路基板には分散相と連続相が互いに交差せずに流れる微小流路がそれぞれ1以上備えられ、第2の微小流路基板には分散相と連続相が流れる微小流路を繋ぐための1以上の微小空間が備えられ、第1の微小流路基板の微小流路面と第2の微小流路基板の微小空間面を互いに向い合わせて貼り合せた構造体であり、微小空間の幅及び/または深さが、分散相及び連続相を流す微小流路の幅及び/または深さより小さいことを特徴とし、微小空間の1以上の内壁面が、微小空間の内側に向って略凸状に湾曲させた微小流路構造体を提供するものである。このことにより、上記の従来技術による課題を解決することができ、遂に本発明を完成することができた。以下、本発明を詳細に説明する。   As a means for solving the above problems, the present invention provides a method in which a dispersed phase is extruded through a minute space into a microchannel through which a continuous phase flows, and fine particles of the dispersed phase are generated by self-particulation of the dispersed phase and shear stress of the continuous phase. In addition, in the vicinity of the connection portion between the minute space and the minute channel through which the continuous phase flows, the continuous phase enters between the dispersed phase and the inner wall of the channel surrounding the dispersed phase, and the dispersed phase has one or more substantially cones with sharp points. Provided is a fine particle production method for producing fine particles having a particle size having a cross-sectional area smaller than a cross-sectional area of a minute space at a substantially conical tip when a flow is formed. The present invention also includes a first microchannel substrate and a second microchannel substrate in order to embody the fine particle generation method, and the first microchannel substrate has a dispersed phase and a continuous phase. One or more microchannels that flow without intersecting each other are provided, and the second microchannel substrate is provided with one or more microspaces for connecting the microchannels through which the dispersed phase and the continuous phase flow, The micro-channel surface of the micro-channel substrate and the micro-space surface of the second micro-channel substrate are bonded to each other so that the width and / or depth of the micro-space is a dispersed phase and a continuous phase. Provided is a microchannel structure in which one or more inner wall surfaces of a microspace are curved in a substantially convex shape toward the inside of the microspace, wherein the microchannel is smaller in width and / or depth than the microchannel. Is. As a result, the above-mentioned problems with the prior art could be solved, and the present invention was finally completed. Hereinafter, the present invention will be described in detail.

本発明の微粒子生成方法は、連続相が流れる微小流路に分散相を、微小空間を通して押し出し、微小空間と連続相が流れる微小流路との接続部近傍において、連続相が分散相と分散相を取り囲む流路内壁との間に入りこみ、分散相が先の尖った1以上の略円錐状の流れが形成されるときに略円錐状の先端で微小空間の断面積よりも小さい断面積を有する粒径の微粒子を生成する微粒子生成方法である。これは、一般的に連続相のせん断応力が分散相にはたらくと、分散相の一部に連続相が入りこむ現象が生じる。このときに分散相と連続相の送液速度、送液圧力を調整すると、分散相が先の尖った1以上の略円錐状の流れが形成され、その先端で微小空間の断面積より小さい断面積を有する粒径の微粒子が形成される。このような微粒子の生成方法を用いることで、サブミクロンオーダーから数ミクロンオーダーの粒径を有する微粒子を生成することができる。   In the fine particle production method of the present invention, the dispersed phase is pushed through the minute space through the minute channel through which the continuous phase flows. And having a cross-sectional area smaller than the cross-sectional area of the minute space at the substantially conical tip when one or more substantially conical flows with a sharp point are formed. This is a fine particle production method for producing fine particles having a particle diameter. In general, when the shear stress of the continuous phase acts on the dispersed phase, a phenomenon in which the continuous phase enters a part of the dispersed phase occurs. At this time, when the liquid feeding speed and the liquid feeding pressure of the dispersed phase and the continuous phase are adjusted, the dispersed phase forms one or more substantially conical flows with sharp points, and the tip of the dispersed phase is smaller than the cross-sectional area of the minute space. Fine particles having a particle size having an area are formed. By using such a fine particle production method, fine particles having a particle size on the order of submicron to several microns can be produced.

また本発明の微粒子生成方法は連続相が流れる微小流路に分散相を微小空間を通して押し出し、分散相の自己粒子化かつ連続相のせん断応力により分散相の微粒子を生成する微粒子生成方法である。   The fine particle production method of the present invention is a fine particle production method in which a dispersed phase is extruded through a minute space into a minute flow channel through which a continuous phase flows, and the dispersed phase self-particles and the dispersed phase fine particles are produced by shear stress of the continuous phase.

一般に自己粒子化は界面張力によって生じ、分散相のせん断は連続相のせん断応力によって生じる。従って、界面張力による自己粒子化に加えて連続相の流れによるせん断応力がはたらくことで、界面張力のみあるいは連続相のせん断応力のみで分散相から微粒子を生成する場合に比べてより粒径の小さな微粒子を生成しやすくなるため、より小さな微粒子をより速い生成速度で生成することができる。   In general, self-particle formation is caused by interfacial tension, and shear of the dispersed phase is caused by shear stress of the continuous phase. Therefore, in addition to self-particle formation due to interfacial tension, shear stress due to the flow of the continuous phase works, so that the particle size is smaller than when generating fine particles from the dispersed phase only by interfacial tension or only by shear stress of the continuous phase. Since it becomes easy to produce fine particles, smaller fine particles can be produced at a higher production rate.

また、本発明の微小流路構造体は、第1の微小流路基板と第2の微小流路基板から構成される微小流路構造体であって、第1の微小流路基板には分散相と連続相が互いに交差せずに流れる微小流路がそれぞれ1以上備えられ、第2の微小流路基板には、分散相と連続相が流れる微小流路を繋ぐための1以上の微小空間が備えられ、第1の微小流路基板の微小流路面と第2の微小流路基板の微小空間面を互いに向い合わせて貼り合せた微小流路構造体である。   The microchannel structure of the present invention is a microchannel structure composed of a first microchannel substrate and a second microchannel substrate, and is dispersed on the first microchannel substrate. One or more micro flow channels each flowing without intersecting each other and the continuous phase are provided, and the second micro flow channel substrate has one or more micro spaces for connecting the micro flow channels through which the dispersed phase and the continuous phase flow. And a microchannel structure in which the microchannel surface of the first microchannel substrate and the microspace surface of the second microchannel substrate face each other and are bonded together.

このように微小流路構造体を2枚の微小流路基板の貼り合せ構造とすることで、第1の微小流路基板及び第2の微小流路基板をそれぞれ別々に一般的な機械加工やフォトリソグラフィーとウエットエッチングまたはドライエッチング、ビーズブラスト等の手法で流路としての溝の幅、深さをサブミクロンオーダーからミクロンオーダーで加工すれば良く、加工が比較的難しいサブミクロンオーダーからミクロンオーダーの貫通孔を多数形成する必要がなくなる。また流路以外の加工箇所として、分散相と連続相を導入、排出する箇所に数mm程度の貫通孔をドリル等を用いて機械加工により形成すれば良い。従って、粒径数μm未満の微粒子を生成するためにサブミクロンから数十ミクロンサイズの非円形の貫通孔を電子線照射や高密度プラズマエッチングなどの大掛かりな装置を使用する方法により多数形成することに比べて非常に安価に加工することが可能になる。   In this way, the microchannel structure is formed by bonding two microchannel substrates to each other so that the first microchannel substrate and the second microchannel substrate can be separated from each other by general machining. It is only necessary to process the width and depth of the channel as a flow path from submicron order to micron order by techniques such as photolithography and wet etching or dry etching, bead blasting, etc. There is no need to form a large number of through holes. Moreover, what is necessary is just to form a through-hole of about several millimeters by machining using a drill etc. in the location which introduce | transduces and discharges a dispersed phase and a continuous phase as processing locations other than a flow path. Therefore, a large number of non-circular through-holes of submicron to several tens of microns are formed by a method using a large apparatus such as electron beam irradiation or high-density plasma etching in order to generate fine particles having a particle size of less than several μm. It becomes possible to process very cheaply compared to

さらに、微小流路構造体の材質が樹脂の場合には、第1の微小流路基板の流路に相当する部分が凸状となっている鋳型と、第2の微小流路基板の流路に相当する部分が凸状となっている鋳型を用意すれば、前記鋳型を用いてそれぞれの微小流路基板を射出成形などの成形加工により形成することができる。この場合、分散相と連続相を導入、排出する箇所に相当する数mm程度の貫通孔も流路と同時に成形により形成しても良い。これにより、微粒子を生成する微小流路構造体をさらにより安価に作製することが可能になる。   Further, when the material of the microchannel structure is resin, a mold having a convex portion corresponding to the channel of the first microchannel substrate and the channel of the second microchannel substrate If a mold having a convex portion corresponding to is prepared, each microchannel substrate can be formed by molding such as injection molding using the mold. In this case, through-holes of about several millimeters corresponding to locations where the dispersed phase and continuous phase are introduced and discharged may be formed simultaneously with the flow path. This makes it possible to produce a microchannel structure that generates fine particles at a lower cost.

なお、本発明で述べる流路とは、特に断りが無い限り微小流路を意味している。一般的に微小流路とは、流路の幅が1μm〜500μm、好ましくは5μm〜200μmであり、流路の深さは0.1μm〜200μm、好ましくは1μm〜50μmであり、流路の長さは、1μm〜50cm、好ましくは10μm〜5cmの流路を意味する。   The flow path described in the present invention means a micro flow path unless otherwise specified. In general, a microchannel has a channel width of 1 μm to 500 μm, preferably 5 μm to 200 μm, a channel depth of 0.1 μm to 200 μm, preferably 1 μm to 50 μm, and the length of the channel. The thickness means a flow path of 1 μm to 50 cm, preferably 10 μm to 5 cm.

また、本発明における微小流路構造体を構成している微小流路基板の材質は、例えばガラスや石英、セラミック、シリコン、あるいは金属や樹脂等の基板材料であり、一般的なフォトリソグラフィーとウエットエッチング、ドライエッチング、ビーズブラストや一般的な機械加工等の手法で流路としての溝の幅、深さをサブミクロンオーダーからミクロンオーダーで加工できるものであれば特に制限はない。また、微小流路基板同士の接合方法としては、基板材料がセラミックスや金属の場合は、ハンダ付けや接着剤を用いたり、基板材料がガラスや石英、樹脂の場合は、百度〜千数百度の高温下で荷重をかけて熱接合させたり、基板材料がシリコンの場合は洗浄により表面を活性化させて常温で接合させるなどそれぞれの基板材料に適した接合方法が用いられる。   The material of the microchannel substrate constituting the microchannel structure in the present invention is, for example, a substrate material such as glass, quartz, ceramic, silicon, metal, resin, etc. There is no particular limitation as long as the width and depth of the groove as the flow path can be processed from submicron order to micron order by techniques such as etching, dry etching, bead blasting and general machining. In addition, as a method for joining the micro-channel substrates, when the substrate material is ceramics or metal, soldering or adhesive is used, or when the substrate material is glass, quartz, or resin, it is hundred to several hundreds of degrees. A bonding method suitable for each substrate material is used, such as thermal bonding by applying a load at a high temperature, or when the substrate material is silicon, by activating the surface by washing and bonding at room temperature.

また本発明の微小流路構造体は、微小空間の幅及び/または深さが、分散相及び連続相を流す微小流路の幅かつ/または深さより小さいことを特徴とする微小流路構造体である。このように微小空間の幅及び/または深さのうち少なくとも一方以上を分散相及び連続相を流す微小流路の幅及び/または深さより小さくして、分散相が微小空間から連続相に押し出される時に分散相界面により大きな界面張力がはたらき易くなることで分散相が自己粒子化し易くなり、かつ連続相のせん断応力がより大きくなることにより分散相をせん断し易くなる。   The microchannel structure according to the present invention is characterized in that the width and / or depth of the microspace is smaller than the width and / or depth of the microchannel through which the dispersed phase and the continuous phase flow. It is. In this way, at least one of the width and / or depth of the minute space is made smaller than the width and / or depth of the minute channel for flowing the dispersed phase and the continuous phase, and the dispersed phase is pushed out of the minute space into the continuous phase. Sometimes, a large interfacial tension is likely to act on the dispersed phase interface, so that the dispersed phase is easily made into self-particles, and a shear stress of the continuous phase is increased, so that the dispersed phase is easily sheared.

一般に、界面張力に基づく力S[N/m]は以下の(式1)で示される。ここで、T[N/m]は界面張力、D[m]は代表長さである。
S=T/D (式1)
また、せん断応力V[N/m]は以下の(式2)で示される。ここで、μ[Pa・s]は粘性係数、vは流体の線速度[m/s]、D[m]は代表長さである。
V=μv/D (式2)
ここで代表長さDは、分散相及び連続相を流す微小流路の幅あるいは深さより小さい微小空間の幅あるいは深さのうちより小さい値を有する方を適用することができ、Dの値が小さいほど、界面張力、せん断応力ともに大きな値となり、界面張力による自己粒子化と、せん断応力による粒子化が起こり易くなる。
In general, the force S [N / m 2 ] based on the interfacial tension is expressed by the following (formula 1). Here, T [N / m] is the interfacial tension, and D [m] is the representative length.
S = T / D (Formula 1)
Further, the shear stress V [N / m 2 ] is expressed by the following (formula 2). Here, μ [Pa · s] is a viscosity coefficient, v is a linear velocity of the fluid [m / s], and D [m] is a representative length.
V = μv / D (Formula 2)
Here, as the representative length D, the one having the smaller value of the width or depth of the minute space smaller than the width or depth of the minute flow path for flowing the dispersed phase and the continuous phase can be applied. The smaller the value, the larger the interfacial tension and the shear stress, and the easier the self-particle formation by the interfacial tension and the particle formation by the shear stress occur.

さらに本発明の微小流路構造体は、第2の微小流路基板に備えられた微小空間において、微小空間の1以上の内壁面が、微小空間の内側に向って略凸状に湾曲している微小流路構造体である。このようにすることで、前述した代表長さDがさらに小さくなるため、分散相が微小空間から連続相に押し出される時に、さらに分散相界面に界面張力がはたらき易くなり、分散相がより自己粒子化し易くかつ連続相により分散相をよりせん断し易くなる。微小空間の1以上の内壁面が、微小空間の内側に向って略凸状に湾曲させた構造を作製するには、例えばガラスや樹脂を材質にした場合は、第1の微小流路基板と第2の微小流路基板を熱接合により接合する際に、他の部位よりも微小空間の部位に荷重を大きくかけて接合することで、微小空間の内壁の一部が微小空間内部に向って歪むことで作製することができる。   Furthermore, in the microchannel structure according to the present invention, in the microspace provided in the second microchannel substrate, one or more inner wall surfaces of the microspace are curved in a substantially convex shape toward the inside of the microspace. This is a microchannel structure. By doing so, the above-described representative length D is further reduced, and therefore, when the dispersed phase is pushed out from the minute space to the continuous phase, interfacial tension is more likely to act on the dispersed phase interface, and the dispersed phase becomes more self-particles. And the continuous phase is more easily sheared by the continuous phase. In order to produce a structure in which one or more inner wall surfaces of a minute space are curved in a substantially convex shape toward the inner side of the minute space, for example, when glass or resin is used as a material, the first minute channel substrate and When joining the second microchannel substrate by thermal bonding, a part of the inner wall of the microspace is directed toward the inside of the microspace by joining the part of the microspace with a larger load than other parts. It can be produced by distortion.

また本発明の微小流路構造体は、前述した微小流路構造体を2以上重ねた微小流路構造体である。このような構成とすることで、分散相が流れる流路と連続相が流れる流路及び分散相と連続相を繋げる微小空間を1組とした流路構成を平面的、立体的に複数形成することで、微粒子を大量に生成することができる。また、分散相が流れる流路と連続相が流れる流路がそれぞれの流路ごとにすべて連通しており、分散相が流れる流路と連通した流体導入口及び流体排出口と、連続相が流れる流路と連通した流体導入口及び流体排出口が各々1つづつ備えられている構成としても良い。   The microchannel structure of the present invention is a microchannel structure in which two or more of the microchannel structures described above are stacked. By adopting such a configuration, a plurality of two-dimensionally and three-dimensionally configured channel configurations each including a channel through which a dispersed phase flows, a channel through which a continuous phase flows, and a minute space connecting the dispersed phase and the continuous phase are formed. Thus, a large amount of fine particles can be generated. In addition, the flow path through which the dispersed phase flows and the flow path through which the continuous phase flow are all connected to each flow path, and the fluid introduction port and the fluid discharge port communicated with the flow path through which the dispersed phase flows, and the continuous phase flows. A configuration may be adopted in which one fluid introduction port and one fluid discharge port each communicating with the flow path are provided.

また本発明の微小流路構造体は、分散相が流れる微小流路の内壁と微小空間の内壁の親媒性が、連続相が流れる微小流路の内壁の親媒性と異なっていることがより好ましい。このようにすることで、分散相が微小空間により入りこみやすくなり、連続相に押し出される時に微粒子が形成されやすくなる。例えば、分散相が流れる微小流路の内壁と微小空間の内壁を疎水性とし、連続相が流れる微小流路の内壁を親水性とすることにより、疎水性の微小液滴を生成することがより容易になる。また逆に分散相が流れる微小流路の内壁と微小空間の内壁を親水性とし、連続相が流れる微小流路の内壁を疎水性とすることにより、親水性の微小液滴を生成することがより容易になる。   Further, in the microchannel structure of the present invention, the lyophilicity of the inner wall of the microchannel through which the dispersed phase flows and the inner wall of the microspace is different from that of the inner wall of the microchannel through which the continuous phase flows. More preferred. By doing so, the dispersed phase easily enters into the minute space, and fine particles are easily formed when being pushed out into the continuous phase. For example, it is possible to generate hydrophobic microdroplets by making the inner wall of the microchannel through which the dispersed phase flows and the inner wall of the microspace hydrophobic, and making the inner wall of the microchannel through which the continuous phase flows hydrophilic. It becomes easy. Conversely, by making the inner wall of the microchannel through which the dispersed phase flows and the inner wall of the microspace hydrophilic, and making the inner wall of the microchannel through which the continuous phase flows hydrophobic, hydrophilic microdroplets can be generated. It becomes easier.

以下では図を用いてさらに本発明を詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

図5には本発明の微小流路構造を説明するための概念図が示されており、図6には図5のB−B’断面図が、図7には図6のC−C’断面図が示されている。また、図8〜図11には本発明の原理を説明する概念図が示されている。   FIG. 5 is a conceptual diagram for explaining the microchannel structure of the present invention, FIG. 6 is a sectional view taken along line BB ′ of FIG. 5, and FIG. 7 is CC ′ of FIG. A cross-sectional view is shown. 8 to 11 are conceptual diagrams for explaining the principle of the present invention.

図5、図6に示すように、流路A(9)、流路B(10)、微小空間C(11)は、2本の流路A、流路Bの間に微小空間Cが橋渡しするような配置となっている。なおこの場合、図6に示すように微小空間Cの流路B側の開口部B(17)の幅及び/または深さの少なくともどちらか一方の大きさが流路Bの幅及び/または深さよりも小さいことが好ましい。また、図7に示すように微小空間Cの1以上の内壁面が、微小空間Cの内側に向って略凸状に湾曲していることが好ましい。このようにすることで、微小空間Cから流路Bに分散相が押し出されたときに、前述した(式1)に示したように、より大きな界面張力を分散相にはたらかせて界面張力による分散相の自己粒子化が起こり易くなり、前述した(式2)に示したように、より大きなせん断応力を分散相にはたらかせて、せん断による分散相の微粒子化が起こりやすくなる。   As shown in FIGS. 5 and 6, the channel A (9), the channel B (10), and the minute space C (11) are bridged between the two channels A and B. It has become such an arrangement. In this case, as shown in FIG. 6, at least one of the width and / or depth of the opening B (17) on the flow path B side of the minute space C is the width and / or depth of the flow path B. It is preferable that it is smaller than this. Further, as shown in FIG. 7, it is preferable that one or more inner wall surfaces of the minute space C are curved in a substantially convex shape toward the inner side of the minute space C. By doing so, when the dispersed phase is pushed out from the minute space C to the flow path B, as shown in (Equation 1) described above, a larger interfacial tension is applied to the dispersed phase to disperse due to the interfacial tension. As a result, self-particulation of the phase is likely to occur, and as shown in the above-described (Equation 2), a larger shear stress is applied to the dispersed phase, so that the dispersed phase is easily atomized by shearing.

また本発明においては、分散相を送液する速度と連続相を送液する速度により微小液滴生成の状態が大きく異なる。その状態を図8〜図11を用いて説明する。なお、図8〜図11において分散相と連続相はそれぞれの流路の図の右から左に向けて流れている場合を示している。   In the present invention, the state of microdroplet generation differs greatly depending on the speed at which the dispersed phase is fed and the speed at which the continuous phase is fed. This state will be described with reference to FIGS. 8 to 11, the dispersed phase and the continuous phase are shown flowing from the right to the left in the respective flow path diagrams.

図8は分散相が連続相に押し出されるときに、層流(18)となって押し出される場合を示した概念図である。また図9は、分散相(27)が連続相(33)に押し出される時に、層流(18)あるいは微小空間C(11)の断面積より大きい断面積を有する粒径の微粒子(19)が形成される場合を示した概念図である。図8、図9の場合、微小空間C(11)の分散相の一部に連続相が入り込む場合もある。   FIG. 8 is a conceptual diagram showing a case where the dispersed phase is pushed out as a laminar flow (18) when pushed into the continuous phase. FIG. 9 also shows that when the dispersed phase (27) is pushed out into the continuous phase (33), fine particles (19) having a particle size having a cross-sectional area larger than the cross-sectional area of the laminar flow (18) or the minute space C (11). It is the conceptual diagram which showed the case where it forms. In the case of FIGS. 8 and 9, the continuous phase may enter part of the dispersed phase in the minute space C (11).

また図10は、分散相(27)が連続相(33)に押し出されるときに、連続相のせん断応力のみにより微粒子(19)が断続的に生成される場合を示した概念図である。この場合、微小空間C(11)の分散相の一部に連続相が入り込んで、さらに厳密には、微小空間C(11)の分散相の連続相が流れてくる上流側の一部に連続相が入りこみ微粒子が生成される。   FIG. 10 is a conceptual diagram showing a case where the fine particles (19) are intermittently generated only by the shear stress of the continuous phase when the dispersed phase (27) is pushed out to the continuous phase (33). In this case, the continuous phase enters a part of the dispersed phase of the minute space C (11), and more strictly, the continuous phase of the dispersed phase of the minute space C (11) continues to a part on the upstream side. Phase enters and fine particles are generated.

また図11は、分散相(27)が連続相(33)に押し出されるときに、界面張力により分散相が自己粒子化する現象と、連続相のせん断応力により分散相がせん断される現象が同時に起きて微粒子が連続的に大量生成される場合を示した概念図である。本発明における微粒子の生成方法は、図11の状態で微粒子を生成する場合に相当する。   Further, FIG. 11 shows that when the dispersed phase (27) is extruded into the continuous phase (33), the phenomenon that the dispersed phase self-particles due to the interfacial tension and the phenomenon that the dispersed phase is sheared due to the shear stress of the continuous phase simultaneously. It is the conceptual diagram which showed the case where it wakes up and a microparticle is produced | generated continuously continuously. The method for producing fine particles in the present invention corresponds to the case of producing fine particles in the state of FIG.

図11に示すように、分散相(27)が連続相(33)に押し出されるときに、界面張力により分散相が自己粒子化する現象と連続相のせん断応力により分散相がせん断される現象が同時に起きると、微小空間C(11)と連続相が流れる流路B(10)の接続部近傍(20)において、分散相を取り囲む流路内壁と分散相の間に連続相が入りこみ、分散相が先の尖った1以上の略円錐状(21)に変形し、この略円錐状の先端で微粒子(19)が生成される。   As shown in FIG. 11, when the dispersed phase (27) is extruded into the continuous phase (33), there are a phenomenon in which the dispersed phase is self-particled by the interfacial tension and a phenomenon in which the dispersed phase is sheared by the shear stress of the continuous phase. When it occurs at the same time, the continuous phase enters between the inner wall of the flow path surrounding the dispersed phase and the dispersed phase in the vicinity (20) of the small space C (11) and the flow path B (10) through which the continuous phase flows. Is deformed into one or more substantially conical shapes (21) having sharp points, and fine particles (19) are generated at the substantially conical tips.

図12は、本発明の一実施態様を示す流体の流れを示す図であり、界面張力により分散相が自己粒子化する現象と連続相のせん断応力により分散相がせん断される現象により、略円錐状の分散相の流れが形成されていることが認識できる。また図13には、図12の線で囲んだ部分のような分散相が略円錐状の流れを形成する様子を模式的に示すものであり、図14は分散相が2つの略円錐状の流れを形成する様子を模式的に示すものである。   FIG. 12 is a diagram showing the flow of a fluid according to an embodiment of the present invention. The flow is substantially conical due to the phenomenon that the dispersed phase self-particles due to the interfacial tension and the phenomenon that the dispersed phase is sheared due to the shear stress of the continuous phase. It can be seen that a flow of dispersed phase is formed. FIG. 13 schematically shows a state in which a dispersed phase such as a portion surrounded by a line in FIG. 12 forms a substantially conical flow, and FIG. 14 shows that the dispersed phase has two substantially conical shapes. A mode that a flow is formed is shown typically.

一般的に連続相のせん断応力が分散相にはたらくと、分散相の一部に連続相が入りこむ現象が生じる。分散相と連続相の送液速度、送液圧力を調整すると、分散相を取り囲む流路内壁と分散相の間に連続相が入りこみ、接続部分近傍(20)において分散相が先の尖った1以上の略円錐状に変形し、その先端で微小空間Cの断面積より小さい断面積を有する微粒子が安定して形成されるようになる。このような微粒子の生成方法を用いることで、微小空間Cの断面積よりも小さいサブミクロンオーダーから数ミクロンオーダーの粒径の微粒子を生成することが可能となる。   In general, when the shear stress of the continuous phase acts on the dispersed phase, a phenomenon occurs in which the continuous phase enters a part of the dispersed phase. When the liquid feeding speed and the liquid feeding pressure of the dispersed phase and the continuous phase are adjusted, the continuous phase enters between the inner wall of the flow path surrounding the dispersed phase and the dispersed phase, and the dispersed phase is pointed 1 near the connecting portion (20). Fine particles having a cross-sectional area smaller than the cross-sectional area of the minute space C are stably formed at the tip thereof by deforming into the above substantially conical shape. By using such a fine particle generation method, it is possible to generate fine particles having a particle size on the order of submicron to several microns smaller than the cross-sectional area of the minute space C.

本発明の微粒子生成方法は、連続相が流れる微小流路に分散相を、微小空間を通して押し出し、微小空間と前記連続相が流れる微小流路との接続部近傍において、分散相を取り囲む流路内壁と分散相との間に連続相が入りこみ、分散相が先の尖った1以上の略円錐状の流れが形成されるときに前記略円錐状の先端で前記微小空間の断面積よりも小さい断面積を有する粒径の微粒子を生成する微粒子生成方法である。このような微粒子の生成方法を用いることで、サブミクロンオーダーから数ミクロンオーダーの微粒子を大量生成することができる。   In the fine particle production method of the present invention, the dispersed phase is pushed through the minute space through the minute channel through which the continuous phase flows, and the inner wall of the channel surrounding the dispersed phase in the vicinity of the connection portion between the minute space and the minute channel through which the continuous phase flows. When the continuous phase enters between the first and second dispersed phases, and the one or more substantially conical flows having a sharp point are formed in the dispersed phase, a section smaller than the cross-sectional area of the minute space is formed at the substantially conical tip. This is a fine particle production method for producing fine particles having a particle size having an area. By using such a fine particle production method, a large amount of fine particles of submicron order to several micron order can be produced.

また本発明の微粒子生成方法は、連続相が流れる微小流路に分散相を、微小空間を通して押し出し、分散相の自己粒子化と連続相のせん断応力により分散相の微粒子を生成する微粒子生成方法である。このようにすることで、界面張力による自己粒子化に加えて連続相の流れによるせん断応力がはたらくことで、界面張力のみあるいは連続相のせん断応力のみで分散相から微粒子を生成する場合に比べてより微粒子を生成しやすくなるため、より小さな微粒子をより速い生成速度で大量生成することができる。   The fine particle production method of the present invention is a fine particle production method in which a dispersed phase is pushed through a minute space through a minute channel through which a continuous phase flows, and the dispersed phase self-particles and the continuous phase shear stress generate fine particles of the dispersed phase. is there. By doing this, in addition to self-particle formation due to interfacial tension, shear stress due to the flow of the continuous phase works, compared to the case where fine particles are generated from the dispersed phase only by interfacial tension or by continuous phase shear stress. Since it becomes easier to produce fine particles, a larger amount of smaller fine particles can be produced at a faster production rate.

また本発明の微小流路構造体は、第1の微小流路基板と第2の微小流路基板から構成される微小流路構造体であって、第1の微小流路基板には分散相と連続相が互いに交差せずに流れる微小流路がそれぞれ1以上備えられ、第2の微小流路基板には、分散相と連続相が流れる微小流路を繋ぐための1以上の微小空間が備えられ、第1の微小流路基板の微小流路面と第2の微小流路基板の微小空間面を互いに向い合わせて貼り合せた微小流路構造体である。このように微小流路構造体を2枚の微小流路基板の貼り合せ構成とすることで、第1の微小流路基板及び第2の微小流路基板を一般的な機械加工やフォトリソグラフィーとウエットエッチングまたはドライエッチング、ビーズブラスト等の手法で流路としての溝の幅、深さをサブミクロンオーダーから数十ミクロンオーダーで加工すれば良く、粒径数μm未満の微粒子を生成するためにサブミクロンオーダーから数ミクロンオーダーの非円形の貫通孔を電子線照射や高密度プラズマエッチングなどの大掛かりな装置を使用する方法により多数形成することに比べて非常に安価に加工することが可能になる。   The microchannel structure of the present invention is a microchannel structure composed of a first microchannel substrate and a second microchannel substrate, and the first microchannel substrate has a dispersed phase. One or more microchannels each flowing without intersecting the continuous phase are provided, and the second microchannel substrate has one or more microspaces for connecting the dispersed phase and the microchannel through which the continuous phase flows. A microchannel structure that is provided and has a microchannel surface of a first microchannel substrate and a microspace surface of a second microchannel substrate facing each other and bonded together. In this way, the microchannel structure is formed by bonding two microchannel substrates, so that the first microchannel substrate and the second microchannel substrate can be combined with general machining or photolithography. It is only necessary to process the width and depth of the groove as the flow path by sub-micron order to several tens of micron order by wet etching or dry etching, bead blasting, and so on. Compared with forming a large number of non-circular through holes of micron order to several micron order by a method using a large apparatus such as electron beam irradiation or high-density plasma etching, it can be processed at a very low cost.

また本発明の微小流路構造体は、微小空間の幅及び/または深さが、分散相及び連続相を流す微小流路の幅かつ/または深さより小さいことを特徴とする微小流路構造体である。このように微小空間の幅及び/または深さのうちすくなくとも一方以上を分散相及び連続相を流す微小流路の幅及び/または深さより小さくすることで、分散相が微小空間から連続相に押し出されるときに分散相界面により大きな界面張力がはたらくことで分散相が自己粒子化し易くなり、かつ連続相のせん断応力がより大きくなることで分散相をせん断し易くなる。   The microchannel structure according to the present invention is characterized in that the width and / or depth of the microspace is smaller than the width and / or depth of the microchannel through which the dispersed phase and the continuous phase flow. It is. In this way, by setting at least one or more of the width and / or depth of the microspace to be smaller than the width and / or depth of the microchannel through which the dispersed phase and continuous phase flow, the dispersed phase is pushed out of the microspace into the continuous phase. When a large interfacial tension is applied to the dispersed phase interface, the dispersed phase easily becomes self-particles, and the shear stress of the continuous phase becomes larger, so that the dispersed phase is easily sheared.

さらに本発明の微小流路構造体は、第2の微小流路基板に備えられた微小空間において、微小空間の1以上の内壁面が、微小空間の内側に向って略凸状に湾曲していることを特徴とする微小流路構造体である。このようにすることで、分散相が微小空間から連続相に押し出される時に、分散相界面の界面張力がさらに大きくなることで分散相がより自己粒子化し易くなり、かつ連続相のせん断応力がさらに大きくなることで分散相をよりせん断し易くなる。   Furthermore, in the microchannel structure according to the present invention, in the microspace provided in the second microchannel substrate, one or more inner wall surfaces of the microspace are curved in a substantially convex shape toward the inside of the microspace. It is the microchannel structure characterized by having. By doing so, when the dispersed phase is pushed out from the micro space to the continuous phase, the interfacial tension at the dispersed phase interface is further increased, so that the dispersed phase is more likely to be self-particles, and the shear stress of the continuous phase is further increased. It becomes easy to shear a dispersed phase more by becoming large.

また本発明の微小流路構造体は、前述した微小流路構造体を2以上重ねたことを特徴とする微小流路構造体である。このような構成とすることで、分散相が流れる流路と連続相が流れる流路及び分散相と連続相を繋げる微小空間を1組とした流路構成が平面的、立体的に複数配置されるので、微粒子を大量に生成することができる。   A microchannel structure according to the present invention is a microchannel structure characterized in that two or more of the microchannel structures described above are stacked. By adopting such a configuration, a plurality of two-dimensionally and three-dimensionally arranged channel configurations including a channel through which the dispersed phase flows, a channel through which the continuous phase flows, and a minute space connecting the dispersed phase and the continuous phase are arranged. Therefore, a large amount of fine particles can be generated.

以下に本発明の実施の形態の一例について説明する。なお本発明は、以下の実施の形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。
(実施例)
本発明の実施例における微小流路構造体の概略図を図15に示す。第1の微小流路基板(23)として、70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、流路A(9)、流路B(10)を形成した。また、第2の微小流路基板(22)として、70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小空間C(11)を形成した。流路A、流路B、微小空間Cは一般的なフォトリソグラフィーとウエットエッチングにより形成した。なお、微小空間Cは第1の微小流路基板と第2の微小流路基板を貼り合せたときに、流路Aと流路Bを連通して繋げる位置に形成した。ここで流路Aの流路幅は442μm、流路深さは21.7μm、流路長は6cmである。また流路Bの流路幅は242μm、流路深さは21.7μm、流路長は6cmである。微小空間Cは、流路Aと連通する開口部A(16)の幅が33.4μm、流路Bと連通する開口部B(17)の幅が33.4μm、長さは300μm、深さを21.7μmとした。
An example of the embodiment of the present invention will be described below. Needless to say, the present invention is not limited to the following embodiments, and can be arbitrarily changed without departing from the gist of the invention.
(Example)
FIG. 15 shows a schematic diagram of a microchannel structure in an embodiment of the present invention. As the first microchannel substrate (23), a channel A (9) and a channel B (10) were formed on Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness). In addition, as a second microchannel substrate (22), a microspace C (11) was formed on Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness). The channel A, the channel B, and the minute space C were formed by general photolithography and wet etching. The micro space C was formed at a position where the channel A and the channel B were connected and connected when the first micro channel substrate and the second micro channel substrate were bonded together. Here, the channel width of the channel A is 442 μm, the channel depth is 21.7 μm, and the channel length is 6 cm. The channel B has a channel width of 242 μm, a channel depth of 21.7 μm, and a channel length of 6 cm. In the minute space C, the width of the opening A (16) communicating with the flow path A is 33.4 μm, the width of the opening B (17) communicating with the flow path B is 33.4 μm, the length is 300 μm, and the depth Was 21.7 μm.

また図15に示すように流路A用の流体導入口A(28)と流体排出口A(29)、流路B用の流体導入口B(30)と流体排出口B(31)を第2の微小流路基板の所定の位置に直径1mmの貫通孔を形成した。第1の微小流路基板と第21の微小流路基板は一般的な熱接合により接合し、図16に示すような微小流路構造体(34)を製作した。   Further, as shown in FIG. 15, the fluid inlet A (28) and the fluid outlet A (29) for the channel A, and the fluid inlet B (30) and the fluid outlet B (31) for the channel B A through hole having a diameter of 1 mm was formed at a predetermined position of the two microchannel substrates. The first microchannel substrate and the twenty-first microchannel substrate were joined by general thermal bonding to produce a microchannel structure (34) as shown in FIG.

次に図17に示すように微小流路構造体(34)の流路A用の流体導入口A(28)と流体排出口A(29)、流路B用の流体導入口B(30)と流体排出口B(31)に流体を導入、排出できるように、テフロン(登録商標)製のチューブ(36)を接続した。テフロン(登録商標)製のチューブは外径0.9mm、内径200μm、長さ20cmである。流路A用の流体導入口側のテフロン(登録商標)製のチューブには、分散相(27)の入ったシリンジポンプA(26)を接続した。流路B用の流体導入口側のテフロン(登録商標)チューブには、連続相(33)の入ったシリンジポンプB(25)を接続した。   Next, as shown in FIG. 17, the fluid inlet A (28) and the fluid outlet A (29) for the channel A of the microchannel structure (34), and the fluid inlet B (30) for the channel B A tube (36) made of Teflon (registered trademark) was connected so that the fluid could be introduced into and discharged from the fluid outlet B (31). A tube made of Teflon (registered trademark) has an outer diameter of 0.9 mm, an inner diameter of 200 μm, and a length of 20 cm. The syringe pump A (26) containing the dispersed phase (27) was connected to the Teflon (registered trademark) tube on the fluid inlet side for the channel A. A syringe pump B (25) containing a continuous phase (33) was connected to the Teflon (registered trademark) tube on the fluid inlet side for the channel B.

実際の微小液滴を生成する際には、連続相に体積比3%のポリビニルアルコール水溶液を用い,分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を用いた。   When producing actual microdroplets, a 3% volume ratio polyvinyl alcohol aqueous solution was used for the continuous phase, and a mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide was used for the dispersed phase.

まず、流路B(10)には0.8μL/分の送液速度で連続相(33)を導入し、流路A(9)には分散相(27)を1.0μL/分の送液速度で導入した。この場合、微小空間C(11)を通して連続相の接続部となる開口部B(17)で微小液滴は生成せず、分散相は連続相が流れる流路B(10)の中で層流(18)となって流れた。   First, the continuous phase (33) is introduced into the flow path B (10) at a liquid feed rate of 0.8 μL / min, and the dispersed phase (27) is fed into the flow path A (9) at 1.0 μL / min. Introduced at liquid speed. In this case, microdroplets are not generated in the opening B (17) serving as the connection portion of the continuous phase through the microspace C (11), and the dispersed phase is laminar in the flow path B (10) through which the continuous phase flows. It flowed as (18).

次に、流路B(10)には0.8μL/分の送液速度で連続相(33)を導入し、流路A(9)には分散相(27)を0.8μL/分の送液速度で導入した。この場合、微小空間C(11)を通して連続相の接続部となる開口部B(17)では層流(18)が形成されたり、その層流が途中でせん断されて、微小空間C(11)の断面積よりも大きい断面積を有する粒径の微小液滴(24)を生成した。上記送液条件のときの微小液滴が生成する様子の概念図を図9に示した。生成された微小液滴をサンプル瓶(35)で回収したが、粒径のばらつきが大きく、平均粒径及び粒径分散度は測定できなかった。   Next, the continuous phase (33) is introduced into the flow path B (10) at a liquid feed rate of 0.8 μL / min, and the dispersed phase (27) is introduced into the flow path A (9) at 0.8 μL / min. Introduced at the feeding speed. In this case, a laminar flow (18) is formed in the opening B (17) serving as a connection portion of the continuous phase through the minute space C (11), or the laminar flow is sheared in the middle, and the minute space C (11). Microdroplets (24) with a particle size having a cross-sectional area greater than FIG. 9 shows a conceptual diagram of how micro droplets are generated under the above liquid feeding conditions. The generated fine droplets were collected in the sample bottle (35), but the variation in particle size was large, and the average particle size and the particle size dispersion could not be measured.

次に、流路B(10)には0.8μL/分の送液速度で連続相(33)を導入し、流路A(9)には分散相(27)を0.05μL/分の送液速度で導入し、微小空間C(11)を通して連続相の接続部となる開口部B(17)で微小液滴(24)を生成した。上記送液条件のときの微小液滴が生成する様子の概念図を図10に示した。生成された微小液滴をサンプル瓶(35)で回収し、顕微鏡で100個の微小液滴を観察したところ、平均粒径が15μm、粒径分散度が14.2%の微小液滴を生成することができた。   Next, the continuous phase (33) is introduced into the flow path B (10) at a liquid feed rate of 0.8 μL / min, and the dispersed phase (27) is added to the flow path A (9) at 0.05 μL / min. The liquid droplets were introduced at a liquid feeding speed, and microdroplets (24) were generated at the opening B (17) serving as a continuous phase connecting portion through the microspace C (11). FIG. 10 is a conceptual diagram showing how micro droplets are generated under the above-mentioned liquid feeding conditions. The generated microdroplets were collected in the sample bottle (35), and when 100 microdroplets were observed with a microscope, microdroplets with an average particle size of 15 μm and a particle size dispersion of 14.2% were generated. We were able to.

次に、流路B(10)には0.05μL/分の送液速度で連続相(33)を導入し、流路A(9)には分散相(27)を2.0μL/分の送液速度で導入し、微小空間C(11)を通して連続相の接続部となる開口部B(17)で微小液滴(24)を生成した。上記送液条件のときの微小液滴が生成する様子の概念図を図18に示した。生成された微小液滴をサンプル瓶(35)で回収し、顕微鏡で100個の微小液滴を観察したところ、平均粒径が9.8μm、粒径分散度が9.8%の微小液滴を生成することができた。   Next, the continuous phase (33) is introduced into the flow path B (10) at a liquid feed rate of 0.05 μL / min, and the dispersed phase (27) is added to the flow path A (9) at 2.0 μL / min. The liquid droplets were introduced at a liquid feeding speed, and microdroplets (24) were generated at the opening B (17) serving as a continuous phase connecting portion through the microspace C (11). FIG. 18 is a conceptual diagram showing how micro droplets are generated under the above liquid feeding conditions. The generated microdroplets were collected with a sample bottle (35), and 100 microdroplets were observed with a microscope. As a result, microdroplets with an average particle size of 9.8 μm and a particle size dispersion degree of 9.8% were obtained. Could be generated.

連続相のせん断により微粒子を生成するT字型流路の概念図である。It is a conceptual diagram of the T-shaped flow path which produces | generates microparticles | fine-particles by the shear of a continuous phase. 貫通孔型構造により微粒子を生成する微小流路構造体の概念図である。It is a conceptual diagram of the microchannel structure which produces | generates microparticles | fine-particles by a through-hole type structure. 図2におけるA−A’の断面図である。FIG. 3 is a cross-sectional view taken along line A-A ′ in FIG. 2. 微小空間の容積に応じた体積の微粒子を生成する微小流路構造体の概念図である。It is a conceptual diagram of the microchannel structure which produces | generates the microparticles | fine-particles of the volume according to the volume of microspace. 本発明の微小流路構造を説明するための概念図である。It is a conceptual diagram for demonstrating the microchannel structure of this invention. 図4におけるB−B’断面図である。It is B-B 'sectional drawing in FIG. 図5におけるC−C’の断面図である。FIG. 6 is a cross-sectional view taken along C-C ′ in FIG. 5. 本発明の原理を説明する第1の概念図である。It is a 1st conceptual diagram explaining the principle of this invention. 本発明の原理を説明する第2の概念図である。It is a 2nd conceptual diagram explaining the principle of this invention. 本発明の原理を説明する第3の概念図である。It is a 3rd conceptual diagram explaining the principle of this invention. 本発明の原理を説明する第4の概念図である。It is a 4th conceptual diagram explaining the principle of this invention. 本発明の原理による流体の流れを示す図である。It is a figure which shows the flow of the fluid by the principle of this invention. 本発明の原理を説明する概念図(模式図)である。It is a conceptual diagram (schematic diagram) explaining the principle of the present invention. 本発明の原理を説明する概念図(模式図)である。It is a conceptual diagram (schematic diagram) explaining the principle of the present invention. 本発明の実施例における微小流路構造体を構成する微小流路基板の概略図である。It is the schematic of the microchannel substrate which comprises the microchannel structure in the Example of this invention. 本発明の実施例における微小流路構造体の概略図である。It is the schematic of the microchannel structure in the Example of this invention. 本発明の実施例における実験形態の概念図である。It is a conceptual diagram of the experiment form in the Example of this invention. 本発明の実施例における液滴生成の状態を説明する概念図である。It is a conceptual diagram explaining the state of the droplet production | generation in the Example of this invention.

符号の説明Explanation of symbols

1:基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:交差部
7:排出流路
8:排出口
9:流路A
10:流路B
11:微小空間C
12:中間プレート
13:貫通孔
14:第1のプレート
15:第2のプレート
16:開口部A
17:開口部B
18:層流
19:微粒子
20:接続部近傍
21:略円錐状
22:第1の微小流路基板
23:第2の微小流路基板
24:微小液滴
25:シリンジポンプB
26:シリンジポンプA
27:分散相
28:流体導入口A
29:流体排出口A
30:流体導入口B
31:流体排出口B
32:カバー体
33:連続相
34:微小流路構造体
35:サンプル瓶
36:チューブ
1: Substrate 2: Continuous phase introduction port 3: Continuous phase introduction channel 4: Dispersed phase introduction port 5: Dispersed phase introduction channel 6: Intersection 7: Discharge channel 8: Discharge port 9: Channel A
10: Channel B
11: Microspace C
12: Intermediate plate 13: Through hole 14: First plate 15: Second plate 16: Opening A
17: Opening B
18: Laminar flow 19: Fine particle 20: In the vicinity of the connection part 21: Conical shape 22: First microchannel substrate 23: Second microchannel substrate 24: Microdroplet 25: Syringe pump B
26: Syringe pump A
27: Dispersed phase 28: Fluid inlet A
29: Fluid outlet A
30: Fluid inlet B
31: Fluid outlet B
32: Cover body 33: Continuous phase 34: Microchannel structure 35: Sample bottle 36: Tube

Claims (6)

連続相が流れる微小流路に分散相を、微小空間を通して押し出し、前記微小空間と前記連続相が流れる微小流路との接続部近傍において、連続相が分散相と分散相を取り囲む流路内壁との間に入りこみ、分散相が先の尖った1以上の略円錐状の流れが形成されるときに前記略円錐状の先端で前記微小空間の断面積よりも小さい断面積を有する粒径の微粒子を生成することを特徴とする微粒子生成方法。 A disperse phase is pushed through a minute space through a minute channel through which the continuous phase flows, and in the vicinity of the connecting portion between the minute space and the minute channel through which the continuous phase flows, the inner wall of the channel surrounding the disperse phase and the disperse phase; Fine particles having a particle size that have a cross-sectional area that is smaller than the cross-sectional area of the minute space at the tip of the substantially conical shape when one or more substantially conical flows having a sharp point in the dispersed phase are formed. A method for producing fine particles, characterized in that 連続相が流れる微小流路に分散相を、微小空間を通して押し出し、分散相の自己粒子化かつ連続相のせん断応力により分散相の微粒子を生成することを特徴とする請求項1記載の微粒子生成方法。 2. The method for producing fine particles according to claim 1, wherein the dispersed phase is extruded through a minute space through a minute channel through which the continuous phase flows, and the dispersed phase is self-particulated and the dispersed phase fine particles are produced by shear stress of the continuous phase. . 第1の微小流路基板と第2の微小流路基板から構成される微小流路構造体であって、前記第1の微小流路基板には分散相と連続相が互いに交差せずに流れる微小流路がそれぞれ1以上備えられ、前記第2の微小流路基板には、前記分散相と前記連続相が流れる微小流路を繋ぐための1以上の微小空間が備えられ、前記第1の微小流路基板の微小流路面と前記第2の微小流路基板の微小空間面を互いに向い合わせて貼り合せ、前記微小空間の幅及び/または深さが、前記分散相及び前記連続相を流す微小流路の幅及び/または深さより小さいことを特徴とする微粒子生成用微小流路構造体。 A microchannel structure including a first microchannel substrate and a second microchannel substrate, wherein a dispersed phase and a continuous phase flow through the first microchannel substrate without crossing each other. One or more microchannels are provided, respectively, and the second microchannel substrate is provided with one or more microspaces for connecting the microchannels through which the dispersed phase and the continuous phase flow, and the first microchannel The micro-channel surface of the micro-channel substrate and the micro-space surface of the second micro-channel substrate are bonded to each other so that the width and / or depth of the micro-space allows the dispersed phase and the continuous phase to flow. A microchannel structure for generating fine particles, characterized by being smaller than the width and / or depth of the microchannel. 前記第2の微小流路基板に備えられた微小空間において、前記微小空間の1以上の内壁面が、微小空間の内側に向って略凸状に湾曲していることを特徴とする請求項3に記載の微小流路構造体。 4. The micro space provided in the second micro channel substrate, wherein one or more inner wall surfaces of the micro space are curved in a substantially convex shape toward the inside of the micro space. 2. A microchannel structure according to 1. 前記微小流路構造体を2以上重ねたことを特徴とする請求項3又は請求項4に記載の微小流路構造体。 The microchannel structure according to claim 3 or 4, wherein two or more microchannel structures are stacked. 前記微小流路構造体の材質が樹脂であることを特徴とする請求項3〜5のいずれかに記載の微小流路構造体。
The material of the said microchannel structure is resin, The microchannel structure in any one of Claims 3-5 characterized by the above-mentioned.
JP2004235207A 2004-08-12 2004-08-12 Fine particle manufacturing method and microchannel structure therefor Expired - Fee Related JP4470640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235207A JP4470640B2 (en) 2004-08-12 2004-08-12 Fine particle manufacturing method and microchannel structure therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235207A JP4470640B2 (en) 2004-08-12 2004-08-12 Fine particle manufacturing method and microchannel structure therefor

Publications (2)

Publication Number Publication Date
JP2006053060A true JP2006053060A (en) 2006-02-23
JP4470640B2 JP4470640B2 (en) 2010-06-02

Family

ID=36030638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235207A Expired - Fee Related JP4470640B2 (en) 2004-08-12 2004-08-12 Fine particle manufacturing method and microchannel structure therefor

Country Status (1)

Country Link
JP (1) JP4470640B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238097A (en) * 2007-03-28 2008-10-09 Tosoh Corp Minute flow passage assembly apparatus for producing droplet
JP2010071857A (en) * 2008-09-19 2010-04-02 Sekisui Chem Co Ltd Plasma separation device
JP2011523698A (en) * 2008-05-09 2011-08-18 アコーニ バイオシステムズ Microarray system
JP2017075910A (en) * 2015-10-16 2017-04-20 ウシオ電機株式会社 Absorbance measurement device and absorbance measuring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119841A (en) * 2000-10-13 2002-04-23 National Food Research Institute Method and device for manufacturing microsphere
WO2002068104A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
JP2002357616A (en) * 2001-05-31 2002-12-13 Inst Of Physical & Chemical Res Trace liquid control mechanism
JP2003503715A (en) * 1999-07-07 2003-01-28 スリーエム イノベイティブ プロパティズ カンパニー Detection article with fluid control film
JP2004122107A (en) * 2002-04-25 2004-04-22 Tosoh Corp Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure
JP2004163104A (en) * 2001-10-18 2004-06-10 Aida Eng Ltd Minute quantity liquid scaling structure and microchip having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503715A (en) * 1999-07-07 2003-01-28 スリーエム イノベイティブ プロパティズ カンパニー Detection article with fluid control film
JP2002119841A (en) * 2000-10-13 2002-04-23 National Food Research Institute Method and device for manufacturing microsphere
WO2002068104A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
JP2002357616A (en) * 2001-05-31 2002-12-13 Inst Of Physical & Chemical Res Trace liquid control mechanism
JP2004163104A (en) * 2001-10-18 2004-06-10 Aida Eng Ltd Minute quantity liquid scaling structure and microchip having the same
JP2004122107A (en) * 2002-04-25 2004-04-22 Tosoh Corp Microchannel structure, method for producing fine particle using the same and method for extracting solvent using the microchannel structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
川井明, 松本進一, 桐谷英昭, 及川智之, 原克幸, 大川朋裕, 二見達, 片山晃治, 西沢恵一郎: "分級不要ゲル製造用マイクロリアクターの開発", 東ソー研究・技術報告, vol. 47, JPN6009048176, 31 December 2003 (2003-12-31), JP, pages 3 - 9, ISSN: 0001420871 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238097A (en) * 2007-03-28 2008-10-09 Tosoh Corp Minute flow passage assembly apparatus for producing droplet
JP2011523698A (en) * 2008-05-09 2011-08-18 アコーニ バイオシステムズ Microarray system
JP2010071857A (en) * 2008-09-19 2010-04-02 Sekisui Chem Co Ltd Plasma separation device
JP2017075910A (en) * 2015-10-16 2017-04-20 ウシオ電機株式会社 Absorbance measurement device and absorbance measuring method

Also Published As

Publication number Publication date
JP4470640B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
Vladisavljević et al. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
Nisisako et al. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
US8302880B2 (en) Monodisperse droplet generation
CN104084247B (en) Elastic wall surface micro-fluidic chip based on T-shaped micro-channel
US8465706B2 (en) On-demand microfluidic droplet or bubble generation
CN106140340A (en) Micro-fluidic chip based on flow focusing type microchannel synthesis microemulsion drop
US9327303B2 (en) Microfluidic droplet generator
KR20080020954A (en) Microchannel structure and fine-particle production method using the same
WO2010110842A1 (en) Droplet generator
US20130273591A1 (en) On-demand microfluidic droplet or bubble generation
US20090246086A1 (en) Microfluidic network and method
Liu et al. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review
CN108993622B (en) Micro-fluidic chip for realizing collision of different combined liquid drops
Kobayashi et al. Microchannel Emulsification Using Stainless‐Steel Chips: Oil Droplet Generation Characteristics
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4186637B2 (en) Particle manufacturing method and microchannel structure therefor
JP4305145B2 (en) Particle production method using micro flow channel
JP4470640B2 (en) Fine particle manufacturing method and microchannel structure therefor
JP4639624B2 (en) Micro channel structure
Pan et al. Droplets containing large solid particle inside formation and breakup dynamics in a flow-focusing microfluidic device
JP4356312B2 (en) Microchannel structure
JP4547967B2 (en) Microchannel structure and droplet generation method using the same
JP4306243B2 (en) Particle production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees