JP4186637B2 - Particle manufacturing method and microchannel structure therefor - Google Patents

Particle manufacturing method and microchannel structure therefor Download PDF

Info

Publication number
JP4186637B2
JP4186637B2 JP2003021794A JP2003021794A JP4186637B2 JP 4186637 B2 JP4186637 B2 JP 4186637B2 JP 2003021794 A JP2003021794 A JP 2003021794A JP 2003021794 A JP2003021794 A JP 2003021794A JP 4186637 B2 JP4186637 B2 JP 4186637B2
Authority
JP
Japan
Prior art keywords
channel
flow path
dispersed phase
continuous phase
introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003021794A
Other languages
Japanese (ja)
Other versions
JP2004202476A (en
Inventor
晃治 片山
博達 草部
明 川井
克幸 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003021794A priority Critical patent/JP4186637B2/en
Publication of JP2004202476A publication Critical patent/JP2004202476A/en
Application granted granted Critical
Publication of JP4186637B2 publication Critical patent/JP4186637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、分取、分離用カラム充填剤等に用いられる微小な液滴やゲル粒子などの製造用として好適に用いられる粒子製造方法であり、また、微小な液滴等の粒子を製造するための微小流路構造体に関する。
【0002】
【従来の技術】
近年、数cm角のガラス基板あるいは樹脂製基板上に長さが数cm程度で、幅及び深さがサブμmから数百μmの微小流路を有する微小流路構造体を用いて、液体の送液による微小粒子の生成を行う研究が注目されている。(例えば、非特許文献1、2参照)
微小流路内における粒子生成技術に関しては、図1に示すように、微小流路基板1の上に、連続相導入口2、連続相導入流路3、分散相導入口4、分散相導入流路5、排出流路7及び排出口8を有したT字型の構造体であり、導入された連続相と分散相とが合流する部分に合流部6が存在する。各流路の深さは100μmであり、分散相を導入する導入流路幅が100μm、連続相を導入する導入流路幅は300〜500μmのT字型微小流路を用いて、分散相と連続相の流れの速さを制御(コントロール)して送液を行うと、分散相と連続相が流路を通じて合流する地点(合流部)において極めて均一な微小粒子の生成が可能となる。また、分散相及び連続相の流量をコントロールすることで生成粒子径をコントロールすることも可能となる。しかしながらこの方法においては、分散相の送液速度を上昇するにつれ、安定した粒子生成が得られず、最終的に層流となり粒子生成が出来なくなってしまうという課題があった。また、流路形成材質が青板、石英、パイレックス(登録商標)等のガラスあるいはSi製であるため、分散相が疎水性を示す液体、連続相が親水性を示す液体である場合、層流形成が粒子生成よりも安定であるため、実質的に粒子を生成することが困難であった。
【0003】
この課題を解決し微小な粒子を生成させるためには、表面処理による解決を図ることが試みられているが長期間に渡り、粒子生成を行うことが出来ず、更なる改善が求められていた。
【非特許文献1】
西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」,第4回 化学とマイクロシステム研究会 講演予稿集,2001年発行,59頁
【非特許文献2】
TAKASI NISISAKO ら著、「DROPLET FORMATION IN A MICROCHANNEL ON PMMA PLATE」,Micro Total Analysis System 2001年発行,137〜138頁
【0004】
【発明が解決しようとする課題】
以上のように従来の微小流路内における液滴等の粒子生成技術は、T字型微小流路において連続相と分散相の合流部で極めて均一な粒子の生成が可能となるが、分散相の流速を上昇させるにつれ粒子化現象が不安定となり、ついには層流となってしまっていた。また、各種液体の粒子を作る際に問題となる分散相液体と微小流路壁面の親和性の課題があり、工業的に量産する場合にはさらなる改善が求められていた。
【0005】
本発明は、上記課題に鑑みてなされたもので、微小流路内での粒子生成を可能とすると共に、様々な分散相と連続相の組合わせにおいての粒子生成も可能であり、工業的な量産にも対応できる粒子製造方法及びそのための微小流路構造体を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するものとして、分散相と2以上の連続相を微小流路を有した構造体に連続的に導入しつつ、分散相と連続相とが合流する部分(以下「合流部」という)にて、分散相を連続相が挟み込むように接触させて分散相をせん断することで、分散相が微小液滴の生成すなわち微小粒子化することを見出し、さらに、このような粒子を生成させるために、分散相を導入するための導入口及びそれに連通する導入流路と、連続相を導入するための2以上の導入口及びそれに連通する導入流路と、分散相と2以上連続相により生成された粒子を排出させるための微小流路からなる排出流路及びそれに連通する排出口とを備え、かつ排出流路断面のアスペクト比(流路の深さ/幅の比)を0.30以上とすることも見出し、上記の従来技術による課題を解決することができ、遂に本発明を完成するに至った。
【0007】
すなわち本発明は、分散相と2以上の連続相を微小流路を有した構造体に連続的に導入しつつ、前記分散相と前記連続相とを接触させ分散相をせん断して微小粒子化する粒子生成方法であり、さらに、これを達成するための構造体であって、分散相を導入するための導入口及びそれに連通する導入流路と、連続相を導入するための導入口及びそれに連通する導入流路と、分散相と2以上の連続相により生成された粒子を排出させるための微小流路からなる排出流路及びそれに連通する排出口とを備えた微小流路構造体であって、前記排出流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上である微小流路構造体である。
【0008】
尚、本明細書において「粒子」とは、液状の小滴すなわち液滴を意味するだけではなく、固体状に硬化させたものも意味することがある。
【0009】
以下、本発明を詳細に説明する。
<粒子製造方法>
上記したように、本発明の粒子製造方法は、分散相と2以上の連続相を微小流路を有した構造体に連続的に導入しつつ、分散相と連続相とを接触させ分散相をせん断して微小粒子化する方法である。
【0010】
本発明において用いられる分散相とは、微小流路構造体により粒子を製造させるための液状物であり、例えば、スチレンなどの重合用のモノマー、ジビニルベンゼンなどの架橋剤、重合開始剤等のゲル製造用の原料を適当な溶媒に溶解した媒体を指す。ここで分散相としては、本発明が微小な粒子を効率的に生成させることを目的としており、この目的を達成させるためであれば微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに粒子を形成させることができればその成分も特に制限されない。また、分散相中に一部固体状物が混在したスラリー状のものであっても差し支えない。
【0011】
本発明において用いられる連続相とは、微小流路構造体により分散相より粒子を生成させるために用いられる液状物であり、例えば、ポリビニルアルコールといったゲル製造用の分散剤を適当な溶媒に溶解した媒体を指す。ここで連続相としては分散相と同様に、微小流路構造体中の流路を送液できるものであれば特に制限されず、さらに粒子を形成させることができればその成分は特に制限されないが、連続相の内の2またはそれ以上が同一組成であれば、分散相により生成される粒子周囲の媒体の組成を均一あるいは制御することができ、生成した粒子を取り出したり、光照射あるいは加熱といった処理を行うことが容易となり、好ましい。また、連続相中に一部固体状物が混在したスラリー状のものであっても差し支えない。
【0012】
さらに、分散相と連続相とは粒子を生成させるために、実質的に交じり合わないあるいは相溶性がないことが必要であり、例えば、分散相として水相を用いた場合には連続相としては水に実質的に溶解しない酢酸ブチルといった有機相が用いられることとなる。また、連続相として水相を用いた場合にはその逆となる。
【0013】
本発明においてはこれらの分散相と連続相とを下記に説明する微小流路構造体に連続的に導入しつつ、両者が合流する合流部で分散相と連続相とを接触させ分散相をせん断して微小粒子化させるものであるが、分散相を導入するための導入流路と連続相を導入するための導入流路とが交わる角度を変化させることで、生成する粒子の粒子径を制御することが可能である。これは、従来の構造体を使った粒子製造においては、分散相と連続相の導入速度を変えて生成させる場合よりもより制御しやすく、工業的な量産に適している。さらに、上記微小流路構造体へ導入する分散相と連続相の導入速度とを実質的に同じとすることで、生成する粒子の粒径制御や製造設備の簡素化といった面で、工業的量産に十分に対応できるものである。
<微小流路構造体>
、本発明の微小流路構造体は、上記した粒子製造を行うための構造体であって、分散相を導入するための導入口及びそれに連通する導入流路と、連続相を導入するための導入口及びそれに連通する導入流路と、分散相と2以上連続相により生成された粒子を排出させるための微小流路からなる排出流路及びそれに連通する排出口とを備え、さらに、排出流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上である構造を有したものである。
【0014】
ここで、分散相を導入するための導入口は分散相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて分散相を連続的に導入する機構としてもよい。同様に、連続相を導入するための導入口についても、連続相を入れるための開口部を意味し、さらに、この導入口に適当なアタッチメントを備えて連続相を連続的に導入する機構としてもよい。
【0015】
分散相を導入するための導入流路は導入口と連通しており、分散相が導入され、この導入流路に沿って送液される。導入流路の形状は粒子の形状、粒子径を制御するにおいて影響を与えるが、その幅は数100μm以下で形成され、同様に、連続相を導入するための導入流路についても、導入口と連通しており、連続相が導入され、この導入流路に沿って送液される。導入流路の形状は粒子の形状、粒子径を制御するにおいて影響を与えるが、その幅は数100μm以下であれば良い。また、各連続相及び分散相の流路は、分散相を挟んで連続相を導入可能で、分散相の流路の1点に向け交差するような形状となっておればよい。
【0016】
排出流路は上記の3つの導入流路及び排出口と連通しており、分散相と連続相が合流後、この排出流路に沿って送液され、排出口より排出される。排出流路の形状は特に制限されないが、その幅は数100μm以下で、導入流路も含めY字型の形状となっておればよい。排出口は、生成された粒子を排出させるための開口部を意味し、さらに、この排出口に適当なアタッチメントを備えて生成された粒子を含む相を連続的に排出する機構としてもよい。
【0017】
尚、これら流路は本明細書においては微小流路ということがある。
【0018】
さらに、本発明の微小流路構造体においては、分散相を導入するための導入流路と連続相を導入するための2以上の導入流路とが任意の角度で交わると共に、これら3以上の導入流路が任意の角度で排出流路へと繋がる構造であることが好ましい。このような3以上の導入流路の交差する角度を任意の角度とすることで、合流部で生成する粒子を所望の粒子径へと制御し、合流部付近で粒子が生成するよう粒子生成箇所を制御することが可能となる。交差角度の設定については、目的とする粒子の粒子径、生成時の流速に応じて適宜決めればよい。
【0019】
導入流路、排出流路の断面形状としては、流路断面のアスペクト比が0.30以上であることが好ましく、さらに0.30以上3.0未満であることがこのましい。アスペクト比がこの範囲にあれば、合流部において均一な粒子を生成させることができる。この範囲を逸脱して、アスペクト比が0.30未満となると均一な粒子を生成させることが困難となることがある。但し、生成粒子径が流路深さ以下であればその限りでは無い。
【0020】
さらに、分散相を導入するための導入流路と連続相を導入するための導入流路の幅及び深さが等しい場合には上記の効果に加え、微小流路構造体の設計が容易となり、また、送液時の制御もより容易となって、工業的量産に好適となる。
【0021】
また、導入流路の幅と排出流路の幅との関係において、導入流路の幅≧排出流路の幅であれば、導入流路の幅=排出流路の幅よりも、送液流速を増加しても合流部において均一な粒子の生成が可能となり、粒子生成速度を増加させることができるという効果を奏することができ、好ましい態様となる。
【0022】
排出流路の幅としては、分散相と連続相とが交わる交差部より排出口に至る排出流路中の一部の部位において、排出流路の幅が狭くなっていることが好ましい。すなわち、粒子排出口に至るまでの間の内、導入流路と排出流路の合流部において部分的に狭くするあるいは分散相流路に沿った流路構成壁を凸上に形成することで送液流速を増加しても合流部において均一な粒子生成が可能でありかつ、送液圧力の上昇を緩和することが可能とすることができ、好ましい態様となる。
【0023】
本発明の微小流路構造体は、以上に述べた構造、性能を有しているが、分散相と連続相を導入するための3以上の導入部及び導入流路と、3以上の導入流路が交わる合流部と、液体を排出させるための排出流路及び排出口を備えた微小流路構造体が、少なくとも一方の面に微小流路が形成された基板と、微小流路が形成された基板面を覆うように、微小流路の所定の位置に、微小流路と微小流路構造体外部とを連通するための少なくとも4以上の小穴が配置されたカバー体とが積層一体化されていてもよい。これにより、微小流路構造体外部から微小流路へ流体を導入し、再び微小流路構造体外部へ流体を排出することができ、流体が微小量であったとしても、流体を安定して微小流路内を通過させることが可能となる。流体の送液は、マイクロポンプなどの機械的手段によって可能となる。
【0024】
微小流路が形成された基板及びカバー体の材質としては、微小流路の形成加工が可能であって、耐薬品性に優れ、適度な剛性を備えたものが望ましい。例えば、ガラス、石英、セラミック、シリコン、あるいは金属や樹脂等であっても良い。基板やカバー体の大きさや形状については特に限定はないが、厚みは数mm以下程度とすることが望ましい。カバー体に配置された小穴は、微小流路と微小流路構造体外部とを連通し、流体の導入口または排出口として用いる場合には、その径が例えば数mm以下である事が望ましい。カバー体の小穴の加工には、化学的に、機械的に、あるいはレーザー照射やイオンエッチングなどの各種の手段によって可能とされる。
【0025】
また本発明の微小流路構造体は、微小流路が形成された基板とカバー体は、熱処理接合あるいは光硬化樹脂や熱硬化樹脂などの接着剤を用いた接着等の手段により積層一体化することができる。
【0026】
【発明の実施の形態】
以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
また、実施例においては1枚の基板上に1本の微小流路を形成したが、工業的に量産する場合は、1枚の基板上に多数の微小流路を形成する、あるいは多数形成した1枚の基板を積層することで可能となる。
(実施例1)
本発明の第1の実施例における粒子製造用微小流路を図2に示す。微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、微小流路に相当する連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43である微細流路形状とし、連続相導入流路3と分散相導入流路5とが22度の角度にて交わる合流部を持った形状の流路を1本形成した。この微小流路の幅及び深さについては、生成する液滴粒子径に依存するが、微小流路のアスペクト比が0.3以上3未満の範囲を逸脱しなければよい。
【0027】
このY字形状の粒子製造用微小流路構造体は図3に示す製作手順に従って以下のように作製した。厚さ1mmで70mm×20mmのガラス基板9の一方の面に、金などの金属膜10を後述する露光光が透過しない程度の厚さに成膜し(図3(a)金属の成膜工程)、その金属膜上にフォトレジスト11をコートした(図3(b)フォトレジストの塗布工程)。更にフォトレジスト上に前記微小流路の形状を描いたパターンを有するフォトマスク12を置き、そのフォトマスク上から露光し現像を行なった(図3(c)露光〜現像工程)。次に、酸などで金属膜10をエッチングした(図3(d)金属膜のエッチング工程)後、レジストとガラスをフッ酸などでエッチングし(図3(e)レジスト、ガラスのエッチング工程)、さらに残った金属膜10を酸などで溶かして(図3(f)金属膜の除去工程)、微小流路が形成された基板13を得た。実施例においては、微小流路の製作をガラス基板のエッチングにより微小流路を形成したが、製作方法はこれに限定するものではない。
【0028】
この微小流路が形成された基板13の微小流路を有する面に、微小流路の流体導入口(連続相導入口2、分散相導入口4)と流体排出口8にあたる位置に予め直径0.6mmの小穴を、機械的加工手段を用いて設けた厚さ1mmで70mm×20mmのガラスカバー体14を熱接合し、図4に示すように微小流路を備えた粒子製造用微小流路構造体を製作した。実施例においては、微小流路を形成する基板及びカバー体にガラス基板を用いたが、これに限定するものではない。
【0029】
次に本発明の粒子製造方法について説明する。図5に示すように液滴生成用微小流路構造体15に液体が送液可能なようにホルダー16などで保持すると共に、テフロン(登録商標)チューブ18及びフィレットジョイント19をホルダー16に固定する。テフロン(登録商標)チューブ18のもう一方はマイクロシリンジ21、22、23に接続する。これで粒子製造用微小流路構造体15に液体の送液が可能となる。次に粒子を製造するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液をマイクロシリンジ23に注入、連続相にポリビニルアルコール3%水溶液をマイクロシリンジ21、22に注入し、マイクロシリンジポンプ20で送液を行った。送液流速は分散相及び連続相は共に6μl/minである。送液流速が共に安定した状態で、粒子製造用微小流路構造体15の分散相及び連続相が交わる合流部にて粒子生成が観察される。生成された粒子23を観察すると図6に示すように平均粒子径77μmの極めて均一な粒子であった。
(実施例2)
本発明の第2の実施例における粒子製造用微小流路を図4に示す。微小流路は70mm×20mm×1t(厚さ)のポリエーテルイミド基板上に、微小流路に相当する連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43である微細流路形状とし、連続相導入流路3と分散相導入流路5とが22度の角度にて交わる合流部を持った形状の流路を1本形成した。作製手法として、実施例1に示すものと同じフォトマスク及び手法を用い、直径200mmパイレックス(登録商標)ガラス基板上に流路を形成した後、Ni薄膜を形成し、電気メッキにより厚さ300μmのスタンパを作製し、成形機の金型に設置してポリエーテルイミド樹脂を射出成形法により作製した。作製した流路基板を70mm×20mm×1tで切り出した。この微小流路の幅及び深さについては、生成する粒子径に依存するが、微小流路のアスペクト比が0.3以上3未満の範囲を逸脱しなければよい。
【0030】
図5に示すように粒子製造用微小流路構造体15に液体が送液可能なようにホルダー16などで保持すると共に、テフロン(登録商標)チューブ18及びフィレットジョイント19をホルダー16に固定する。テフロン(登録商標)チューブ18のもう一方はマイクロシリンジ21、22、23に接続する。これで粒子製造用微小流路構造体15に液体の送液が可能となる。次に粒子を製造するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液をマイクロシリンジ23に注入、連続相にポリビニルアルコール3%水溶液をマイクロシリンジ21、22に注入し、マイクロシリンジポンプ20で送液を行った。送液流速は分散相及び連続相は共に6μl/minである。送液流速が共に安定した状態で、粒子製造用微小流路構造体15の分散相及び連続相が交わる合流部にて粒子生成が観察される。生成された粒子23を観察すると図7に示すように平均粒子径77μmの極めて均一な粒子であった。
(実施例3)
次に実施例3における粒子製造用微小流路を図11に示す。実施例1と同様に微小流路は70mm×20mm×1t(厚さ)のガラス上に連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43であるY字形状とし、連続相導入流路3と分散相導入流路5とが44度の角度にて交わる合流部を持ったY字形状の流路を1本形成し、図11に示すように分散相と連続相の交差角が90度未満の場合、すなわち分散相と連続相の流路の上流が同じ側にある場合には2つの連続相の各流路が
分散相流路と合流する両流路交差部の連続相流路出口または排出流路入口に突起部24を設け、流路幅を局所的に狭くし、連続相の流れを一時的にせきとめ、流れの向きが変わることにより、合流部付近で分散相がせん断されて粒子化する構造にした。この粒子製造用微小流路構造体の製作手順は実施例1と同じ手順にて作製した。次に実施例1と同様に粒子製造用微小流路構造体をホルダーで保持し、テフロン(登録商標)チューブ、フィレットジョイント、マイクロシリンジポンプに固定、接続する。粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液流速は分散相及び連続相は共に6μl/minである。
【0031】
流速が共に安定した状態で、粒子生成用微小流路構造体の分散相及び連続相が交わる合流部を観察すると、図12に示すように合流部付近で生成された粒子25は粒子径70μm程度のものが安定して生成され、実施例1の場合に比較し分散性が5%にまで向上した。連続相の出口または排出流路入口部分を狭める構造にする方法として実施例3では突起状の構造を設けたが、連続相をせきとめながら分散相をせん断し、粒子生成場所が合流部付近になるような同様の効果を持つ構造であればこの方法に限定されず、流路内に突起物を設けたり流路にくびれをつけるような方法を用いてもよい。
【0032】
また、図13に示すように分散相を導入するための導入流路と連続相を導入するための導入流路が交わる角度が90度以上、すなわち分散相と連続相の流路の上流が反対側にある場合には、連続相が分散相を押し上げる流れになるため、交差角度と流速の組合せを調整して流路内の粒子生成場所を両流路合流部に近づけることができる。
(比較例1)
次に比較例1における粒子製造用微小流路を図9に示す。実施例1と同様に微小流路は70mm×20mm×1t(厚さ)のパイレックス(登録商標)ガラス上に、連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43であるY字形状とし、連続相導入流路3と分散相導入流路5とが44度の角度にて交わる合流部を持った形状の流路を1本形成した。この粒子製造用微小流路構造体の製作手順は実施例1と同じ手順にて作製した。
【0033】
次に図10に示すように粒子製造用微小流路構造体をホルダーで保持し、テフロン(登録商標)チューブ、フィレットジョイント、マイクロシリンジポンプに固定、接続する。粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液流速は分散相及び連続相は共に6μl/minである。流速が共に安定した状態で、粒子生成用微小流路構造体の分散相及び連続相が交わる合流部を観察すると、粒子生成が確認出来るが、排出流路内で分離・合一が発生し、生成された粒子(生成粒子23など)を観察すると、図8に示すように、生成された粒子は粒子径70μm程度のもののみならず、小さな粒径の粒子も含まれており、分散性の悪いものであった。このアスペクト比の液滴生成用微小流路構造体で分散性の良好な液滴生成を行う場合には、送液流速を連続相>分散相、具体的には5:1以上の流速比を与えて、連続相を過剰に送液する必要がある。
(比較例2)
比較例2における粒子製造用微小流路を図9に示す。実施例2と同様に微小流路は70mm×20mm×1t(厚さ)のポリエーテルイミド上に、連続相導入流路3、分散相導入流路5及び排出流路7の幅がいずれも140μm、深さ60μm、微小流路のアスペクト比=0.43であるY字形状とし、連続相導入流路3と分散相導入流路5とが44度の角度にて交わる合流部を持ったY字形状の流路を1本形成した。作製手法として、実施例1に示すものと同じフォトマスク及び手法を用い、直径200mmパイレックス(登録商標)ガラス基板上に流路を形成した後、Ni薄膜を形成し、電気メッキにより厚さ300μmのスタンパを作製し、成形機の金型に設置してポリエーテルイミド樹脂を射出成形法により作製した。作製した流路基板を70mm×20mm×1tで切り出した。
【0034】
次に図10に示すように粒子製造用微小流路構造体をホルダーで保持し、テフロン(登録商標)チューブ、フィレットジョイント、マイクロシリンジポンプに固定、接続する。粒子を生成するための分散相にモノマー(スチレン)、ジビニルベンゼン、酢酸ブチル及び過酸化ベンゾイルの混合溶液を、連続相にポリビニルアルコール3%水溶液をマイクロシリンジに注入し送液を行った。送液流速は分散相及び連続相は共に6μl/minである。流速が共に安定した状態で、粒子製造用微小流路構造体の分散相及び連続相が交わる合流部を観察すると、粒子化現象が確認できずに層流となった。更に連続相の流速を増加し、粒子化が容易な設定としたが粒子化現象は確認できず、層流を形成した。
【0035】
【発明の効果】
本発明は以下の効果を奏する。
(1)本発明の粒子製造方法は、極めて均一な粒子製造が可能であり、また粒子径制御も可能であるため、工業的な量産にも対応可能な方法である。
(2)本発明の微小流路構造体は、流路作製材料に依存することなく粒子製造が可能であるため、樹脂製微小流路とすることで装置コストの低減が可能である。
(3)本発明の微小流路構造体は、粒子化安定性に優れ、且つ分散相の流速を増加させることが可能であるため、短時間に大量の粒子製造が可能となり工業的に使用可能である。
(4)本発明の微小流路構造体は、粒子製造法微小流路の導入流路の幅及び深さ、導入する分散相及び連続相の送液流速の条件を変えることなく、導入流路の合流部の角度のみを変えることで生成粒子径をコントロールすることが可能となる。
(5)本発明の微小流路構造体は分散相を導入するための導入流路と連続相を導入するための導入流路が交わる角度が90度未満の場合には分散相流路と合流する両流路交差部の連続相流路出口または排出流路入口の流路幅を局所的に狭くすることにより、また交わる角度が90度以上の場合には交差角度と流速の組合せを調整することにより、粒子生成場所を合流部付近に安定化させ、粒子を安定に製造する事が可能となる。
【図面の簡単な説明】
【図1】一般的な粒子製造用微小流路を示す概略図である。
【図2】実施例1に用いた微粒子製造用微小流路構造体を示す概略図である。
【図3】実施例1における微粒子製造用微小流路の形成方法を示すフロー図である。
【図4】実施例1及び実施例2に用いた微粒子製造用微小流路構造体を示す概略図である。
【図5】実施例1及び実施例2に用いた微粒子製造用微小流路構造体及びポンプ接続を示す概略図である。
【図6】実施例1における生成粒子を示す写真である。
【図7】実施例2における生成粒子を示す写真である。
【図8】比較例1における生成粒子を示す写真である。
【図9】比較例1及び2における微粒子製造用微小流路構造体を示す概略図である。
【図10】比較例1及び2における微粒子製造用微小流路構造体及びポンプ接続を示す概略図である。
【図11】実施例3に用いた両流路交差部の連続相流路出口または排出流路入口での流路幅が狭くなっている微粒子生成用微小流路構造体を示す概略図である。
【図12】実施例3における生成粒子を示す写真である
【図13】連続相が分散相に対し90度以上の角度で交差する場合の微粒子生成用微小流路構造体を示す概略図である。
【符号の説明】
1:微小流路基板
2:連続相導入口
3:連続相導入流路
4:分散相導入口
5:分散相導入流路
6:合流部
7:排出流路
8:排出口
9:ガラス基板
10:金属膜
11:フォトレジスト
12:フォトマスク
13:微小流路が形成された基板
14:カバー体
15:微小流路構造体
16:ホルダー
17:ビーカー
18:テフロン(登録商標)チューブ
19:フィレットジョイント
20:マイクロシリンジポンプ
21:マイクロシリンジ(連続相)
22:マイクロシリンジ(分散相)
23:生成粒子
24:連続相流路出口または排出流路入口に設けた突起状構造
25:生成粒子
[0001]
BACKGROUND OF THE INVENTION
The present invention is a particle production method suitably used for producing fine droplets and gel particles used for sorting, separation column fillers, etc., and also produces particles such as fine droplets. The present invention relates to a microchannel structure for the purpose.
[0002]
[Prior art]
In recent years, by using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate or a resin substrate of several centimeters square and having a width and a depth of sub μm to several hundred μm, Research that produces fine particles by feeding liquids is attracting attention. (For example, see Non-Patent Documents 1 and 2)
Regarding the particle generation technique in the microchannel, as shown in FIG. 1, the continuous phase inlet 2, the continuous phase inlet channel 3, the dispersed phase inlet 4, and the dispersed phase inlet flow on the microchannel substrate 1. It is a T-shaped structure having a path 5, a discharge flow path 7, and a discharge port 8, and a merging portion 6 exists at a portion where the introduced continuous phase and the dispersed phase merge. The depth of each channel is 100 μm, the introduction channel width for introducing the dispersed phase is 100 μm, and the introduction channel width for introducing the continuous phase is 300 to 500 μm. When liquid feeding is performed by controlling the flow rate of the continuous phase, extremely uniform microparticles can be generated at a point where the dispersed phase and the continuous phase merge through the flow path (merging portion). It is also possible to control the generated particle size by controlling the flow rates of the dispersed phase and the continuous phase. However, this method has a problem that, as the liquid feeding speed of the dispersed phase is increased, stable particle generation cannot be obtained, and eventually a laminar flow becomes impossible. Further, since the flow path forming material is made of glass such as blue plate, quartz, Pyrex (registered trademark) or Si, when the dispersed phase is a hydrophobic liquid and the continuous phase is a hydrophilic liquid, Since the formation is more stable than particle generation, it has been substantially difficult to generate particles.
[0003]
In order to solve this problem and to generate fine particles, attempts have been made to solve by surface treatment, but over a long period of time, particle generation could not be performed, and further improvements were required. .
[Non-Patent Document 1]
Takashi Nishisako et al., “Microdroplet production in microchannels”, 4th Chemistry and Microsystems Research Meeting, 2001, 59 pages
[Non-Patent Document 2]
TAKASI NISISAKO et al., “DROPLET FORMATION IN A MICROCHANNEL ON PMMA PLATE”, Micro Total Analysis System 2001, pp. 137-138
[0004]
[Problems to be solved by the invention]
As described above, the conventional technology for generating particles such as droplets in a microchannel enables generation of extremely uniform particles at the junction of a continuous phase and a dispersed phase in a T-shaped microchannel. As the flow velocity increased, the particleization phenomenon became unstable and eventually became laminar. In addition, there is a problem of the affinity between the dispersed phase liquid and the wall surface of the fine channel, which is a problem when producing various liquid particles, and further improvement has been demanded for industrial mass production.
[0005]
The present invention has been made in view of the above-described problems, and enables particle generation in a microchannel, and also enables particle generation in a combination of various dispersed phases and continuous phases. An object of the present invention is to provide a particle manufacturing method that can be applied to mass production and a microchannel structure therefor.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention continuously introduces a dispersed phase and two or more continuous phases into a structure having a microchannel, and a portion where the dispersed phase and the continuous phase merge (hereinafter referred to as “merge”). In this case, the dispersed phase is sheared by bringing the dispersed phase into contact with the continuous phase so that the continuous phase is sandwiched between the dispersed phase. In order to generate a dispersed phase, an inlet for introducing a dispersed phase and an introduction channel communicating therewith, two or more inlets for introducing a continuous phase, an introduction channel communicating therewith, and two or more dispersed phases It has a discharge flow path consisting of a micro flow path for discharging particles generated by the continuous phase and a discharge port communicating with the discharge flow path, and has an aspect ratio (depth / width ratio of the flow path) of the cross section of the discharge flow path. Also found that it should be 0.30 or more, It is possible to solve the problems caused by technology, it has led to the completion of the finally the present invention.
[0007]
That is, in the present invention, the dispersed phase and two or more continuous phases are continuously introduced into a structure having a microchannel, and the dispersed phase and the continuous phase are brought into contact with each other to shear the dispersed phase to form fine particles. And a structure for achieving this, an introduction port for introducing a dispersed phase and an introduction channel communicating therewith, an introduction port for introducing a continuous phase, and the same A microchannel structure comprising an introductory channel that communicates, a discharge channel composed of a microchannel for discharging particles generated by a dispersed phase and two or more continuous phases, and a discharge port communicating therewith. The discharge channel cross-sectional aspect ratio (the channel depth / width ratio) is 0.30 or more.
[0008]
In the present specification, “particles” not only mean liquid droplets, that is, droplets, but also may mean solidified ones.
[0009]
Hereinafter, the present invention will be described in detail.
<Particle production method>
As described above, in the particle production method of the present invention, the dispersed phase and the continuous phase are brought into contact with each other while the dispersed phase and two or more continuous phases are continuously introduced into the structure having a microchannel. This is a method of making fine particles by shearing.
[0010]
The dispersed phase used in the present invention is a liquid material for producing particles with a microchannel structure, for example, a monomer for polymerization such as styrene, a crosslinking agent such as divinylbenzene, a gel such as a polymerization initiator, etc. It refers to a medium in which raw materials for production are dissolved in a suitable solvent. Here, as the dispersed phase, the purpose of the present invention is to generate fine particles efficiently, and if it is possible to achieve this purpose, the flow path in the fine flow path structure can be fed. The component is not particularly limited as long as particles can be further formed. Moreover, it may be a slurry in which a solid phase is partially mixed in the dispersed phase.
[0011]
The continuous phase used in the present invention is a liquid material used for generating particles from a dispersed phase by a microchannel structure, and for example, a dispersant for gel production such as polyvinyl alcohol is dissolved in an appropriate solvent. Refers to the medium. Here, the continuous phase is not particularly limited as long as it can feed the flow path in the micro flow path structure, as in the case of the dispersed phase, and the components are not particularly limited as long as particles can be formed. If two or more of the continuous phases have the same composition, the composition of the medium around the particles produced by the dispersed phase can be made uniform or controlled, and the produced particles are removed, treated by light irradiation or heating. It is easy to perform and is preferable. Further, it may be a slurry in which a solid substance is partially mixed in the continuous phase.
[0012]
Furthermore, in order to generate particles, the dispersed phase and the continuous phase must be substantially not intermingled or compatible, for example, when the aqueous phase is used as the dispersed phase, An organic phase such as butyl acetate that is substantially insoluble in water will be used. Moreover, the reverse is true when an aqueous phase is used as the continuous phase.
[0013]
In the present invention, these dispersed phase and continuous phase are continuously introduced into the microchannel structure described below, and the dispersed phase and the continuous phase are brought into contact at the joining portion where both are joined to shear the dispersed phase. The particle diameter of the generated particles is controlled by changing the angle at which the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase intersect. Is possible. This is easier to control and more suitable for industrial mass production in the production of particles using the conventional structure than in the case where the introduction speed of the dispersed phase and the continuous phase is changed. Furthermore, by making the introduction speed of the dispersed phase and the continuous phase to be introduced into the microchannel structure substantially the same, industrial mass production in terms of particle size control of the generated particles and simplification of manufacturing equipment. It can fully cope with.
<Microchannel structure>
The fine channel structure of the present invention is a structure for producing the above-described particles, and is an inlet for introducing a dispersed phase, an introduction channel communicating with the inlet, and a continuous phase. An inlet port and an inlet channel communicating therewith, a discharge channel consisting of a minute channel for discharging particles produced by a dispersed phase and two or more continuous phases, and a outlet port communicating therewith, It has a structure in which the aspect ratio of the road cross section (ratio of the depth / width of the flow path) is 0.30 or more.
[0014]
Here, the introduction port for introducing the dispersed phase means an opening for introducing the dispersed phase, and a mechanism for continuously introducing the dispersed phase by providing an appropriate attachment at the introduction port. Similarly, the introduction port for introducing the continuous phase also means an opening for introducing the continuous phase, and further, as a mechanism for continuously introducing the continuous phase with an appropriate attachment at the introduction port. Good.
[0015]
The introduction flow path for introducing the dispersed phase communicates with the introduction port, and the dispersed phase is introduced and fed along the introduction flow path. The shape of the introduction channel has an influence on controlling the shape and particle diameter of the particles, but the width is formed to be several hundreds μm or less. Similarly, the introduction channel for introducing the continuous phase is the same as the introduction port. The continuous phase is introduced, and the solution is fed along the introduction channel. The shape of the introduction channel affects the control of the particle shape and particle diameter, but the width may be several hundred μm or less. Moreover, the flow path of each continuous phase and the dispersed phase should just be a shape which can introduce | transduce a continuous phase on both sides of a dispersed phase, and cross | intersects toward one point of the flow path of a dispersed phase.
[0016]
The discharge channel communicates with the above three introduction channels and the discharge port, and after the dispersed phase and the continuous phase merge, the liquid is fed along the discharge channel and discharged from the discharge port. The shape of the discharge channel is not particularly limited, but the width may be several hundreds μm or less, and it may be Y-shaped including the introduction channel. The discharge port means an opening for discharging the generated particles, and may be a mechanism for continuously discharging the phase including the generated particles with an appropriate attachment provided to the discharge port.
[0017]
Note that these channels are sometimes referred to as minute channels in this specification.
[0018]
Furthermore, in the microchannel structure of the present invention, the introduction channel for introducing the dispersed phase and two or more introduction channels for introducing the continuous phase intersect at an arbitrary angle, and these three or more It is preferable that the introduction channel has a structure connected to the discharge channel at an arbitrary angle. By making the angle at which these three or more introduction flow passages intersect at an arbitrary angle, the particles generated at the merging portion are controlled to a desired particle diameter so that particles are generated near the merging portion. Can be controlled. The setting of the crossing angle may be appropriately determined according to the particle size of the target particle and the flow rate at the time of generation.
[0019]
As the cross-sectional shapes of the introduction channel and the discharge channel, the aspect ratio of the channel cross section is preferably 0.30 or more, and more preferably 0.30 or more and less than 3.0. If the aspect ratio is within this range, uniform particles can be generated at the junction. If the aspect ratio deviates from this range and is less than 0.30, it may be difficult to generate uniform particles. However, there is no limitation as long as the generated particle diameter is equal to or less than the channel depth.
[0020]
Further, when the width and depth of the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase are equal, in addition to the above effects, the design of the micro flow path structure is facilitated, Moreover, the control at the time of liquid feeding becomes easier, and it is suitable for industrial mass production.
[0021]
In addition, in the relationship between the width of the introduction flow path and the width of the discharge flow path, if the width of the introduction flow path ≧ the width of the discharge flow path, the liquid feed flow velocity is larger than the width of the introduction flow path = the width of the discharge flow path. Even if it is increased, uniform particles can be generated at the confluence, and the effect of increasing the particle generation rate can be obtained, which is a preferred embodiment.
[0022]
As for the width of the discharge channel, it is preferable that the width of the discharge channel is narrow at a part of the discharge channel from the intersection where the dispersed phase and the continuous phase intersect to the discharge port. In other words, it is possible to partially narrow at the junction between the introduction flow path and the discharge flow path up to the particle discharge port, or to form a flow path constituting wall along the dispersed phase flow path in a convex manner. Even if the liquid flow rate is increased, uniform particle generation can be performed at the confluence portion, and an increase in the liquid feeding pressure can be mitigated, which is a preferred embodiment.
[0023]
The microchannel structure according to the present invention has the above-described structure and performance. However, the microchannel structure has three or more introduction portions and introduction channels for introducing a dispersed phase and a continuous phase, and three or more introduction flows. A confluence portion where the passages intersect, a fine flow passage structure having a discharge flow passage and a discharge port for discharging liquid, a substrate having a fine flow passage formed on at least one surface, and a fine flow passage are formed. A cover body in which at least four or more small holes for communicating the microchannel and the outside of the microchannel structure are arranged at predetermined positions of the microchannel so as to cover the substrate surface is laminated and integrated. It may be. As a result, the fluid can be introduced from the outside of the microchannel structure into the microchannel and discharged again to the outside of the microchannel structure. It is possible to pass through the minute flow path. Fluid feeding is possible by mechanical means such as a micropump.
[0024]
As the material of the substrate and the cover body on which the microchannel is formed, it is desirable that the microchannel can be formed, has excellent chemical resistance, and has an appropriate rigidity. For example, glass, quartz, ceramic, silicon, or metal or resin may be used. The size and shape of the substrate and cover body are not particularly limited, but the thickness is preferably about several mm or less. The small holes arranged in the cover body communicate with the microchannel and the outside of the microchannel structure, and when used as a fluid inlet or outlet, the diameter is preferably, for example, several mm or less. The small holes in the cover body can be processed chemically, mechanically, or by various means such as laser irradiation or ion etching.
[0025]
In the microchannel structure of the present invention, the substrate on which the microchannels are formed and the cover body are laminated and integrated by means such as heat bonding or adhesion using an adhesive such as a photo-curing resin or a thermosetting resin. be able to.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.
In the embodiment, one micro flow channel is formed on one substrate. However, in the case of mass production industrially, a large number of micro flow channels are formed on a single substrate or a large number of micro flow channels are formed. This is possible by stacking one substrate.
(Example 1)
FIG. 2 shows a microchannel for producing particles in the first embodiment of the present invention. The microchannels are on a Pyrex (registered trademark) glass of 70 mm × 20 mm × 1 t (thickness), and the widths of the continuous phase introduction channel 3, the dispersed phase introduction channel 5, and the discharge channel 7 corresponding to the microchannels. All have a fine channel shape of 140 μm, a depth of 60 μm, and an aspect ratio of the micro channel = 0.43, and the continuous phase introduction channel 3 and the dispersed phase introduction channel 5 intersect at an angle of 22 degrees. One flow path having a shape having a shape was formed. The width and depth of the microchannel depend on the diameter of the droplet particles to be generated, but it is sufficient that the aspect ratio of the microchannel does not deviate from the range of 0.3 or more and less than 3.
[0027]
This micro-channel structure for manufacturing a Y-shaped particle was manufactured as follows according to the manufacturing procedure shown in FIG. A metal film 10 made of gold or the like is formed on one surface of a glass substrate 9 having a thickness of 1 mm and a size of 70 mm × 20 mm so that exposure light described later is not transmitted (FIG. 3 (a) metal film forming step). ), A photoresist 11 was coated on the metal film (FIG. 3B, a photoresist coating step). Further, a photomask 12 having a pattern depicting the shape of the microchannel was placed on the photoresist, and exposure was performed from the photomask for development (FIG. 3 (c) exposure to development process). Next, after etching the metal film 10 with an acid or the like (FIG. 3D, the etching process of the metal film), the resist and glass are etched with hydrofluoric acid or the like (FIG. 3E, the resist and glass etching process), Further, the remaining metal film 10 was dissolved with an acid or the like (FIG. 3 (f) metal film removal step) to obtain a substrate 13 on which microchannels were formed. In the embodiment, the micro flow channel is formed by etching the glass substrate, but the manufacturing method is not limited to this.
[0028]
The diameter of the substrate 13 on which the microchannels are formed has a diameter 0 in advance at a position corresponding to the fluid inlet (continuous phase inlet 2, dispersed phase inlet 4) and fluid outlet 8 of the microchannel. A micro-channel for particle production provided with a micro-channel as shown in FIG. 4 by thermally joining a glass cover body 14 having a thickness of 1 mm and a thickness of 70 mm × 20 mm provided with a small hole of 6 mm using mechanical processing means A structure was made. In the embodiment, the glass substrate is used for the substrate for forming the microchannel and the cover body, but the present invention is not limited to this.
[0029]
Next, the particle manufacturing method of the present invention will be described. As shown in FIG. 5, the liquid is held by the holder 16 or the like so that the liquid can be fed to the droplet generation microchannel structure 15, and the Teflon (registered trademark) tube 18 and the fillet joint 19 are fixed to the holder 16. . The other end of the Teflon (registered trademark) tube 18 is connected to the microsyringes 21, 22, and 23. As a result, liquid can be fed to the micro-channel structure 15 for particle production. Next, a mixed solution of monomer (styrene), divinylbenzene, butyl acetate, and benzoyl peroxide is injected into the microsyringe 23 as a dispersed phase for producing particles, and a 3% aqueous solution of polyvinyl alcohol is added into the microsyringes 21 and 22 as a continuous phase. The solution was injected, and the solution was fed with the microsyringe pump 20. The liquid feeding flow rate is 6 μl / min for both the dispersed phase and the continuous phase. Particle generation is observed at the junction where the dispersed phase and continuous phase of the micro-flow channel structure 15 for particle production intersect in a state where both the liquid feeding flow rates are stable. When the produced particles 23 were observed, they were extremely uniform particles having an average particle diameter of 77 μm as shown in FIG.
(Example 2)
FIG. 4 shows a microchannel for producing particles in the second embodiment of the present invention. The microchannels are on a polyetherimide substrate of 70 mm × 20 mm × 1 t (thickness), and the widths of the continuous phase introduction channel 3, the dispersed phase introduction channel 5, and the discharge channel 7 corresponding to the microchannels are all. 140 μm, depth 60 μm, microchannel shape with microchannel aspect ratio = 0.43, and has a junction where the continuous phase introduction channel 3 and the dispersed phase introduction channel 5 intersect at an angle of 22 degrees One flow path having a different shape was formed. Using the same photomask and method as shown in Example 1 as the production method, a flow path was formed on a 200 mm diameter Pyrex (registered trademark) glass substrate, a Ni thin film was formed, and a thickness of 300 μm was formed by electroplating. A stamper was produced and placed in a mold of a molding machine to produce a polyetherimide resin by an injection molding method. The produced flow path substrate was cut out at 70 mm × 20 mm × 1 t. The width and depth of the microchannel may depend on the particle diameter to be generated, but the microchannel aspect ratio does not have to depart from the range of 0.3 or more and less than 3.
[0030]
As shown in FIG. 5, the microfluidic structure 15 for particle production is held by a holder 16 or the like so that liquid can be fed, and a Teflon (registered trademark) tube 18 and a fillet joint 19 are fixed to the holder 16. The other end of the Teflon (registered trademark) tube 18 is connected to the microsyringes 21, 22, and 23. As a result, liquid can be fed to the micro-channel structure 15 for particle production. Next, a mixed solution of monomer (styrene), divinylbenzene, butyl acetate, and benzoyl peroxide is injected into the microsyringe 23 as a dispersed phase for producing particles, and a 3% aqueous solution of polyvinyl alcohol is added into the microsyringes 21 and 22 as a continuous phase. The solution was injected, and the solution was fed with the microsyringe pump 20. The liquid feeding flow rate is 6 μl / min for both the dispersed phase and the continuous phase. Particle generation is observed at the junction where the dispersed phase and continuous phase of the micro-flow channel structure 15 for particle production intersect in a state where both the liquid feeding flow rates are stable. When the produced particles 23 were observed, they were extremely uniform particles having an average particle diameter of 77 μm as shown in FIG.
(Example 3)
Next, FIG. 11 shows a fine channel for particle production in Example 3. As in Example 1, the microchannels are 70 mm × 20 mm × 1 t (thickness) on glass, and the widths of the continuous phase introduction channel 3, the dispersed phase introduction channel 5, and the discharge channel 7 are all 140 μm in depth. Y-shape with 60 μm, micro-channel aspect ratio = 0.43, and Y-shape with confluence where continuous phase introduction flow path 3 and dispersed phase introduction flow path 5 intersect at an angle of 44 degrees When one channel is formed and the crossing angle between the dispersed phase and the continuous phase is less than 90 degrees as shown in FIG. 11, that is, when the upstream of the channels of the dispersed phase and the continuous phase is on the same side, Each flow path of the continuous phase
Protrusions 24 are provided at the outlet of the continuous phase channel or the outlet of the discharge channel at the intersection of both channels that merge with the dispersed phase channel, the channel width is locally narrowed, and the flow of the continuous phase is temporarily stopped, By changing the direction of flow, the dispersed phase was sheared in the vicinity of the merged part to form particles. The production procedure of the fine channel structure for particle production was produced in the same procedure as in Example 1. Next, in the same manner as in Example 1, the fine channel structure for particle production is held by a holder and fixed and connected to a Teflon (registered trademark) tube, a fillet joint, and a microsyringe pump. A mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide was injected into a dispersed phase for generating particles, and a 3% aqueous solution of polyvinyl alcohol was injected into a microsyringe as a continuous phase, and the solution was fed. The liquid feeding flow rate is 6 μl / min for both the dispersed phase and the continuous phase.
[0031]
When the joining portion where the dispersed phase and the continuous phase of the particle generating microchannel structure intersect with each other in a state where both the flow rates are stable is observed, the particle 25 produced in the vicinity of the joining portion as shown in FIG. Was stably produced, and the dispersibility was improved to 5% as compared with Example 1. In Example 3, a protrusion-like structure is provided as a method of narrowing the outlet of the continuous phase or the outlet of the discharge channel. However, the dispersed phase is sheared while squeezing the continuous phase, and the particle generation site is in the vicinity of the junction. As long as the structure has the same effect as described above, the method is not limited to this method, and a method of providing a protrusion in the flow channel or constricting the flow channel may be used.
[0032]
Further, as shown in FIG. 13, the angle at which the introduction flow path for introducing the dispersed phase and the introduction flow path for introducing the continuous phase intersect is 90 degrees or more, that is, the upstream of the flow path of the dispersed phase and the continuous phase is opposite. In the case of being on the side, since the continuous phase is a flow that pushes up the dispersed phase, the combination of the crossing angle and the flow velocity can be adjusted to bring the particle generation location in the flow path closer to the both flow path joining portions.
(Comparative Example 1)
Next, FIG. 9 shows a microchannel for particle production in Comparative Example 1. Similar to the first embodiment, the microchannel has a width of 70 mm × 20 mm × 1 t (thickness) Pyrex (registered trademark) glass, continuous phase introduction channel 3, dispersed phase introduction channel 5, and discharge channel 7. In each case, a Y-shape with 140 μm, a depth of 60 μm, and a microchannel aspect ratio = 0.43 is formed, and a joining portion where the continuous phase introduction channel 3 and the dispersed phase introduction channel 5 intersect at an angle of 44 degrees is formed. One channel having a shape was formed. The production procedure of the fine channel structure for particle production was produced in the same procedure as in Example 1.
[0033]
Next, as shown in FIG. 10, the particle manufacturing microchannel structure is held by a holder, and fixed and connected to a Teflon (registered trademark) tube, a fillet joint, and a microsyringe pump. A mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide was injected into a dispersed phase for generating particles, and a 3% aqueous solution of polyvinyl alcohol was injected into a microsyringe as a continuous phase, and the solution was fed. The liquid feeding flow rate is 6 μl / min for both the dispersed phase and the continuous phase. When the flow velocity is stable and the merging part where the dispersed phase and continuous phase of the particle generation microchannel structure intersect is observed, particle generation can be confirmed, but separation and coalescence occur in the discharge channel, When the generated particles (generated particles 23, etc.) are observed, as shown in FIG. 8, the generated particles include not only particles having a particle diameter of about 70 μm, but also particles having a small particle diameter. It was bad. In the case of producing droplets with good dispersibility with this aspect ratio droplet-generating micro-channel structure, the liquid feeding flow rate should be continuous phase> dispersed phase, specifically a flow rate ratio of 5: 1 or more. It is necessary to feed the continuous phase excessively.
(Comparative Example 2)
FIG. 9 shows a fine channel for particle production in Comparative Example 2. As in Example 2, the microchannels are on a polyetherimide of 70 mm × 20 mm × 1 t (thickness), and the widths of the continuous phase introduction channel 3, the dispersed phase introduction channel 5, and the discharge channel 7 are all 140 μm. Y having a depth of 60 μm and a micro-channel aspect ratio = 0.43, and having a junction where the continuous-phase introduction channel 3 and the dispersed-phase introduction channel 5 intersect at an angle of 44 degrees. One letter-shaped channel was formed. Using the same photomask and method as shown in Example 1 as the production method, a flow path was formed on a 200 mm diameter Pyrex (registered trademark) glass substrate, a Ni thin film was formed, and a thickness of 300 μm was formed by electroplating. A stamper was produced and placed in a mold of a molding machine to produce a polyetherimide resin by an injection molding method. The produced flow path substrate was cut out at 70 mm × 20 mm × 1 t.
[0034]
Next, as shown in FIG. 10, the particle manufacturing microchannel structure is held by a holder, and fixed and connected to a Teflon (registered trademark) tube, a fillet joint, and a microsyringe pump. A mixed solution of monomer (styrene), divinylbenzene, butyl acetate and benzoyl peroxide was injected into a dispersed phase for generating particles, and a 3% aqueous solution of polyvinyl alcohol was injected into a microsyringe as a continuous phase, and the solution was fed. The liquid feeding flow rate is 6 μl / min for both the dispersed phase and the continuous phase. When the flow velocity was stable and the merging portion where the dispersed phase and continuous phase of the microchannel structure for particle production intersected was observed, the particle formation phenomenon could not be confirmed and the flow became laminar. Furthermore, the flow rate of the continuous phase was increased so that the particle formation was easy, but the particle formation phenomenon could not be confirmed and a laminar flow was formed.
[0035]
【The invention's effect】
The present invention has the following effects.
(1) The particle production method of the present invention is a method that can cope with industrial mass production because it can produce extremely uniform particles and can control the particle size.
(2) Since the microchannel structure of the present invention can produce particles without depending on the channel material, it is possible to reduce the apparatus cost by using a resin microchannel.
(3) The microchannel structure of the present invention is excellent in particle formation stability and can increase the flow rate of the dispersed phase, so that a large amount of particles can be produced in a short time and can be used industrially. It is.
(4) The microchannel structure according to the present invention is an introductory channel without changing the conditions of the width and depth of the introductory channel of the particle production method microchannel, the liquid phase flow rate of the dispersed phase and continuous phase to be introduced. It is possible to control the generated particle diameter by changing only the angle of the merging portion.
(5) The micro-channel structure of the present invention joins the dispersed phase channel when the angle at which the introducing channel for introducing the dispersed phase and the introducing channel for introducing the continuous phase intersect is less than 90 degrees. By locally narrowing the channel width of the continuous phase channel outlet or discharge channel inlet at the intersection of both channels, and adjusting the combination of the intersection angle and the flow velocity when the intersecting angle is 90 degrees or more As a result, it is possible to stabilize the particle generation site in the vicinity of the merging portion and stably manufacture the particles.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a general micro-channel for particle production.
2 is a schematic view showing a micro-channel structure for producing fine particles used in Example 1. FIG.
3 is a flowchart showing a method for forming a micro-channel for producing fine particles in Example 1. FIG.
4 is a schematic view showing a micro-channel structure for producing fine particles used in Example 1 and Example 2. FIG.
FIG. 5 is a schematic view showing a microchannel structure for producing fine particles and pump connection used in Example 1 and Example 2.
6 is a photograph showing produced particles in Example 1. FIG.
7 is a photograph showing generated particles in Example 2. FIG.
8 is a photograph showing generated particles in Comparative Example 1. FIG.
FIG. 9 is a schematic view showing a microchannel structure for producing fine particles in Comparative Examples 1 and 2.
10 is a schematic view showing a micro-channel structure for producing fine particles and a pump connection in Comparative Examples 1 and 2. FIG.
FIG. 11 is a schematic view showing a micro-channel structure for fine particle generation in which the channel width at the continuous phase channel outlet or the outlet channel outlet of both channel intersections used in Example 3 is narrow. .
12 is a photograph showing generated particles in Example 3. FIG.
FIG. 13 is a schematic view showing a microchannel structure for fine particle generation when a continuous phase intersects with a dispersed phase at an angle of 90 degrees or more.
[Explanation of symbols]
1: Microchannel substrate
2: Continuous phase inlet
3: Continuous phase introduction flow path
4: Dispersed phase inlet
5: Dispersed phase introduction flow path
6: Junction
7: Discharge flow path
8: Discharge port
9: Glass substrate
10: Metal film
11: Photoresist
12: Photomask
13: Substrate on which a microchannel is formed
14: Cover body
15: Microchannel structure
16: Holder
17: Beaker
18: Teflon (registered trademark) tube
19: Fillet joint
20: Micro syringe pump
21: Micro syringe (continuous phase)
22: Micro syringe (dispersed phase)
23: Generated particles
24: Protruding structure provided at the outlet of the continuous phase flow path or the discharge flow path
25: Generated particles

Claims (9)

分散相が導入され送液される分散相導入流路と、連続相が導入され送液される微小流路であって前記分散相導入流路を両側から挟んで当該分散相導入流路の端部の1点において交差する一方の連続相導入流路およびもう一方の連続相導入流路と、前記分散相導入流路と前記2つの連続相導入流路とが交差した交差部より排出口に至るまでの排出流路とからなり、前記排出流路の交差部において流路の幅が狭くなっている微小流路を有した構造体を用い、分散相と連続相とを前記微小流路を有した構造体に連続的に導入しつつ、前記分散相と連続相とを前記交差部において接触させ、分散相をせん断して微小粒子化することを特徴とする粒子製造方法。A dispersed phase introduction flow path through which the dispersed phase is introduced and sent, and a micro flow path through which the continuous phase is introduced and sent, and the end of the dispersed phase introduction flow path sandwiching the dispersed phase introduction flow path from both sides One continuous phase introduction flow path and the other continuous phase introduction flow path intersecting at one point of the section, and from the intersection where the dispersed phase introduction flow path and the two continuous phase introduction flow paths intersect to the discharge port A structure having a micro flow channel having a narrow flow channel at the intersection of the discharge flow channel, and using a structure having a dispersed phase and a continuous phase for the micro flow channel. A method for producing particles, wherein the dispersed phase and the continuous phase are brought into contact with each other at the intersecting portion while being continuously introduced into the structure, and the dispersed phase is sheared into fine particles. 2つの連続相導入流路から送液される連続相が同一組成であることを特徴とする請求項1に記載の粒子製造方法。 The method for producing particles according to claim 1, wherein the continuous phases fed from the two continuous phase introduction flow paths have the same composition. 分散相がゲル製造用原料を含む媒体であることを特徴とする請求項1又は請求項2に記載の粒子製造方法。The particle production method according to claim 1 or 2, wherein the dispersed phase is a medium containing a raw material for gel production. 連続相がゲル製造用分散剤を含む媒体であることを特徴とする請求項1〜3のいずれかに記載の粒子製造方法。The method for producing particles according to any one of claims 1 to 3, wherein the continuous phase is a medium containing a dispersant for gel production. ゲル製造用分散剤がポリビニルアルコールであることを特徴とする請求項4に記載の粒子製造方法。The particle manufacturing method according to claim 4, wherein the gel manufacturing dispersant is polyvinyl alcohol. 粒子が液滴であることを特徴とする請求項1〜5のいずれかに記載の粒子製造方法。The method for producing particles according to claim 1, wherein the particles are droplets. 基板上に微小流路を有した構造体であって、前記微小流路を有した構造体は、分散相が導入され送液される分散相導入流路と、連続相が導入され送液される微小流路であって前記分散相導入流路を両側から挟んで当該分散相導入流路の端部の1点において交差する一方の連続相導入流路およびもう一方の連続相導入流路と、前記分散相導入流路と前記2つの連続相導入流路とが交差した交差部より排出口に至るまでの排出流路とからなり、前記排出流路断面のアスペクト比(流路の深さ/幅の比)が0.30以上であり、前記交差部において排出流路の幅が狭くなっていることを特徴とする微小流路構造体。A structure having a micro flow path on a substrate, the structure having the micro flow path, a dispersed phase introduction flow path through which a dispersed phase is introduced and fed, and a continuous phase is introduced and fed. One continuous phase introduction channel and the other continuous phase introduction channel that intersect at one point at the end of the dispersed phase introduction channel across the dispersed phase introduction channel from both sides. , The disperse phase introduction flow path and the two continuous phase introduction flow paths intersect with the discharge flow path from the intersection to the discharge opening, and the aspect ratio of the cross section of the discharge flow path (depth of the flow path) / Width ratio) is 0.30 or more, and the width of the discharge channel is narrow at the intersection. 排出流路の幅が狭くなっている部位が、排出流路の交差部の分散相の導入流路側にあることを特徴とする請求項7記載の微小流路構造体。8. The micro-channel structure according to claim 7, wherein the portion where the width of the discharge channel is narrow is on the introduction channel side of the dispersed phase at the intersection of the discharge channel. 分散相を導入するための導入流路が、連続相を導入するための2の導入流路が交わる角度を二等分する角度でかつその間で交わると共に、前記導入流路が排出流路へと繋がる構造であることを特徴とする請求項7または請求項8に記載の微小流路構造体。The introduction flow path for introducing the dispersed phase intersects at an angle that bisects the angle at which the two introduction flow paths for introducing the continuous phase intersect, and the introduction flow path becomes the discharge flow path. The microchannel structure according to claim 7 or 8, wherein the microchannel structure is a connected structure.
JP2003021794A 2002-11-06 2003-01-30 Particle manufacturing method and microchannel structure therefor Expired - Fee Related JP4186637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021794A JP4186637B2 (en) 2002-11-06 2003-01-30 Particle manufacturing method and microchannel structure therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002322127 2002-11-06
JP2003021794A JP4186637B2 (en) 2002-11-06 2003-01-30 Particle manufacturing method and microchannel structure therefor

Publications (2)

Publication Number Publication Date
JP2004202476A JP2004202476A (en) 2004-07-22
JP4186637B2 true JP4186637B2 (en) 2008-11-26

Family

ID=32828335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021794A Expired - Fee Related JP4186637B2 (en) 2002-11-06 2003-01-30 Particle manufacturing method and microchannel structure therefor

Country Status (1)

Country Link
JP (1) JP4186637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114140A (en) 2016-02-25 2018-10-17 가부시키가이샤 고베 세이코쇼 Flow apparatus and droplet forming method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194425A (en) * 2004-01-08 2005-07-21 Sekisui Chem Co Ltd Method for producing fine particle and fine particle
JP2008535644A (en) 2005-03-04 2008-09-04 プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ Method and apparatus for the formation of multiple emulsions
JP4417361B2 (en) * 2006-09-27 2010-02-17 独立行政法人科学技術振興機構 Double emulsion microcapsule generator
JP2009014377A (en) * 2007-07-02 2009-01-22 Tosoh Corp Cellulose particles and their manufacturing method
BR112012004719A2 (en) 2009-09-02 2016-04-05 Harvard College multiple emulsions created by blasting and other techniques
KR20120089662A (en) * 2009-09-02 2012-08-13 바스프 에스이 Multiple emulsions created using junctions
JP5843089B2 (en) * 2011-02-19 2016-01-13 国立大学法人 千葉大学 Method for synthesizing spherical or non-spherical polymer particles
BR112013029729A2 (en) 2011-05-23 2017-01-24 Basf Se emulsion control including multiple emulsions
CN103764265A (en) 2011-07-06 2014-04-30 哈佛学院院长等 Multiple emulsions and techniques for the formation of multiple emulsions
JP2013202555A (en) * 2012-03-29 2013-10-07 Nitto Denko Corp Liquid droplet generation module

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196335B2 (en) * 1992-06-19 2001-08-06 日本ゼオン株式会社 Method for producing polymer fine particles and polymer fine particles
JP2981547B1 (en) * 1998-07-02 1999-11-22 農林水産省食品総合研究所長 Cross-flow type microchannel device and method for producing or separating emulsion using the device
JP3012608B1 (en) * 1998-09-17 2000-02-28 農林水産省食品総合研究所長 Microchannel device and method for producing emulsion using the same
EP1447127B1 (en) * 2001-02-23 2007-07-04 Japan Science and Technology Agency Apparatus for producing emulsion
JP4182195B2 (en) * 2001-09-03 2008-11-19 独立行政法人農業・食品産業技術総合研究機構 Monodispersed complex emulsion production equipment
GB0126281D0 (en) * 2001-11-01 2002-01-02 Astrazeneca Ab A chemical reactor
JP4193561B2 (en) * 2002-04-25 2008-12-10 東ソー株式会社 Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
JP2004059802A (en) * 2002-07-30 2004-02-26 Japan Science & Technology Corp Preparation method of solid fine particulate and its apparatus
JP4032128B2 (en) * 2002-08-01 2008-01-16 東ソー株式会社 Microchannel structure, desk-size chemical plant constructed, and fine particle production apparatus using them
JP3635575B2 (en) * 2002-08-09 2005-04-06 俊郎 樋口 Monodisperse resin particle production method and production apparatus
JP4144302B2 (en) * 2002-09-10 2008-09-03 東ソー株式会社 Droplet generation method
JP2004154745A (en) * 2002-09-10 2004-06-03 Tosoh Corp Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP4122959B2 (en) * 2002-12-13 2008-07-23 旭硝子株式会社 Method for producing inorganic spherical body
JP4356312B2 (en) * 2002-12-17 2009-11-04 東ソー株式会社 Microchannel structure
JP4306243B2 (en) * 2002-12-17 2009-07-29 東ソー株式会社 Particle production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114140A (en) 2016-02-25 2018-10-17 가부시키가이샤 고베 세이코쇼 Flow apparatus and droplet forming method

Also Published As

Publication number Publication date
JP2004202476A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4193561B2 (en) Microchannel structure, microparticle manufacturing method using the same, and solvent extraction method using microchannel structure
JP4042683B2 (en) Microchannel structure and microparticle manufacturing method using the same
Vladisavljević et al. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
JP5624310B2 (en) Method and apparatus for fluid dispersion
JP4186637B2 (en) Particle manufacturing method and microchannel structure therefor
KR20080020954A (en) Microchannel structure and fine-particle production method using the same
WO2003059499A1 (en) Microfluidic streak mixers
WO2017060876A1 (en) Microfluidic droplet generator with controlled break-up mechanism
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JP4305145B2 (en) Particle production method using micro flow channel
JP5072057B2 (en) Microcapsule manufacturing method using microchannel structure
JP4356312B2 (en) Microchannel structure
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
JP2004154745A (en) Microchannel structure for forming droplet, droplet forming method using the same and product thereof
JP4306243B2 (en) Particle production method
JP4639624B2 (en) Micro channel structure
US10807054B2 (en) Mixing of fluids
JP4059073B2 (en) Method for pumping liquid in merging device and merging device
JP2006239594A (en) Emulsification apparatus, continuous emulsification apparatus and emulsification method
JP4743165B2 (en) Micro channel structure
JP4470640B2 (en) Fine particle manufacturing method and microchannel structure therefor
JP2005238118A (en) Method and device for preparing solidified particle using micro-flow channel structure
JP4547967B2 (en) Microchannel structure and droplet generation method using the same
JP4752173B2 (en) Micro channel structure
JP2012139621A (en) Microchannel structure and method of manufacturing fine particle using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees