JP2008238097A - Minute flow passage assembly apparatus for producing droplet - Google Patents

Minute flow passage assembly apparatus for producing droplet Download PDF

Info

Publication number
JP2008238097A
JP2008238097A JP2007084707A JP2007084707A JP2008238097A JP 2008238097 A JP2008238097 A JP 2008238097A JP 2007084707 A JP2007084707 A JP 2007084707A JP 2007084707 A JP2007084707 A JP 2007084707A JP 2008238097 A JP2008238097 A JP 2008238097A
Authority
JP
Japan
Prior art keywords
substrate
microchannel
channel
micro
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007084707A
Other languages
Japanese (ja)
Inventor
Hideaki Kiritani
英昭 桐谷
Tomoyuki Oikawa
智之 及川
Katsuyuki Hara
克幸 原
Hiroki Takamiya
裕樹 高宮
Shinichi Matsumoto
進一 松本
Koji Katayama
晃治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007084707A priority Critical patent/JP2008238097A/en
Publication of JP2008238097A publication Critical patent/JP2008238097A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a minute flow passage assembly apparatus for producing droplets which uses a flow passage structure for producing fine particle, the structure being manufactured inexpensively and in large quantities, and can produce a product in large quantities by arranging minute flow passages three-dimensionally at an increased degree of integration and sending a fluid uniformly to all of the minute flow passages. <P>SOLUTION: The minute flow passage structure has a fluid introduction port for introducing the fluid, minute flow passages for producing fine particles from the fluid and a fluid discharge port for discharging the fluid containing the produced fine particles and the minute flow passage structure is composed of a fluid supply structure for supplying the fluid to minute flow passages, a minute flow passage substrate having minute flow passages and a plate interposed between the fluid supply structure and the minute flow passage substrate. A base material of the minute flow passage substrate is a resin which has ≥70 hardness in the type D when measured by the durometer hardness test method according to JIS K 6253 and ≤3% mold shrinkage rate when measured according to JIS K 7152. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粒子径の揃ったゲルやマイクロカプセルの製造装置および製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for gels and microcapsules having a uniform particle diameter.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さが数μmから数百μmの微小流路を有する微小流路構造体を用い、微小流路に流体を送液することにより化学処理を行い化学合成物質を生成する研究(例えば特許文献1、非特許文献1を参照)や微粒子を生成する研究(例えば特許文献2、特許文献3、非特許文献2を参照)が注目されている。ここでいう微小流路とは一般に、流路の幅は1μm〜500μm、流路の深さは0.1μm〜200μmであり、流路の長さは、1μm〜50cmの流路を意味する。また、ここで述べる流路とは、微小流路および、微小流路に連通する供給流路、分配流路、排出流路等を意味する。   In recent years, a microchannel structure having a microchannel having a length of about several cm and a width and depth of several μm to several hundreds of μm on a glass substrate of several cm square is used to send a fluid to the microchannel. Research to produce chemical synthetic substances by chemical treatment by liquefaction (see, for example, Patent Document 1 and Non-Patent Document 1) and research to produce fine particles (see, for example, Patent Document 2, Patent Document 3, and Non-Patent Document 2) ) Is attracting attention. Here, the microchannel generally refers to a channel having a channel width of 1 μm to 500 μm, a channel depth of 0.1 μm to 200 μm, and a channel length of 1 μm to 50 cm. In addition, the flow path described here means a micro flow path, a supply flow path communicating with the micro flow path, a distribution flow path, a discharge flow path, and the like.

前述したように、微小流路の幅と深さは、数μmから数百μm程度である。このため1つの微小流路における生成物の生成量は毎分数十μl程度であるが、微小流路を用いて化学合成する場合や微粒子を工業的に大量生産する場合には、微小流路基板に形成する微小流路の集積度を高める、あるいは集積した微小流路を有する微小流路基板を立体的に積層することで実現可能であると一般的に言われており、このような態様を微小流路のナンバリングアップと称することもある。   As described above, the width and depth of the microchannel are about several μm to several hundred μm. For this reason, the amount of product produced in one microchannel is about several tens of μl per minute. However, when chemically synthesizing using a microchannel or when industrially producing fine particles, the microchannel It is generally said that it can be realized by increasing the degree of integration of microchannels formed on a substrate or by three-dimensionally stacking microchannel substrates having integrated microchannels. Is sometimes referred to as numbering up of microchannels.

しかしながら、この微小流路の集積化技術は、従来までに1本の微小流路を有する微小流路基板を数枚程度、モデル的に積層した例が報告されているだけであり(例えば特許文献4、非特許文献3を参照)、実用的に数十本から数百本の微小流路を平面的に配置させ、すべての微小流路へ均一に流体を送液すること、さらに、前記数十本から数百本集積した微小流路を有する微小流路基盤をさらに数枚から数十枚立体的に配置させ、均一な液滴を生成することは未だ検討されておらず、微小流路による工業的な大量生産は従来非常に困難であった。   However, this microchannel integration technique has only been reported in the past as an example in which several microchannel substrates having one microchannel are stacked in a model manner (for example, Patent Documents). 4, see Non-Patent Document 3), practically arranging several tens to several hundreds of microchannels in a plane, and uniformly feeding fluid to all the microchannels; It has not been studied yet to produce a uniform droplet by arranging three to several tens of microchannel substrates having microchannels integrated from ten to several hundreds. Industrial mass production by has been very difficult in the past.

以上のような背景から、微小流路の平面的集積度の向上及び立体的集積度の向上に伴う、工業的な装置で均一な液滴を生成することが切望されていた。   From the background as described above, it has been eagerly desired to produce uniform droplets with an industrial apparatus accompanying the improvement of the planar integration degree and the three-dimensional integration degree of the microchannels.

特開2003−225900号公報JP 2003-225900 A 国際公開WO02/068104号パンフレットInternational Publication WO02 / 068104 Pamphlet 特許第3511238号公報Japanese Patent No. 3511238 特開2002−292275号公報JP 2002-292275 A H.Hisamoto et.al.(H.ひさもと ら著), 「Fast and high conversion phase− transfer synthesis exploiting the liquid−liquid interface formed in a microchannel chip」, Chem.Commun., 2662〜2663頁, 2001年発行H. Hisamoto et. al. (H. Hisamoto et al.), "Fast and high conversion phase- transfer synthesis synthesis the liquid-liquid interface formed in a microchannel chip." Commun. , 2662-2663, 2001 西迫貴志ら、「マイクロチャネルにおける液中微小液滴生成」、第4回化学とマイクロシステム研究会講演予稿集、59頁、2001年発行Takashi Nishisako et al., “Liquid microdroplet generation in microchannels”, Proceedings of the 4th Chemistry and Microsystem Study Group, 59 pages, 2001 菊谷ら、「パイルアップマイクロリアクターによる高収量マイクロチャンネル内合成」、第3回化学とマイクロシステム研究会公演予稿集、9頁、2001年発行Kikutani et al., “High-yield microchannel synthesis using pile-up microreactors”, Proceedings of the 3rd Chemistry and Microsystem Research Meeting, 9 pages, 2001

粒子径の揃ったゲルやマイクロカプセルの作製に用いられる微小流路構造体は、フォトマスクを用いたフォトリソグラフィーとエッチングによってガラスやシリコン、金属、樹脂等の基板上に形成していたり、機械的な切削加工により一枚一枚溝形成した溝基板と、穴を開けたカバー体を接合することにより流路を形成するが、この方法では、生産性が低く、大量生産が困難であった。また、カバーをすることによって形成した流路より液が溶出しやすい問題があり、蓋は熱溶着や接着剤等により溝形成した板と接合する必要が有った。また、これを液滴生成用製造装置として用いた場合には、著しく生産性は低いものであった。   The microchannel structure used for the production of gels and microcapsules with uniform particle diameters is formed on a substrate of glass, silicon, metal, resin, etc. by photolithography and etching using a photomask. A flow path is formed by joining a groove substrate formed with a groove by a cutting process and a cover body with holes, but this method has low productivity and is difficult to mass-produce. In addition, there is a problem that the liquid tends to elute from the flow path formed by covering, and the lid needs to be joined to a plate formed with a groove by heat welding or adhesive. Further, when this was used as a manufacturing apparatus for generating droplets, the productivity was remarkably low.

本発明は、上記課題に鑑みてなされたもので、安価に大量に作製した微小流路構造体を、立体的に微小流路の集積度を向上させて、すべての微小流路に均一に流体を送液し、生成物を大量に生産することが可能な液滴生成用製造装置を提供することにある。   The present invention has been made in view of the above problems, and a microchannel structure manufactured in a large quantity at a low cost is obtained by improving the degree of integration of microchannels in a three-dimensional manner so that fluids are uniformly distributed in all microchannels. It is an object of the present invention to provide a production apparatus for producing droplets capable of feeding a liquid and producing a large amount of products.

本発明は、上記目的を解決するために、微小流路構造体の型(スタンパ)を製作し、これを用いて特定の硬度を有する多数の樹脂製の基板を成形・複製し、この微小流路構造基板より硬い治具と、微小流路構造体基板より柔らかい板の間にこの微小流路構造基板を挟んで使用する、液滴生成用微小流路集合体装置である(以下、当該装置を「MRブロック」という。)。このMRブロックは、分散相を導入するための導入口および微小流路基板へ連通する導入流路と、連続相を導入するための導入口及び微小流路基板へ連通する導入流路と、分散相及び連続相を介して生成された粒子を排出させるための排出流路及び排出口とを備える。   In order to solve the above-mentioned object, the present invention manufactures a mold (stamper) of a micro flow channel structure, and molds / reproduces a large number of resin substrates having a specific hardness using the mold. This is a micro-channel assembly device for generating droplets that is used by sandwiching the micro-channel structure substrate between a jig harder than the channel-structure substrate and a plate softer than the micro-channel structure substrate. MR block "). The MR block includes an introduction port for introducing a dispersed phase and an introduction channel communicating with the microchannel substrate, an introduction port for introducing a continuous phase and an introduction channel communicating with the microchannel substrate, A discharge channel and a discharge port for discharging particles generated through the phase and the continuous phase are provided.

すなわち本発明は、流体を導入する流体導入口と前記流体により微粒子を生成する微小流路と生成した微粒子を含有する流体を排出する流体排出口とを有する微小流路構造体であって、前記微小流路構造体は、前記流体を前記微小流路に供給する流体供給用構造体と前記微小流路を有する微小流路基板とこれらの間に介される板とから構成されており、前記微小流路基板の基材が、JIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以上であり、かつJIS K 7152−4準拠の成形収縮率は3%以下の樹脂である液滴生成用微小流路集合体装置である。   That is, the present invention is a microchannel structure having a fluid inlet for introducing a fluid, a microchannel for generating microparticles by the fluid, and a fluid outlet for discharging a fluid containing the generated microparticles, The microchannel structure includes a fluid supply structure that supplies the fluid to the microchannel, a microchannel substrate having the microchannel, and a plate interposed therebetween, Formation of droplets in which the base material of the flow path substrate is a resin having a durometer hardness test method compliant with JIS K 6253 and having a hardness of 70 or higher in Type D and a molding shrinkage rate compliant with JIS K 7152-4 of 3% or less This is a microchannel assembly device for use.

また本発明は、微小流路構造体が、分散相を導入する導入口およびそれに連通する分散相導入微小流路と、連続相を導入する導入口およびそれに連通する連続相導入微小流路と、前記分散相導入微小流路と連続相導入微小流路とが交差して分散相からなる液滴生成用微小流路と、前記液滴生成用微小流路と連通し生成した微粒子を含有する流体を排出する流体排出口と、を有する上記の液滴生成用微小流路集合体装置である。   Further, the present invention provides a microchannel structure having an inlet for introducing a dispersed phase and a dispersed phase introducing microchannel that communicates with the inlet, an inlet for introducing a continuous phase, and a continuous phase introduction microchannel that communicates with the inlet, A liquid containing a droplet generating microchannel formed of a dispersed phase by intersecting the dispersed phase introducing microchannel and the continuous phase introducing microchannel, and a fine particle generated through communication with the droplet generating microchannel And a fluid flow outlet for discharging the liquid droplets.

また本発明は、前記微小流路基板の両側にJIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以下の板を配置し、さらにその両側に前記微小流路基板の基材より硬い治具を配置した積層体を有する上記の液滴生成用微小流路集合体装置である。   In the present invention, plates having a hardness of 70 or less according to JIS K 6253 according to JIS K 6253 are disposed on both sides of the microchannel substrate, and the plates of the microchannel substrate are harder on both sides thereof. It is the above-described micro-channel assembly device for droplet generation having a laminated body in which a jig is arranged.

また本発明は、流体供給用構造体が、前記流体を導入するための流体導入口としての1以上の貫通穴を有し、前記流体導入口と連通し前記導入した流体を一時的に蓄える貯蔵空間を有し、かつ前記貯蔵空間から、前記微小流路基板に形成された1以上の微小流路の各々の流体導入口に連通して前記微小流路に流体を供給するための1以上の放射状に直線的及び/又は曲線的に形成された供給流路を有し、この流体供給用構造体の少なくとも1つは、圧着する上下治具間より下方に位置する上記の液滴生成用微小流路集合体装置である。   Further, according to the present invention, the fluid supply structure has one or more through holes as fluid inlets for introducing the fluid, and stores the introduced fluid in communication with the fluid inlets temporarily. One or more for supplying fluid from the storage space to each fluid inlet of each of the one or more microchannels formed in the microchannel substrate from the storage space. It has a supply channel formed radially and / or curvilinearly, and at least one of the fluid supply structures is the above-described droplet generating microposition located below the upper and lower jigs to be crimped It is a flow path assembly device.

また本発明は、微小流路基板と、微小流路基板に形成されている流路に蓋をして流路を形成するカバー体とを、平板状の治具を圧着することで密着させてなる上記の液滴生成用微小流路集合体装置である。   In the present invention, the microchannel substrate and the cover body that forms a channel by covering the channel formed on the microchannel substrate are brought into close contact with each other by crimping a flat jig. The above-described micro-channel assembly device for generating droplets.

また本発明は、カバー体が流路基板より硬い上記の液滴生成用微小流路集合体装置である。   The present invention is also the above-described micro-channel assembly device for generating droplets, wherein the cover body is harder than the channel substrate.

また本発明は、微小流路基板に形成されている流路が、微小流路基板において線または点対称な構成となっており、その対称中心に空間があいており、圧着治具を有する上記の液滴生成用微小流路集合体
また本発明は、微小流路基板を立体的に積層するまたはカバー体を設置するための位置決め機構を有する上記の液滴生成用微小流路集合体装置である。
Further, in the present invention, the flow path formed in the micro flow path substrate has a line or point symmetric configuration in the micro flow path substrate, and there is a space at the center of symmetry, and the crimping jig is provided. The present invention also relates to the above-described microchannel assembly for generating a droplet having a positioning mechanism for three-dimensionally stacking microchannel substrates or installing a cover body. is there.

また本発明は、微小流路基板の一部に、当該微小流路基板どうしを積層状態から分離するため治具を挿入する凹部を有する上記の液滴生成用微小流路集合体装置である。   The present invention also provides the above-described micro-channel assembly device for generating droplets, wherein a part of the micro-channel substrate has a recess for inserting a jig for separating the micro-channel substrates from the stacked state.

また本発明は、流体供給用構造体と微小流路基板との間に介される板と連通する穴が、圧着治具の平面上に並んでおり、流体供給用構造体と微小流路基板との間に介される板に設けた穴でそれぞれの穴を一度に位置合わせする構造となる上記の液滴生成用微小流路集合体装置である。   In the present invention, the holes communicating with the plate interposed between the fluid supply structure and the microchannel substrate are arranged on the plane of the crimping jig, and the fluid supply structure, the microchannel substrate, It is the above-mentioned micro-channel assembly device for generating droplets having a structure in which holes provided in a plate interposed between them are aligned at a time.

また本発明は、流体供給用構造体と微小流路基板との間に介される板が、微小流路基板より小さい上記の液滴生成用微小流路集合体装置である。   The present invention is also the above-described micro-channel assembly device for generating droplets in which a plate interposed between the fluid supply structure and the micro-channel substrate is smaller than the micro-channel substrate.

また本発明は、微小流路基板に形成されている流路表面が親水化処理されている上記の液滴生成用微小流路集合体装置である。   In addition, the present invention is the above-described micro-channel assembly device for generating droplets, in which a channel surface formed on a micro-channel substrate is subjected to a hydrophilic treatment.

また本発明は、微小流路基板を積層する際、微小流路基板に形成されている流路を、微小流路基板とは別の微小流路基板の流路形成面の裏面にて蓋をするカバー体として積層してなる上記の液滴生成用微小流路集合体装置である。   In the present invention, when the microchannel substrates are stacked, the channel formed on the microchannel substrate is covered with the back surface of the channel forming surface of the microchannel substrate different from the microchannel substrate. The droplet generating micro-channel assembly device is formed by laminating as a cover body to be used.

また本発明は、流体供給用構造体と連通する縦穴流路(貫通孔)から導入微小流路の導入部の流路の深さが、液滴生成用微小流路の深さより深い上記の液滴生成用微小流路集合体装置である。   In addition, the present invention provides the above-described liquid in which the depth of the introduction channel of the introduction microchannel from the vertical hole channel (through hole) communicating with the fluid supply structure is deeper than the depth of the droplet generation microchannel. This is a droplet generating microchannel assembly device.

また本発明は、微小流路基板に形成される排出流路において、流路の一部が深くなっている上記の液滴生成用微小流路集合体装置である。   The present invention is also the above-described micro-channel assembly device for generating droplets, wherein a part of the channel is deep in the discharge channel formed on the micro-channel substrate.

また本発明は、2枚のそれぞれ異なる流路構造を有する微小流路基板を、流路が形成されている面どうしを対面させたときに、流路が異なる微小流路基板上の流路が交差する部分で液滴を形成させる構造を持つ上記の液滴生成用微小流路集合体装置である。   In the present invention, when two microchannel substrates having different channel structures are opposed to each other on the surfaces where the channels are formed, the channels on the microchannel substrates having different channels are The above-described micro-channel assembly device for generating droplets has a structure in which droplets are formed at intersecting portions.

また本発明は、一方の微小流路基板上の流路構造が環状であって、始点及び終点を持たない構造である上記の液滴生成用微小流路集合体装置である。   Further, the present invention is the above-described micro-channel assembly device for generating droplets, wherein the channel structure on one micro-channel substrate is annular and does not have a start point and an end point.

また本発明は、一方の流路基板の溝が同心円である上記の液滴生成用微小流路集合体装置である。   The present invention also provides the above-described micro-channel assembly device for generating droplets, wherein the grooves of one channel substrate are concentric circles.

また本発明は、分散相または連続相の微小流路基板へ導入する流路を流路基板の下方に位置させ、各基板を通り排出する流体の送液方向が上向きである上記の液滴生成用微小流路集合体装置である。   Further, the present invention provides the above-described droplet generation in which the flow path to be introduced into the dispersed flow path or continuous phase micro flow path substrate is positioned below the flow path substrate, and the liquid feeding direction discharged through each substrate is upward. This is a microchannel assembly device for use.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

上記の通り、本発明は流体を導入する流体導入口と、導入される流体により微粒子を生成する微小流路と、微小流路において生成した微粒子を含有する流体を排出する流体排出口と、を有する微小流路構造体である。この微小流路構造体は、流体を微小流路に供給する流体供給用構造体と微小流路を有する微小流路基板から構成されている。さらに、この微小流路基板の基材として、JIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以上であり、かつJIS K 7152−4準拠の成形収縮率は3%以下の樹脂である、液滴生成用微小流路集合体装置である。   As described above, the present invention includes a fluid introduction port for introducing a fluid, a micro flow channel that generates fine particles by the introduced fluid, and a fluid discharge port that discharges a fluid containing the fine particles generated in the micro flow channel. It is the microchannel structure which has. This microchannel structure is composed of a fluid supply structure for supplying fluid to the microchannel and a microchannel substrate having a microchannel. Furthermore, as a base material of the microchannel substrate, a resin having a hardness of 70 or higher in Type D by a durometer hardness test method in accordance with JIS K 6253 and a molding shrinkage rate in accordance with JIS K 7152-4 of 3% or less. This is a microchannel assembly device for droplet generation.

このため本発明は、上記の微小流路構造体の型(スタンパ)を製作する。スタンパは、微細な加工が出来る板に機械的な手法を用いて凸部を形成し、これを転写して微小流路基板(溝基板)としても良いし、一旦、化学的、機械的方法で溝を形成した板に、電鋳などで溝の型を写した金属性のスタンパとしこれを樹脂に転写しても良い。転写には射出成形などの公知の手法を用いればよい。   For this reason, the present invention produces a mold (stamper) of the above-described microchannel structure. The stamper may be a micro-channel substrate (groove substrate) formed by forming a convex portion on a plate that can be finely processed using a mechanical technique, and transferring it by a chemical or mechanical method. A metal stamper obtained by copying the groove mold by electroforming or the like may be transferred to the resin on the plate on which the groove is formed. A known technique such as injection molding may be used for the transfer.

転写する樹脂製基板、すなわち微小流路基板の基材として、POM(ポリアセタール)ナイロン、ポリエーテルイミド、ポリエチレン、ポリフェニレンサルファイド、ポリプロピレン、ポリエチレン等の熱可塑性樹脂や、メラミン、フェノール、エポキシなどの熱硬化性樹脂から、成形性の容易さや、連続相または分散相となる液の耐液性、また、表面修飾の容易さを考慮して適宜選べばよい。具体的には、射出成形などの成形性の面や、成形後に微小流路集合体装置として本発明の目的を達成するため、上記例に挙げられる、JIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以上であり、かつJIS K 7152−4準拠の成形収縮率は3%以下の樹脂を用いることができる。   Thermosetting resin such as POM (polyacetal) nylon, polyetherimide, polyethylene, polyphenylene sulfide, polypropylene, polyethylene, melamine, phenol, epoxy, etc. The resin may be appropriately selected in consideration of ease of moldability, liquid resistance of a liquid that becomes a continuous phase or a dispersed phase, and ease of surface modification. Specifically, in order to achieve the object of the present invention as a micro-flow channel assembly device after molding, such as injection molding, a durometer hardness test method compliant with JIS K 6253 is used. A resin having a hardness of 70 or more in Type D and a molding shrinkage rate of 3% or less in accordance with JIS K 7152-4 can be used.

また、本発明の液滴生成用微小流路集合体装置に用いられる、流体を微小流路に供給する流体供給用構造体についても上記微小流路基板と同様に公知の手法を用いて製造できる。この流体供給用構造体とは、流体を導入するための流体導入口としての1以上の貫通穴を有し、流体導入口と連通し導入した流体を一時的に蓄える貯蔵空間を有し、かつ貯蔵空間から、微小流路基板に形成された1以上の微小流路の各々の流体導入口に連通して微小流路に流体を供給するための1以上の放射状に直線的及び/又は曲線的に形成された供給流路を有するものであり、この流体供給用構造体の少なくとも1つは、圧着する上下治具間より下方に位置させることで、本発明の液滴生成用微小流路集合体装置の構成となる。   The fluid supply structure for supplying fluid to the microchannels used in the droplet generating microchannel assembly apparatus of the present invention can also be manufactured using a known method in the same manner as the microchannel substrate. . The fluid supply structure has one or more through holes as fluid inlets for introducing fluid, has a storage space for temporarily storing fluid introduced through communication with the fluid inlets, and One or more radially linear and / or curved lines for supplying fluid from the storage space to each fluid inlet of each of the one or more microchannels formed in the microchannel substrate. And at least one of the fluid supply structures is positioned below the space between the upper and lower jigs to be crimped, so that the microchannel assembly for generating droplets according to the present invention is provided. It becomes the structure of the body device.

こうして複製した基板(微小流路基板)と、微小流路基板に形成されている流路に蓋をして流路を形成するカバー体を、この基板より硬い治具と基板より柔らかい板(以下「パッキン」という。)、より具体的にはデュロメータ硬さ試験方法でタイプDにおける硬度70以下の板、例えばテフロン(登録商標)を介して挟んで使用することで、カバー体と微小流路基板(溝基板)で流路を形成させるが、溝流路全体を圧着させるために、パッキンは、全流路範囲、特に流路の直上下方に位置する部分すなわち両側に位置することが必要である。   The substrate thus replicated (microchannel substrate) and the cover body that forms a channel by covering the channels formed on the microchannel substrate are made of a jig that is harder than this substrate and a plate that is softer than the substrate (hereinafter referred to as the substrate). "Packing"), and more specifically, by using a durometer hardness test method sandwiched between plates having a hardness of 70 or less in Type D, for example, Teflon (registered trademark), the cover body and the microchannel substrate (Groove substrate) forms the flow path, but in order to crimp the entire groove flow path, the packing needs to be located in the entire flow path range, particularly in the part located directly above and below the flow path, that is, on both sides. is there.

さらにその両側に微小流路基板の基材より硬い治具、例えば平板状のステンレス製治具を配置し、カバー体と微小流路基板(溝基板)とを圧着させて密着させてなる積層体を形成し本発明の液滴生成用微小流路集合体装置に供することができる。また、このカバー体は微小流路基板より硬い基材とすることが好ましい。   Further, a laminated body in which a jig harder than the base material of the microchannel substrate, for example, a flat plate-shaped stainless steel jig, is arranged on both sides, and the cover body and the microchannel substrate (groove substrate) are pressed and adhered. Can be used for the droplet generating microchannel assembly device of the present invention. Moreover, it is preferable that the cover body be a base material harder than the microchannel substrate.

またこのMRブロックは、分散相を導入する導入口およびそれに連通する分散相導入微小流路と、連続相を導入する導入口およびそれに連通する連続相導入微小流路と、分散相導入微小流路と連続相導入微小流路とが交差して分散相からなる液滴生成用微小流路と、液滴生成用微小流路と連通し生成した微粒子を含有する流体を排出する流体排出口とを備え、分散相や連続相を導入するための導入口および微小流路基板へ立体的に連通する導入流路へ均等に送液するための少なくとも1つの分配流路や、分散相及び連続相を介して生成された粒子を排出させるための排出流路を集合するための流路が圧着治具の間に無い構造とすることで、微小流路基板を均等に圧着することができる構造となる。   The MR block includes an inlet for introducing a dispersed phase and a dispersed phase introducing microchannel communicating with the inlet, an inlet for introducing a continuous phase and a continuous phase introducing microchannel communicating with the inlet, and a dispersed phase introducing microchannel. And a continuous-phase-introducing microchannel intersecting the droplet-generating microchannel consisting of a dispersed phase, and a fluid discharge port for discharging a fluid containing fine particles generated in communication with the droplet-generating microchannel Provided with an introduction port for introducing a dispersed phase or a continuous phase and at least one distribution channel for evenly feeding to an introduction channel communicating three-dimensionally to a microchannel substrate, a dispersed phase and a continuous phase By using a structure in which there are no flow paths for collecting the discharge flow paths for discharging the particles generated via the crimping jig, the micro flow path substrate can be evenly crimped. .

また、この圧着する微小流路基板に形成されている流路表面が親水化処理されていることが好ましく、親水化処理により、より容易に水相を連続相として液滴を生成できるが、この表面処理には、金スパッタ、ニッケルスパッタ、シリコンやSiOスパッタなどの薄膜を付ける方法、アッシング処理、プラズマ処理、オゾン処理やスルホン化などの親水性基の表面修飾、逆スパッタや酸・アルカリ処理などによる表面積増大による親水化方法等から任意に選べばよい。 In addition, the surface of the flow path formed on the micro flow path substrate to be pressure-bonded is preferably subjected to a hydrophilic treatment, and the hydrophilization treatment can more easily generate droplets using the aqueous phase as a continuous phase. For surface treatment, gold sputtering, nickel sputtering, thin film method such as silicon or SiO 2 sputtering, ashing treatment, plasma treatment, surface modification of hydrophilic groups such as ozone treatment and sulfonation, reverse sputtering, acid / alkali treatment What is necessary is just to select arbitrarily from the hydrophilization method etc. by the surface area increase by these.

またこの微小流路基板を積層する際、微小流路基板に形成されている流路を、微小流路基板とは別の微小流路基板の流路形成面の裏面、好ましくは表面が親水化処理されている裏面をカバー体として積層することによりカバー体を別途設けることなく積層することも可能である。   When laminating the microchannel substrate, the channel formed on the microchannel substrate is made hydrophilic on the back surface, preferably the surface of the microchannel substrate that is different from the microchannel substrate. It is also possible to stack without separately providing a cover body by stacking the treated back surface as a cover body.

また、流路をカバー体と密着させる為には基板を周辺部のみボルトや万力等の部品を用いて治具を圧着すると、内周部流路の密着性が悪くなり、流路から漏洩しやすくなり均一な液滴生成が困難となるため、基板の中心等に穴を通してボルト等で締め付けることにより密着することで内周部の漏れを防止したり、圧着治具の、圧着する力点と力点の間を凸形状、例えば、円板流路では流路とカバー体の密着させる領域は円錐状であることで流路の密着性をあげることができる。   In addition, if the jig is crimped using bolts or vise parts only at the periphery of the substrate in order to bring the flow path into close contact with the cover body, the adhesion of the inner peripheral flow path will deteriorate and leak from the flow path. This makes it difficult to produce uniform droplets, so that the inner periphery can be prevented from leaking by tightening with bolts etc. through the hole in the center of the substrate, etc. The convexity between the force points, for example, in the disc channel, the region where the channel and the cover body are in close contact with each other has a conical shape, thereby improving the adhesion of the channel.

こうして、圧着することにより溝を形成した樹脂基板と蓋を密着させるが、複製した基板は、数μから十数ミクロン程度の厚みムラを有しており、圧着により樹脂基板を弾性変形させ流路の密着性をあげることができることから、用いる基板の塑性変形の範囲以下の力で圧着することが必要である。すなわち、基板の平面性が高いほど、低い圧着力で溝基板とカバー体を密着させることが出来る。また、圧着したままでいると、溝基板は弾性変形範囲内の力でもクリープ変形を引き起こすことから、溝とカバーが密着し、流体が溝から漏れない範囲で出来るだけ低圧で圧着することが望ましい。また、カバー体の溝に当たる部分は、圧着力により溝側に凸となり流路狭化し、導入液の送液の不均一化、また、生成した液滴の分裂を引き起こす場合があることから、用いる蓋基板は流路基板と同等か、または、溝基板より硬いことが望ましい。   In this way, the resin substrate on which the groove is formed and the lid are brought into close contact with each other by pressure bonding, but the duplicated substrate has a thickness unevenness of about several μ to several tens of microns. Therefore, it is necessary to press-bond with a force below the range of plastic deformation of the substrate to be used. That is, the higher the planarity of the substrate, the closer the groove substrate and the cover body can be brought into contact with each other with a low pressure. In addition, if the pressure is still pressed, the groove substrate will cause creep deformation even with a force within the elastic deformation range, so it is desirable that the groove and the cover be in close contact with each other and the pressure should be as low as possible without causing fluid to leak from the groove. . Also, the portion that contacts the groove of the cover body is convex on the groove side due to the crimping force, narrows the flow path, makes the feeding of the introduced liquid non-uniform, and may cause breakup of the generated droplets. The lid substrate is preferably the same as the flow path substrate or harder than the groove substrate.

また、圧着は、長時間にわたると基板のクリープ変形を引き起こすことから、使用しないときは、適宜、圧着力を低減して保管することが望ましい。   In addition, since crimping causes creep deformation of the substrate over a long period of time, it is desirable that the crimping force be appropriately reduced and stored when not in use.

さらに、圧着による流路変形を考慮して、流体供給用構造体と連通する縦穴流路(貫通孔)から導入微小流路の導入部の流路の深さを液滴生成用微小流路の深さより深くすることによって、集積したそれぞれの液滴生成用流路に連続相および分散相流体を均一に供給し、流体の剪断力によって変化する液滴を均一にすることが、長期にわたって可能となる。   Further, in consideration of flow path deformation due to pressure bonding, the depth of the flow path of the introduction micro flow path from the vertical hole flow path (through hole) communicating with the fluid supply structure is determined by the micro flow path for droplet generation. By making it deeper than the depth, it is possible to supply a continuous phase and a dispersed phase fluid uniformly to each of the accumulated droplet generation channels and to make the droplets that change due to the shearing force of the fluid uniform over a long period of time. Become.

また、排出流路が狭い場合に、液滴が押しつぶされて発生する生成液滴の分裂現象があるが、微小流路基板に形成される排出流路において流路の一部を途中から深くする事により、流路変形によるこの分裂現象を、長期にわたって低減することが可能となる。   In addition, when the discharge channel is narrow, there is a phenomenon that the generated droplets break up when the droplets are crushed. In the discharge channel formed on the microchannel substrate, a part of the channel is deepened from the middle. This makes it possible to reduce this splitting phenomenon due to flow path deformation over a long period of time.

また本発明の装置は、微小流路基板を立体的に積層するまたはカバー体を設置するための位置決め機構を有する。すなわち、微小流路基板(溝基板)を積層する場合、または、カバー体として機能する基板と合わせる場合には、透明でない基板を用いる場合に特に必要であるが、位置決め機構を有することが必要である。ここで、位置決め機構とは、あらかじめ成型時に1カ所以上のオリエンテーション・フラット部や凸凹を有する構造や射出成形時に樹脂を射出充填した後にカットパンチで形成した中心孔、また、成形時に流路形成と共にトンボ等の基準位置に合わせて形成した穴などを言う。この位置決め機構を用い、カバー体や溝基板を立体的に位置決めて積層することが容易に可能となる。   The apparatus of the present invention also has a positioning mechanism for three-dimensionally stacking the microchannel substrates or installing the cover body. That is, when laminating a micro-channel substrate (groove substrate) or matching with a substrate functioning as a cover body, it is particularly necessary when using a non-transparent substrate, but it is necessary to have a positioning mechanism. is there. Here, the positioning mechanism refers to a structure having one or more orientation flat portions or irregularities at the time of molding, a center hole formed by a cut punch after injection filling with resin at the time of injection molding, and a flow path formation at the time of molding. A hole or the like formed in accordance with a reference position such as a registration mark. Using this positioning mechanism, the cover body and the groove substrate can be easily positioned and stacked three-dimensionally.

また、基板の周辺部の一部に、切り欠きを設けた構造とすることで、MRブロックを分解洗浄する際、この隙間に治具を挿入して流路基板とカバー体を分解しやすくなる。   Further, by providing a structure in which a notch is provided in a part of the peripheral portion of the substrate, when disassembling and cleaning the MR block, a jig is inserted into this gap to facilitate disassembly of the flow path substrate and the cover body. .

また、微小流路基板に形成されている流路が、微小流路基板において線または点対称な構成となっており、その対称中心に空間があいており、圧着治具を有する。圧着治具のパッキンと連通する穴が平面上に並んだ構造とすることで、流路基板を圧着すると共に、1枚の平らなパッキン上に設けた複数の穴で流路基板の複数箇所の供給口や、排出口を一度に位置合わせすることが可能となる。また同時に溝基板とカバー体との圧着することが出来る構造となる。つまり、流体供給用構造体と微小流路基板との間に介される板と連通する穴が、圧着治具の平面上に並んでおり、流体供給用構造体と微小流路基板との間に介される板に設けた穴でそれぞれの穴を一度に位置合わせする構造となる。このとき、圧着治具のパッキンと接触する部分に、パッキンの厚さより低い凸状の仕切を設けこの部分での液の漏出・混合を防止する構造が有っても良い。   In addition, the flow path formed in the micro flow path substrate has a line or point symmetric configuration in the micro flow path substrate, has a space at the center of symmetry, and has a crimping jig. By using a structure in which holes communicating with the packing of the crimping jig are arranged on a flat surface, the flow path substrate is crimped and a plurality of holes provided on a single flat packing can be used at a plurality of locations on the flow path substrate. The supply port and the discharge port can be aligned at a time. At the same time, the groove substrate and the cover body can be pressure-bonded. In other words, the holes communicating with the plate interposed between the fluid supply structure and the microchannel substrate are arranged on the plane of the crimping jig, and between the fluid supply structure and the microchannel substrate. It becomes a structure which aligns each hole at once with the hole provided in the board interposed. At this time, there may be a structure in which a convex partition lower than the thickness of the packing is provided in a portion of the crimping jig in contact with the packing to prevent liquid leakage and mixing in this portion.

さらに、圧着治具と微小流路基板との間に設けるパッキンの、流路圧着に実質的に不要な部分に穴が開けることにより、圧着したい流路範囲(面積)を狭くして総プレス圧力を低減したり、基板の厚みムラが大きくなる部分を回避して流路を配置したり、圧着機構の為の空間や位置決め機構の為の空間とすることができる。   Furthermore, by making a hole in a portion of the packing provided between the crimping jig and the micro-channel substrate that is substantially unnecessary for channel crimping, the channel range (area) to be crimped is narrowed and the total press pressure is reduced. The flow path can be arranged avoiding the portion where the thickness unevenness of the substrate becomes large, or the space for the crimping mechanism and the space for the positioning mechanism.

また、上記した流体供給用構造体と微小流路基板との間に介される板が、微小流路基板より小さいことが好ましい。このような構成とすることで、例えばディスク状の円形基板を用いた場合、厚みムラの発生しやすい内外周を外すことができ、内外周部の平面性が劣る部分もパッキンと接触しても、余分に圧着力をかける必要がなく、密着させる必要がある部分だけ密着させることができる。   Moreover, it is preferable that the plate interposed between the fluid supply structure and the microchannel substrate is smaller than the microchannel substrate. By adopting such a configuration, for example, when a disk-shaped circular substrate is used, it is possible to remove the inner and outer peripheries where unevenness in thickness is likely to occur, and even if the flatness of the inner and outer peripheral portions is in contact with the packing Therefore, it is not necessary to apply an extra crimping force, and only the portions that need to be in close contact can be in close contact.

また、2枚のそれぞれ異なる流路構造を有する微小流路基板を、流路が形成されている面どうしを対面させたときに、流路が異なる微小流路基板上の流路が交差する部分で液滴を形成させる構造を持つ構造とすることで、それぞれ2枚の流路深さや交差角度、1つの連続相に連通する分散相流路の本数などのことなる微小流路基板を選ぶ事で交差部の構造を容易に制御可能とし、液滴生成量や粒径を制御構造する事が可能となる。
例えば、各流路の圧損を低くするために流路断面積を大きくした連続相や分散相の導入微小流路と排出流路とを一方に形成し、カバー体となるもう一方の微小流路基板には連続相より微細な幅・深さの分散相流路を10本形成して向かい合わせると、交差部分は、太い連続相に微細な多数本の分散相流路が連通する構造となる。また、微細な分散相流路20本を有するカバー体を選んで向かい合わせることにより、連続相に対する分散相の送液量を2倍した構造とするような選択と組み合わせが容易に可能となる。
In addition, when two microchannel substrates having different channel structures face each other on the surfaces where the channels are formed, portions where the channels on the microchannel substrates having different channels intersect By selecting a microchannel substrate that has two channels depth, crossing angle, number of disperse phase channels communicating with one continuous phase, etc. Thus, the structure of the intersection can be easily controlled, and the droplet generation amount and particle size can be controlled.
For example, in order to reduce the pressure loss of each flow path, a continuous phase or a disperse phase introduction micro flow path and a discharge flow path having a large cross-sectional area are formed on one side, and the other micro flow path serving as a cover body When 10 disperse flow channels having a width and depth smaller than the continuous phase are formed on the substrate and face each other, the intersection has a structure in which a large number of fine disperse phase channels communicate with the thick continuous phase. . Further, by selecting and facing a cover body having 20 fine dispersed-phase flow paths, it is possible to easily select and combine such a structure that doubles the amount of the dispersed phase fed to the continuous phase.

また、一方の微小流路基板上の流路構造が環状や特別には同心円状であって、始点及び終点を持たない構造であることで、穴位置形成、もしくは、圧着位置決めを容易にすることが出来る。例えば、図22(a)のカバー体44のようなリング状の場合、流路を積層するためには基板に貫通穴を形成する必要があるが、向き合わせるもう一方の微小流路基板45の穴位置を決まった半径位置に等間隔で形成することにより、カバー体44の基板に設ける穴位置は、基板45と同じ半径位置に等間隔で形成すればよく、穴位置の周方向の位置を精密に制御する必要がない構造となり、穴形成が容易かつ安価に可能となる。流路基板の貫通穴は、成形持に一体成形されても良いし、基板成形後に機械的に加工しても良い。また、分散相または連続相の微小流路基板へ導入する流路を流路基板の下方に位置させ、各基板を通り排出する流体の送液方向が上向きであることによって、MRブロック内部の液体送液部の空気を送液流体と置換しやすくすることが可能である。また、送液液体の比重により、導入、排出口の位置を調整しても良い。   In addition, the channel structure on one microchannel substrate is annular or specially concentric and does not have a start point and an end point, thereby facilitating hole position formation or crimp positioning. I can do it. For example, in the case of a ring shape like the cover body 44 in FIG. 22A, it is necessary to form a through hole in the substrate in order to stack the flow paths, but the other micro flow path substrate 45 facing each other By forming the hole positions at fixed radial positions at equal intervals, the hole positions provided on the substrate of the cover body 44 may be formed at the same radial positions as the substrate 45 at equal intervals. The structure does not need to be precisely controlled, and hole formation is possible easily and inexpensively. The through hole of the flow path substrate may be formed integrally with the mold holder, or may be mechanically processed after the substrate is formed. In addition, the flow path to be introduced into the dispersed phase or continuous phase micro flow path substrate is positioned below the flow path substrate, and the liquid feeding direction of the fluid discharged through each substrate is upward, so that the liquid inside the MR block It is possible to easily replace the air in the liquid feeding section with the liquid feeding fluid. Further, the positions of the introduction and discharge ports may be adjusted according to the specific gravity of the liquid feeding liquid.

また本発明の装置は、複数の微小流路基板を積層させたときには、微小流路基板の一部に、微小流路基板どうしを積層状態から分離するため治具を挿入する凹部を有する。このような態様により積層された微小流路基板を効率的に分離することができる。   The apparatus of the present invention has a recess for inserting a jig to separate the microchannel substrates from the stacked state in a part of the microchannel substrates when a plurality of microchannel substrates are stacked. The microchannel substrates stacked in this manner can be efficiently separated.

本発明のMRブロックを用いた製造方法における用途の例としては、高速液体クロマトグラフィー用カラムの充填剤、圧力測定フィルム、ノーカーボン(感圧複写)紙、トナー、熱膨張剤、熱媒体、調光ガラス、ギャップ剤(スペーサ)、サーモクロミック(感温液晶、感温染料)、磁気泳動カプセル、農薬、人工飼料、人工種子、芳香剤、マッサージクリーム、口紅、ビタミン類カプセル、活性炭、含酵素カプセル、DDS(ドラッグデリバリーシステム)などが挙げられる。   Examples of uses in the production method using the MR block of the present invention include a high-performance liquid chromatography column filler, pressure measurement film, carbonless (pressure-sensitive copying) paper, toner, thermal expansion agent, heat medium, and control. Light glass, gap agent (spacer), thermochromic (thermosensitive liquid crystal, thermosensitive dye), magnetophoresis capsule, pesticide, artificial feed, artificial seed, fragrance, massage cream, lipstick, vitamins capsule, activated carbon, enzyme-containing capsule And DDS (drug delivery system).

以下では、本発明のMRブロックを図を用いてより具体的に説明する。   Hereinafter, the MR block of the present invention will be described more specifically with reference to the drawings.

本発明におけるMRブロックの代表的な概念図を図1に示す。MRブロックは、多数の樹脂製の円形の基板を成形・複製した溝基板(15)の表面を親水処理したのち、位置を決めてカバー体(16)とともに積層し、溝基板とカバー体より柔らかいパッキン(6)の間にこの基板を溶着または接着することなく位置決めピン(5)等で位置決めして挟み、外周部ボルト(3)と、基板中心に開けた位置をボルト(4)で締めて溝基板とカバー体とを1層以上積層した基板を上下の圧着治具(1,2)で圧着し、基板どうしを密着させる。また、この圧着治具の上下に、各基板、各流路へ流体を分配供給するための貫通穴(7,8)に通ずる供給流路(9,10)を有するが、これは、図2,図3の様な放射状の流体供給流路であり、導入口(11,12)から、各流路基板へ連続相及び分散相を導入することができる構造となっている。また、生成した液滴を各流路基板、流路から集めて排出する流路(13)を持つ。   A typical conceptual diagram of the MR block in the present invention is shown in FIG. The MR block is formed by a hydrophilic treatment on the surface of the groove substrate (15) formed by copying and replicating a large number of resin-made circular substrates, then positioned and laminated together with the cover body (16), and is softer than the groove substrate and the cover body. The substrate is positioned and sandwiched between the packings (6) with the positioning pins (5) or the like without welding or bonding, and the outer peripheral bolt (3) and the position opened in the center of the substrate are tightened with the bolt (4). A substrate in which one or more layers of the groove substrate and the cover body are laminated is crimped by the upper and lower crimping jigs (1, 2), and the substrates are brought into close contact with each other. In addition, there are supply channels (9, 10) connected to the through holes (7, 8) for distributing and supplying the fluid to each substrate and each channel above and below the crimping jig. 3 is a radial fluid supply channel as shown in FIG. 3, and has a structure in which a continuous phase and a dispersed phase can be introduced from the inlets (11, 12) to each channel substrate. Further, it has a flow path (13) for collecting and discharging the generated liquid droplets from the respective flow path substrates and flow paths.

図4に、本発明におけるMRブロック基板の積層例を示す。図4は、下部パッキン(6)の上に溝基板(15)を上向きにして予め開けた位置決めピンを通して上側に5層積み重ね、カバー体(16)をのせて、その上に上部パッキン(6)を位置させた例である。パッキンは、Oリングのようなそれぞれ個別に設けずに1枚の平板に必要な位置に貫通穴を開けるとともに、溝基板を圧着するが、実質的に不用な中心部分は空間であり、溝基板軸位置決めと共に圧着ボルトを通して圧着機構としている。また、カバー体、およびパッキンは溝基板と位置決めピン等により位置決め、積層を容易にしている。また、連続相、分散槽の導入は下方より導入しているが、こうすることにより、圧着治具および溝基板部分のみを液の供給排出部分と分離し、カートリッジ式に取り外すことも可能となる。   FIG. 4 shows a laminated example of the MR block substrate in the present invention. FIG. 4 shows that five layers are stacked on the upper side through positioning pins previously opened with the groove substrate (15) facing upward on the lower packing (6), the cover body (16) is placed, and the upper packing (6) is placed thereon. This is an example in which is located. The packing is not provided individually such as an O-ring, and a through hole is formed at a necessary position in one flat plate and a groove substrate is crimped. However, a substantially unnecessary central portion is a space, and the groove substrate It is a crimping mechanism through the crimping bolt along with the shaft positioning. Further, the cover body and the packing are easily positioned and stacked by the groove substrate and positioning pins. In addition, the continuous phase and the dispersion tank are introduced from below, but by doing so, it is possible to separate only the crimping jig and the groove substrate part from the liquid supply / discharge part and to remove the cartridge type. .

図5、図6、図7は図4の基板およびパッキンの積層断面を示す。図4(a)は、溝を基板(15)の上方に向け、溝のカバーをそれぞれ上方に位置する溝基板の裏面をカバー面として流路を形成し、最上部の溝基板にはカバー体(16)を密着させて流路とし、下方から連続相と分散相を供給し、液滴を上方に排出する時の各基板の微小流路および各供給流路の断面を示す。   5, FIG. 6, and FIG. 7 show the cross sections of the substrate and packing of FIG. FIG. 4 (a) shows a channel formed with the grooves facing upwards of the substrate (15) and the groove covers facing the back surfaces of the groove substrates located above, respectively. (16) is used as a flow path, and a cross-section of each micro flow path and each supply flow path of each substrate when supplying a continuous phase and a dispersed phase from below and discharging droplets upward is shown.

図4(b)は、図4(a)右部の積層された基板の一部を拡大した図である。図4(b)中のA−A’、B−B’、C−C’はそれぞれ、流路を形成した溝部の断面図、連続相および分散相供給流路(7,9)の断面図、排出流路(19)の断面図、である。ここで、供給流路は、パッキン、カバー体を貫通して治具まで到達しても良いが、使用前の流路内の気泡を抜くことや、使用後の洗浄を考慮すると図中にしめしたように行き止まり供給流路とならない方が好ましい。   FIG. 4B is an enlarged view of a part of the stacked substrate in the right part of FIG. In FIG. 4B, AA ′, BB ′, and CC ′ are respectively a cross-sectional view of a groove portion that forms a flow path, and a cross-sectional view of continuous phase and dispersed phase supply flow paths (7, 9). FIG. 10 is a cross-sectional view of the discharge channel (19). Here, the supply channel may pass through the packing and cover body to reach the jig, but it is shown in the figure in consideration of removing bubbles in the channel before use and cleaning after use. As described above, it is preferable that the dead end is not provided and the supply channel is not formed.

図8(a)に、連続相の導入流路及び排出流路と基板の片面に形成した溝基板(21)の上に、下面に連続相、上面に分散相の溝を形成した溝基板(22)と、下面に分散相の溝を形成したカバー体(23)とを位置決めして向き合わせ、各層、各微小流路の1カ所で交差する構造(24)とし、上下にパッキン(6)を位置した構造を示す。これを図1と同様な圧着治具で挟み込み圧着することで流路を密着させることにより、図8(b)に示すMRブロックとしても良い。また、基板に切り欠き(26)を設け、図8(c)に示す切り欠けを揃えた構成とすれば、積層した基板を洗浄等の目的のために分解しやすい構造となる。   FIG. 8 (a) shows a groove substrate (continuous phase on the bottom surface and a disperse phase groove on the top surface on the groove substrate (21) formed on one side of the substrate with the continuous phase introduction and discharge channels and the substrate ( 22) and a cover body (23) in which a groove of a dispersed phase is formed on the lower surface are positioned and faced to form a structure (24) intersecting at one point of each layer and each microchannel, and packing (6) vertically The structure where is located is shown. The MR block shown in FIG. 8B may be obtained by sandwiching this with a crimping jig similar to that shown in FIG. Further, if the substrate is provided with a notch (26) and the notch shown in FIG. 8C is arranged, the laminated substrate can be easily disassembled for the purpose of cleaning or the like.

図9に、連続相の導入流路及び排出流路および有機相の導入流路の一部を径方向に配置させて基板の片面に形成した溝基板(29)の上に、下面に分散相の溝一部となるリング状の溝と上面に(29)と同様の流路を形成した溝基板(28)と、下面に(28)下面と同様のリング状の溝を形成したカバー体(27)とを中心位置のみ位置決めして向き合わせ、各層、各微小流路の数カ所で交差する構造(30)とし、上下にパッキン(6)を位置した構造(31)を示す。これを図1と同様な圧着治具で挟み込み圧着することで流路を密着させるが(図9(b)に示す)、カバー体に形成する供給排出流路となる貫通穴は、同じ半径位置に有れば、溝基板と供給流路の導通が出来ればどの位置に形成してもよく、その面どうしの精密な位置あわせの必要なく積層することが出来る。こうして基板の立体的集積が簡便なMRブロックとすることが出来る。このとき、リング状に流れる分散相とは溝は連続相溝より狭いことが望ましく、送液抵抗(圧損)を考慮して内周側から外周に向かった送液方向とすることで有効に基板面を利用することが出来る。図10(a)に積層して形成する流路基板およびその一部を拡大した図10(b)を示す。連続相および分散相は、供給流路(33、32)から導入され、34で形成したリングの本数箇所交差し、それぞれ液滴を形成し、35排出流路へ排出される。こうすることで、周方向の位置決めをすることなく積層できるので、立体的に集積する場合に簡便な構造とすることが出来る。
対照的に図7は精密な位置決めを必要とし、多数の積層する場合に簡便でない。
FIG. 9 shows a continuous phase introduction channel, a discharge channel, and a part of the organic phase introduction channel arranged in the radial direction on the groove substrate (29) formed on one side of the substrate and the dispersed phase on the lower side. A ring-shaped groove that is a part of the groove, a groove substrate (28) in which a flow path similar to (29) is formed on the upper surface, and a cover body (28) in which a ring-shaped groove similar to the lower surface is formed on the lower surface ( 27) shows a structure (31) in which only the center position is positioned and faced to form a structure (30) intersecting at several points of each layer and each microchannel, and packing (6) is positioned above and below. This is sandwiched by a crimping jig similar to that in FIG. 1 and crimped so that the flow path is brought into close contact (shown in FIG. 9B), but the through holes that form the supply / discharge flow path formed in the cover body have the same radial position. In this case, it may be formed at any position as long as the groove substrate and the supply flow path can be connected, and can be laminated without the need for precise alignment between the surfaces. In this way, it is possible to obtain an MR block with a simple three-dimensional integration of substrates. At this time, the dispersed phase flowing in a ring shape preferably has a narrower groove than the continuous phase groove, and considering the liquid feeding resistance (pressure loss), the substrate can be effectively used by setting the liquid feeding direction from the inner circumference side to the outer circumference. You can use the surface. FIG. 10A shows a flow path substrate formed by stacking, and FIG. The continuous phase and the dispersed phase are introduced from the supply flow path (33, 32), intersect the number of rings formed by 34, form droplets, and are discharged to the 35 discharge flow path. By doing so, since the layers can be stacked without positioning in the circumferential direction, a simple structure can be obtained in the case of three-dimensional integration.
In contrast, FIG. 7 requires precise positioning and is not convenient when stacking a large number.

本発明のMRブロックは、微小流路構造体の型(スタンパ)を製作し、これを用いて多数の樹脂製の基板を成形・複製し、この微小流路構造基板より硬い治具と、微小流路構造体基板より柔らかい板の間にこの微小流路構造基板を挟んで使用する構造を有する液滴生成用微小流路集合体装置であって、流路を溶着、接着することなく、圧着することにより、表面を親水処理した溝基板とカバー体とを1層以上積層、密着させ、均一な液滴を長期にわたって使用、微小粒子を製造することができる。   In the MR block of the present invention, a mold (stamper) of a micro flow channel structure is manufactured, and a number of resin substrates are molded and duplicated using the mold, a jig harder than the micro flow channel structure substrate, A micro-channel assembly device for generating droplets having a structure in which the micro-channel structure substrate is sandwiched between plates softer than the channel structure substrate, wherein the channel is bonded without being welded or bonded. Thus, one or more layers of the groove substrate whose surface is subjected to hydrophilic treatment and the cover body are laminated and brought into close contact with each other, and uniform droplets can be used over a long period of time to produce fine particles.

以下では、本発明の実施例を示し、更に詳しく発明の実施の形態について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Hereinafter, examples of the present invention will be described, and the embodiments of the invention will be described in more detail. It is needless to say that the present invention is not limited to the following examples and can be arbitrarily changed without departing from the gist of the present invention.

(実施例1)
本発明における実施例の概念図を図11に示した。ガラス原盤にクロム及び金を成膜し、その上にニッケルメッキを300μm成膜して原盤より剥離してスタンパとし、射出成形法により、ジュラコン(登録商標)M90−44グレード品の樹脂を用いて、交差部の溝の深さ130μm、幅は310μmの溝流路をΦ135mmの基板の片面に射出成形・転写した基板を製作した。これに、Φ1.5mmのドリルで導入口と排出口を形成し、基板の両表面にクロムを20nm、金を100nmスパッタで成膜したポリアセタール樹脂製溝基板3枚(15)の上に、射出成形して得たポリアセタール樹脂製カバー体(16)と同様に成膜し、位置決めて合わせ、上下にテフロン(登録商標)製のパッキンで挟み、これを図中に示すような上側の圧着治具の中心部が凸(外周−内周高低差130μm)となったステンレス製圧着治具で挟み込み外周の12本の外周のボルトを20N・mで圧着することで流路を密着させた。また、圧着治具の上に排出流路集合部、治具の下にそれぞれ、幅1.0mm、深さ1.0mmの放射状溝の連続相、分散相の分配流路部を位置させMRブロックとした。
Example 1
The conceptual diagram of the Example in this invention was shown in FIG. A chromium and gold film is formed on a glass master, and a nickel plating is formed thereon to a thickness of 300 μm and peeled off from the master to form a stamper. By injection molding, Duracon (registered trademark) M90-44 grade resin is used. A substrate was manufactured by injection molding and transferring a groove flow path having a depth of 130 μm and a width of 310 μm on one side of a φ135 mm substrate at the intersection. The inlet and outlet are formed with a φ1.5 mm drill, and injection is performed on three polyacetal resin groove substrates (15) formed by sputtering 20 nm of chromium and 100 nm of gold on both surfaces of the substrate. Formed in the same manner as the polyacetal resin cover body (16) obtained by molding, positioned and aligned, and sandwiched with Teflon (registered trademark) packing up and down, which is the upper crimping jig as shown in the figure The flow path was brought into close contact by pressing the 12 outer peripheral bolts of the outer periphery with 20 N · m, sandwiched by a stainless steel crimping jig having a convex center (outer periphery-inner peripheral height difference 130 μm). In addition, an MR block is formed by disposing a continuous flow channel portion and a disperse flow channel portion of a radial groove having a width of 1.0 mm and a depth of 1.0 mm on the crimping jig, and on the discharge flow path collecting portion and the jig, respectively. It was.

図12(a)には使用した微小流路基板(36)と微小流路の一部を拡大した図12(b)を示した。図12に示すように、1本の微小流路は第1の流体を導入する入口(32)、第2の流体を導入する入口(33)、合流部(34)、排出口(35)を1単位として構成されており、この1単位の微小流路が図12に示すように、微小流路基板上に100本形成されている。このMRブロックに、導入する導入口(11,12)流体用フレアフィットアダプターを接続し、テフロン(登録商標)チューブを介して流体送液用ポンプ(17,18)に接続した。上部の排出流路集合部からの流体排出口(14)にフレアフィットアダプターを介して微小流路で生成した微小液滴を排出し回収した。ここで、テフロン(登録商標)チューブは、排出液滴が破壊しないことを確かめて、内径2mmテフロン(登録商標)チューブを用いた。   FIG. 12 (a) shows the microchannel substrate (36) used and FIG. 12 (b) in which a part of the microchannel is enlarged. As shown in FIG. 12, one microchannel has an inlet (32) for introducing the first fluid, an inlet (33) for introducing the second fluid, a junction (34), and an outlet (35). The unit is configured as one unit. As shown in FIG. 12, 100 microchannels of one unit are formed on a microchannel substrate. A flare-fit adapter for introducing fluid (11, 12) to be introduced was connected to the MR block, and connected to a fluid feeding pump (17, 18) via a Teflon (registered trademark) tube. The microdroplets generated in the microchannels were discharged and collected through the flare fit adapter to the fluid outlet (14) from the upper discharge channel assembly. Here, as the Teflon (registered trademark) tube, it was confirmed that the discharged droplets were not broken, and a Teflon (registered trademark) tube having an inner diameter of 2 mm was used.

本実施例では、第1の流体送液用ポンプ(17)により3%のポリビニルアルコール水溶液を微小流路構造体に 約6.0ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約2.0ml/分で送液し、各々の流体の導入用フレアフィットアダプターを介してそれぞれ導入口(11,12)より、貯蔵空間(39、42)、放射状供給流路(40、43)から各流路へ連通する縦穴である供給流路(7,8)に導入した。
それぞれの流路は、立体滴に積層された供給流路(7,8)を通って、微小流路基板(15)に形成したY字状の微小流路のそれぞれに導入され、Y字状の微小流路の合流部において連続相であるポリビニルアルコール水溶液が分散相であるジビニルベンゼンと酢酸ブチルの混合溶液をせん断することで微小液滴が生成される。排出口(35)から排出流路を通り、集合され、流体排出口(14)に接続されたフレアフィットアダプターから排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が約257μmでその粒径分散度が3.8%であった。図13に捕集した液滴写真を示す。この結果から、本発明のMRブロックを用いることにより、溶着や接着することなく基板を積層。圧着することで、均一な液滴を得ることが出来る。なお、粒径分散度とは、サンプリングした微小液滴の標準偏差を平均粒径で除算して得られる値で、粒径分布の広がりを示す目安となる数値である。
In this embodiment, a 3% polyvinyl alcohol aqueous solution is fed to the microchannel structure at a feed rate of about 6.0 ml / min by the first fluid feed pump (17), and the second fluid feed pump is supplied. A liquid pump (18) feeds a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at a rate of about 2.0 ml / min, and each inlet port (11 , 12) from the storage space (39, 42) and the radial supply channel (40, 43) to the supply channel (7, 8), which is a vertical hole communicating with each channel.
Each channel is introduced into each of the Y-shaped microchannels formed on the microchannel substrate (15) through the supply channels (7, 8) stacked on the three-dimensional droplets, and the Y-shaped A microdroplet is generated by shearing a mixed solution of divinylbenzene and butyl acetate, which is a dispersed phase, with a polyvinyl alcohol aqueous solution, which is a continuous phase, at a confluence portion of the microchannel. The fluid containing microdroplets collected from the flare fit adapter connected through the discharge flow path from the discharge port (35) and connected to the fluid discharge port (14) was sampled, and 100 microdroplets were measured. As a result, the average particle size was about 257 μm and the particle size dispersion was 3.8%. FIG. 13 shows a photograph of the collected droplets. From this result, by using the MR block of the present invention, the substrates can be stacked without welding or bonding. A uniform droplet can be obtained by pressure bonding. The particle size dispersion is a value obtained by dividing the standard deviation of the sampled fine droplets by the average particle size, and is a numerical value indicating the spread of the particle size distribution.

(比較例1)
比較例の概念図を図14に示した。実施例1と同様にポリアセタール樹脂製溝基板3枚(15)の上に、同様に射出成形し、表面にクロムおよび金をスパッタして得たポリアセタール樹脂製カバー体(16)とを位置決めして合わせ、これを図中に示すような平板の圧着治具で挟み込み外周の12本の外周のボルトを24N・mで圧着した。
(Comparative Example 1)
A conceptual diagram of the comparative example is shown in FIG. In the same manner as in Example 1, a polyacetal resin cover body (16) obtained by injection molding in the same manner on the three polyacetal resin groove substrates (15) and sputtering chromium and gold on the surface was positioned. In addition, this was sandwiched between flat crimping jigs as shown in the figure, and 12 outer peripheral bolts were crimped at 24 N · m.

このMRブロックに第1の流体送液用ポンプ(17)により3%のポリビニルアルコール水溶液を微小流路構造体に 約6.0ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約2.0ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が約160μmでその粒径分散度が50%であった。図15に捕集した液滴写真を示す。基板の密着程度を確認するため、流路基板間に感圧紙を挿入し、同様にボルトを締めて確認したところ図16のような結果であった。図16で黒い部分が密着している部分を示す。   A 3% polyvinyl alcohol aqueous solution is fed to the MR block by a first fluid feed pump (17) at a feed rate of about 6.0 ml / min. The mixed solution of divinylbenzene and butyl acetate is fed to the microchannel structure at a rate of about 2.0 ml / min by the pump (18), and the fluid containing the ejected microdroplets is sampled to obtain 100 microdroplets. As a result, the average particle size was about 160 μm and the particle size dispersion degree was 50%. FIG. 15 shows a photograph of the collected droplets. In order to confirm the degree of adhesion of the substrates, pressure sensitive paper was inserted between the flow path substrates, and bolts were similarly tightened to confirm the result as shown in FIG. FIG. 16 shows a portion where the black portion is in close contact.

(実施例2)
実施例1と同様のポリアセタール樹脂製溝基板3枚(15)の上に、同様に射出成形し、表面にクロムおよび金をスパッタして得たポリアセタール樹脂製カバー体(16)とを位置決めして合わせ、これを図1に示すような平板の圧着治具で挟み込み外周の12本の外周のボルトを24N・m、1本の中心ボルトを40N・mのトルクで圧着した。
(Example 2)
On the same three polyacetal resin groove substrates (15) as in Example 1, a polyacetal resin cover body (16) obtained by injection molding in the same manner and sputtering chrome and gold on the surface was positioned. The two outer peripheral bolts on the outer periphery were clamped with a torque of 24 N · m and one central bolt with a torque of 40 N · m.

このMRブロックに第1の流体送液用ポンプ(17)により3%のポリビニルアルコール水溶液を微小流路構造体に 約6.0ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約2.0ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が約243μmでその粒径分散度が5.2%であった。この結果から、本発明のMRブロックを用いることにより、溶着や接着することなく基板を積層。圧着することで、均一な液滴を得ることが出来る。また、同様な流路基板間に感圧紙を挿入し、同様にボルトを締めて確認したところ図17のような均一な結果であり、面内圧は1.8〜2.5MPaであった。   A 3% polyvinyl alcohol aqueous solution is fed to the MR block by a first fluid feed pump (17) at a feed rate of about 6.0 ml / min. The mixed solution of divinylbenzene and butyl acetate is fed to the microchannel structure at a rate of about 2.0 ml / min by the pump (18), and the fluid containing the ejected microdroplets is sampled to obtain 100 microdroplets. As a result, the average particle size was about 243 μm and the particle size dispersion degree was 5.2%. From this result, by using the MR block of the present invention, the substrates can be stacked without welding or bonding. A uniform droplet can be obtained by pressure bonding. Further, when pressure sensitive paper was inserted between similar flow path substrates and bolts were similarly tightened, the results were uniform as shown in FIG. 17, and the in-plane pressure was 1.8 to 2.5 MPa.

(実施例3)
実施例2と同様なMRブロックを用い、交差部の溝の深さは、交差部で深さ50μm、幅は120μmの溝を有するΦ120mmのデルリン(登録商標)DS500Mグレード樹脂製溝基板45枚(15)とカバー体を用い形成し、流路となる表面全体をアルゴンガス雰囲気でプラズマ処理した溝基板を外周12本の外周のボルトを19N・m、1本の中心ボルトを34N・mのトルクで圧着した。第1の流体送液用ポンプ(17)により4%のポリビニルアルコール水溶液を微小流路構造体に 約20ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約10ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が約95μmでその粒径分散度が8.0%であった。この結果から、本発明のMRブロックを用いることにより、溶着や接着することなく基板を高積層、圧着することで、均一な液滴を得ることが出来る。
(Example 3)
Using MR blocks similar to those of Example 2, the depth of the groove at the intersection is 45 Φ120 mm Delrin (registered trademark) DS500M grade resin groove substrate having a groove with a depth of 50 μm and a width of 120 μm ( 15) and a cover body, and a groove substrate obtained by plasma-treating the entire surface as a flow path in an argon gas atmosphere has 12 outer peripheral bolts of 19 N · m and one central bolt of 34 N · m torque. Crimped with. The first fluid feed pump (17) feeds a 4% polyvinyl alcohol aqueous solution to the microchannel structure at a feed rate of about 20 ml / min, and the second fluid feed pump (18). As a result of feeding a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at about 10 ml / min, sampling the fluid containing the ejected microdroplets and measuring 100 microdroplets, the average particle size Was about 95 μm and the particle size dispersion degree was 8.0%. From this result, by using the MR block of the present invention, uniform droplets can be obtained by highly laminating and pressing the substrates without welding or bonding.

(実施例4)
実施例4に用いた溝基板の流路の写真を図18(a)に、流路の拡大図を図18(b)に示した。ジュラコン(登録商標)M270Sグレード品の樹脂を用いて、交差部の溝の深さ50μm、幅は120μm、排出側の流路を途中から200μm深くした溝流路をΦ135mmの基板に転写するとともに穴を一体成形したこの溝基板とカバー体の表面をアルゴンガス雰囲気でプラズマ処理し、実施例2と同様に圧着してMRブロックとした。このブロックに第1の流体送液用ポンプ(17)により4%のポリビニルアルコール水溶液を微小流路構造体に 約1.2ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約0.4ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が約95μmでその粒径分散度が6.7%であった。また、このMRブロックを500時間連続運転後、捕集した液滴の平均粒径は約91μmでその粒径分散度が12%であった。これは、僅かに微粒が増加したことによる。また、このMRブロックを分解し、再度、新しい蓋基板を各溝流路を使用した溝基板との間に位置させ、図16のように溝と蓋基板を交互に積層・圧着して、MRブロックを組立て、送液した結果、平均粒径90μm、粒径分散度6.0%と良好な液滴であった。
Example 4
A photograph of the channel of the groove substrate used in Example 4 is shown in FIG. 18 (a), and an enlarged view of the channel is shown in FIG. 18 (b). Using Duracon (registered trademark) M270S grade resin, the groove groove depth of 50 μm and width of 120 μm at the intersection is transferred to the Φ135 mm substrate and the groove flow path is deepened by 200 μm from the middle. The groove substrate formed integrally with the surface of the cover body and the surface of the cover body were plasma-treated in an argon gas atmosphere, and pressure-bonded in the same manner as in Example 2 to obtain an MR block. A 4% polyvinyl alcohol aqueous solution is fed to the block at a liquid feed rate of about 1.2 ml / min through the first fluid feed pump (17) to the second fluid feed pump. A pump (18) is used to send a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at a rate of about 0.4 ml / min, and the fluid containing the discharged microdroplets is sampled to obtain 100 microdroplets. As a result of measurement, the average particle size was about 95 μm and the particle size dispersion degree was 6.7%. Further, after the MR block was continuously operated for 500 hours, the collected droplets had an average particle size of about 91 μm and a particle size dispersion of 12%. This is due to a slight increase in fine particles. Also, the MR block is disassembled, and a new lid substrate is again positioned between the groove substrate using each groove flow path, and the grooves and the lid substrate are alternately laminated and crimped as shown in FIG. As a result of assembling and feeding the block, the liquid droplets were good with an average particle size of 90 μm and a particle size dispersion of 6.0%.

(実施例5)
実施例4と同等の溝基板を用い、厚さ100μmのステンレス製の蓋基板を各溝基板との間に位置させ、図19のように溝と蓋基板を交互に積層・圧着して、MRブロックを組立て、送液した結果、平均粒径94μm、粒径分散度5.8%と良好な液滴であった。
(Example 5)
Using a groove substrate equivalent to that in Example 4, a stainless steel lid substrate having a thickness of 100 μm is positioned between each groove substrate, and the grooves and the lid substrate are alternately laminated and pressure-bonded as shown in FIG. As a result of assembling the block and feeding the liquid, it was a good droplet with an average particle size of 94 μm and a particle size dispersion of 5.8%.

(実施例6)
実施例6に用いた溝基板の流路の概略図を図20(a)に、溝基板(39)とカバー体(40)を向かいあわせた基板を図20(b)、図20(b)の基板中の流路の拡大図を図20(c)に示す。デルリン(登録商標)DS500Mグレード樹脂製溝基板を用いて、水相と有機相一部を流路深さ45μmとして成形した溝基板(38)と、水相流路と交差する有機相の一部流路を7μmの深さで形成したカバー体基板(39)の表面にクロムを20nm、金を100nmスパッタで成膜し、各面どうしを精密に位置決めして向かい合わるように圧着しMRブロックとした。この基板(40)は、連続相1本に対し連続相40本交差した流路が50本集積した構造を有している。このブロックに第1の流体送液用ポンプ(17)により4%のポリビニルアルコール水溶液を微小流路構造体に約0.5ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約0.25ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が29.8μm、粒径分散度が11.9%であった。このように、微小な液滴においても分散度が良いものが得られた。
(Example 6)
A schematic view of the flow path of the groove substrate used in Example 6 is shown in FIG. 20 (a), and the substrate in which the groove substrate (39) and the cover body (40) face each other is shown in FIGS. 20 (b) and 20 (b). An enlarged view of the flow path in the substrate is shown in FIG. A groove substrate (38) formed using a Delrin (registered trademark) DS500M grade resin groove substrate with a water phase and a part of an organic phase having a flow path depth of 45 μm, and a part of the organic phase intersecting the water phase flow path On the surface of the cover substrate (39) having a flow path formed at a depth of 7 μm, 20 nm of chromium and 100 nm of gold are sputtered, and each surface is precisely positioned and pressure-bonded so as to face each other. did. The substrate (40) has a structure in which 50 flow paths intersecting 40 continuous phases are integrated with respect to one continuous phase. A 4% polyvinyl alcohol aqueous solution is fed to this block by a first fluid feed pump (17) at a rate of about 0.5 ml / min. The pump (18) is used to send a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at a rate of about 0.25 ml / min. The fluid containing the ejected microdroplets is sampled to obtain 100 microdroplets. As a result of measurement, the average particle size was 29.8 μm, and the particle size dispersion degree was 11.9%. As described above, even fine droplets having a high degree of dispersion were obtained.

(実施例7)
実施例7に用いた溝基板の流路の概略図を図21に示した。デルリン(登録商標)DS500Mグレード樹脂製溝基板を用いて、水相と有機相一部を流路深さ45μmの溝と、有機相の水相と合流する部分の深さ7μmと2段の流路基板を形成した基板(41)の表面をアルゴンガス雰囲気でプラズマ処理し、同様に表面処理した流路を持たない貫通穴のみのカバー体と位置決めして向かい合わせて圧着し、MRブロックとした。このブロックに第1の流体送液用ポンプ(17)により4%のポリビニルアルコール水溶液を微小流路構造体に約0.2ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約0.1ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が28.2μm、粒径分散度が12.9%であった。このように、微小な液滴においても分散度が良いものが得られた。
(Example 7)
A schematic view of the channel of the groove substrate used in Example 7 is shown in FIG. Using a Delrin (registered trademark) DS500M grade resin grooved substrate, a water phase and a part of the organic phase have a flow path depth of 45 μm, and a depth of 7 μm at the portion where the organic phase of the water phase merges with two stages of flow. The surface of the substrate (41) on which the road substrate is formed is subjected to plasma treatment in an argon gas atmosphere, and is similarly positioned and faced with a cover body having only a through-hole that does not have a surface-treated flow path to form an MR block. . A 4% polyvinyl alcohol aqueous solution is fed to the block at a liquid feed rate of about 0.2 ml / min through the first fluid feed pump (17) to the second fluid feed pump. A pump (18) is used to send a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at a rate of about 0.1 ml / min, and the fluid containing the ejected microdroplets is sampled to obtain 100 microdroplets. As a result of measurement, the average particle size was 28.2 μm, and the particle size dispersion degree was 12.9%. As described above, even fine droplets having a high degree of dispersion were obtained.

(実施例8)
実施例8に用いた溝基板の流路の概略図を図22(a)に、溝基板(45)とカバー体(44)を向かいあわせた基板を図22(b)、図22(b)の基板中の流路の拡大図を図22(c)に示した。デルリン(登録商標)DS500Mグレード樹脂製溝基板を用いて、水相と有機相一部を流路深さ45μmで一方の基板(45)に形成し、もう一方の基板に深さ7μmのリング状の有機相流路の一部(44)を形成した基板を周方向の位置を決めずに決まった径方向の位置に穴を機械加工し、この基板の表面をアルゴンガス雰囲気でプラズマ処理し、溝面どうしを中心穴で位置決めしてMRブロックとした。このブロックに第1の流体送液用ポンプ(17)により4%のポリビニルアルコール水溶液を微小流路構造体に約1.0ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約0.5ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が30.1μm、粒径分散度が11.1%であった。このように、穴加工および、積層を簡便にすることが出来た。
(Example 8)
A schematic view of the flow path of the groove substrate used in Example 8 is shown in FIG. 22 (a), and the substrate in which the groove substrate (45) and the cover body (44) face each other is shown in FIGS. 22 (b) and 22 (b). An enlarged view of the flow path in the substrate is shown in FIG. Using a Delrin (registered trademark) DS500M grade resin groove substrate, an aqueous phase and a part of an organic phase are formed on one substrate (45) with a flow path depth of 45 μm, and a ring shape with a depth of 7 μm is formed on the other substrate. A hole is machined at a predetermined radial position without determining the circumferential position of the substrate on which a part (44) of the organic phase flow path is formed, and the surface of the substrate is plasma-treated in an argon gas atmosphere. The MR surfaces were made by positioning the groove surfaces with the center hole. A 4% polyvinyl alcohol aqueous solution is fed to the block at a rate of about 1.0 ml / min through the first fluid feed pump (17) to the microchannel structure, and the second fluid feed pump is used. A pump (18) is used to send a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at a rate of about 0.5 ml / min, and the fluid containing the ejected microdroplets is sampled to obtain 100 microdroplets. As a result of measurement, the average particle size was 30.1 μm, and the particle size dispersion degree was 11.1%. Thus, the hole processing and lamination could be simplified.

(実施例9)
実施例9に用いた溝基板の流路の拡大図写真(貫通穴加工前)を図23(a)に、図23(a)中の連続相導入部の拡大図を図23(b)に、図23(a)中の排出流路の拡大図を図23(c)に示した。デルリン(登録商標)DS500Mグレード品の樹脂を用いて、交差部の溝の深さ110μm、幅は240μm、排出側の流路を途中から160μmになるように交差部より50μm深くした溝流路をΦ120mmの基板に転写するとともに貫通穴を後加工した。この溝基板3枚とカバー体の表面をアルゴンガス雰囲気でプラズマ処理し、実施例2と同様に圧着してMRブロックとした。このブロックに第1の流体送液用ポンプ(17)により3%のポリビニルアルコール水溶液を微小流路構造体に 約3.6ml/分の送液速度で送液し、第2の流体送液用ポンプ(18)によりジビニルベンゼンと酢酸ブチルの混合溶液を微小流路構造体に約1.8ml/分で送液し、排出された微小液滴を含む流体をサンプリングし100個の微小液滴を測定した結果、平均粒径が約197μmでその粒径分散度が5.2%であった。また、このMRブロックを液滴生成している途中で送液停止し、液滴を封入したまま1000時間保管した。このような悪条件下で保管した後、プランジャーポンプで水洗浄し、初期と同条件で送液して液滴を調製した。捕集した液滴の平均粒径は約193μm、粒径分散度は6.1%と良好な液滴であった。
Example 9
An enlarged view of the channel of the groove substrate used in Example 9 (before through hole processing) is shown in FIG. 23 (a), and an enlarged view of the continuous phase introduction part in FIG. 23 (a) is shown in FIG. 23 (b). FIG. 23 (c) shows an enlarged view of the discharge channel in FIG. 23 (a). Using a Delrin (registered trademark) DS500M grade resin, the groove channel depth is 110 μm, the width is 240 μm, and the channel on the discharge side is deeper by 50 μm than the intersection so that the channel on the discharge side is 160 μm from the middle. The through hole was post-processed while being transferred to a Φ120 mm substrate. The three groove substrates and the surface of the cover body were subjected to plasma treatment in an argon gas atmosphere and pressure-bonded in the same manner as in Example 2 to obtain an MR block. A 3% polyvinyl alcohol aqueous solution is fed to this block by a first fluid feed pump (17) at a feed rate of about 3.6 ml / min. A pump (18) is used to feed a mixed solution of divinylbenzene and butyl acetate to the microchannel structure at a rate of about 1.8 ml / min, and the fluid containing the ejected microdroplets is sampled to obtain 100 microdroplets. As a result of measurement, the average particle size was about 197 μm, and the particle size dispersion degree was 5.2%. In addition, the liquid feeding of the MR block was stopped while the droplet was being generated, and the MR block was stored for 1000 hours with the droplet enclosed. After storing under such unfavorable conditions, it was washed with water with a plunger pump, and liquid was sent under the same conditions as the initial stage to prepare droplets. The collected droplets were good droplets with an average particle size of about 193 μm and a particle size dispersion of 6.1%.

本発明におけるMRブロックの概略図である。It is the schematic of MR block in this invention. 本発明における連続相を分配して送液する流路基板の一例の概念図である。It is a conceptual diagram of an example of the flow-path board | substrate which distributes and sends the continuous phase in this invention. 本発明における分散相を分配して送液する流路基板の一例の概念図である。It is a conceptual diagram of an example of the flow-path board | substrate which distributes and distributes the dispersed phase in this invention. 本発明におけるMRブロックの基本構成要素のうち、パッキン、微小流路基板、カバー体の積層構造を示した概念図である。It is the conceptual diagram which showed the laminated structure of packing, the microchannel substrate, and the cover body among the basic components of MR block in this invention. 積層時の流路基板等の立体図を示した図4における溝部断面として、A−A’断面を示した概念図である。It is the conceptual diagram which showed the A-A 'cross section as a groove part cross section in FIG. 4 which showed three-dimensional figures, such as a flow-path board | substrate at the time of lamination | stacking. 積層時の流路基板等の立体図を示した図4における供給流路断面として、B−B’断面を示した概念図である。FIG. 5 is a conceptual diagram showing a B-B ′ section as a supply channel section in FIG. 4 showing a three-dimensional view of a channel substrate and the like at the time of stacking. 積層時の流路基板等の立体図を示した図4における排出流路断面として、C−C’断面を示した概念図である。It is the conceptual diagram which showed the C-C 'cross section as a discharge flow path cross section in FIG. 4 which showed three-dimensional figures, such as a flow-path board | substrate at the time of lamination | stacking. 本発明におけるMRブロックの基本構成要素のうち、流路基板に上下面に溝を形成した溝基板を用いた場合における、パッキン、流路基板、カバー体の積層構造を示した概念図である。It is the conceptual diagram which showed the laminated structure of packing, a flow path board | substrate, and a cover body at the time of using the groove | channel board | substrate which formed the groove | channel on the upper and lower surfaces in the flow path board | substrate among the basic components of MR block in this invention. 本発明におけるMRブロックの基本構成要素のうち、一方の面にリング状の溝を形成し、位置決めを簡便にした構造の概念図である。It is the conceptual diagram of the structure which formed the ring-shaped groove | channel in one surface among the basic components of MR block in this invention, and simplified positioning. 図9の流路基板の一部の流路に流れる流体の流れの概念図である。It is a conceptual diagram of the flow of the fluid which flows into the one part flow path of the flow-path board | substrate of FIG. 圧着する力点と力点の間の少なくとも1カ所を凸とする圧着治具を用いたMRブロックの概略図である。It is the schematic of the MR block using the crimping | crimping jig | tool which makes convex at least one place between the force points to crimp. 実施例1に使用した微小流路基板と微小流路の拡大図である。2 is an enlarged view of a microchannel substrate and microchannels used in Example 1. FIG. 実施例1で捕集した液滴写真である。2 is a photograph of droplets collected in Example 1. FIG. 比較例1におけるMRブロックの概略図である。6 is a schematic diagram of an MR block in Comparative Example 1. FIG. 比較例1で捕集した液滴写真である。4 is a droplet photograph collected in Comparative Example 1. 比較例1における流路基板間の密着状態を示す図である。6 is a diagram illustrating a close contact state between flow path substrates in Comparative Example 1. FIG. 実施例2における流路基板間の密着状態を示す図である。FIG. 6 is a diagram showing a close contact state between flow path substrates in Example 2. 実施例4に使用した微小流路基板と微小流路の拡大写真である。It is an enlarged photograph of the microchannel substrate and microchannel used in Example 4. 実施例5におけるMRブロックの概略図である。FIG. 10 is a schematic diagram of an MR block in the fifth embodiment. 実施例6に用いた溝基板の流路の概略図である。6 is a schematic view of a channel of a groove substrate used in Example 6. FIG. 実施例7に用いた溝基板の流路の概略図と微小流路の拡大図である。It is the schematic of the flow path of the groove substrate used for Example 7, and the enlarged view of a micro flow path. 実施例8に用いた溝基板の流路の概略図と微小流路の拡大図である。It is the schematic of the flow path of the groove substrate used for Example 8, and the enlarged view of a micro flow path. 実施例9に用いた溝基板の流路の拡大図写真(貫通穴加工前)である。It is an enlarged view photograph (before a through-hole process) of the flow path of the groove substrate used for Example 9.

符号の説明Explanation of symbols

1 :上部圧着治具
2 :下部圧着治具
3 :外周部ボルト
4 :中心部ボルト
5 :位置決めピン
6 :パッキン
7 :連続相供給流路
8 :分散相供給流路
9 :分散相分配流路
10:連続相分配流路
11:分散相導入口
12:連続相導入口
13:排出流路集合部
14:排出口
15:流路基板
16:カバー体
17:連続相送液ポンプ
18:分散相送液ポンプ
19:排出流路
20:テフロン(登録商標)チューブ
21:片面に溝を形成した溝基板
22:両面に異なる溝を形成した溝基板
23:片面に溝を形成したカバー体
24:基板どうしを積層させた状態の概念図
25:積層した流路基板を上下パッキンで挟んだ状態の概念図
26:分解・洗浄等のため切り欠き例
27:片面にリング状の溝を形成したカバー体
28:カバー体と向き合わせることで交差流路を形成する溝を形成した溝基板
29:両面に流路の一部を形成した溝基板
30:基板どうしを積層させた状態の概念図
31:積層した流路基板を上下パッキンで挟んだ状態の概念図
32:両面の流路を合わせてできる微小交差流路の分散相導入口
33:両面の流路を合わせてできる微小交差流路の連続相導入口
34:両面の流路を合わせてできる微小交差流路の交差部
35:両面の流路を合わせてできる微小交差流路の排出口
36:実施例1に使用した微小流路基板
37:実施例4に使用した微小流路基板
38:実施例6に使用した溝基板(水相と有機相一部を流路深さ45μmとして成形した溝基板)
39:実施例6に使用した溝を形成したカバー体(水相流路と交差する有機相の一部流路を7μmの深さで成形したカバー体)
40:実施例6に使用した溝基板(38)とカバー体(39)を向かい合わせたることでて交差流路を形成した状態の概念図
41:実施例6に使用した溝基板とカバー体を積層させた状態で形成する流路拡大図(交差部分)
42:実施例7に使用した溝基板
43:実施例7に使用した基板の流路拡大図
44:実施例8に使用したリング溝を形成したカバー体
45:実施例8に使用した溝基板
46:実施例8に使用した溝基板とカバー体を積層させた状態
47:実施例8に使用した溝基板とカバー体を積層させた状態で形成する流路拡大図(部分)
48:連続相貯蔵空間
49:放射状連続相供給流路
50:7と連通する放射状流路の先端部分
51:分散相貯蔵空間
52:放射状分散相供給流路
53:8と連通する放射上流路の先端部分
1: Upper crimping jig 2: Lower crimping jig 3: Outer peripheral bolt 4: Center bolt 5: Positioning pin 6: Packing 7: Continuous phase supply channel 8: Dispersed phase supply channel 9: Dispersed phase distribution channel 10: Continuous phase distribution channel 11: Dispersed phase inlet 12: Continuous phase inlet 13: Discharge channel assembly 14: Discharge port 15: Channel substrate 16: Cover body 17: Continuous phase liquid feed pump 18: Dispersed phase Liquid feed pump 19: Discharge flow channel 20: Teflon (registered trademark) tube 21: Groove substrate 22 with grooves on one side: Groove substrate 23 with different grooves on both sides 23: Cover body 24 with grooves on one side 24: Substrate Conceptual diagram of the state in which the layers are laminated 25: Conceptual diagram of the state in which the laminated flow path substrates are sandwiched between upper and lower packings 26: Notched for disassembly / cleaning, etc. 27: Cover body with ring-shaped grooves formed on one side 28: Interchange by facing the cover body Groove substrate 29 in which grooves for forming the flow path are formed: Groove substrate 30 in which a part of the flow path is formed on both surfaces: Conceptual diagram of a state in which the substrates are stacked 31: The stacked flow path substrates are sandwiched between upper and lower packings Conceptual diagram 32 of the state: Dispersed phase inlet 33 of the micro cross channel formed by combining the flow channels on both sides: Continuous phase inlet 34 of the micro cross channel formed by combining the flow channels on both sides: Combined the channels on both sides Crossing portion 35 of the micro crossing channel that can be formed: discharge port 36 of the micro crossing channel that can be formed by combining the channels on both sides: microchannel substrate 37 used in Example 1: microchannel substrate used in Example 4 38: Groove substrate used in Example 6 (groove substrate formed with a water phase and a part of the organic phase formed to have a flow path depth of 45 μm)
39: Cover body in which the groove used in Example 6 was formed (a cover body in which a partial flow path of the organic phase intersecting the water phase flow path was formed to a depth of 7 μm)
40: Conceptual diagram of a state in which a cross flow path is formed by facing the groove substrate (38) and the cover body (39) used in Example 6 41: The groove substrate and cover body used in Example 6 are Enlarged view of the flow path formed in a stacked state (intersection)
42: Groove substrate 43 used in Example 7: Enlarged flow path of substrate used in Example 7 FIG. 44: Cover body 45 with ring groove used in Example 8: Groove substrate 46 used in Example 8 : A state in which the groove substrate and the cover body used in Example 8 are laminated 47: A flow path enlarged view (part) formed in a state in which the groove substrate and the cover body used in Example 8 are laminated
48: Continuous phase storage space 49: Radial continuous phase supply flow path 50: Radial flow path tip portion communicating with 50: 7 Dispersed phase storage space 52: Radial dispersed phase supply flow channel 53: Radial upper flow path communicating with 8 Tip

Claims (19)

流体を導入する流体導入口と前記流体により微粒子を生成する微小流路と生成した微粒子を含有する流体を排出する流体排出口とを有する微小流路構造体であって、前記微小流路構造体は、前記流体を前記微小流路に供給する流体供給用構造体と前記微小流路を有する微小流路基板とこれらの間に介される板とから構成されており、前記微小流路基板の基材が、JIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以上であり、かつJIS K 7152−4準拠の成形収縮率は3%以下の樹脂であることを特徴とする液滴生成用微小流路集合体装置。 A microchannel structure having a fluid inlet for introducing a fluid, a microchannel for generating microparticles with the fluid, and a fluid outlet for discharging a fluid containing the generated microparticles, the microchannel structure Is composed of a fluid supply structure for supplying the fluid to the microchannel, a microchannel substrate having the microchannel, and a plate interposed between them. Droplet generation, characterized in that the material is a resin having a hardness of 70 or more in Type D according to JIS K 6253 and a molding shrinkage rate of 3% or less in accordance with JIS K 7152-4 Micro-channel assembly device. 微小流路構造体が、分散相を導入する導入口およびそれに連通する分散相導入微小流路と、連続相を導入する導入口およびそれに連通する連続相導入微小流路と、前記分散相導入微小流路と連続相導入微小流路とが交差して分散相からなる液滴生成用微小流路と、前記液滴生成用微小流路と連通し生成した微粒子を含有する流体を排出する流体排出口と、を有することを特徴とする請求項1記載の液滴生成用微小流路集合体装置。 The microchannel structure includes an inlet for introducing a dispersed phase and a dispersed phase introducing microchannel that communicates with the inlet, an inlet for introducing a continuous phase and a continuous phase introducing microchannel that communicates with the inlet, and the dispersed phase introducing microchannel A droplet generating micro-channel consisting of a dispersed phase by intersecting the channel and the continuous-phase introducing micro-channel, and a fluid exhaust for discharging a fluid containing fine particles generated in communication with the droplet generating micro-channel The microchannel assembly device for generating droplets according to claim 1, further comprising an outlet. 前記微小流路基板の基材より硬い平板状の治具を上下に配置し、その間に、JIS K 6253準拠のデュロメータ硬さ試験方法でタイプDにおける硬度70以下の板を上下の2枚以上を介して、前記微小流路基板を挟む構成をなした積層体を有することを特徴とする請求項1または請求項2記載の液滴生成用微小流路集合体装置。 Flat jigs that are harder than the base material of the microchannel substrate are arranged above and below, and two or more upper and lower plates having a hardness of 70 or less in Type D are measured by a durometer hardness test method in accordance with JIS K 6253. 3. The droplet generating microchannel assembly device according to claim 1, further comprising a laminated body configured to sandwich the microchannel substrate therebetween. 流体供給用構造体が、前記流体を導入するための流体導入口としての1以上の貫通穴を有し、前記流体導入口と連通し前記導入した流体を一時的に蓄える貯蔵空間を有し、かつ前記貯蔵空間から、前記微小流路基板に形成された1以上の微小流路の各々の流体導入口に連通して前記微小流路に流体を供給するための1以上の放射状に直線的及び/又は曲線的に形成された供給流路を有し、この流体供給用構造体の少なくとも1つは、圧着する上下治具間より下方に位置すること特徴とする請求項1〜3のいずれかに記載の液滴生成用微小流路集合体装置。 The fluid supply structure has one or more through holes as fluid inlets for introducing the fluid, and has a storage space that communicates with the fluid inlet and temporarily stores the introduced fluid. And one or more radial and linear lines for communicating fluid from the storage space to each fluid inlet of each of the one or more microchannels formed in the microchannel substrate and supplying the fluid to the microchannels 4. A supply channel formed in a curved line is provided, and at least one of the fluid supply structures is located below between the upper and lower jigs to be crimped. 2. A micro-channel assembly device for generating droplets according to 1. 前記微小流路基板と、当該微小流路基板に形成されている流路に蓋をして流路を形成するカバー体とを、前記平板状の治具を圧着することで密着させてなることを特徴とする請求項3に記載の液滴生成用微小流路集合体装置。 The microchannel substrate and a cover body that forms a channel by covering the channel formed on the microchannel substrate are brought into close contact with each other by crimping the flat jig. The micro-channel assembly device for generating droplets according to claim 3. 前記カバー体が前記微小流路基板より硬いことを特徴とする請求項5に記載の液滴生成用微小流路集合体装置。 The droplet generating micro-channel assembly device according to claim 5, wherein the cover body is harder than the micro-channel substrate. 前記微小流路基板に形成されている流路が、当該微小流路基板において線または点対称な構成となっており、その対称中心に空間があいており、前記微小流路基板を圧着する圧着治具を有することを特徴とする請求項5または請求項6に記載の液滴生成用微小流路集合体装置。 The flow path formed in the micro flow path substrate has a line or point symmetric configuration in the micro flow path substrate, and there is a space in the center of symmetry, so that the micro flow path substrate is crimped. The micro-channel assembly device for droplet generation according to claim 5 or 6, further comprising a jig. 前記微小流路基板を立体的に積層するまたはカバー体を設置するための位置決め機構を有することを特徴とする請求項5〜7のいずれかに記載の液滴生成用微小流路集合体装置。 8. The micro-channel assembly device for droplet generation according to claim 5, further comprising a positioning mechanism for three-dimensionally stacking the micro-channel substrates or installing a cover body. 前記微小流路基板の一部に、当該微小流路基板どうしを積層状態から分離するため治具を挿入する凹部を有することを特徴とする請求項5〜8のいずれかに記載の液滴生成用微小流路集合体装置。 The droplet generation according to any one of claims 5 to 8, wherein a part of the microchannel substrate has a recess for inserting a jig for separating the microchannel substrates from the stacked state. Micro-channel assembly device. 前記流体供給用構造体と微小流路基板との間に介される板と連通する穴が、前記圧着治具の平面上に並んでおり、当該記流体供給用構造体と微小流路基板との間に介される板に設けた穴でそれぞれの穴を一度に位置合わせする構造となることを特徴とする請求項1〜9のいずれかに記載の液滴生成用微小流路集合体装置。 Holes communicating with the plate interposed between the fluid supply structure and the microchannel substrate are arranged on the plane of the crimping jig, and the fluid supply structure and the microchannel substrate 10. The micro-channel assembly device for generating droplets according to claim 1, wherein the holes are provided in a plate interposed therebetween so that the holes are aligned at a time. 前記流体供給用構造体と微小流路基板との間に介される板が、前記微小流路基板より小さいことを特徴とする請求項1〜10のいずれかに記載の液滴生成用微小流路集合体装置。 11. The microchannel for generating droplets according to claim 1, wherein a plate interposed between the fluid supply structure and the microchannel substrate is smaller than the microchannel substrate. Aggregate device. 前記微小流路基板に形成されている流路表面が親水化処理されていることを特徴とする請求項1〜11のいずれかに記載の液滴生成用微小流路集合体装置。 The microchannel assembly device for generating droplets according to any one of claims 1 to 11, wherein the surface of the channel formed on the microchannel substrate is subjected to a hydrophilic treatment. 前記微小流路基板を積層する際、前記微小流路基板に形成されている流路を、当該微小流路基板とは別の微小流路基板の流路形成面の裏面にて蓋をするカバー体として積層してなることを特徴とする請求項5〜12のいずれかに記載の液滴生成用微小流路集合体装置。 A cover that covers the flow path formed on the micro flow path substrate on the back surface of the flow path forming surface of the micro flow path substrate different from the micro flow path substrate when the micro flow path substrate is stacked. The microchannel assembly device for generating droplets according to any one of claims 5 to 12, wherein the microchannel assembly device is formed as a body. 前記流体供給用構造体と連通する縦穴流路(貫通孔)から導入微小流路の導入部の流路の深さが、液滴生成用微小流路の深さより深いことを特徴とする請求項1〜7のいずれかに記載の液滴生成用微小流路集合体装置。 The depth of the flow path from the vertical hole flow path (through hole) communicating with the fluid supply structure to the introduction portion of the introduction micro flow path is deeper than the depth of the micro flow path for droplet generation. The microchannel assembly device for droplet generation according to any one of 1 to 7. 前記微小流路基板に形成される排出流路において、流路の一部が深くなっていることを特徴とする請求項1〜14のいずれかに記載の液滴生成用微小流路集合体装置。 15. The droplet generating micro-channel assembly device according to claim 1, wherein a part of the channel is deep in the discharge channel formed on the micro-channel substrate. . 2枚のそれぞれ異なる流路構造を有する微小流路基板を、流路が形成されている面どうしを対面させたときに、流路が異なる微小流路基板上の流路が交差する部分で液滴を形成させる構造を持つことを特徴とする請求項1〜15のいずれかに記載の液滴生成用微小流路集合体装置。 When two microchannel substrates having different channel structures face each other on the surfaces where the channels are formed, the liquid at the portion where the channels on the microchannel substrates with different channels intersect The microchannel assembly device for generating droplets according to any one of claims 1 to 15, which has a structure for forming droplets. 一方の微小流路基板上の流路構造が環状であって、始点及び終点を持たない構造であることした請求項16に記載の液滴生成用微小流路集合体装置。 17. The micro-channel assembly device for generating droplets according to claim 16, wherein the channel structure on one micro-channel substrate is annular and has no start point and no end point. 一方の流路基板の溝が同心円であることを特徴とした請求項17に記載の液滴生成用微小流路集合体装置。 18. The micro-channel assembly device for generating droplets according to claim 17, wherein the grooves of one of the channel substrates are concentric circles. 分散相または、連続相の微小流路基板へ導入する流路を流路基板の下方に位置させ、各基板を通り排出する流体の送液方向が上向きであることを特徴とする請求項1〜18のいずれかに記載の液滴生成用微小流路集合体装置。 The flow path for introducing the dispersed phase or continuous phase into the micro flow path substrate is positioned below the flow path substrate, and the liquid feeding direction of the fluid discharged through each substrate is upward. 18. A micro-channel assembly device for generating droplets according to any one of 18 above.
JP2007084707A 2007-03-28 2007-03-28 Minute flow passage assembly apparatus for producing droplet Pending JP2008238097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084707A JP2008238097A (en) 2007-03-28 2007-03-28 Minute flow passage assembly apparatus for producing droplet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084707A JP2008238097A (en) 2007-03-28 2007-03-28 Minute flow passage assembly apparatus for producing droplet

Publications (1)

Publication Number Publication Date
JP2008238097A true JP2008238097A (en) 2008-10-09

Family

ID=39910069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084707A Pending JP2008238097A (en) 2007-03-28 2007-03-28 Minute flow passage assembly apparatus for producing droplet

Country Status (1)

Country Link
JP (1) JP2008238097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139621A (en) * 2010-12-28 2012-07-26 Tosoh Corp Microchannel structure and method of manufacturing fine particle using the same
JP2020151784A (en) * 2019-03-18 2020-09-24 フコク物産株式会社 Micro fluid device
WO2021100590A1 (en) * 2019-11-19 2021-05-27 京セラ株式会社 Flow channel device, method for manufacturing flow channel device, measurement flow channel device, and inspection apparatus
DE112015000711B4 (en) 2014-03-07 2023-07-20 International Business Machines Corporation Manufacturing of microfluidic probe heads

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149253A (en) * 2001-08-28 2003-05-21 Tosoh Corp Information measuring instrument using very small flow passage structure
JP2004121998A (en) * 2002-10-02 2004-04-22 National Institute Of Advanced Industrial & Technology Micro high-pressure fluid contact apparatus
JP2004243308A (en) * 2002-08-01 2004-09-02 Tosoh Corp Microchannel structure, desk size chemical plant constituted thereof, and fine particle producing apparatus using them
JP2005245317A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Measuring instrument for microorganism and measuring method
JP2006053060A (en) * 2004-08-12 2006-02-23 Tosoh Corp Fine particle manufacturing method, and micro flow passage structure therefor
JP2006169165A (en) * 2004-12-15 2006-06-29 Itoham Foods Inc Peptide-synthesizing method using microchip pileup type chemical reactor
JP2006283965A (en) * 2005-03-10 2006-10-19 Nagano Keiki Co Ltd Fluid control structure of micro flow passage, blocking member, microchip, manufacturing method for microchip, device applying fluid control structure, and blocking member operation device
JP2006320772A (en) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd Micro-fluid-device
JP2007032408A (en) * 2005-07-26 2007-02-08 Star Micronics Co Ltd Peristaltic type piezoelectric micropump and its drive method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149253A (en) * 2001-08-28 2003-05-21 Tosoh Corp Information measuring instrument using very small flow passage structure
JP2004243308A (en) * 2002-08-01 2004-09-02 Tosoh Corp Microchannel structure, desk size chemical plant constituted thereof, and fine particle producing apparatus using them
JP2004121998A (en) * 2002-10-02 2004-04-22 National Institute Of Advanced Industrial & Technology Micro high-pressure fluid contact apparatus
JP2005245317A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Measuring instrument for microorganism and measuring method
JP2006053060A (en) * 2004-08-12 2006-02-23 Tosoh Corp Fine particle manufacturing method, and micro flow passage structure therefor
JP2006169165A (en) * 2004-12-15 2006-06-29 Itoham Foods Inc Peptide-synthesizing method using microchip pileup type chemical reactor
JP2006283965A (en) * 2005-03-10 2006-10-19 Nagano Keiki Co Ltd Fluid control structure of micro flow passage, blocking member, microchip, manufacturing method for microchip, device applying fluid control structure, and blocking member operation device
JP2006320772A (en) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd Micro-fluid-device
JP2007032408A (en) * 2005-07-26 2007-02-08 Star Micronics Co Ltd Peristaltic type piezoelectric micropump and its drive method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139621A (en) * 2010-12-28 2012-07-26 Tosoh Corp Microchannel structure and method of manufacturing fine particle using the same
DE112015000711B4 (en) 2014-03-07 2023-07-20 International Business Machines Corporation Manufacturing of microfluidic probe heads
JP2020151784A (en) * 2019-03-18 2020-09-24 フコク物産株式会社 Micro fluid device
JP7356241B2 (en) 2019-03-18 2023-10-04 フコク物産株式会社 microfluidic device
WO2021100590A1 (en) * 2019-11-19 2021-05-27 京セラ株式会社 Flow channel device, method for manufacturing flow channel device, measurement flow channel device, and inspection apparatus
JP7301153B2 (en) 2019-11-19 2023-06-30 京セラ株式会社 Channel device, method for manufacturing channel device, channel device for measurement, and inspection apparatus

Similar Documents

Publication Publication Date Title
US7549788B2 (en) Fluid mixing apparatus and fluid mixing system
TWI439410B (en) Microchannel structure and fine-particle production method using the same
EP3068526B1 (en) Microfluidic device for high-volume production and processing of monodisperse emulsions and method
US6852291B1 (en) Hybrid valve apparatus and method for fluid handling
KR100845200B1 (en) Apparatus for mixing and reacting at least two fluids
JP4032128B2 (en) Microchannel structure, desk-size chemical plant constructed, and fine particle production apparatus using them
JP2008238097A (en) Minute flow passage assembly apparatus for producing droplet
JP2006320772A (en) Micro-fluid-device
US7338641B2 (en) Fine channel device, desksize chemical plant and fine particle producing apparatus employing them
JP2023076523A (en) Micro liquid droplet/air bubble generation device
US20190099729A1 (en) Fine particle manufacturing device
US7946037B2 (en) Microchemical device and method for fabricating the same
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
JPWO2019168130A5 (en)
JP2006122735A (en) Channel structure and fluid mixing apparatus
JP2004290968A (en) Micropassage structural body, member for its production and production method
JP4547967B2 (en) Microchannel structure and droplet generation method using the same
EP1602623B1 (en) Method of moulding a microfluidic structure and mould
JP4552984B2 (en) Member and manufacturing method for manufacturing microchannel structure
JP2006055770A (en) Microchannel structure
JP4470640B2 (en) Fine particle manufacturing method and microchannel structure therefor
JP2002346354A (en) Micro-mixer
JP2007309845A (en) Detection chip
CN116116470A (en) Microfluidic chip box
JP2021074655A (en) Fluid chip and fluid device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121114