JP2004120930A - Fault detection device of power conversion element - Google Patents
Fault detection device of power conversion element Download PDFInfo
- Publication number
- JP2004120930A JP2004120930A JP2002282932A JP2002282932A JP2004120930A JP 2004120930 A JP2004120930 A JP 2004120930A JP 2002282932 A JP2002282932 A JP 2002282932A JP 2002282932 A JP2002282932 A JP 2002282932A JP 2004120930 A JP2004120930 A JP 2004120930A
- Authority
- JP
- Japan
- Prior art keywords
- power conversion
- voltage
- power
- conversion element
- failure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Locating Faults (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Power Conversion In General (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、自家発電システムや電動機駆動システムに用いられる電力を制御する電力変換素子の故障検出装置に関する。
【0002】
【従来の技術】
発電システムや電動機駆動システム等においては、定格電圧の低い電力変換素子を多段に直列接続することによって必要な定格電圧を確保して使用している。このように電力変換素子を多段に直列接続した場合の従来の故障検出装置(特公昭59−4942号公報参照)を図5を参照して説明する。
【0003】
図5において、電力変換素子としてサイリスタ素子11,12…を多段に接続しており、各サイリスタ素子11,12…の動作状態は、各サイリスタ素子11,12…の両端に抵抗21と発光素子31,抵抗22と発光素子32,…をそれぞれ並列接続しており、各発光素子31,32…で発光した光はそれぞれ光ファイバー41,42…を経由して、受光素子51,52…へ伝えられ、その信号により故障判定回路6にてサイリスタ素子の故障を判定するように構成されている。
【0004】
このように、サイリスタ素子を多段に直列接続して使用する場合、それらの直列素子が全素子とも同じ動作をしないと、各素子で分担している電圧がくずれる。例えば、ある素子が短絡故障することによって、他の素子が過電圧となり事故が拡大する恐れがあるため、常に各素子の動作状況の比較監視をしておく必要がある。
【0005】
以下、従来のサイリスタ素子の故障検出方法を図5の故障検出装置を参照して説明する。
サイリスタ素子11がONの場合には、サイリスタ素子の両端に分圧電圧が発生しないが、サイリスタ素子11がOFFの場合には、電源電圧に対しサイリスタ段数分に分圧された電圧が印加される。つまり、サイリスタ素子11がONの場合には発光素子31に電流が流れず、その信号は伝達されないが、サイリスタ素子11がOFFの状態ではサイリスタ素子の両端に分圧した電圧が現われるので、発光素子31に電流が流れ、その信号が光ファイバー41を経由して次段の受光素子51に伝わる。同じように多段の各サイリスタ素子12…においても同様の動作によって各サイリスタ素子の動作検出を行う。
【0006】
このように全てのサイリスタ素子のON/OFFの信号が故障判定回路6に集められ、この故障判定回路6では、全素子が同じタイミングで動作しておればサイリスタ素子は正常であり、逆に動作の異なるサイリスタ素子があれば当該サイリスタは異常な状態であり、サイリスタ素子の故障と判定するものである。
【0007】
【発明が解決しようとする課題】
上述したように、従来の故障検出装置では、単に電力変換素子のON/OFFの状態を光により伝送し、それにより電力変換素子の異常の判別を行う回路構成であったが、現実的には電源電圧の歪みや切れ込みが発生することにより、電力変換素子のON/OFF状態の検出部が不安定になるので、誤動作が多く信頼性に問題があった。また、多段のうち一部の電力変換素子が短絡して故障したのに、検出精度が悪いため気付かないと、他の電力変換素子の分担電圧が増加し、電力変換素子が過電圧となり、他の電力変換素子までもが故障し、被害が拡大してしまうことが危惧されていた。
【0008】
さらに、故障検出の誤動作を確認するには、わざわざ電力変換装置の運転を停止し、各素子の特性を個々に確認しなければならないので、非効率であった。また、電力変換装置を停止すること自体が、システム上許されない場合もあり、問題であった。
【0009】
本発明は(請求項1乃至請求項3対応)は、上記問題を解決するためになされたもので、その目的は電源電圧の歪みや切れ込みに左右されない高信頼性の電力変換素子の故障検出装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の電力変換素子の故障検出装置は、直列に接続された複数個の電力変換素子を用いて電力を制御する自家発電システムや電動機駆動システムに用いられ、前記各電力変換素子に対し抵抗と動作検出回路を接続して電力変換素子の故障を検出する故障検出装置において、前記各電力変換素子の電圧波形からその素子の動作状態を電源電圧の大きさと周波数に応じて補正する電圧補正回路と周波数補正回路を設け、前記電力変換素子の故障を検出することを特徴とする。
【0011】
本発明の請求項2は、請求項1記載の電力変換素子の故障検出装置において、直列に接続された複数個の電力変換素子の全ての動作を常に監視し、その中に動作の異なる電力変換素子が検出されれば、さらにその検出された動作を電源電圧の大きさと周波数に応じて補正してから故障と決定することを特徴とする。
【0012】
本発明の請求項3は、請求項1または請求項2記載の電力変換素子の故障検出装置において、自家発電システムや電動機駆動システムの代わりに船舶の主機軸駆動発電システムを使用し、発電機から電力を発生するコンバータ側の電圧波形と、負荷である電動機等への電力を供級するインバータ側の電圧波形との2種類の波形に対し、電圧の大きさと周波数に応じて補正する電圧・周波数選択回路を設け、前記電力変換素子の故障を検出することを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の第1実施形態(請求項1及び請求項2対応)の故障検出装置の構成図であり、既に説明した図5の従来の故障検出装置と異なる構成は、電圧補正回路7と周波数補正回路8を設けた後に発光素子3を接続した点と、故障判定回路6の次段にさらに電圧・周波数補正回路9を設けた点と、電源電圧検出回路10と電源周波数検出回路11を設けた点であり、その他の構成は同一であるので、同一構成要素には同一符号を付して、その説明は省略する。
【0014】
本実施形態は上記のように構成されているので、サイリスタ素子1の動作状態は、抵抗2及び電圧補正回路7を経由し、さらに周波数補正回路8を経由して発光素子3に伝達される。電源電圧検出回路10では電源の電圧値を検出し、その信号を電圧補正回路7に伝え、サイリスタの動作状態をON/OFF信号に変換するしきい値を電源電圧に応じて変化させている。この動作を図2に示す。
【0015】
図2は、図1の故障検出装置において、電源電圧による補正を説明するための図であり、サイリスタ素子1の両端に発生する電圧から素子のON/OFF状態に変換するにあたり、電源電圧による補正方法を示している。
【0016】
図に示すように、サイリスタ素子の両端に発生する電圧を用いて素子のON/OFF信号に変換するためには、一定電圧のしきい値V1を決めて変換を行う。電源電圧が大きい場合、実際の波形よりもt1時間遅れて素子の状態が検出できるが、逆に電源電圧が低い場合、同じしきい値V1で変換すると実際の波形よりも大きな時間遅れt2で素子の状態が検出される。電源電圧が低い場合、しきい値V1と交差する電源電圧の波形の傾きがゆるくなるので、時間遅れt2は非常に不安定になりやすく、結果的に故障検出の誤動作を引き起こすことになる。また、最初からしきい値を下げてしまうとノイズを検出してしまい、誤動作の原因となるので問題であった。
【0017】
そこで、本実施形態では、電源電圧が低い場合は、同じようにしきい値V2も下げて、しきい値と交差する波形の傾きを大きくすることにより素子のON/OFFの状態検出の安定性を高めるようにしたものである。
【0018】
また、電圧補正回路7において、しきい値を補正されたサイリスタのON/OFF信号は、周波数補正回路8に伝わるが、電源周波数検出回路11では電源の周波数を検出し、その信号を周波数補正回路8に伝え、サイリスタのON/OFF信号の確認時限を周波数に応じて変化させる。この動作を図3に示す。
【0019】
図3は、図1の故障検出装置において、電源周波数による補正を説明するための図であり、サイリスタ素子のON/OFF状態をさらに精度を高めるために、電源周波数による補正方法を示している。
【0020】
図に示すように、波形に切れ込みt4がある場合、前述のしきい値に関係なく素子のON/OFF状態が誤った読み込みを行ってしまうことになる。このような切れ込みが発生すると、次段の故障判定回路6が誤動作してしまうので、電源の周波数から逆算して、半サイクル時間内の切れ込み確認時限を持つことにより、故障検出の精度を高めることができる。
この確認時間を取りすぎると、各素子にかえってダメージを与えることになり、周波数に応じて最適な確認時限を定めることが重要となる。
【0021】
電圧補正回路7と周波数補正回路8にて補正された信号は、発光素子3から光ファイバー4を経由して、次段の受光素子5に信号が伝わり、故障判定回路6において動作が異なるサイリスタ素子があれば故障と判定するが、さらに精度を高めるため、電圧・周波数補正回路9において補正を行い最終的に故障と決定するものである。
【0022】
ところで、多段構成の各サイリスタ素子のON/OFF信号は、電圧や周波数によっても各々微妙にずれてくるので、故障判定回路6が誤判定することがあった。そこで、電圧・周波数補正回路9は電源電圧検出回路10及び電源周波数検出回路11で検出された電源電圧及び電源周波数を取り込み、上記ばらつきによる判定を補正する目的で設けられており、上述のように電圧や周波数に応じた最適な時限確認を行うことによって誤動作を防止することができる。
【0023】
このように本実施形態によれば、電源電圧の大きさと周波数に応じて補正を行うことにより、電源電圧の歪みや切れ込み波形に対しても正確に対応できるので、従来のような誤検出が起こることはなく、素子の故障を最適な時限にて精度高く決定することができる。
【0024】
以上の説明はサイリスタ素子の例で説明したが、本実施形態はサイリスタ素子に限らずあらゆる電力変換素子において適用することができ、同様の効果が得られる。
【0025】
図4は本発明の第2実施形態(請求項3対応)である船舶用の主機軸駆動発電システムの構成図である。
図に示すように、本実施形態では自家発電システムや電動機駆動システム以外の船舶用の主機軸駆動発電システムに適用した場合であり、メインエンジン20により軸発電機21とプロペラ22を回転する。軸発電機21の回転により発電した電力は、コンバータ用素子23,インバータ用素子24を経て船内母線25へ供給される。
【0026】
また、コンバータ・インバータにはそれぞれコンバータ用素子の故障検出装置26とインバータ用素子の故障検出装置27が接続され、さらに電圧・周波数選択回路28は、コンバータ用素子の故障検出装置26とインバータ用素子の故障検出装置27に指示を与えている。また、これらのコンバータ用素子の故障検出装置26とインバータ用素子の故障検出装置27は、図1の第1実施形態の故障検出装置と同一であるので、その説明は省略する。
【0027】
電圧・周波数選択回路28は、次の機能を備えている。すなわち、サイリスタの分圧電圧はコンバータとインバータとの両方から影響を受けるので、各故障検出装置はこの両方の影響を受けた波形に対応できなければならない。つまり、コンバータ側の軸発電機21の電圧と周波数、さらにインバータ側の船内母線25の電圧と周波数の影響を受けるので、電圧の歪みや切れ込みに対応して故障検出装置の精度を高めるためには、コンバータ・インバータどちらの電源電圧や周波数により故障検出に補正をかければよいかを選択する回路が電圧・周波数選択回路28である。コンバータ・インバータのどちら側を選択するかは、電圧においては電圧が低い側を、周波数においても周波数が低い側を補正の基準にすれば、故障検出の精度を高めることができる。つまり、電圧においては、図2に示すように電圧が低くなるに従って、しきい値を下げていけばよい。また、周波数においては、図3に示すように周波数が低くなるに従って、確認時限を大きくしていけば誤動作を防止することが可能である。
【0028】
本実施形態の電力変換素子の故障検出装置は、コンバータとインバータとの複数回の電力変換を行う船舶用の主機軸駆動発電システムに適用しても図1の第1実施形態と同様の効果を得ることができる。
【0029】
なお、本発明の電力変換装置の故障検出装置は、自家発電システムや電動機駆動システムや船の主機軸駆動発電システムにおいて、電源電圧の変化や周波数の変化に対しても正確な故障監視ができるので、電力変換装置の高信頼化とコスト削減に大きな効果を発揮するものである。
【0030】
【発明の効果】
以上説明したように、本発明(請求項1乃至請求項3対応)によると、電力変換装置の故障検出は、電圧の歪み波形や切れ込みによって誤動作することもなく、電源電圧の変化や周波数の変化に対しても電力変換素子の故障状況が確実に把握できるので、故障拡大による大きな事故になる前に、異常な電力変換素子を正確に見付け出すことが可能である。また、電力変換素子の故障検出装置の誤動作に対応する目的で、電力変換装置を停止して行うメンテナンスも不要になるので、メンテナンス費用を削減することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の故障検出装置の構成図。
【図2】図1の電源電圧による補正動作を説明するための図。
【図3】図1の電源周波数による補正動作を説明するための図。
【図4】本発明の第2実施形態の故障検出装置の構成図。
【図5】従来の故障検出装置の構成図。
【符号の説明】
1,11,12…サイリスタ素子、2,21,22…抵抗、3,31,32…発光素子、4,41,42…光ファイバー、5,51,52…受光素子、6…故障判定回路、7…電圧補正回路、8…周波数補正回路、9…電圧・周波数補正回路、10…電源電圧検出回路、11…電源周波数検出回路、20…メインエンジン、21…軸発電機、22…プロペラ、23…コンバータ用素子、24…インバータ用素子、25…船内母線、26…コンバータ用素子の故障検出装置、27…インバータ用素子の故障検出装置、28…電圧・周波数選択回路。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a failure detection device for a power conversion element that controls power used in a private power generation system or a motor drive system.
[0002]
[Prior art]
2. Description of the Related Art In a power generation system, a motor drive system, and the like, a required rated voltage is secured and used by connecting power conversion elements having a low rated voltage in series in multiple stages. A conventional failure detection device (see Japanese Patent Publication No. 59-4942) in which power conversion elements are connected in series in multiple stages will be described with reference to FIG.
[0003]
5, are connected thyristor elements 1 1 as a power conversion device, 1 2 ... a multistage, the SCR 1 1, 1 2 ... operation state of, each thyristor element 1 1, 1 2 ... ends of resistance 2 1 and the light-emitting element 3 1, resistor 2 2 and the light-emitting element 3 2, ... are connected in parallel, respectively, the light-emitting
[0004]
As described above, when the thyristor elements are connected in series in multiple stages and used, if all of the series elements do not perform the same operation, the voltage shared by each element is lost. For example, a short-circuit failure of one element may cause an overvoltage of another element and increase the accident, so that it is necessary to constantly monitor the operation status of each element.
[0005]
Hereinafter, a conventional thyristor element failure detection method will be described with reference to the failure detection device of FIG.
If SCR 1 1 is ON, but the divided voltage across the thyristor element is not generated, the thyristor element 1 1 in the case of OFF, compared supply voltage voltage divided to the thyristor number of stages is applied Is done. That is, no current flows to the
[0006]
As described above, the ON / OFF signals of all the thyristor elements are collected in the failure determination circuit 6. In the failure determination circuit 6, if all the elements are operating at the same timing, the thyristor elements are normal and operate in reverse. If there is a different thyristor element, the thyristor is in an abnormal state, and it is determined that the thyristor element has failed.
[0007]
[Problems to be solved by the invention]
As described above, the conventional failure detection device has a circuit configuration in which the ON / OFF state of the power conversion element is simply transmitted by light to thereby determine whether or not the power conversion element is abnormal. Since the detection of the ON / OFF state of the power conversion element becomes unstable due to the occurrence of the distortion or cut of the power supply voltage, there are many malfunctions and there is a problem in reliability. Also, if some of the power conversion elements in the multi-stage are short-circuited and fail, if the power is not noticed due to poor detection accuracy, the shared voltage of the other power conversion elements will increase and the power conversion elements will become overvoltage, It was feared that even the power conversion element would break down and the damage would increase.
[0008]
Furthermore, in order to confirm the malfunction of the failure detection, the operation of the power converter must be stopped and the characteristics of each element must be individually confirmed, which is inefficient. In addition, there is a case where stopping the power converter itself is not allowed in the system, which is a problem.
[0009]
The present invention (corresponding to claims 1 to 3) has been made to solve the above problems, and an object of the present invention is to provide a highly reliable power conversion element failure detection device that is not affected by power supply voltage distortion or cutout. Is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a failure detection device for a power conversion element according to claim 1 of the present invention is applied to a private power generation system or a motor drive system that controls power using a plurality of power conversion elements connected in series. In the failure detection device used for detecting a failure of the power conversion element by connecting a resistor and an operation detection circuit to each of the power conversion elements, an operation state of the power conversion element is determined based on a voltage waveform of the power conversion element. A voltage correction circuit and a frequency correction circuit for correcting according to the magnitude and frequency are provided, and a failure of the power conversion element is detected.
[0011]
According to a second aspect of the present invention, in the failure detection device for a power conversion element according to the first aspect, all operations of the plurality of power conversion elements connected in series are constantly monitored, and power conversion having different operations is performed therein. When an element is detected, the detected operation is further corrected according to the magnitude and frequency of the power supply voltage, and then a failure is determined.
[0012]
According to a third aspect of the present invention, in the failure detection device for a power conversion element according to the first or second aspect, a main shaft drive power generation system of a ship is used instead of the private power generation system or the motor drive system, and Voltage and frequency correction for two types of waveforms, a voltage waveform on the converter side that generates power and a voltage waveform on the inverter side that classifies power to the motor, which is a load, according to the magnitude and frequency of the voltage A selection circuit is provided to detect a failure of the power conversion element.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a failure detection device according to a first embodiment (corresponding to claims 1 and 2) of the present invention. The configuration different from the conventional failure detection device of FIG. And the
[0014]
Since the present embodiment is configured as described above, the operating state of the thyristor element 1 is transmitted to the
[0015]
FIG. 2 is a diagram for explaining the correction by the power supply voltage in the failure detection device of FIG. 1. In converting the voltage generated at both ends of the thyristor element 1 into the ON / OFF state of the element, the correction by the power supply voltage is performed. The method is shown.
[0016]
As shown in the figure, in order to convert the thyristor element into an ON / OFF signal using a voltage generated at both ends of the thyristor element, a constant voltage threshold V1 is determined and the conversion is performed. When the power supply voltage is large, the state of the element can be detected with a delay of t1 time from the actual waveform. Conversely, when the power supply voltage is low, the element is detected with a time delay t2 larger than the actual waveform when converted at the same threshold V1. Is detected. When the power supply voltage is low, the slope of the waveform of the power supply voltage crossing the threshold value V1 becomes gentle, so that the time delay t2 tends to be very unstable, resulting in malfunction of failure detection. Further, if the threshold value is lowered from the beginning, noise is detected, which causes a malfunction, which is a problem.
[0017]
Therefore, in the present embodiment, when the power supply voltage is low, the threshold value V2 is similarly decreased, and the slope of the waveform that intersects the threshold value is increased to increase the stability of the ON / OFF state detection of the element. It is intended to increase.
[0018]
In the voltage correction circuit 7, the thyristor ON / OFF signal whose threshold value has been corrected is transmitted to the
[0019]
FIG. 3 is a diagram for explaining correction by the power supply frequency in the failure detection device of FIG. 1, and shows a correction method by the power supply frequency in order to further improve the accuracy of the ON / OFF state of the thyristor element.
[0020]
As shown in the figure, if the waveform has a notch t4, the ON / OFF state of the element will cause erroneous reading regardless of the threshold value described above. If such a cut occurs, the next-stage failure judgment circuit 6 malfunctions. Therefore, by calculating backward from the power supply frequency and having a cut confirmation time period within a half cycle time, it is possible to improve the accuracy of failure detection. Can be.
If this confirmation time is excessively taken, each element will be damaged instead, and it is important to determine an optimal confirmation time limit according to the frequency.
[0021]
The signal corrected by the voltage correction circuit 7 and the
[0022]
By the way, since the ON / OFF signal of each thyristor element of the multi-stage configuration slightly shifts depending on the voltage and the frequency, the failure determination circuit 6 sometimes makes an erroneous determination. Thus, the voltage / frequency correction circuit 9 is provided for the purpose of taking in the power supply voltage and the power supply frequency detected by the power supply
[0023]
As described above, according to the present embodiment, by performing the correction according to the magnitude and frequency of the power supply voltage, it is possible to accurately cope with the distortion of the power supply voltage and the cut-off waveform. That is, the failure of the element can be determined with high accuracy at an optimum time limit.
[0024]
Although the above description has been made with reference to the example of the thyristor element, the present embodiment can be applied not only to the thyristor element but also to any power conversion element, and the same effect can be obtained.
[0025]
FIG. 4 is a configuration diagram of a main shaft drive power generation system for a marine vessel according to a second embodiment (corresponding to claim 3) of the present invention.
As shown in the figure, the present embodiment is a case where the present invention is applied to a main shaft drive power generation system for ships other than a private power generation system and a motor drive system, and a
[0026]
The converter / inverter is connected with a converter element
[0027]
The voltage /
[0028]
The power conversion element failure detection device of the present embodiment has the same effect as that of the first embodiment of FIG. 1 even when applied to a main shaft drive power generation system for a ship that performs power conversion between a converter and an inverter a plurality of times. Obtainable.
[0029]
In addition, the failure detection device for a power conversion device according to the present invention can accurately monitor a failure of a power supply voltage or a frequency in a private power generation system, a motor drive system, or a main shaft drive power generation system of a ship. The present invention exerts a great effect on high reliability and cost reduction of the power converter.
[0030]
【The invention's effect】
As described above, according to the present invention (corresponding to claims 1 to 3), the failure detection of the power conversion device does not malfunction due to the voltage distortion waveform or cut-off, and does not change the power supply voltage or change the frequency. Therefore, since the failure state of the power conversion element can be reliably grasped, it is possible to accurately find the abnormal power conversion element before a large accident due to the expansion of the failure occurs. In addition, since maintenance for stopping the power conversion device for the purpose of coping with malfunction of the failure detection device for the power conversion element is not required, maintenance costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a failure detection device according to a first embodiment of the present invention.
FIG. 2 is a diagram for explaining a correction operation using a power supply voltage in FIG. 1;
FIG. 3 is a diagram for explaining a correction operation based on a power supply frequency in FIG. 1;
FIG. 4 is a configuration diagram of a failure detection device according to a second embodiment of the present invention.
FIG. 5 is a configuration diagram of a conventional failure detection device.
[Explanation of symbols]
1,1 1, 1 2 ... SCR, 2,2 1, 2 2 ... resistors, 3,3 1, 3 2 ... light-emitting element, 4,4 1, 4 2 ... optical fiber, 5,5 1, 5 2 ... Light receiving element, 6: failure determination circuit, 7: voltage correction circuit, 8: frequency correction circuit, 9: voltage / frequency correction circuit, 10: power supply voltage detection circuit, 11: power supply frequency detection circuit, 20: main engine, 21 ... Shaft generator, 22: Propeller, 23: Converter element, 24: Inverter element, 25: Inboard bus, 26: Converter element failure detection device, 27: Inverter element failure detection device, 28: Voltage / frequency Selection circuit.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002282932A JP2004120930A (en) | 2002-09-27 | 2002-09-27 | Fault detection device of power conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002282932A JP2004120930A (en) | 2002-09-27 | 2002-09-27 | Fault detection device of power conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004120930A true JP2004120930A (en) | 2004-04-15 |
Family
ID=32276948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002282932A Pending JP2004120930A (en) | 2002-09-27 | 2002-09-27 | Fault detection device of power conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004120930A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636711A (en) * | 2012-04-01 | 2012-08-15 | 江苏迪奥德电气技术有限公司 | Frequency converter testing system |
CN102866327A (en) * | 2012-09-13 | 2013-01-09 | 山西省电力公司大同供电分公司 | Small-current grounding system fault transient traveling wave detection device and method |
CN103558476A (en) * | 2013-11-09 | 2014-02-05 | 张金木 | Detection system for high-voltage power grid running state |
CN103969549A (en) * | 2014-04-18 | 2014-08-06 | 珠海许继电气有限公司 | Island detection method and device for electrical power device |
CN104459456A (en) * | 2013-09-18 | 2015-03-25 | 国家电网公司 | Overhead line fault indication device |
CN104730396A (en) * | 2015-04-07 | 2015-06-24 | 国家电网公司 | Island detection method and device for electric power system |
CN104730420A (en) * | 2015-03-26 | 2015-06-24 | 曾江 | Node voltage estimation and voltage sag rapid detection method |
CN105353244A (en) * | 2015-11-16 | 2016-02-24 | 陕西航空电气有限责任公司 | Test method of voltage distortion frequency spectrum test |
CN105486944A (en) * | 2015-11-20 | 2016-04-13 | 国网山东青州市供电公司 | Online diagnosis device for tap joint of distribution transformer |
CN105652119A (en) * | 2015-12-31 | 2016-06-08 | 国网浙江奉化市供电公司 | Method, device and system for acquiring fault information |
CN105954606A (en) * | 2016-04-20 | 2016-09-21 | 上海斐讯数据通信技术有限公司 | Signal detection device and method |
CN106054006A (en) * | 2016-08-08 | 2016-10-26 | 国网湖南省电力公司 | Low-voltage arc starting and gap distance adjustable power-frequency freewheeling test apparatus and method |
CN106089782A (en) * | 2016-06-20 | 2016-11-09 | 福州台江区超人电子有限公司 | Parlor fan natural wind control system |
TWI598600B (en) * | 2016-07-29 | 2017-09-11 | 智原科技股份有限公司 | Method for performing cable diagnostics in a network system, and associated apparatus |
-
2002
- 2002-09-27 JP JP2002282932A patent/JP2004120930A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636711A (en) * | 2012-04-01 | 2012-08-15 | 江苏迪奥德电气技术有限公司 | Frequency converter testing system |
CN102866327A (en) * | 2012-09-13 | 2013-01-09 | 山西省电力公司大同供电分公司 | Small-current grounding system fault transient traveling wave detection device and method |
CN104459456A (en) * | 2013-09-18 | 2015-03-25 | 国家电网公司 | Overhead line fault indication device |
CN103558476A (en) * | 2013-11-09 | 2014-02-05 | 张金木 | Detection system for high-voltage power grid running state |
CN103969549A (en) * | 2014-04-18 | 2014-08-06 | 珠海许继电气有限公司 | Island detection method and device for electrical power device |
CN104730420A (en) * | 2015-03-26 | 2015-06-24 | 曾江 | Node voltage estimation and voltage sag rapid detection method |
CN104730396A (en) * | 2015-04-07 | 2015-06-24 | 国家电网公司 | Island detection method and device for electric power system |
CN105353244A (en) * | 2015-11-16 | 2016-02-24 | 陕西航空电气有限责任公司 | Test method of voltage distortion frequency spectrum test |
CN105486944A (en) * | 2015-11-20 | 2016-04-13 | 国网山东青州市供电公司 | Online diagnosis device for tap joint of distribution transformer |
CN105652119A (en) * | 2015-12-31 | 2016-06-08 | 国网浙江奉化市供电公司 | Method, device and system for acquiring fault information |
CN105954606A (en) * | 2016-04-20 | 2016-09-21 | 上海斐讯数据通信技术有限公司 | Signal detection device and method |
CN106089782A (en) * | 2016-06-20 | 2016-11-09 | 福州台江区超人电子有限公司 | Parlor fan natural wind control system |
TWI598600B (en) * | 2016-07-29 | 2017-09-11 | 智原科技股份有限公司 | Method for performing cable diagnostics in a network system, and associated apparatus |
CN106054006A (en) * | 2016-08-08 | 2016-10-26 | 国网湖南省电力公司 | Low-voltage arc starting and gap distance adjustable power-frequency freewheeling test apparatus and method |
CN106054006B (en) * | 2016-08-08 | 2019-04-05 | 国网湖南省电力公司 | The low pressure starting the arc and the adjustable power frequency continued flow experimental rig of clearance distance and test method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004120930A (en) | Fault detection device of power conversion element | |
US8605471B2 (en) | Power conversion device | |
JP5681210B2 (en) | Power converter | |
JP4849094B2 (en) | Ground fault detection circuit | |
JPH08107602A (en) | Control circuit for motor | |
JP4661251B2 (en) | Power conversion control system | |
JP5212887B2 (en) | Current detector | |
JP2007336665A (en) | Gate driving device and power conversion device equipped with it | |
JP4738095B2 (en) | Fault detection method for current detection circuit | |
JP4627165B2 (en) | Power semiconductor device control circuit and control integrated circuit | |
JP6093555B2 (en) | Control system and duplex control method | |
JP2679655B2 (en) | Abnormality judgment circuit for redundant operation system | |
CN116746042A (en) | Gate drive circuit and power conversion device | |
JP2005151664A (en) | Switched reluctance motor drive controller | |
KR100412301B1 (en) | Dual control method in hierarchical control system and apparatus thereof | |
JP3718597B2 (en) | Phase loss detection circuit | |
JP4693362B2 (en) | Power converter | |
JP6797233B2 (en) | Power converter | |
JP2010259210A (en) | Device for control of rotary electric machine | |
JP4575876B2 (en) | Inverter device and inverter system | |
JP6437122B2 (en) | Inverter control device | |
JP2008154420A (en) | Power conversion device | |
KR20240141537A (en) | Fault diagnosis apparatus and method for vehicle inverter | |
CN218243097U (en) | Bypass circuit control unit, power unit and high-voltage frequency converter | |
CN217504816U (en) | Fault-tolerant control device for two groups of Hall sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051213 |