JP2004119020A - Negative electrode for alkaline storage battery and alkaline storage battery using the same and its manufacturing method - Google Patents

Negative electrode for alkaline storage battery and alkaline storage battery using the same and its manufacturing method Download PDF

Info

Publication number
JP2004119020A
JP2004119020A JP2002276495A JP2002276495A JP2004119020A JP 2004119020 A JP2004119020 A JP 2004119020A JP 2002276495 A JP2002276495 A JP 2002276495A JP 2002276495 A JP2002276495 A JP 2002276495A JP 2004119020 A JP2004119020 A JP 2004119020A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
metal
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002276495A
Other languages
Japanese (ja)
Other versions
JP4617632B2 (en
Inventor
Mitsuhiro Kodama
児玉 充浩
Manabu Kanemoto
金本  学
Seijiro Ochiai
落合 誠二郎
Minoru Kurokuzuhara
黒葛原 実
Takashi Ito
伊藤  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2002276495A priority Critical patent/JP4617632B2/en
Publication of JP2004119020A publication Critical patent/JP2004119020A/en
Application granted granted Critical
Publication of JP4617632B2 publication Critical patent/JP4617632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery that has excellent charge and discharge cycle characteristics and in which increase in the internal pressure of the battery at charging is suppressed. <P>SOLUTION: This is a negative electrode for the alkaline storage battery in which the active material powder is carried by the substrate, and in the substrate an oxide and a hydroxide of at least one kind of metal elements selected from transitional metals having alkaline electrolyte resistance and lead are reduced and a layer made of that metal is arranged on the surface of a core material made of the alkaline resistant metal, and that negative electrode is applied to this alkaline storage battery. The quantity of the metal contained in the above layer is made 0.02 millimole/cm<SP>2</SP>-0.35 millimole/cm<SP>2</SP>per unit area of the core material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル水素電池、ニッケルカドミウム電池等のアルカリ蓄電池に適用する負極とそれを用いたアルカリ蓄電池およびその製造方法に関するものである。
【0002】
【従来の技術】
アルカリ蓄電池は、耐過充電、耐過放電特性に優れ、一般ユーザーにとって使い易い電池であるところから、携帯電話、小型電動工具および小型パーソナルコンピュータ等の携帯用小型電子機器類用の電源として広く利用されており、これらの小型電子機器類の普及とともに需要が飛躍的に増大している。また、ハイブリッド型電気自動車(HEV)の駆動用電源としても実用化されている。そして、アルカリ蓄電池に対してはさらなる容量アップ、充放電サイクル性能の向上が求められている。
【0003】
前記アルカリ電池の負極は、活物質となる水素吸蔵合金や水酸化カドミウムを主成分とするペーストを、鉄、ニッケルや銅等、耐アルカリ性で良導電性金属の多孔性基板に担持させたものである。
【0004】
前記負極板の基板となる多孔性の基板には、ニッケルやニッケルメッキを施した鋼板からなる金属製の板に機械的に孔を穿ったパンチングメタル、金属繊維をフェルト状に成形した繊維式基板、金属をスポンジ状に成形した発泡メタル等がある。従来のアルカリ蓄電池においてはこれら基板の表面に加工を施すことなくそのまま用いていた。前記基板のうち、低価格で入手が容易であるところからアルカリ蓄電池の負極用基板にはパンチングメタルが重用されている。しかし、該パンチングメタルを基板に用いた負極板は活物質粉末と基板との密着が十分でなく、改良が求められていた。
【0005】
前記ニッケル水素電池、ニッケルカドミウム電池においては、正極に何れもニッケル電極を適用する。該ニッケル電極は、活物質である水酸化ニッケルを主成分とする活物質ペーストを発泡ニッケルなどの多孔性のニッケル基板に充填したものである。
【0006】
アルカリ蓄電池は前記正極と負極を組み合わせて電池とし、充電によって正極であるニッケル電極においては水酸化ニッケルを酸化してオキシ水酸化ニッケルに変え、負極である水素吸蔵合金電極においては水素吸蔵合金内に水素を吸蔵させ、またカドミウム電極においては水酸化カドミウムを還元して金属カドミウムに変える。
【0007】
ところで、前記ニッケル電極においては活物質である水酸化ニッケル粉末の他に、電極内の導電性を高めるために一酸化コバルトや水酸化コバルトを添加し、電池を充電することによって水酸化コバルトを導電性の高次コバルト化合物(オキシ水酸化コバルトともいう)に変えている。前記、充電によって高次コバルト化合物が生成する時の反応は、不可逆反応であり、充電によって高次コバルト化合物生成のために消費した電気量に相当する分の電気量を、負極に放電リザーブとして潜在的に蓄えることになる。
【0008】
放電リザーブの生成量が大きくなると、充電リザーブ量が低減するために充放電サイクル寿命の低下に繋がる虞があった。充電リザーブ量の減少を防ぐためには、電池を設計する際に、負極に放電リザーブを形成するための活物質の充填を見込む必要がある。該放電リザーブ形成を見込んで負極活物質を余分に充填すると、正極活物質の充填量を減じ、結果として電池の放電容量が低下することになる。
【0009】
放電リザーブの生成を抑制するため、ニッケル電極の活物質である水酸化ニッケルの表面に配置した水酸化コバルト等のコバルト化合物を、予め化学的な方法によって酸化して高次コバルト化合物に変える方法が提案されている(例えば、特許文献1および特許文献2参照)。
【0010】
【特許文献1】
特開平3−78965号公報(第3頁、左上欄、14〜16行)
【特許文献2】
特開平4−26058号公報(第2頁、右上欄、9〜10行)
【0011】
また、負極に水素吸蔵合金やカドミウムの粉末等の活物質以外に一酸化コバルトや水酸化コバルトを添加しておき、以下の反応に従って前記不可逆反応に消費される電気量を相殺し、放電リザーブの生成を防ぐ方法も考えられる。
正極  Co(OH)+(OH)   → CoOOH+HO+e
負極  1/2CoO+1/2HO+e → 1/2Co+(OH)
【0012】
前記のように負極活物質である水素吸蔵合金粉末に一酸化コバルトを添加しておき、充電によって負極の表面に金属コバルトを生成させる方法が提案されている(例えば、特許文献3および特許文献4)。
【0013】
【特許文献3】
特開平6−150921号公報(第2頁、第0009段落)
【特許文献4】
特開平10−3939号公報(第2頁、第0004段落)
【0014】
また、負極の表面に水酸化コバルトの層を形成させる方法(例えば、特許文献5参照)の他、Co、Cu、Ru、Pdその他の金属から選ばれた1種以上の金属の酸化物または水酸化物を添加する方法(特許文献6参照)が提案されている。
【0015】
【特許文献5】
特開平4−34850号公報(第2頁、右下欄、12〜14行)
【特許文献6】
特開平9−223500号公報(第2〜第3頁、第0010段落、第0011段落)
【0016】
しかし、前記負極の表面に水酸化コバルトを配置したり、負極の活物質粉末に金属の酸化物や水酸化物等の化合物を添加する方法では、添加した化合物の一部しか負極の集電体である基板に直に接触していない。基板に接触してない化合物は、充電した後も還元されずに残ってしまう虞があるため、放電リザーブ生成抑制効果が十分でない欠点があった。
【0017】
【発明が解決しようとする課題】
本発明は、前記従来技術の欠点に鑑みなされたものであって、水素吸蔵合金電極やカドミウム電極を負極に適用したアルカリ蓄電池であって、活物質利用率を低下させることなく、充放電サイクル性能および過充電時の電池内圧上昇抑制機能の優れたアルカリ蓄電池を提供せんとするものである。
【0018】
【課題を解決するための手段】
本発明は、水素吸蔵合金粉末や酸化カドミウム等の活物質粉末を基板に担持させたアルカリ蓄電池用負極であって、前記基板は、ニッケルやニッケルメッキを施した耐アルカリ性の金属からなる芯材の表面に耐アルカリ電解液性の遷移金属および鉛のうちから選択した少なくとも1種の金属からなる層を配した負極とする。
【0019】
本発明においては、前記負極の基板表面に配した金属の層に含まれる金属の量を芯材の単位面積当たり0.02ミリモル/cm〜0.35ミリモル/cmとすることが望ましい。なお、ここでいう芯材の単位面積の面積とは、芯材の開孔を含む見かけの大きさを意味し、例えば、大きさが10mm×10mmのパンチングメタルや金属発泡体の面積は1cmである。
【0020】
本発明に係るアルカリ蓄電池は、前記本発明の請求項1に係る水素吸蔵合金電極やカドミウム電極を負極に適用したアルカリ蓄電池であって、放電リザーブ量を定格容量の0.5〜18%とすることが望ましい。ここでいう放電リザーブ量とは、化成も含めて数サイクル(2ないし3サイクル)〜30サイクルの充放電サイクルを経過した電池について測定した結果を指す。該アルカリ蓄電池は、電池の構成において前記負極の芯材の表面に前記金属の層を設けて放電リザーブ量を低く抑えた点以外に従来のアルカリ蓄電池と相違せず、従来電池に近い構成で活物質利用率を低下させることなく、電池を過充電した時の内圧上昇抑制機能およびサイクル性能に優れたアルカリ蓄電池である。
【0021】
前記、本発明に係るアルカリ蓄電池の製造方法は、基板の芯材の表面に層状に析出させた遷移金属や鉛を一旦酸化物や水酸化物に変えて、該基板上に活物質粉末を担持させた後電池に組み込み、該電池を充電する工程で前記酸化物を還元することによって前記遷移金属や鉛の酸化物や水酸化物を金属に還元する。
【0022】
【発明の実施の形態】
本発明に係るアルカリ蓄電池用負極は、水素吸蔵合金電極、カドミウム電極などである。そしてこれらの電極は鉄、ニッケル、銅などの耐アルカリ金属を芯材とする基板に水素吸蔵合金、カドミウムなどの負極活物質を担持させたものである。
【0023】
本発明に適用する前記基板の芯材は、鉄、ニッケル、銅等のパンチングメタル、これらの金属の繊維を成形してなる繊維式芯材、あるいはスポンジ状に成形した発泡メタル等である。
【0024】
本発明においては、前記芯材の表面に遷移金属または鉛(Pb)を含む金属の層を配置する。該遷移金属には6〜8モル/dmの苛性カリや苛性ソーダに対して化学的に安定なものを適用する。具体的には、コバルト(Co)、ニッケル(Ni)、銅(Cu)、銀(Ag)、テクチニウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)が適用できる。本発明に適用する遷移金属は、その酸化物がアルカリ電解液に微量溶解するものが望ましい。ここでいう微量の溶解とは、溶解量が10−2〜10−5モル/dmをいう。そして、金属材料が入手容易で安価であることが望ましい。このような点から、本発明に適用する金属元素としては、Co、Ni、Cu、AgおよびPbが好適である。
【0025】
本発明に係る芯材表面の遷移金属あるいは鉛の層は、芯材の表面に遷移金属または鉛の層を形成した後、酸化処理を施して一旦当該遷移金属や鉛の酸化物の層とし、該芯材を適用した基板を備えた負極を電池に組込んだ後に化成工程における初回の充電によって還元することによって形成する。
【0026】
芯材の表面に最初に遷移金属の層を形成する方法には蒸着や無電解メッキ等の方法も適用できる。しかし、遷移金属の析出量を正確に制御できるところから、電解メッキが好適である。具体的には、前記遷移金属の塩を溶解させた電解浴を用意し、該電解浴を用い芯材を負極として電解を行い、芯材の表面に遷移金属をメッキする。
【0027】
次いで、前記芯材表面に析出させた遷移金属を化学的な反応で酸化物に変える。具体的には酸素やオゾンの雰囲気で加熱したり、過マンガン酸塩、塩素酸塩、亜塩素酸塩、過硫酸塩等の酸化剤を用いて酸化処理する方法が適用できる。あるいは、前記遷移金属を水酸化物に変える方法も適用できる。具体的には前記遷移金属を酸化物に変えた後に苛性アルカリ中に浸漬処理したり、芯材表面に遷移金属を析出させた後にアルカリ電解液中で電解酸化することによって遷移金属の水酸化物を生成させる。
【0028】
前記芯材の表面に遷移金属の酸化物層を形成した基板に水素吸蔵合金粉末や水酸化カドミウム粉末を主成分とする活物質ペーストを塗工充填する。活物質ペーストを充填した極板を乾燥後、ロールを通して押圧し活物質充填密度を高める。
【0029】
基板の表面に生成させた遷移金属の酸化物や水酸化物は、硬度が低いため、前記ロールを通して押圧する過程で充填した活物質粉末の一部が前記遷移金属の酸化物や水酸化物の層に食い込む傾向が認められる。このため、本発明は、基板と活物質粉末の密着がさらに向上する効果を奏するものと考えられる。
【0030】
このようにして作製した負極板と正極板となるニッケル電極を組み合わせてアルカリ蓄電池とする。該電池を充電することによって前記遷移金属の酸化物層を還元し金属に変える。前記のように本発明で適用する遷移金属の酸化物は、アルカリ電解液に微量溶解する。そのため、負極を電池に組み込んだ後、前記遷移金属の酸化物の一部分がアルカリ電解液中に溶解し、充電の過程で負極に金属として析出する。負極に析出する金属の一部は、活物質粉末と基板の境界に析出して、活物質粉末と基板との繋ぎの役目をするので活物質粉末と基板が強固に密着する。金属の一部は負極内に析出すると考えられる。該金属は、負極の活物質粉末同士を結び付けると同時に導電剤として作用する。
【0031】
また、前記芯材の表面に生成させた遷移金属の酸化物は、その殆ど全てが集電体である基板の芯材に接触している。このことによって、電池を充電した時に、生成させた遷移金属の酸化物の還元がほぼ完全に進み、未反応の酸化物が残ることがない。その結果生成させた遷移金属の酸化物量に相当する分、電池の充電時に負極に放電リザーブを生成させる電気量を相殺することができる。従って、前記従来の負極活物質に金属酸化物を添加する方法に比べて放電リザーブ生成量を正確に制御することができる。
【0032】
本発明においては、前記遷移金属あるいは鉛の配置量を芯材の単位面積当たり、0.02ミリモル/cm〜0.35ミリモル/cmとすることが望ましい。遷移金属あるいは鉛の配置量を芯材の単位面積当たり、0.05ミリモル/cm〜0.35ミリモル/cmとすることがさらに望ましい。遷移金属あるいは鉛の量を0.02ミリモル/cm以上とすることによって、優れた放電リザーブ生成抑制効果を得ることができる。
【0033】
放電リザーブの生成量が過少だと、放電を行った時に放電容量が負極の性能によって制約される(負極規制)。電池の放電容量が負極規制になると活物質利用率が低くなる欠点が生じる。本発明においては、負極基板の芯材表面に生成させる遷移金属あるいは鉛の生成量を0.35ミリモル/cm以下にすることが望ましい。このことによって、放電において放電容量が負極規制になるのを避けることができる。
【0034】
以下、遷移金属としてコバルトを適用した例を中心に実施例に基づき本発明の詳細な説明を行う。
(実施例1)
(負極基板芯材表面の一酸化コバルト層の生成)
ニッケル鍍金を施した厚さ60μm、開孔率40%の鋼板製パンチングメタルを芯材として用いた。1モル/dmの塩化コバルトと1モル/dm3の塩酸を含む水溶液を電解浴とし、該電解浴中の中心に前記パンチングメタルを、両側にコバルト板を配置し、パンチングメタルを負極、コバルト板を正極として電解を行った。パンチングメタルの単位面積に対する電解の電流密度を0.5mA/cmとした。5水準の通電電気量により電解を行い。パンチングメタルの単位面積当たりのコバルト析出量が0.1ミリモル/cmの基板材料を作製した。
【0035】
前記基板材料を雰囲気炉内にセットした。炉内を酸素雰囲気とし、温度300℃において2時間加熱による酸化処理を行い、芯材の表面に析出させたコバルトを一酸化コバルトに変え、負極用基板を得た。
【0036】
(水素吸蔵合金電極の作製)
CaCu型結晶構造を有し、MmNi3.6Al0.29Co0.75Mn0.36(Mmはミッシュメタルであり、La、Ce、PrおよびNdからなる希士類元素の混合物である)の組成で示され、平均粒径約50μmの水素吸蔵合金粉末100重量部に対して、増粘剤であるメチルセルロース(MC)の1wt%水溶液20重量部と、結着剤であるスチレンブタジエンゴム1重量部とを加えて混練してペーストを調製した。該ペーストを前記基板の両面に塗布した後乾燥し厚さ1.1mmの極板を得た。乾燥後の極板をロールを通してプレスし、厚さを0.5mmに調整し、水素吸蔵合金電極用原板を得た。該原板を所定の寸法に裁断して水素吸蔵合金電極とした。
【0037】
(ニッケル電極活物質粉末の作製)
定法に従いコバルトおよび亜鉛をそれぞれ水酸化物換算で3重量%および5重量%固溶状態で含有させた高密度水酸化ニッケルを核とし、表面に水酸化コバルトの被覆層を形成させた平均粒径が10μmの水酸化ニッケルを主成分とするニッケル電極活物質粉末を用意した。なお、該活物質粉末の表面に形成させた前記水酸化コバルトの被覆層の比率を6重量%とした。
【0038】
(ニッケル電極の作製)
得られたニッケル電極活物質紛末80重量部に、濃度が1重量%のカルボキシメチルセルロース(CMC)水溶液20重量部を添加混練して、ニッケル電極活物質ペーストを作製した。該ペーストを厚さ1.4mm、目付量500g/mの発泡ニッケル製多孔体基板に充填して乾燥した後、プレスして厚さを0.8mmに調整し、長尺帯状のニッケル電極用原板を得た。該原板を所定の寸法に裁断してニッケル電極とした。活物質充填量から算定されるニッケル電極の容量は、1700mAhであった。
【0039】
(ニッケル水素蓄電池の作製)
前記ニッケル電極と水素吸蔵合金電極とを、親水化処理を施したポリプロピレン樹脂繊維の不織布からなる厚さ0.12mmのセパレータを挟んで渦巻状に巻き取り、極板群を製造した。該極板群の水素吸蔵合金電極とニッケル電極の活物質充填容量の比率を1.6とした。該電極群を円筒状金属ケース内に収納し、7モル/dmの水酸化カリウム水溶液と1モル/dmの水酸化リチウム水溶液とからなる電解液を所定量注入した。次いで、安全弁を備えた金属製蓋体を用いて金属ケースを封口しAAサイズの密閉型ニッケル水素蓄電池を得た。
【0040】
(化成)
得られたニッケル水素蓄電池を温度40℃において12時間エージングした後、以下に記述する条件にて化成をおこなった。初回の充電は、1/50ItA(34mA)の充電電流で10時間充電し、その後、0.1ItA(170mA)の充電電流にて10時間充電した。次いで0.2ItA(340mA)の放電電流にて放電終止電圧を1.0Vとして放電した。2サイクル目以降は、充電を0.1ItAの充電電流にて12時間充電、0.2ItAの放電電流にて放電終止電圧を1.0Vとして放電した。該サイクルを1サイクルとし、初回の充放電を含めて10サイクル充放電を繰り返し実施した。
【0041】
(実施例2)
実施例1において負極活物質ペーストをコ−トする以前の負極基板の芯材表面に酸化ニッケル(NiO)を生成させた。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
【0042】
(実施例3)
実施例1において負極活物質ペーストをコ−トする以前の負極基板の芯材表面に酸化銅(CuO)を生成させた。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
【0043】
(実施例4)
実施例1において負極活物質ペーストをコ−トする以前の負極基板の芯材表面に酸化銀(AgO)を生成させた。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
【0044】
(実施例5)
実施例1において負極活物質ペーストをコ−トする以前の負極基板の芯材表面に酸化鉛(PbO)を生成させた。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
【0045】
(実施例6)
実施例1において負極基板の芯材表面に析出させるCoの量を0.02ミリモル/cmとした。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
(実施例7)
実施例1において負極基板の芯材表面に析出させるCoの量を0.05ミリモル/cmとした。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
(実施例8)
実施例1において負極基板の芯材表面に析出させるCoの量を0.35ミリモル/cmとした。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
【0046】
(実施例9)
実施例1において負極基板の芯材表面に析出させるCoの量を0.4ミリモル/cmとした。それ以外は、実施例1と同じ条件でニッケル水素電池を作製した。
【0047】
(比較例1)
負極基板の芯材表面に遷移金属の層を形成せず、芯材をそのまま負極基板として適用した。その他は、実施例1と同じ条件でニッケル水素電池を作製した。
【0048】
(比較例2)
負極基板の表面にはCoの層を生成させずに、実施例と同一の負極活物質ペーストに一酸化コバルト粉末を添加した。負極活物質ペースト中の水素吸蔵合金に対する一酸化コバルトの添加比率を6wt%として水素吸蔵合金電極を作製した。該電極に含まれる一酸化コバルトの量は、前記実施例1の水素吸蔵合金電極の基板の芯材表面に生成させた一酸化コバルトの量と同じである。その他は、前記実施例と同じ条件でニッケル水素電池を作製した。
【0049】
(放電リザーブ生成量の測定)
化成終了後の実施例電池および比較例電池を前記2サイクル目以降の充放電条件にて10サイクル充放電を行った。該充放電サイクルを経過した放電終了後の電池を解体して。負極を回収した。該負極を水中に浸漬しその時発生する水素ガスを水上置換報法によって回収した。回収した水素ガス量から、放電リザーブ量を算定した。
【0050】
(活物質利用率評価)
化成終了後の実施例電池および比較例電池を、温度20℃において前記条件にて充電し、0.2ItAの電流で放電試験に供し、該0.2ItA放電における放電容量の正極活物質充填容量に対する比率を活物質利用率とした。
【0051】
(正極内のγ−NiOOH生成調査)
化成終了後の実施例1および実施例9の電池を温度40℃において0.1ItAで15時間充電、0.2ItAの電流で放電終止電圧を1.0Vとして放電、該充電放電を1サイクルとして10サイクル繰り返した後、電池を解体して回収した正極活物質を粉末X線回折にかけ、γ−NiOOHの(001)面とβ−Ni(OH)の(100)面の回折強度比を求めた。
【0052】
(過充電時の内圧上昇測定)
化成終了後の実施例電池および比較例電池に電池の内圧を測定するための圧力計を取り付けた後、該電池を1ItA(1700mA)で2時間充電を行った。充電中の電池内圧の経時的変化を測定した。
【0053】
(充放電サイクル試験)
化成終了後の実施例電池および比較例電池を、温度20℃において充放電サイクル試験に供した。充電はItAの電流で1.2時間行い、放電はItAの電流にて放電終止電圧を1.0Vとして実施した。該充放電サイクルを1サイクルとして、サイクルを繰り返し実施した。
【0054】
図1は、化成後の実施例電池1〜実施例電池9と比較例電池1、比較例電池2の放電リザーブ量を示すグラフである。因みに、実施例電池1〜実施例電池9における放電リザーブ量の電池の定格容量(1700mAh)に対する比率は、それぞれ5.4%、5.5%、6.8%、7.0%、6.3%、18%、9%、0.5%、0%である。また、比較例電池1および比較例電池2の放電リザーブ量の比率は、それぞれ20%、11%である。
【0055】
図1に示す如く、いずれの実施例電池も比較例電池1に比べて放電リザーブの生成量が少ない。これは、負極の基板の芯材表面に生成させた遷移金属酸化物が放電リザーブ生成を抑制しているためである。また、実施例電池1〜実施例電池5に示したように、基板の芯材表面に析出させたCoO、NiO、CuO、AgO、PbOのいずれもが放電リザーブ生成抑制に対して有効に機能したことを示している。
【0056】
実施例電池1の負極基板の芯材表面に生成させたCoO量と比較例電池2の活物質粉末に混合添加したCoO量は同等量である。にも拘わらず実施例電池1の放電リザーブ量は、比較例電池2のそれに比べて約1/2と小さい。このことは、負極の基板表面に生成させた遷移金属酸化物が、活物質粉末に混合添加した遷移金属酸化物と比較して効率良く放電リザーブの生成を抑制することを示している。
【0057】
実施例電池1、実施例電池6〜実施例電池9は、負極基板の芯材表面にいずれもCoOを生成させたものであるが、CoOの生成量が多い程放電リザーブ生成量が小さく、CoOの生成量と放電リザーブ生成量との間に相関性があることを示唆している。このことは、本発明のように負極基板の芯材表面に生成させる遷移金属の酸化物の量を規定したアルカリ電池用負極を適用することによって、アルカリ蓄電池の放電リザーブ量を自在に制御することができることを示している。
【0058】
図2に実施例電池1,実施例電池8および実施例電池9の活物質利用率を示した。前記のように、放電リザーブ量の電池の定格容量に対する比率は、実施例電池1が5.4%、実施例電池8が0.5%、実施例電池9が0%である。図2に示すように、実施例電池1と実施例電池8が共に活物質利用率が100%なのに対して、実施例電池9は、利用率が76%と低い。これは、放電リザーブの削減量が大きく、放電リザーブ量が小さ過ぎて放電容量が負極規制に陥ったためと考えられる。
【0059】
図3に実施例電池1、実施例電池9におけるγ−NiOOHの(001)面とβ−Ni(OH)の(100)面の回折強度比を示した。実施例電池9においては回折強度比が高く、実施例電池1と比較してγ−NiOOHの生成量が多いことを示している。前記の如く実施例電池9は、負極規制に陥っているので、各サイクル毎に正極がフルに放電されずに過充電になる。そのため、充放電サイクルの進行に伴い、累積の過充電電気量が増大してγ−NiOOHの生成量が多くなったものと考えられる。以上の結果から、放電リザーブ量の電池の定格容量に対する比率を0.5%以上にすることが望ましい。
【0060】
図4に実施例電池1、実施例電池6〜実施例電池8、および比較例電池1を過充電した時の電池の内圧を示す。いずれの実施例電池も比較例電池に比べて内圧の上昇が小さい。特に、実施例電池1、実施例電池7および実施例電池8の内圧の上昇が小さい。実施例電池においては、放電リザーブの生成量が少ないために過充電時に負極で発生する水素量が少なく、電池の内圧の上昇が抑えられたものと考えられる。また、負極の基板上に生成させた遷移金属酸化物が負極における酸素の吸収反応を促進する触媒作用によって、酸素の吸収が促進されたことによっても電池の内圧の上昇が抑えられたと考えられる。
【0061】
図4に示した実施例電池の放電リザーブ量の比率は、実施例電池8の0.5%〜実施例電池6の18%であり、放電リザーブ量の比率が小さい程電池の内圧の上昇が抑えられる傾向が認められる。放電リザーブ量の比率が9%である実施例7においては電池の内圧上昇が顕著に抑制されている。以上の結果をまとめると放電リザーブ量が18%以下であれば過充電をした時電池の内圧上昇を抑制する機能に対して効果があり、放電リザーブ量の比率が9%以下とした時にさらに顕著な効果が得られることが判る。
【0062】
図5は、実施例電池1〜実施例電池8および比較例電池1の充放電サイクル性能を示すグラフである。実施例電池のサイクル性能は、いずれも比較例電池のサイクル性能と比べて優れている。実施例電池の場合は、前記のように負極の水素吸蔵合金粉末と基板の密着性が優れており、さらに放電リザーブの生成が抑制されて好ましい範囲に入るよう制御されている。実施例電池の場合は、これら二つのことが相俟ってサイクル性能が優れるという結果に繋がっていると考えられる。放電リザーブ生成が抑制された場合に、優れたサイクル性能が得られるのは、十分な量の充電リザーブが確保されていることによると考えられる。
【0063】
以上記述した結果から、優れたサイクル性能を得るためには放電リザーブの電池の定格容量に対する比率を18%以下にするのが好ましく、放電において負極規制になり活物質利用率が低下するのを防ぐには、放電リザーブの比率を0.5%以上にするのが好ましい。さらに、電池を過充電した時の電池の内圧上昇抑制機能において優れた効果を得ようとすれば、放電リザーブの比率を18%以下にするのが望ましく、9%以下にするのがさらに望ましいことが判る。
【0064】
前記のように、本発明によれば負極基板の芯材表面に生成させる遷移金属の酸化物の量を制御したアルカリ電池用負極を適用することによって、アルカリ蓄電池の放電リザーブ量を自在に制御することができる。そして、図1に示した試作結果によれば、放電リザーブ量を、好ましい値である電池の定格容量の0.5〜18%に制御するためには、負極基板の芯材表面に生成させるCoOの量を芯材の単位面積当たり0.02〜0.35ミリモル/cmにすればよく、放電リザーブを、さらに望ましい値である0.5〜9%に制御するためには、負極基板の芯材表面に生成させるCoOの量を芯材の単位面積当たり0.05〜0.35ミリモル/cmにすればよいことが判る。
【0065】
前記芯材の単位面積当たりのCoO生成量が0.02ミリモル/cm未満では放電リザーブ生成の抑制効果が極めて小さく、0.35ミリモル/cmを超えると放電リザーブ量が過少になり放電性能が負極規制となって活物質利用率が低下すると同時に充放電サイクルを行った時に正極(ニッケル電極)が過充電になりニッケル電極にγ−NiOOHが生成する欠点が生じる。以上の結果から、芯材の単位面積当たりのCoO生成量は、0.02〜0.35ミリモル/cmが望ましく、0.05〜0.35ミリモル/cmにすることが更に望ましい。
【0066】
なお、以上水素吸蔵合金電極およびそれを用いたニッケル水素蓄電池を例に採って説明したが、本発明はこれに限定されるものではなくカドミウム電極およびそれを用いたニッケルカドミウム蓄電池にも適用できる。また、負極基板の芯材表面に生成させる金属元素は、前記Co、Ni、Cu、Ag、Pbに限定されるものではなくアルカリ電解液に安定な遷移金属を適用できる。また、負極基板の芯材表面に生成させる金属化合物は、酸化物のみでなく水酸化物であっても同様の効果が得られる。さらに、前記実施例においてはCoOについてのみ芯材表面上の遷移金属の生成量を変化させた例を示し、芯材の単位面積当たりのCoO生成量は、0.02〜0.35ミリモル/cmが望ましく、0.05〜0.35ミリモル/cmにすることが更に望ましいとしたが、Ni、Cu、Ag、Pb等Co以外の酸化物や水酸化物についても適用できる。
【0067】
前記実施例では、化成終了後さらに前記2サイクル目以降の充放電条件にて10サイクル充放電を行った電池を対象として、放電リザーブ量を測定し、放電リザーブ量の好ましい範囲を定めたが、該放電リザーブ量は、化成も含めて充放電サイクル数が、数サイクル〜30サイクルの電池について測定すればよい。
【発明の効果】
【0068】
本発明の請求項1に係るアルカリ蓄電池用負極は、放電リザーブ生成量の制御を可能にしたアルカリ蓄電池用負極である。
【0069】
本発明の請求項2に係るアルカリ蓄電池用負極は、放電リザーブ生成量を適度な範囲に制御することを可能としたアルカリ蓄電池用負極である。
【0070】
本発明の請求項3に係るアルカリ蓄電池用負極は、請求項1および請求項2の発明に係る機能を備え、かつ、活物質粉末と基板の密着性に優れたアルカリ蓄電池用負極である。
【0071】
本発明の請求項4に係るアルカリ蓄電池は、充電時の電池内圧上昇抑制機能に優れ、且つ、充放電サイクル性能に優れたアルカリ蓄電池である。
【0072】
本発明の請求項5に係るアルカリ蓄電池の製造方法は、放電リザーブの生成量を抑制することができ、放電リザーブの生成量を抑制することによって電池内圧上昇抑制機能に優れ、且つ、充放電サイクル性能に優れたアルカリ蓄電池を製造することのできる製造方法である。
【図面の簡単な説明】
【図1】本発明に係る実施例電池および比較例電池の放電リザーブ生成量を示すグラフである。
【図2】本発明に係る実施例電池の活物質の利用率を示すグラフである。
【図3】本発明に係る実施例電池の正極のγ−NiOOHの(001)面とβ−Ni(OH)の(100)面のX線回折強度比を示すグラフである。
【図4】本発明に係る実施例電池および比較例電池を過充電した時の電池内圧を示すグラフである。
【図5】本発明に係る実施例電池と比較例電池の充放電サイクル性能を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode applied to an alkaline storage battery such as a nickel metal hydride battery and a nickel cadmium battery, an alkaline storage battery using the same, and a method for manufacturing the same.
[0002]
[Prior art]
Alkaline storage batteries have excellent resistance to overcharge and overdischarge and are easy to use for general users, so they are widely used as power sources for portable small electronic devices such as mobile phones, small power tools and small personal computers. The demand for these small electronic devices has been dramatically increased with the spread of these small electronic devices. Further, it has been put to practical use as a power supply for driving a hybrid electric vehicle (HEV). Further, there is a demand for further increase in capacity and improvement in charge / discharge cycle performance of alkaline storage batteries.
[0003]
The negative electrode of the alkaline battery is one in which a paste mainly containing a hydrogen storage alloy or cadmium hydroxide as an active material is supported on a porous substrate of an alkali-resistant and highly conductive metal such as iron, nickel and copper. is there.
[0004]
The porous substrate serving as the substrate of the negative electrode plate includes a metal plate made of nickel or a nickel-plated steel plate, a punched metal formed by mechanically perforating a metal plate, a fiber substrate formed by forming metal fibers into a felt shape. And foamed metal obtained by molding a metal into a sponge shape. In a conventional alkaline storage battery, the surface of these substrates was used without being processed. Of the above-mentioned substrates, punching metal is heavily used for a substrate for a negative electrode of an alkaline storage battery because of its low cost and easy availability. However, a negative electrode plate using the punched metal as a substrate does not have sufficient adhesion between the active material powder and the substrate, and improvement has been required.
[0005]
In the nickel-metal hydride battery and the nickel cadmium battery, a nickel electrode is applied to the positive electrode. The nickel electrode is obtained by filling an active material paste mainly containing nickel hydroxide as an active material into a porous nickel substrate such as foamed nickel.
[0006]
An alkaline storage battery combines the positive electrode and the negative electrode to form a battery, and oxidizes nickel hydroxide to nickel oxyhydroxide at a nickel electrode as a positive electrode by charging, and a hydrogen storage alloy at a hydrogen storage alloy electrode as a negative electrode. At the cadmium electrode, hydrogen is absorbed, and cadmium hydroxide is reduced to cadmium metal.
[0007]
By the way, in the nickel electrode, in addition to nickel hydroxide powder as an active material, cobalt monoxide or cobalt hydroxide is added to increase conductivity in the electrode, and the cobalt hydroxide is made conductive by charging the battery. High-order cobalt compound (also called cobalt oxyhydroxide). The reaction when the higher cobalt compound is generated by charging is an irreversible reaction, and an amount of electricity corresponding to the amount of electricity consumed for generating the higher cobalt compound by charging is latently discharged to the negative electrode as a discharge reserve. Will be stored.
[0008]
When the generation amount of the discharge reserve increases, the charge reserve amount decreases, which may lead to a reduction in the charge / discharge cycle life. In order to prevent a decrease in the charge reserve, it is necessary to allow for the filling of an active material for forming a discharge reserve in the negative electrode when designing a battery. Excessive filling of the negative electrode active material in anticipation of the formation of the discharge reserve reduces the filling amount of the positive electrode active material, resulting in a decrease in the discharge capacity of the battery.
[0009]
In order to suppress the generation of a discharge reserve, a method of previously oxidizing a cobalt compound such as cobalt hydroxide disposed on the surface of nickel hydroxide, which is an active material of a nickel electrode, by a chemical method and converting it to a higher cobalt compound has been proposed. It has been proposed (for example, see Patent Documents 1 and 2).
[0010]
[Patent Document 1]
JP-A-3-78965 (page 3, upper left column, lines 14 to 16)
[Patent Document 2]
JP-A-4-26058 (page 2, upper right column, lines 9 to 10)
[0011]
In addition, in addition to the active material such as hydrogen storage alloy or cadmium powder in the negative electrode, cobalt monoxide or cobalt hydroxide is added, and the amount of electricity consumed in the irreversible reaction is canceled according to the following reaction, thereby reducing the discharge reserve. Methods to prevent generation are also conceivable.
Positive electrode @ Co (OH)2+ (OH)→ CoOOH + H2O + e
Negative electrode 1 / 2CoO + / H2O + e→ 1 / 2Co + (OH)
[0012]
As described above, a method has been proposed in which cobalt monoxide is added to the hydrogen storage alloy powder as the negative electrode active material, and metal cobalt is generated on the surface of the negative electrode by charging (for example, Patent Document 3 and Patent Document 4). ).
[0013]
[Patent Document 3]
JP-A-6-150921 (page 2, paragraph 0009)
[Patent Document 4]
JP-A-10-3939 (page 2, paragraph 0004)
[0014]
In addition to a method of forming a layer of cobalt hydroxide on the surface of the negative electrode (for example, see Patent Document 5), an oxide of one or more metals selected from Co, Cu, Ru, Pd and other metals or water A method of adding an oxide (see Patent Document 6) has been proposed.
[0015]
[Patent Document 5]
JP-A-4-34850 (page 2, lower right column, lines 12 to 14)
[Patent Document 6]
JP-A-9-223500 (pages 2 to 3, paragraphs 0010 and 0011)
[0016]
However, in the method of arranging cobalt hydroxide on the surface of the negative electrode or adding a compound such as a metal oxide or hydroxide to the active material powder of the negative electrode, only a part of the added compound is a current collector of the negative electrode. Is not in direct contact with the substrate. Compounds that are not in contact with the substrate may remain without being reduced even after charging, and thus have a disadvantage that the effect of suppressing the generation of discharge reserve is not sufficient.
[0017]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described disadvantages of the related art, and is an alkaline storage battery in which a hydrogen storage alloy electrode or a cadmium electrode is applied to a negative electrode. Another object of the present invention is to provide an alkaline storage battery having an excellent function of suppressing an increase in battery internal pressure during overcharge.
[0018]
[Means for Solving the Problems]
The present invention is a negative electrode for an alkaline storage battery in which an active material powder such as a hydrogen storage alloy powder or cadmium oxide is supported on a substrate, wherein the substrate has a core material made of nickel or an alkali-resistant metal plated with nickel. A negative electrode having a layer made of at least one metal selected from transition metals and lead having alkali-electrolyte resistance on the surface is provided.
[0019]
In the present invention, the amount of metal contained in the metal layer disposed on the substrate surface of the negative electrode is set to 0.02 mmol / cm per unit area of the core material.2~ 0.35 mmol / cm2It is desirable that Here, the area of the unit area of the core material means an apparent size including an opening of the core material. For example, the area of a punching metal or metal foam having a size of 10 mm × 10 mm is 1 cm.2It is.
[0020]
An alkaline storage battery according to the present invention is an alkaline storage battery in which the hydrogen storage alloy electrode or the cadmium electrode according to claim 1 of the present invention is applied to a negative electrode, and has a discharge reserve of 0.5 to 18% of the rated capacity. It is desirable. The term “discharge reserve amount” as used herein refers to a result measured for a battery that has passed several cycles (2 to 3 cycles) to 30 charge / discharge cycles including formation. The alkaline storage battery does not differ from the conventional alkaline storage battery except that the metal reserve is provided on the surface of the core material of the negative electrode to reduce the discharge reserve in the battery configuration. The alkaline storage battery is excellent in the function of suppressing internal pressure rise and the cycle performance when the battery is overcharged without lowering the substance utilization rate.
[0021]
The method for manufacturing an alkaline storage battery according to the present invention is characterized in that the transition metal or lead deposited in a layer on the surface of the core material of the substrate is temporarily changed to an oxide or hydroxide, and the active material powder is supported on the substrate. After that, the battery is incorporated into a battery, and the oxide is reduced in the step of charging the battery, thereby reducing the transition metal or the oxide or hydroxide of lead to a metal.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The negative electrode for an alkaline storage battery according to the present invention is a hydrogen storage alloy electrode, a cadmium electrode, or the like. These electrodes are obtained by supporting a negative electrode active material such as a hydrogen storage alloy or cadmium on a substrate having a core material of an alkali-resistant metal such as iron, nickel or copper.
[0023]
The core material of the substrate applied to the present invention is a punching metal such as iron, nickel or copper, a fibrous core material formed by molding fibers of these metals, or a sponge-shaped foamed metal.
[0024]
In the present invention, a layer of a transition metal or a metal containing lead (Pb) is disposed on the surface of the core material. The transition metal contains 6 to 8 mol / dm.3Apply chemically stable substances to caustic potash and caustic soda. Specifically, cobalt (Co), nickel (Ni), copper (Cu), silver (Ag), techtinium (Tc), ruthenium (Ru), rhodium (Rh), and iridium (Ir) can be applied. The transition metal applied to the present invention is preferably one whose oxide is slightly dissolved in an alkaline electrolyte. Here, a slight amount of dissolution means that the dissolution amount is 10-2-10-5Mol / dm3Say. It is desirable that the metal material be easily available and inexpensive. From such a point, Co, Ni, Cu, Ag and Pb are preferable as the metal element applied to the present invention.
[0025]
The transition metal or lead layer on the core material surface according to the present invention, after forming the transition metal or lead layer on the core material surface, once subjected to oxidation treatment to form the transition metal or lead oxide layer, A negative electrode provided with a substrate to which the core material is applied is formed by assembling it into a battery and reducing it by initial charging in a chemical conversion step.
[0026]
As a method of first forming a transition metal layer on the surface of the core material, a method such as vapor deposition or electroless plating can be applied. However, electrolytic plating is preferred because the amount of transition metal deposited can be accurately controlled. Specifically, an electrolytic bath in which the transition metal salt is dissolved is prepared, electrolysis is performed using the electrolytic bath with a core material as a negative electrode, and the surface of the core material is plated with a transition metal.
[0027]
Next, the transition metal deposited on the surface of the core material is converted into an oxide by a chemical reaction. Specifically, a method in which heating is performed in an atmosphere of oxygen or ozone, or an oxidation treatment using an oxidizing agent such as permanganate, chlorate, chlorite, or persulfate can be applied. Alternatively, a method of converting the transition metal into a hydroxide can also be applied. Specifically, the transition metal is converted into an oxide and then immersed in a caustic alkali, or the transition metal is precipitated on the surface of the core material and then electrolytically oxidized in an alkaline electrolyte to form a hydroxide of the transition metal. Is generated.
[0028]
An active material paste mainly containing a hydrogen storage alloy powder or a cadmium hydroxide powder is applied and filled on a substrate having a transition metal oxide layer formed on the surface of the core material. After drying the electrode plate filled with the active material paste, the electrode plate is pressed through a roll to increase the active material filling density.
[0029]
Oxides and hydroxides of the transition metal generated on the surface of the substrate have a low hardness, so that a part of the active material powder filled in the process of pressing through the roll is formed of the oxide or hydroxide of the transition metal. There is a tendency to cut into layers. Therefore, it is considered that the present invention has an effect of further improving the adhesion between the substrate and the active material powder.
[0030]
The negative electrode plate and the nickel electrode serving as the positive electrode plate thus manufactured are combined to form an alkaline storage battery. By charging the battery, the oxide layer of the transition metal is reduced to a metal. As described above, the transition metal oxide applied in the present invention is slightly dissolved in the alkaline electrolyte. Therefore, after incorporating the negative electrode into the battery, part of the transition metal oxide dissolves in the alkaline electrolyte and precipitates as a metal on the negative electrode during charging. Part of the metal deposited on the negative electrode is deposited on the boundary between the active material powder and the substrate and serves as a connection between the active material powder and the substrate, so that the active material powder and the substrate are firmly adhered to each other. It is considered that part of the metal is deposited in the negative electrode. The metal acts as a conductive agent at the same time as binding the active material powders of the negative electrode.
[0031]
Almost all of the oxide of the transition metal generated on the surface of the core material is in contact with the core material of the substrate, which is a current collector. As a result, when the battery is charged, reduction of the generated transition metal oxide proceeds almost completely, and unreacted oxide does not remain. As a result, the amount of electricity that causes the negative electrode to generate a discharge reserve when the battery is charged can be offset by the amount corresponding to the generated amount of the transition metal oxide. Therefore, the amount of discharge reserve generation can be controlled more accurately than the conventional method of adding a metal oxide to the negative electrode active material.
[0032]
In the present invention, the arrangement amount of the transition metal or lead is set to 0.02 mmol / cm per unit area of the core material.2~ 0.35 mmol / cm2It is desirable that The amount of the transition metal or lead is determined to be 0.05 mmol / cm per unit area of the core material.2~ 0.35 mmol / cm2More desirably. 0.02 mmol / cm of transition metal or lead2By doing so, an excellent discharge reserve generation suppressing effect can be obtained.
[0033]
If the amount of discharge reserve generated is too small, the discharge capacity when discharging is restricted by the performance of the negative electrode (negative electrode regulation). When the discharge capacity of the battery is regulated by the negative electrode, a drawback occurs in that the active material utilization rate decreases. In the present invention, the amount of transition metal or lead formed on the surface of the core material of the negative electrode substrate is set to 0.35 mmol / cm.2It is desirable to make the following. This can prevent the discharge capacity from being regulated by the negative electrode during discharge.
[0034]
Hereinafter, the present invention will be described in detail with reference to examples, focusing on examples in which cobalt is used as a transition metal.
(Example 1)
(Formation of a cobalt monoxide layer on the surface of the anode substrate core material)
A punching metal made of a steel plate having a thickness of 60 μm and a porosity of 40% plated with nickel was used as a core material. 1 mol / dm3And an aqueous solution containing 1 mol / dm3 of hydrochloric acid as an electrolytic bath. The punching metal is disposed at the center of the electrolytic bath, and cobalt plates are disposed on both sides. went. The current density of electrolysis per unit area of punching metal is 0.5 mA / cm2And Electrolysis is performed with 5 levels of electricity. Cobalt deposition amount per unit area of punching metal is 0.1 mmol / cm2Was prepared.
[0035]
The substrate material was set in an atmosphere furnace. The furnace was oxidized by heating at a temperature of 300 ° C. for 2 hours in an atmosphere of oxygen, and cobalt deposited on the surface of the core material was changed to cobalt monoxide to obtain a negative electrode substrate.
[0036]
(Preparation of hydrogen storage alloy electrode)
CaCu5Type crystal structure, MmNi3.6Al0.29Co0.75Mn0.36(Mm is a misch metal and is a mixture of rare earth elements composed of La, Ce, Pr and Nd), and is increased with respect to 100 parts by weight of the hydrogen storage alloy powder having an average particle size of about 50 μm. A paste was prepared by adding and mixing 20 parts by weight of a 1 wt% aqueous solution of methylcellulose (MC) as a tackifier and 1 part by weight of styrene butadiene rubber as a binder. The paste was applied to both sides of the substrate and dried to obtain an electrode plate having a thickness of 1.1 mm. The dried electrode plate was pressed through a roll, the thickness was adjusted to 0.5 mm, and a hydrogen storage alloy electrode base plate was obtained. The original plate was cut into a predetermined size to obtain a hydrogen storage alloy electrode.
[0037]
(Preparation of nickel electrode active material powder)
Average particle size of a high-density nickel hydroxide containing 3% by weight and 5% by weight of hydroxide in solid solution in terms of hydroxide according to a standard method, and a coating layer of cobalt hydroxide formed on the surface. A nickel electrode active material powder mainly composed of nickel hydroxide having a particle size of 10 μm was prepared. The ratio of the cobalt hydroxide coating layer formed on the surface of the active material powder was 6% by weight.
[0038]
(Preparation of nickel electrode)
To 80 parts by weight of the obtained nickel electrode active material powder, 20 parts by weight of a 1% by weight aqueous solution of carboxymethyl cellulose (CMC) was added and kneaded to prepare a nickel electrode active material paste. The paste was 1.4 mm thick and the basis weight was 500 g / m.2After filling and drying into a foamed nickel porous substrate, the thickness was adjusted to 0.8 mm by pressing to obtain a long strip-shaped original plate for nickel electrodes. The original plate was cut into a predetermined size to obtain a nickel electrode. The capacity of the nickel electrode calculated from the active material filling amount was 1700 mAh.
[0039]
(Production of nickel-metal hydride battery)
The nickel electrode and the hydrogen storage alloy electrode were spirally wound around a separator having a thickness of 0.12 mm made of a nonwoven fabric of a polypropylene resin fiber subjected to a hydrophilic treatment, thereby producing an electrode plate group. The ratio of the active material filling capacity of the hydrogen storage alloy electrode and the nickel electrode of the electrode group was set to 1.6. This electrode group was housed in a cylindrical metal case, and was 7 mol / dm.3Potassium hydroxide aqueous solution and 1 mol / dm3A predetermined amount of an electrolytic solution composed of an aqueous solution of lithium hydroxide was injected. Next, the metal case was sealed with a metal lid provided with a safety valve to obtain an AA-size sealed nickel-metal hydride battery.
[0040]
(Chemical)
After aging the obtained nickel-metal hydride storage battery at a temperature of 40 ° C. for 12 hours, formation was performed under the following conditions. In the first charging, the battery was charged with a charging current of 1/50 ItA (34 mA) for 10 hours, and then charged with a charging current of 0.1 ItA (170 mA) for 10 hours. Next, discharge was performed at a discharge current of 0.2 ItA (340 mA) with a discharge end voltage of 1.0 V. After the second cycle, the battery was charged at a charge current of 0.1 ItA for 12 hours, and discharged at a discharge current of 0.2 ItA with a discharge end voltage of 1.0 V. The cycle was defined as one cycle, and the charge and discharge were repeated for 10 cycles including the first charge and discharge.
[0041]
(Example 2)
In Example 1, nickel oxide (NiO) was generated on the surface of the core material of the negative electrode substrate before coating the negative electrode active material paste. Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0042]
(Example 3)
In Example 1, copper oxide (CuO) was generated on the surface of the core material of the negative electrode substrate before coating the negative electrode active material paste. Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0043]
(Example 4)
In Example 1, silver oxide (AgO) was generated on the core material surface of the negative electrode substrate before coating the negative electrode active material paste. Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0044]
(Example 5)
In Example 1, lead oxide (PbO) was generated on the surface of the core material of the negative electrode substrate before coating the negative electrode active material paste. Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0045]
(Example 6)
In Example 1, the amount of Co deposited on the core material surface of the negative electrode substrate was 0.02 mmol / cm.2And Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
(Example 7)
In Example 1, the amount of Co deposited on the core material surface of the negative electrode substrate was 0.05 mmol / cm.2And Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
(Example 8)
In Example 1, the amount of Co deposited on the core material surface of the negative electrode substrate was 0.35 mmol / cm.2And Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0046]
(Example 9)
In Example 1, the amount of Co deposited on the surface of the core material of the negative electrode substrate was 0.4 mmol / cm.2And Except for this, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0047]
(Comparative Example 1)
The transition metal layer was not formed on the surface of the core material of the negative electrode substrate, and the core material was directly used as the negative electrode substrate. Otherwise, a nickel-metal hydride battery was manufactured under the same conditions as in Example 1.
[0048]
(Comparative Example 2)
Cobalt monoxide powder was added to the same negative electrode active material paste as in the example without forming a Co layer on the surface of the negative electrode substrate. A hydrogen storage alloy electrode was manufactured with the addition ratio of cobalt monoxide to the hydrogen storage alloy in the negative electrode active material paste being 6 wt%. The amount of cobalt monoxide contained in the electrode was the same as the amount of cobalt monoxide generated on the surface of the core material of the substrate of the hydrogen storage alloy electrode of Example 1. Otherwise, a nickel-metal hydride battery was manufactured under the same conditions as in the above-described example.
[0049]
(Measurement of discharge reserve generation amount)
After completion of the formation, the battery of Example and the battery of Comparative Example were charged and discharged for 10 cycles under the charging and discharging conditions for the second and subsequent cycles. The battery after the completion of the discharge after the charge / discharge cycle was disassembled. The negative electrode was collected. The negative electrode was immersed in water, and the hydrogen gas generated at that time was recovered by the water displacement method. The amount of discharge reserve was calculated from the amount of hydrogen gas collected.
[0050]
(Evaluation of active material utilization rate)
The battery of Example and the battery of Comparative Example after completion of the formation were charged at a temperature of 20 ° C. under the above conditions, subjected to a discharge test at a current of 0.2 ItA, and the discharge capacity in the 0.2 ItA discharge with respect to the positive electrode active material filling capacity. The ratio was defined as the active material utilization rate.
[0051]
(Survey of γ-NiOOH formation in positive electrode)
After completion of the formation, the batteries of Example 1 and Example 9 were charged at a temperature of 40 ° C. at 0.1 ItA for 15 hours, discharged at a current of 0.2 ItA at a discharge termination voltage of 1.0 V, and the charge / discharge was defined as 10 cycles. After repeating the cycle, the positive electrode active material collected by disassembling the battery was subjected to powder X-ray diffraction, and the (001) plane of γ-NiOOH and β-Ni (OH)2Of (100) plane was obtained.
[0052]
(Measurement of internal pressure rise during overcharge)
After a pressure gauge for measuring the internal pressure of the battery was attached to the example battery and the comparative battery after the formation, the batteries were charged at 1 ItA (1700 mA) for 2 hours. The change over time in the internal pressure of the battery during charging was measured.
[0053]
(Charge / discharge cycle test)
The battery of Example and the battery of Comparative Example after the formation were subjected to a charge / discharge cycle test at a temperature of 20 ° C. Charging was performed with an ItA current for 1.2 hours, and discharging was performed with an ItA current with a discharge end voltage of 1.0 V. The cycle was repeated with the charge / discharge cycle as one cycle.
[0054]
FIG. 1 is a graph showing the discharge reserve amounts of Example Battery 1 to Example Battery 9, Comparative Example Battery 1, and Comparative Example Battery 2 after formation. Incidentally, the ratio of the discharge reserve amount to the rated capacity (1700 mAh) of the batteries in Example Battery 1 to Example Battery 9 was 5.4%, 5.5%, 6.8%, 7.0%, and 6.0, respectively. They are 3%, 18%, 9%, 0.5% and 0%. The ratios of the discharge reserve amounts of Comparative Example Battery 1 and Comparative Example Battery 2 are 20% and 11%, respectively.
[0055]
As shown in FIG. 1, each of the batteries of the example has a smaller amount of discharge reserve than the battery 1 of the comparative example. This is because the transition metal oxide generated on the surface of the core material of the negative electrode substrate suppresses the generation of the discharge reserve. In addition, as shown in Example Battery 1 to Example Battery 5, all of CoO, NiO, CuO, AgO, and PbO deposited on the surface of the core material of the substrate effectively functioned to suppress discharge reserve generation. It is shown that.
[0056]
The amount of CoO generated on the core material surface of the negative electrode substrate of Example Battery 1 and the amount of CoO mixed and added to the active material powder of Comparative Example Battery 2 are equivalent. Nevertheless, the discharge reserve of Example Battery 1 is smaller than that of Comparative Battery 2 by about 比較. This indicates that the transition metal oxide generated on the substrate surface of the negative electrode suppresses the generation of the discharge reserve more efficiently than the transition metal oxide mixed and added to the active material powder.
[0057]
In Example Battery 1, Example Battery 6 to Example Battery 9, CoO was generated on the surface of the core material of the negative electrode substrate. The larger the amount of CoO generated, the smaller the amount of discharge reserve generated. It is suggested that there is a correlation between the amount of generation of the gas and the amount of generation of the discharge reserve. This means that the discharge reserve amount of the alkaline storage battery can be freely controlled by applying the negative electrode for an alkaline battery in which the amount of the transition metal oxide generated on the core material surface of the negative electrode substrate as in the present invention is applied. Indicates that it can be done.
[0058]
FIG. 2 shows the active material utilization rates of Example Battery 1, Example Battery 8 and Example Battery 9. As described above, the ratio of the discharge reserve amount to the rated capacity of the battery is 5.4% for Example Battery 1, 0.5% for Example Battery 8, and 0% for Example Battery 9. As shown in FIG. 2, both the example battery 1 and the example battery 8 have an active material utilization of 100%, while the example battery 9 has a low utilization of 76%. It is considered that this is because the amount of reduction in the discharge reserve was large and the discharge reserve was too small, and the discharge capacity fell into the negative electrode regulation.
[0059]
FIG. 3 shows the (001) plane of γ-NiOOH and β-Ni (OH) in Example Battery 1 and Example Battery 9.2The diffraction intensity ratio of the (100) plane was shown. In Example Battery 9, the diffraction intensity ratio was high, indicating that the amount of γ-NiOOH generated was larger than that in Example Battery 1. As described above, since the battery 9 of the embodiment falls under the regulation of the negative electrode, the positive electrode is not fully discharged but overcharged in each cycle. Therefore, it is considered that as the charge / discharge cycle progresses, the amount of accumulated overcharge electricity increases and the amount of γ-NiOOH generated increases. From the above results, it is desirable to set the ratio of the discharge reserve amount to the rated capacity of the battery to 0.5% or more.
[0060]
FIG. 4 shows the internal pressure of the battery when the example battery 1, the example batteries 6 to 8 and the comparative example battery 1 were overcharged. In each of the batteries of the examples, the increase in the internal pressure is smaller than that of the batteries of the comparative examples. In particular, the increase in the internal pressure of Example Battery 1, Example Battery 7, and Example Battery 8 is small. It is considered that the amount of hydrogen generated at the negative electrode during overcharging was small in the example battery because the amount of generated discharge reserve was small, and the increase in the internal pressure of the battery was suppressed. Further, it is considered that the increase in the internal pressure of the battery was also suppressed by the promotion of oxygen absorption by the catalytic action of the transition metal oxide generated on the substrate of the negative electrode to promote the oxygen absorption reaction in the negative electrode.
[0061]
The ratio of the discharge reserve amount of the example battery shown in FIG. 4 is 0.5% of the example battery 8 to 18% of the example battery 6, and the smaller the ratio of the discharge reserve amount, the higher the internal pressure of the battery. There is a tendency to be suppressed. In Example 7 in which the ratio of the discharge reserve amount was 9%, the increase in the internal pressure of the battery was significantly suppressed. Summarizing the above results, if the discharge reserve amount is 18% or less, it is effective for the function of suppressing an increase in the internal pressure of the battery when overcharged, and more remarkable when the ratio of the discharge reserve amount is 9% or less. It can be seen that a special effect can be obtained.
[0062]
FIG. 5 is a graph showing the charge / discharge cycle performance of Example Battery 1 to Example Battery 8 and Comparative Example Battery 1. The cycle performance of each of the batteries of the examples was superior to that of the battery of the comparative example. In the case of the example battery, the adhesion between the hydrogen storage alloy powder of the negative electrode and the substrate was excellent as described above, and the generation of the discharge reserve was controlled so as to be in a preferable range. In the case of the battery of the present invention, it is considered that these two factors together result in excellent cycle performance. It is considered that the reason why excellent cycle performance is obtained when the generation of the discharge reserve is suppressed is that a sufficient amount of charge reserve is secured.
[0063]
From the results described above, in order to obtain excellent cycle performance, it is preferable that the ratio of the discharge reserve to the rated capacity of the battery be 18% or less, and that the negative electrode is regulated in the discharge and the active material utilization rate is prevented from lowering. It is preferable that the ratio of the discharge reserve is 0.5% or more. Furthermore, in order to obtain an excellent effect in the function of suppressing an increase in the internal pressure of the battery when the battery is overcharged, the ratio of the discharge reserve is desirably 18% or less, and more desirably 9% or less. I understand.
[0064]
As described above, according to the present invention, the discharge reserve amount of the alkaline storage battery can be freely controlled by applying the negative electrode for an alkaline battery in which the amount of the transition metal oxide generated on the core material surface of the negative electrode substrate is controlled. be able to. According to the results of the trial production shown in FIG. 1, in order to control the discharge reserve amount to a preferable value of 0.5 to 18% of the rated capacity of the battery, it is necessary to form CoO formed on the surface of the core material of the negative electrode substrate. 0.02 to 0.35 mmol / cm per unit area of the core material2In order to control the discharge reserve to a more desirable value of 0.5 to 9%, the amount of CoO generated on the surface of the core material of the negative electrode substrate is set to 0.05 to 9% per unit area of the core material. 0.35 mmol / cm2It turns out that it is good to do.
[0065]
The amount of CoO generated per unit area of the core material is 0.02 mmol / cm.2If it is less than 3, the effect of suppressing the generation of the discharge reserve is extremely small, and 0.35 mmol / cm2If the discharge capacity exceeds the limit, the discharge reserve becomes too small, the discharge performance is regulated by the negative electrode, and the active material utilization rate decreases. At the same time, when the charge / discharge cycle is performed, the positive electrode (nickel electrode) becomes overcharged and γ-NiOOH There are drawbacks to create. From the above results, the amount of CoO generated per unit area of the core material was 0.02 to 0.35 mmol / cm.2Is preferably 0.05 to 0.35 mmol / cm.2More preferably,
[0066]
Although the above description has been made with reference to the hydrogen storage alloy electrode and the nickel-metal hydride storage battery using the same, the present invention is not limited to this, and can be applied to a cadmium electrode and a nickel cadmium storage battery using the same. Further, the metal element generated on the core material surface of the negative electrode substrate is not limited to Co, Ni, Cu, Ag, and Pb, and a stable transition metal can be applied to an alkaline electrolyte. The same effect can be obtained even if the metal compound formed on the core material surface of the negative electrode substrate is not only an oxide but also a hydroxide. Further, in the above embodiment, an example is shown in which the amount of transition metal generated on the surface of the core is changed only for CoO, and the amount of CoO generated per unit area of the core is 0.02 to 0.35 mmol / cm.2Is preferably 0.05 to 0.35 mmol / cm.2However, it is also possible to apply oxides and hydroxides other than Co, such as Ni, Cu, Ag, and Pb.
[0067]
In the above example, after the formation was completed, the battery was charged and discharged for 10 cycles under the charge and discharge conditions of the second and subsequent cycles, the discharge reserve amount was measured, and the preferable range of the discharge reserve amount was determined. The discharge reserve amount may be measured for a battery having a number of charge-discharge cycles including formation of several to 30 cycles.
【The invention's effect】
[0068]
The negative electrode for an alkaline storage battery according to claim 1 of the present invention is a negative electrode for an alkaline storage battery that enables control of a discharge reserve generation amount.
[0069]
The negative electrode for an alkaline storage battery according to the second aspect of the present invention is a negative electrode for an alkaline storage battery that can control the amount of discharge reserve generated in an appropriate range.
[0070]
A negative electrode for an alkaline storage battery according to a third aspect of the present invention is a negative electrode for an alkaline storage battery having the functions according to the first and second aspects of the invention and having excellent adhesion between the active material powder and the substrate.
[0071]
The alkaline storage battery according to claim 4 of the present invention is an alkaline storage battery that is excellent in a function of suppressing an increase in battery internal pressure during charging and is excellent in charge / discharge cycle performance.
[0072]
The method for manufacturing an alkaline storage battery according to claim 5 of the present invention can suppress the generation amount of the discharge reserve, is excellent in the function of suppressing the increase in the internal pressure of the battery by suppressing the generation amount of the discharge reserve, and has a charge / discharge cycle. This is a manufacturing method capable of manufacturing an alkaline storage battery having excellent performance.
[Brief description of the drawings]
FIG. 1 is a graph showing a discharge reserve generation amount of an example battery and a comparative example battery according to the present invention.
FIG. 2 is a graph showing a utilization rate of an active material of an example battery according to the present invention.
FIG. 3 shows the (001) plane of γ-NiOOH and β-Ni (OH) of the positive electrode of the battery according to the embodiment of the present invention.23 is a graph showing the X-ray diffraction intensity ratio of the (100) plane.
FIG. 4 is a graph showing the internal pressure of a battery when an example battery and a comparative example battery according to the present invention are overcharged.
FIG. 5 is a graph showing the charge / discharge cycle performance of a battery according to the present invention and a battery of a comparative example.

Claims (5)

活物質粉末を基板に担持させたアルカリ蓄電池用負極であって、前記基板は、耐アルカリ電解液性の金属からなる芯材の表面に耐アルカリ電解液性の遷移金属および鉛のうちから選択した少なくとも1種の金属からなる層を配したことを特徴とするアルカリ蓄電池用負極。A negative electrode for an alkaline storage battery in which an active material powder is supported on a substrate, wherein the substrate is selected from alkali-electrolyte-resistant transition metals and lead on a surface of a core material made of an alkali-electrolyte-resistant metal. A negative electrode for an alkaline storage battery, comprising a layer made of at least one metal. 前記金属からなる層の、前記芯材の単位面積当たりの量を0.02ミリモル/cm〜0.35ミリモル/cmとしたことを特徴とする請求項1に記載のアルカリ蓄電池用負極。 2. The negative electrode for an alkaline storage battery according to claim 1, wherein an amount of the metal layer per unit area of the core material is 0.02 mmol / cm 2 to 0.35 mmol / cm 2. 3. 前記遷移金属がコバルト、ニッケル、銅および銀のうちから選択した少なくとも1種の金属であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池用負極。3. The negative electrode for an alkaline storage battery according to claim 1, wherein the transition metal is at least one metal selected from cobalt, nickel, copper, and silver. 4. 請求項1に記載の負極を備え、負極の放電リザーブ量が電池の定格容量の0.5〜18%であることを特徴とするアルカリ蓄電池。An alkaline storage battery comprising the negative electrode according to claim 1, wherein a discharge reserve amount of the negative electrode is 0.5 to 18% of a rated capacity of the battery. 前記芯材の表面に前記遷移金属または鉛の酸化物または水酸化物の層を形成した後に活物質粉末を担持させた負極を作製し、該負極を電池に組み込んだ後に、電池を充電して前記遷移金属または鉛の酸化物または水酸化物を還元することによって前記金属の層を形成したことを特徴とする請求項4に記載のアルカリ蓄電池の製造方法。After forming a layer of the transition metal or lead oxide or hydroxide on the surface of the core material to produce a negative electrode carrying an active material powder, after incorporating the negative electrode into the battery, charging the battery The method according to claim 4, wherein the metal layer is formed by reducing the oxide or hydroxide of the transition metal or lead.
JP2002276495A 2002-09-24 2002-09-24 Method for producing alkaline storage battery Expired - Lifetime JP4617632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276495A JP4617632B2 (en) 2002-09-24 2002-09-24 Method for producing alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276495A JP4617632B2 (en) 2002-09-24 2002-09-24 Method for producing alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2004119020A true JP2004119020A (en) 2004-04-15
JP4617632B2 JP4617632B2 (en) 2011-01-26

Family

ID=32272352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276495A Expired - Lifetime JP4617632B2 (en) 2002-09-24 2002-09-24 Method for producing alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4617632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038681A1 (en) * 2012-09-07 2014-03-13 国立大学法人京都大学 Electrode for primary battery or secondary battery having controlled local battery reaction, and primary or secondary battery using said electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156232A (en) * 1998-11-19 2000-06-06 Japan Storage Battery Co Ltd Current collector for alkaline storage battery
JP2001093520A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and preparation thereof
JP2002117842A (en) * 2000-10-06 2002-04-19 Yuasa Corp Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156232A (en) * 1998-11-19 2000-06-06 Japan Storage Battery Co Ltd Current collector for alkaline storage battery
JP2001093520A (en) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and preparation thereof
JP2002117842A (en) * 2000-10-06 2002-04-19 Yuasa Corp Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038681A1 (en) * 2012-09-07 2014-03-13 国立大学法人京都大学 Electrode for primary battery or secondary battery having controlled local battery reaction, and primary or secondary battery using said electrode
JPWO2014038681A1 (en) * 2012-09-07 2016-08-12 国立大学法人京都大学 Primary battery or secondary battery electrode in which local battery reaction is controlled, and primary battery or secondary battery using the electrode
JP2022019898A (en) * 2012-09-07 2022-01-27 一般社団法人イノベーションエネルギー Electrode for primary battery or secondary battery with controlled local battery reaction and primary battery or secondary battery using the electrode
JP7290229B2 (en) 2012-09-07 2023-06-13 一般社団法人イノベーションエネルギー Primary or secondary battery electrode with controlled local cell reaction and primary or secondary battery using the electrode

Also Published As

Publication number Publication date
JP4617632B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4710225B2 (en) Method for producing nickel electrode material
JPWO2004068625A1 (en) Sealed alkaline storage battery, electrode structure thereof, charging method and battery charger for sealed alkaline storage battery
EP1367666A1 (en) Method for manufacturing nickel hydrogen battery
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JP4617632B2 (en) Method for producing alkaline storage battery
JP4824251B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2989877B2 (en) Nickel hydride rechargeable battery
JP4128635B2 (en) Manufacturing method of nickel metal hydride storage battery
JP2002279992A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP2001006688A (en) Nickel-hydrogen secondary battery
JP2001313069A (en) Nickel hydrogen storage battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH09223500A (en) Nickel hydrogen battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3316687B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term