JP2004109694A - 光学特性可変素子を備えた変倍光学系 - Google Patents

光学特性可変素子を備えた変倍光学系 Download PDF

Info

Publication number
JP2004109694A
JP2004109694A JP2002274010A JP2002274010A JP2004109694A JP 2004109694 A JP2004109694 A JP 2004109694A JP 2002274010 A JP2002274010 A JP 2002274010A JP 2002274010 A JP2002274010 A JP 2002274010A JP 2004109694 A JP2004109694 A JP 2004109694A
Authority
JP
Japan
Prior art keywords
variable
optical element
optical
group
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002274010A
Other languages
English (en)
Inventor
Kimihiko Nishioka
西岡 公彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002274010A priority Critical patent/JP2004109694A/ja
Publication of JP2004109694A publication Critical patent/JP2004109694A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

【課題】光学特性可変光学素子を備えた変倍光学系において、ズーム比の大きい変倍光学系を提供する。
【解決手段】以下の式101を満たすi,jの組が少なくともいずれかの変倍状態で存在する。
{βi−(−1)}{βj−(−1)}・fi・fj<0   ・・・式101
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
ただし、βiはi群の倍率、βjはj群の倍率、fiはi群の焦点距離、fjはj群の焦点距離である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、可変焦点レンズ、可変焦点回折光学素子、可変偏角プリズム、可変焦点ミラー等の光学特性可変光学素子、及びこれらの光学特性可変光学素子を含む光学系を備えた、例えば、カメラやデジタルカメラやTVカメラのファインダー、望遠鏡や顕微鏡や双眼鏡等の観察光学系、眼鏡、ビデオプロジェクター、カメラ、デジタルカメラ、携帯端末用のデジタルカメラ、携帯電話用のデジタルカメラ、TVカメラ、内視鏡等の光学系並びに光学装置に関する。
【0002】
【従来の技術】
従来のレンズは、ガラスを研磨して製造したレンズ、または成形して製造したレンズを用いており、レンズ自体で焦点距離を変化させることができないため、ある光学系においてフォーカシングやズーミングを行うためには、レンズ群を光軸方向に移動させる必要があるので、機械的構造が複雑になっている。
【0003】
そして、レンズ群の一部を移動させるためにモーター等を用いていたため、消費電力が大きい、音がうるさい、応答時間が長くレンズの移動に時間がかかる、等の欠点があった。
【0004】
又、形状可変ミラーを用いた変倍光学系も提案されているが、ズーム比が大きくとれない、あるいは形状可変ミラーの変形量が大きい等の欠点があった(例えば、特許文献1、2参照)。
【0005】
【特許文献1】
特開2000−298237号公報(図10)
【0006】
【特許文献2】
特開2002−122784号公報(図33)
【0007】
【発明が解決しようとする課題】
本発明は、例えば、従来技術のこのような問題点に鑑みてなされたものであり、その目的は、カメラやデジタルカメラやTVカメラや撮像機能付き携帯電話の撮像光学系、ファインダー、望遠鏡や双眼鏡や顕微鏡等の観察光学系、内視鏡や監視用カメラや小型のデジタルカメラの撮像光学系等、これらの光学系において、ズーム比の大きい変倍光学系を提供することを目的とする。
【0008】
また、上記光学系以外にも、ロボットの目、撮像機能付き携帯電話、ドアスコープ用カメラ、車載カメラ、などにも利用できることは言うまでもない。
【0009】
【課題を解決するための手段】
本発明の光学特性可変素子を備えた変倍光学系は、例えば以下の特徴を備えている。
(1) 式101を満たすi,jの組が少なくともいずれかの変倍状態で存在することを特徴とする。
{βi−(−1)}{βj−(−1)}・fi・fj<0   ・・・式101
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
ただし、βiはi群の倍率、βjはj群の倍率、fiはi群の焦点距離、fjはj群の焦点距離である。
(2) 式102を満たすi,jの組が少なくともいずれかの変倍状態で存在することを特徴とする。
{(∂βi/∂Di)・(∂IOi/∂Di)}{(∂βj/∂Dj)・(∂IOj/∂Dj)}<0   ・・・式102
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
ただし、βiはi群の倍率、βjはj群の倍率、Diは変倍時のi群の移動量、Djは変倍時のj群の移動量、IOiはi群の物体〜像距離、IOjはj群の物体〜像距離である。
(3) 式103を満たすことを特徴とする。
|IO差/IO合計T|≦0.2  ・・・式103
ただし、IO差は望遠端状態でのIO合計(=ΣIOi)を基準とした、他の状態でのIO合計との差、IO合計Tは望遠端状態におけるIO合計である。
(4) (1)において、少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(5) (1)において、正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(6) (1)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする。
(7) (1)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする。
(8) (2)において、少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(9) (2)において、正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(10) (2)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする。
(11) (2)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする。
(12) (3)において、少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(13) (3)において、正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(14) (3)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする。
(15) (3)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする。
(16) 式105を満たすことを特徴とする。
|βr|>0.2  ・・・式105
ただし、βrは光学特性可変素子より後方の光学系の倍率である。
(17) (16)において、少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(18) (16)において、正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする。
(19) (16)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする。
(20) (16)において、第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする。
(21) 少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とし、式110乃至112の少なくとも1つ以上をある状態で満たす。
0.2<|β1|<2  ・・・式110
0.2<|β3|<3  ・・・式111
0.4<|β2|<1.7  ・・・式112
ただし、β1は1群の倍率、β2は2群の倍率、β3は3群の倍率である。
(22) (1)乃至(21)において、光学面が偏心していることを特徴とする。
(23) (1)乃至(21)において、光学面の偏心が式200を満たすことを特徴とする。
【0010】
0 < |δ/f| < 0.2  ・・・式200
ただし、δはそれぞれの光学面に加えた偏心量、fは光学系の焦点距離である。
(24) (1)乃至(21)において、結像面が偏心していることを特徴とする。
(25) (1)乃至(21)において、結像面の偏心C(deg)が式201を満たすことを特徴とする。
【0011】
0 < |C| < 15  ・・・式201
(26) (1)乃至(21)において、回転対称なレンズを有すことを特徴とする。
(27) 光学特性可変素子が移動する光学素子群の前方にあることを特徴とする。
(28) (1)乃至(21)において、明るさ絞りが光学特性可変素子の後方にあることを特徴とする。
(29) (1)乃至(21)において、最も物体寄りの光学面と、結像面の位置関係が固定されていることを特徴とする。
【0012】
形状可変ミラーとは可変ミラーの一つであり、表面形状を凸面、平面、凹面に自由に変化させることで、光学パワー又は収差を自由に変化させることができるミラーである。これによって、撮像系の物体距離が変化した場合でも、可変ミラーの形状を変化させるだけでピントを合わせることができる。このとき、可変ミラーの形状は、回転対称な曲面でもよいが、収差補正をより良く行うためには、回転非対称な面、あるいは自由曲面であることが望ましい。
【0013】
その理由を以下に詳述する。まず、用いる座標系、回転非対称な面について説明する。軸上主光線が、光学系の第1面に交差するまでの直線によって定義される光軸をZ軸とし、そのZ軸と直交し、かつ、偏心光学系を構成する各面の偏心面内の軸をY軸と定義し、前記光軸と直交し、かつY軸と直交する軸をX軸とする。光線の追跡方向は、物体から像面に向かう順光線追跡で説明する。
【0014】
一般に、球面レンズのみで構成された球面レンズ系では、球面により発生する球面収差と、コマ収差、像面湾曲等の収差をいくつかの面で互いに補正し合い、全体として収差を少なくする構成になっている。
【0015】
一方、少ない面数で収差を良好に補正するためには、回転対称非球面等が用いられる。これは、球面で発生する各種収差自体を少なくするためである。
しかし、偏心した光学系においては、偏心により発生する回転非対称な収差を回転対称光学系で補正することは不可能である。この偏心により発生する回転非対称な収差は、歪曲収差、像面湾曲、さらに、軸上でも発生する非点収差、コマ収差がある。
【0016】
まず、回転非対称な像面湾曲について説明する。例えば、無限遠の物点から偏心した凹面鏡に入射した光線は、凹面鏡に当たって反射結像されるが、光線が凹面鏡に当たって以降、像面までの後側焦点距離は、像界側が空気の場合、光線が当たった部分の曲率半径の半分になる。すると、図13に示すように、軸上主光線に対して傾いた像面を形成する。このように、回転非対称な像面湾曲を補正するには回転対称な光学系では不可能である。
【0017】
この傾いた像面湾曲をその発生源である凹面鏡M自身で補正するには、凹面鏡Mを回転非対称な面で構成し、この例ではY軸正の方向に対して曲率を強く(屈折力を強く)し、Y軸負の方向に対して曲率を弱く(屈折力を弱く)すれば、補正することができる。また、上記構成と同様な効果を持つ回転非対称な面を、凹面鏡Mとは別に光学系中に配置することにより、少ない構成枚数でフラットな像面を得ることが可能となる。
【0018】
また、回転非対称な面は、その面内及び面外共に回転対称軸を有しない回転非対称面形状の面とすることが、自由度が増え収差補正上は好ましい。
次に、回転非対称な非点収差について説明する。上記説明と同様に、偏心して配置された凹面鏡Mでは、軸上光線に対しても図14に示すような非点収差が発生する。この非点収差を補正するためには、上記説明と同様に、回転非対称面のX軸方向の曲率とY軸方向の曲率を適切に変えることによって可能となる。
【0019】
次に、回転非対称なコマ収差について説明する。上記説明と同様に、偏心して配置された凹面鏡Mでは、軸上光線に対しても図15に示すようなコマ収差が発生する。このコマ収差を補正するためには、回転非対称面のX軸の原点から離れるに従って面の傾きを変えると共に、Y軸の正負によって面の傾きを適切に変えることによって可能となる。
【0020】
また、本発明の偏心光学系では、前述の反射作用を有する少なくとも1つの面が軸上主光線に対し偏心し、回転非対称な面形状でパワーを有する構成も可能である。このような構成をとれば、その反射面にパワーを持たせることで発生する偏心収差をその面自体で補正することが可能となり、プリズムの屈折面のパワーを緩めることで、色収差の発生自体を小さくすることができる。
【0021】
そして、本発明の偏心光学系の構成反射面の1つである形状可変ミラー、屈折率可変ミラーの面形状を回転非対称な面とすることが偏心収差を補正する上で望ましい。
【0022】
以上説明したように、本発明によれば、形状可変ミラーを用いることにより、レンズ群を前後に駆動することなく、ミラーの表面形状を変化させるだけで、ズーミングやフォーカシングを行うことができる光学装置などを提供することができる。
【0023】
なお、本発明で使用する自由曲面とは次の式(a)で定義されるものである。この定義式のZ軸が自由曲面の軸となる。
Z=cr/[1+√{1−(1+k)c}]
+Σ(j=2〜N)CjX  ・・・(a)
ここで、上式(a)の第1項は球面項、第2項は自由曲面項である。
【0024】
球面項中、
c:頂点の曲率
k:コーニック定数(円錐定数)
r=√(X+Y
N:2以上の自然数
である。
【0025】
自由曲面項は、
Σ(j=2〜N)CjX
=C2X+C3Y+
+C4X+C5XY+C6Y
+C7X+C8XY+C9XY+C10Y
+C11X+C12XY+C13X+C14XY+C15Y
+C16X+C17XY+C18X+C19X+C20XY+C21Y
+C22X+C23XY+C24X+C25X+C26X+C27XY
+C28Y
+C29X+C30XY+C31X+C32X+C33X+C34X
+C35XY+C36Y・・・
ただし、Cj(jは2以上の整数)は係数である。
【0026】
上記自由曲面は、一般的には、X−Z面、Y−Z面共に対称面を持つことはないが、Xの奇数次項を全て0にすることによって、Y−Z面と平行な対称面が1つだけ存在する自由曲面となる。また、Yの奇数次項を全て0にすることによって、X−Z面と平行な対称面が1つだけ存在する自由曲面となる。
【0027】
また、上記の回転非対称な曲面形状の面である自由曲面の他の定義式として、Zernike多項式により定義できる。この面の形状は次式(b)により定義する。式(b)のZ軸がZernike多項式の軸となる。回転非対称面の定義は、X−Y面に対するZの軸の高さの極座標で定義され、AはX−Y面内のZ軸からの距離、RはZ軸回りの方位角で、Z軸から測った回転角で表される。
【0028】
x=R×cos(A)
y=R×sin(A)
Z=D2+D3Rcos(A)+D4Rsin(A)
+D5Rcos(2A)+D6(R−1)+D7Rsin(2A)
+D8Rcos(3A)+D9(3R−2R)cos(A)+D10(3R−2R)sin(A)
+D11Rsin(3A)+D12Rcos(4A)+D13(4R−3R)cos(2A)
+D14(6R−6R+1)+D15(4R−3R)sin(2A)+D16Rsin(4A)
+D17Rcos(5A) +D18(5R−4R)cos(3A)
+D19(10R−12R+3R)cos(A)
+D20(10R−12R+3R)sin(A)
+D21(5R−4R)sin(3A)+D22Rsin(5A)
+D23Rcos(6A)+D24(6R−5R)cos(4A)
+D25(15R−20R+6R)cos(2A)
+D26(20R−30R+12R−1)
+D27(15R−20R+6R)sin(2A)
+D28(6R−5R)sin(4A)+D29Rsin(6A)    ・・・(b)
ただし、Dm(mは2以上の整数)は係数である。なお、X軸方向に対称な光学系として設計するには、D4,D5,D6、D10,D11,D12,D13,D14,D20,D21,D22・・・を利用する。
【0029】
上記定義式は、回転非対称な曲面形状の面の例示のために示したものであり、他のいかなる定義式に対しても同じ効果が得られることは言うまでもない。数学的に同値ならば他の定義で曲面形状を表してもよい。
【0030】
本発明においては、(a)式中のXの奇数次の項を全て0とすることで、Y−Z面と平行な対称面を持つ自由曲面としている。
また、偏心面については、光学系の基準面の中心からその面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、その面の中心軸(自由曲面については、上記(a)式のZ軸を中心とする)、傾き角(それぞれα,β,γ(°))とが与えられている。
【0031】
また、偏心の順序は、X、Y、Z方向の偏心が行われた後、α、β、γの順で座標系を回転させる。その座標系がミラー面のローカル座標となる。その後、反射された光線の座標系を定義するために、再びα、β、γの順で座標系を回転させて、定義座標系を定義する。
【0032】
また、反射面の傾きだけを示す場合も、偏心量としてその面の中心軸の傾き角が与えられている。
また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をa、b、c、dとしたとき、次式(c)で表される。
【0033】
z=(y/r)/[1+{1−(1+k)・(y/r)1/2]+ay
+by+cy+dy10  ・・・(c)
なお、上記数値データに関する説明は、本発明の各実施例の数値データに共通である。
【0034】
以下、主に可変ミラーを用いた実施例を元に本発明を説明していくが、これらに限らず可変ミラーの代わりに同じ程度のパワーを持つ可変焦点レンズ等の光学特性可変素子を用いても同様の効果が得られる。
【0035】
また、以下主に撮像系の例で発明を説明するが、これに限らず、像と物体を入れ替えて投影光学系として用いてもよく、本発明はこのような場合も含むものとする。液晶プロジェクター、ビデオプロジェクター等の投影装置は表示装置の一つである。
【0036】
本発明では、光軸は、物体面中心と絞り中心あるいは射出瞳を通る光線の通り道で定義する。
絞りあるいは射出瞳のない光学系の場合は物体面中心を出て物体面に垂直な光線の通り道で定義する。
【0037】
したがって、光軸は一般的には可変ミラーの変形と共に変化することになるが、その変化はわずかである場合が多い。従って本願の実施例では、Z軸と光軸とが略一致している。
【0038】
【発明の実施の形態】
以下、図面を参照して本発明の光学特性可変素子を備えた変倍光学系の実施例を説明する。1群、3群を除くレンズと撮像素子は鏡枠等に固定されている。
【0039】
実施例1〜4の断面図をそれぞれ図1〜12に示す。図1〜12において、紙面の表から裏に向かう方向が正である。又、各実施例における条件式等の値を図33の表に示す。
【0040】
実施例1〜4のレンズデータ中、INFは無限大、ASPは非球面、FFSは自由曲面、DMは形状可変ミラーを示す。屈折率、アッベ数はd線(587.56nm)のものである。長さの単位はmmである。
【0041】
可変の面間隔は、順に望遠端〜標準〜広角端での値を表す。物体距離が異なっても、ズーム状態の表記(望遠端、標準、広角端)が同じであれば、上記間隔は同じ値である。また各実施例とも最も像面側に2枚の平行平板が挿入されているが、これは撮像素子のカバーガラス、IRカットフィルタ、ローパスフィルタを想定したものである。
【0042】
データの記載されていない自由曲面、非球面等に関する項は0である。
Figure 2004109694
Figure 2004109694
Figure 2004109694
本発明のすべてに言えることであるが、光学素子群とは一つ以上の光学素子からなるブロックである。又、光学面とは、レンズ、ミラー等の光学素子で、光が入射又は射出する面のことである。
【0043】
図1〜3に実施例1の断面図を示す。固定された16面から18面までの2群の前後の1群(10〜12面)と3群(23〜30面)が変倍のために常に同じ移動量で動く。つまり1群と3群とは機械的に一体化されていると思えば良い。そして1群と3群とは同じ符号のパワーを持ち、かつ2群とはパワーの符号が異なる。つまり2群が負パワーなら1群、3群は正パワーである。2群が正パワーなら1群、3群は負パワーである。
【0044】
そして、固体撮像素子のように撮像光学系から出射される主光線がテレセントリックであることを要求する用途では、2群が負パワーで1群、3群が正パワーの構成にするのが良い。なぜなら3群が正パワーなら主光線をテレセントリックにしやすいからである。このようなズームレンズの形式は光学補正式ズームと呼ばれているものに似ているが、本実施例ではレンズ群の移動に伴うピント移動、並びに物体距離変化に伴うピント移動を可変ミラーで補正している。もちろん、いずれか一方を補正するのでもよい。
【0045】
2つのレンズ群が同じ動きをするので、カムが不要で、コストが安いこと、パワー配分を選べば変倍時のピント移動が少ないので、可変ミラーの変形量が小さくできるメリットがある。
【0046】
なお、2群は動いても良い。可変ミラーは0群(1〜4面)と1群の間に配置されているが、1群の後、2群の後、3群の後、等に配置しても良い。
この実施例1では、可変ミラーは、レンズ群を移動して変倍する時に生ずるピント移動を補償するため、および物体距離が変化したときピントを合わせるために変形する。
【0047】
次の条件式を満たすと良い。
1、3群の移動で変倍を行った場合に、レンズ系全体のピント移動量(すなわちIO差)をできるだけ小さくすることが望ましい。なぜなら、光学特性可変素子300(この図1では301)のパワーの変化量を小さくすることができ、光学特性可変素子301の製作が容易になるからである。
【0048】
下記の用語の定義を用いて、さらに上記を調べてみる。
fi:i群の焦点距離(ただし、光学特性可変素子のパワー及び光学素子の偏心は0とみなす)
f:各ズーム状態での全系の焦点距離(ただし、光学特性可変素子のパワー及び光学素子の偏心は0とみなす)
D:光学特性可変素子から1群の最初の面までの空気換算長(図1の例では、6面から10面の距離であり、この場合の符号は正である)
Di:変倍時のi群の移動量
βi:i群の倍率
βr:光学特性可変素子より後方の光学系の倍率
IOi:i群の物体〜像距離
IO合計:ΣIOi
IO差:T(望遠端)状態のIO合計を基準とした、他の状態でのIO合計との差
IO合計T:T状態におけるIO合計
fT:T状態のf
IOiは、
IOi=(−βi−1/βi+2)・fi  ・・・式100
で与えられる。βi<0の領域では、
fi>0ならIOiはβi=−1のとき極小となる
fi<0ならIOiはβi=−1のとき極大となる
ことがわかる。
【0049】
従って、光学特性可変素子301の変化を考えないとき、変倍によるIO合計の変化を小さくするには、fi>0のいずれかの群のβiが−1に近づく時に他のfj>0のいずれかの群のβjが−1から離れる状態を含むと良い。
【0050】
fi<0又はfj<0であれば上記と逆になる。
これを式で表せば
{βi−(−1)}{βj−(−1)}・fi・fj<0   ・・・式101
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
を満たすi、jの組が少なくともいずれかのズーム状態で存在すること、ということになる。
【0051】
以上の議論、及び式101は光学特性可変素子300以外に少なくとも2群の光学素子群が存在するズーム光学系(変倍光学系)について成り立つのである。また、変倍時(ズーミング時)のピント移動を小さくするには、次のようにしてもよい。
【0052】
各群の変倍時のIOiの値の変化がキャンセルするようにすればよいのだから、
{(∂βi/∂Di)・(∂IOi/∂Di)}{(∂βj/∂Dj)・(∂IOj/∂Dj)}<0   ・・・式102
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
を満たすi、jの組が、ある変倍状態で存在すればよい。
【0053】
図1〜図12の例では、D1=D3でありDの偏微分はD1の偏微分と等価である。また、上記図1〜図12の例では、
∂βi/∂Di  i=1又は3
はすべて正であり、変倍比を大きくするのに都合が良い。
【0054】
IO差は光学特性可変素子300のパワー変化を小さく抑えるために、以下の範囲にあると良い。
|IO差/IO合計T|≦0.2  ・・・式103
又、
|IO差/IO合計T|≦0.1  ・・・式104
であれば、さらに光学特性可変素子のパワー変化が小さくできるのでなお良い。
又、
|βr|>0.2  ・・・式105
を満たすと、光学特性可変素子のパワー変化に伴う収差変動が小さくできるので良い。
|βr|>0.35  ・・・式106
を満たせばなお良い。
【0055】
又、ある変倍状態で下記の条件式110〜112の少なくとも一つを満たすと良い。
0.2<|β1|<2  ・・・式110
これは、IO1の変化を小さくしつつ1群の倍率の変化を大きくして変倍比を大きくするのに役立つ。
0.2<|β3|<3  ・・・式111
これは、IO3の変化を小さくしつつ3群の倍率の変化を大きくして変倍比を大きくするのに役立つ。
0.4<|β2|<1.7  ・・・式112
これは、1、3群で主に変倍を行うため2群の倍率は大きく変化しなくてもよいからである。又|β2|=1を挟んでいるのはIO2の変動を減らすためである。
【0056】
又、次の条件を満たすと良い。
0.3<|IO1/fT|<10  ・・・式340
|IO1/fT|が下限を下回ると収差が増え、上限を上回ると変倍作用あるいはコンペンセータとしての機能が不足する。あるいは
0.6<|IO1/fT|<5  ・・・式341
とすればなお良い。
1.1<|IO1/fT|<5  ・・・式341−2
とすればさらに良い。
【0057】
又、次の条件を満たすと良い。
0.15<|IO2/fT|<6  ・・・式342
|IO2/fT|が下限を下回ると収差が増え、上限を上回ると移動する光学素子群と合わせた変倍作用、あるいはコンペンセータとしての作用が不足する。0.25<|IO2/fT|<5  ・・・式343
とすればなお良い。
0.5<|IO2/fT|<2.5  ・・・式343−2
とすればさらに良い。
【0058】
又、次の条件を満たすと良い。
0.15<|IO3/fT|<10  ・・・式344
|IO3/fT|が下限を下回ると収差が増え、上限を上回ると変倍作用、あるいはコンペンセータとしての機能が不足する。
0.25<|IO3/fT|<5  ・・・式344−2
とすればなお良い。
0.4<|IO3/fT|<3.5  ・・・式345
とすればさらに良い。
Figure 2004109694
Figure 2004109694
Figure 2004109694
図4〜6に実施例2の断面図を示す。この実施例は実施例1と同タイプの構成である。絞りは凹パワーの固定群近傍に固定されている。このため、変倍時の光線高の変動が少ないメリットがある。
【0059】
各条件式は実施例1と同様に満たす。
可変ミラーはすべての撮影状態で凹面であり、静電駆動可変ミラーに適した設計となっている。そして可変ミラーの形状のうち、平面から撮影状態の凹面までの範囲はコントラスト方式のオートフォーカスの為の余裕である。
【0060】
同様に、近点でのオートフォーカスのために、近点300mmの可変ミラーの形状より、さらに深い凹面に可変ミラーは変形する。
また本発明に共通して言えることであるが、画角の比較的狭いズームレンズの場合には、
f0/f<0 または f0/f>5  ・・・式347
を満足すると良い。ただし、f0は0群の焦点距離である。
【0061】
これは、画角が狭い場合、レトロフォーカスタイプでなくても光学系の中の光線高を低く抑えられるからである。
本実施例では静電駆動可変ミラーを用いるが、静電駆動可変ミラーは変形が凹面側に限られる。このため、物体無限遠でも標準状態の可変ミラーの形状が平面でないのは、レンズ部品、枠部品、組み立て誤差等の製造誤差のために、ピント位置が設計位置からずれるが、そのときでも可変ミラーの形状を平面に近づけてピントが合わせられるようにするためである。
【0062】
また、コントラスト検出方式(山登り方式)のオートフォーカスを行う場合に、可変ミラーを変形させてピント位置を動かし、被写体像の高周波成分を検出して被写体像の高周波成分が最大になったところで合焦と判断するが、無限遠よりさらに遠方にピント位置を動かす為にもすべての状態で可変ミラーの形状を凹面にしておく必要がある。
Figure 2004109694
Figure 2004109694
Figure 2004109694
図7〜9に実施例3の断面図を示す。この例も実施例1、2と同タイプであるが、可変ミラーの変形量を減らすために、凹、凸両側に変形するように設計してある。
【0063】
また、第1群の負パワーを強くし、広角にしてあるので、小型のデジタルカメラ、カード型デジタルカメラに向く。
Figure 2004109694
Figure 2004109694
Figure 2004109694
実施例4は、図10〜12に示すように、可変ミラーを用いたデジタルカメラ用の光学系の例である。
【0064】
この実施例は、上記の実施例1と構成はほぼ同じであるが、第2レンズを−Y方向に0.2416偏心させることで結像性能を向上させている。
又この実施例では、さらに、固体撮像素子の撮像面にはX軸を回転中心とする時計回りの回転すなわちティルトも加えてある。可変ミラー110は自由曲面形状に変形することで反射による偏心収差を抑えているが、それでも残存する偏心収差に対して、レンズの偏心や撮像面のティルトが有効である。
【0065】
図10の矢印の方向に偏心を加えることで、屈曲光学系に特有な台形ディストーションを抑える効果がある。
それぞれのレンズに加えた偏心量をδ、光学系の焦点距離をfとしたとき、
0 < |δ/f| < 0.2  ・・・式200
となることが望ましい。
【0066】
式200の範囲でレンズを偏心させることで、台形ディストーション等の収差を効果的に抑えることができる。上限である0.2を超えると、偏心量が大きくなりすぎてしまい、周辺光線の収差が大きくなってくるのでバランスの良い収差補正が困難になってしまう。
【0067】
また、固体撮像素子の撮像面に加えたティルト量をC(deg)としたとき、
0 < |C| < 15  ・・・式201
となることが望ましい。
【0068】
式201の範囲でレンズを偏心させることで、非対称成分を含む収差を効果的に抑えることができる。上限である10を超えると、像面の両端における入射光の主光線傾角の差が大きくなりすぎてしまい、シェーディング等によって像面の両端での明るさが変わってきてしまう。
【0069】
0 < |C| < 8  ・・・式201−1
とすればシェーディングの点ではなお良い。
0 < |C| < 3  ・・・式201−2
とすればさらに良い。
【0070】
本発明に共通して言えることであるが、変倍光学系の場合、本発明の各条件式に対して少なくとも一つのズーム状態においてその条件式を満たしていればよい。又変倍光学系の場合、変倍群が正パワーを持てばレンズ構成はレトロフォーカスタイプを取りやすく広角化が容易でよい。変倍群が負パワーを持てば変倍群の少ない移動量で大きな変倍が実現できてよい。
【0071】
又、最も物体寄りの光学面と撮像素子の結像面の位置関係が固定されているので、光学装置の機械設計が楽である。又、光学特性可変光学素子は複数個用いてもよい。
【0072】
なお、可変ミラーの代わりに可変焦点レンズを用いてもよい。本願の式は近軸理論に基づくものが大部分なので、それらについては可変焦点レンズについても成り立つのである。
【0073】
また本発明の光学系に共通して言えることであるが、明るさ絞りは可変ミラーの後方に配置するのが良い。なぜなら可変ミラーの前方に配置すると、絞りから可変ミラー後群までの距離が長くなりすぎ、主光線の高さが絞り後群で高くなりすぎ、軸外の収差補正が困難になるからである。
【0074】
又、可変ミラーは変倍を主に行うレンズ群の前方に配置するのが望ましい。なぜなら可変ミラーがピント合わせ機能を有する場合、物体距離の変化とともに可変ミラーのパワーを変化させることになるが、変倍群が可変ミラーの後方にあれば変倍群の倍率に関係なく物体距離に応じて可変ミラーのパワーを変化させてフォーカスを行えば良く、光学設計上、可変ミラーの制御上、考え方がシンプルになり撮像系を設計しやすいからである。そしてこのメリットは、可変ミラーがコンペセータ機能を有する場合でも、有しない場合でも言える。
【0075】
最後に各実施例における座標系の定義について述べておく。
(実施例1〜4)
物体中心を出てかつ物体面に垂直な直線をZ軸とする。光学系に入射する光線の進行方向をZ軸正方向とし、このZ軸と像面中心を含む平面をY−Z平面とし、原点を通りY−Z平面に直交し、紙面の手前から裏面側に向かう方向をX軸正方向とし、X軸、Z軸と右手直交座標系を構成する軸をY軸とする。
【0076】
これらの実施例では、このY−Z平面内で各面の偏心を行っており、また、各回転非対称自由曲面の唯一の対称面をY−Z面としている。
偏心を行うときの座標系の原点は、偏心を行う面をk面としたとき、k−1面の面頂位置からZ軸方向に面間隔の分だけ移動した点とする。
【0077】
偏心面については、対応する座標系の原点から、その面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX、Y、Z)と、その面の中心軸(自由曲面については、前記(a)式のZ軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα、β、γ(°))とが与えられている。なお、その場合、αとβの符号はそれぞれX軸、Y軸の正方向に対して時計回りを正とし、γの符号はZ軸の正方向に対して時計回りを正とする。
【0078】
偏心はディセンタアンドリターンで行われる。つまり、k面が偏心していたときに、k+1面の面頂位置は、偏心前のk面の面頂位置からZ軸方向に面間隔の分だけ移動した点とする。
【0079】
偏心の順序は、その面の面頂位置をX軸方向、Y軸方向、Z軸方向にそれぞれX、Y、Zだけ偏心させた後、その面のX軸を中心とする回転角α、Y軸を中心とする回転角β、Z軸を中心とする回転角γ、の順にティルトが行われる。
【0080】
また、反射面の偏心の表現は、以下のようになる。偏心は全てY−Z面内で行われるので、反射面の回転角をX軸中心の回転角αだけで表現できる。β、γは常に0となる。そして、反射面をαだけ回転させたとき、光線が反射面で反射された後の光学系の座標系は、反射前の座標系を2αだけ回転させたものとして定義する。このとき、反射前と反射後で、軸上主光線の進行方向と光学系のZ軸正方向が逆になるので注意が必要である。
【0081】
また、ミラー面の変形の符号については、ミラー面が自由曲面形状に変形しているとき、パワー成分であるC4、C6が正のとき、凸面ミラーになる。つまり、負のパワーを持つミラーになる。逆に、パワー成分であるC4、C6が負のとき、凹面ミラーになる。つまり、正のパワーを持つミラーになる。
【0082】
以上の説明では、すべて可変ミラーを用いた変倍光学系について述べてきた。しかしながら、可変ミラーの代わりに通常の(形状の変わらない)ミラーあるいはプリズムを用いた場合にも、特に支障を来さない限り前述の条件式・制限等を適用してよい。なぜならミラーを用いた折り曲げ光学系の小型化のメリットはそのまま保たれるからである。また可変ミラーのパワーは弱いので、通常のミラーあるいはプリズムに置き換えることも技術的に容易である。又ミラーの代わりに光学特性の変わらない光学素子(例えば、通常のレンズ、平行平板、プリズム、空気間隔、等)を用いてもよい。近軸の条件式はこの場合にも適用できるからである。
【0083】
又、可変ミラーの役割として、物体距離が変わった場合のピント調節及び変倍時のピント移動の補償に用いる例について述べたが、いずれか一方の作用のために用いるだけでもよい。例えば、パンフォーカスなレンズでは変倍時のピント移動の補償に用いるだけでよい。あるいは変倍時のピント移動が小さい光学系ならば、可変ミラーを物体距離変化時のピント調節に用いるだけでもよい。
【0084】
以上のような本発明による変倍光学系は、フィルムカメラ、デジタルカメラ、テレビカメラ、携帯端末用のカメラ、監視カメラ、ロボットの眼、携帯電話の撮像装置、電子内視鏡等に適用可能である。
【0085】
また、上述の変倍光学系では、レンズ群中に反射面を有する構成の変倍光学系について説明したが、反射面を有しない構成の変倍光学系についても可変形状面を備えた光学素子、例えば、可変焦点レンズ等を用いて構成すれば、小型化、低コスト化、省電力化、作動音の静音化等の効果を達成することが可能である。更に、可変形状面を有しない可変焦点ミラーを前記実施例に用いても良い。なお、可変焦点ミラーについては、その一例を図31を用いて後述する。
【0086】
次に、本発明の光学系あるいは撮像装置に適用可能な形状可変ミラーの構成例について説明する。
図16は本発明の変倍光学系に適用可能な可変ミラーとして光学特性可変ミラーを用いたデジタルカメラのケプラー式ファインダーの概略構成図である。本例の構成は、もちろん銀塩フィルムカメラにも使うことができる。まず、光学特性可変形状鏡409について説明する。
【0087】
光学特性可変形状鏡409は、アルミコーティングされた薄膜(反射面)409aと複数の電極409bからなる光学特性可変形状鏡(以下、単に可変形状鏡と言う。)であり、411は各電極409bにそれぞれ接続された複数の可変抵抗器、412は可変抵抗器411と電源スイッチ413を介して薄膜409aと電極409b間に接続された電源、414は複数の可変抵抗器411の抵抗値を制御するための演算装置、415,416及び417はそれぞれ演算装置414に接続された温度センサー、湿度センサー及び距離センサーで、これらは図示のように配設されて1つの光学装置を構成している。
【0088】
なお、対物レンズ902、接眼レンズ901、及び、プリズム404、二等辺直角プリズム405、ミラー406及び可変形状鏡の各面は、平面でなくてもよく、球面、回転対称非球面の他、光軸に対して偏心した球面、平面、回転対称非球面、あるいは、対称面を有する非球面、対称面を1つだけ有する非球面、対称面のない非球面、自由曲面、微分不可能な点又は線を有する面等、いかなる形状をしていてもよく、さらに、反射面でも屈折面でも光に何らかの影響を与え得る面ならばよい。以下、これらの面を総称して拡張曲面という。
【0089】
また、薄膜409aは、例えば、P.Rai−choudhury編、Handbook of MichrolithoGraphy, MichromachininG and Michrofabrication, Volume 2:MichromachininG and Michrofabrication,P495,FiG.8.58, SPIE PRESS刊やOptics Communication, 140巻(1997年)P187〜190に記載されているメンブレインミラーのように、複数の電極409bとの間に電圧が印加されると、静電気力により薄膜409aが変形してその面形状が変化するようになっており、これにより、観察者の視度に合わせたピント調整ができるだけでなく、さらに、レンズ901,902及び/又はプリズム404、二等辺直角プリズム405、ミラー406の温度や湿度変化による変形や屈折率の変化、あるいは、レンズ枠の伸縮や変形及び光学素子、枠等の部品の組立誤差による結像性能の低下が抑制され、常に適正にピント調整並びにピント調整で生じた収差の補正が行われ得る。
【0090】
なお、電極409bの形は、例えば図18、図19に示すように、薄膜409aの変形のさせ方に応じて選べばよい。
本例によれば、物体からの光は、対物レンズ902及びプリズム404の各入射面と射出面で屈折され、可変形状鏡409で反射され、プリズム404を透過して、二等辺直角プリズム405でさらに反射され(図16中、光路中の+印は、紙面の裏側へ向かって光線が進むことを示している)、ミラー406で反射され、接眼レンズ901を介して眼に入射するようになっている。このように、レンズ901,902、プリズム404,405、及び、可変形状鏡409によって、本例の光学装置の観察光学系を構成しており、これらの各光学素子の面形状と肉厚を最適化することにより、物体面の収差を最小にすることができるようになっている。
【0091】
すなわち、反射面としての薄膜409aの形状は、結像性能が最適になるように演算装置414からの信号により各可変抵抗器411の抵抗値を変化させることにより制御される。すなわち、演算装置414へ、温度センサー415、湿度センサー416及び距離サンサー417から周囲温度及び湿度並びに物体までの距離に応じた大きさの信号が入力され、演算装置414は、これらの入力信号に基づき周囲の温度及び湿度条件と物体までの距離による結像性能の低下を補償すべく、薄膜409aの形状が決定されるような電圧を電極409bに印加するように、可変抵抗器411の抵抗値を決定するための信号を出力する。このように、薄膜409aは電極409bに印加される電圧すなわち静電気力で変形させられるため、その形状は状況により非球面を含む様々な形状をとる。
【0092】
なお、距離センサー417はなくてもよく、その場合、固体撮像素子408からの像の信号の高周波成分が略最大になるように、デジタルカメラの撮像レンズ403を動かし、その位置から逆に物体距離を算出し、可変形状鏡を変形させて観察者の眼にピントが合うようにすればよい。
【0093】
また、薄膜409aをポリイミド等の合成樹脂で製作すれば、低電圧でも大きな変形が可能であるので好都合である。なお、プリズム404と可変形状鏡409を一体的に形成してユニット化することができる。また、図示を省略したが、可変形状鏡409の基板上に固体撮像素子408をリソグラフィープロセスにより一体的に形成してもよい。
【0094】
また、レンズ901,902、プリズム404,405、ミラー406は、プラスチックモールド等で形成することにより任意の所望形状の曲面を容易に形成することができ、製作も簡単である。なお、本例の撮像装置では、レンズ901,902がプリズム404から離れて形成されているが、レンズ901,902を設けることなく収差を除去することができるようにプリズム404,405、ミラー406、可変形状鏡409を設計すれば、プリズム404,405、可変形状鏡409は1つの光学ブロックとなり、組立が容易となる。また、レンズ901,902、プリズム404,405、ミラー406の一部あるいは全部をガラスで作製してもよく、このように構成すれば、さらに精度の良い撮像装置が得られる。
【0095】
なお、図16の例では、演算装置414、温度センサー415、湿度センサー416、距離センサー417を設け、温湿度変化、物体距離の変化等も可変形状鏡409で補償するようにしたが、そうではなくてもよい。つまり、演算装置414、温度センサー415、湿度センサー416、距離センサー417を省き、観察者の視度変化のみを可変形状鏡409で補正するようにしてもよい。
【0096】
図17は本発明の変倍光学系に用いる形状可変ミラーとして適用可能な可変形状鏡409の他の例を示す概略構成図である。
本例の可変形状鏡は、薄膜409aと電極409bとの間に圧電素子409cが介装されていて、これらが支持台423上に設けられている。そして、圧電素子409cに加わる電圧を各電極409b毎に変えることにより、圧電素子409cに部分的に異なる伸縮を生じさせて、薄膜409aの形状を変えることができるようになっている。電極409bの形は、図18に示すように同心分割であってもよいし、図19に示すように矩形分割であってもよく、その他、適宜の形のものを選択することができる。
【0097】
図17中、424は演算装置414に接続された振れ(ブレ)センサーであって、例えばデジタルカメラの振れを検知し、振れによる像の乱れを補償するように薄膜409aを変形させるべく、演算装置414及び可変抵抗器411を介して電極409bに印加される電圧を変化させる。このとき、温度センサー415、湿度センサー416及び距離センサー417からの信号も同時に考慮され、ピント合わせ、温湿度補償等が行われる。この場合、薄膜409aには圧電素子409cの変形に伴う応力が加わるので、薄膜409aの厚さはある程度厚めに作られて相応の強度を持たせるようにするのがよい。
【0098】
図20は本発明の変倍光学系に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
本例の可変形状鏡は、薄膜409aと電極409bの間に介置される圧電素子が逆方向の圧電特性を持つ材料で作られた2枚の圧電素子409c及び409c’で構成されている点で図17に示された実施例の可変形状鏡とは異なる。すなわち、圧電素子409cと409c’が強誘電性結晶で作られているとすれば、結晶軸の向きが互いに逆になるように配置される。この場合、圧電素子409cと409c’は電圧が印加されると逆方向に伸縮するので、薄膜409aを変形させる力が図17に示した実施例の場合よりも強くなり、結果的にミラー表面の形を大きく変えることができるという利点がある。
【0099】
圧電素子409c,409c’に用いる材料としては、例えばチタン酸バリウム、ロッシエル塩、水晶、電気石、リン酸二水素カリウム(KDP)、リン酸二水素アンモニウム(ADP)、ニオブ酸リチウム等の圧電物質、同物質の多結晶体、同物質の結晶、PbZrO3とPbTiO3の固溶体の圧電セラミックス、二フッ化ポリビニール(PVDF)等の有機圧電物質、上記以外の強誘電体等があり、特に有機圧電物質はヤング率が小さく、低電圧でも大きな変形が可能であるので好ましい。なお、これらの圧電素子を利用する場合、厚さを不均一にすれば、上記例において薄膜409aの形状を適切に変形させることも可能である。
【0100】
また、圧電素子409c,409c’の材質としては、ポリウレタン、シリコンゴム、アクリルエラストマー、PZT、PLZT、ポリフッ化ビニリデン(PVDF)等の高分子圧電体、シアン化ビニリデン共重合体、ビニリデンフルオライドとトリフルオロエチレンの共重合体等が用いられる。圧電性を有する有機材料や、圧電性を有する合成樹脂、圧電性を有するエラストマー等を用いると可変形状鏡面の大きな変形が実現できてよい。
【0101】
なお、図17、図21の圧電素子409cに電歪材料、例えば、アクリルエラストマー、シリコンゴム等を用いる場合には、圧電素子409cを別の基板409c−1と電歪材料409c−2を貼り合わせた構造にしてもよい。
【0102】
図21は本発明の変倍光学系に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
本例の可変形状鏡は、圧電素子409cが薄膜409aと電極409dとにより挟持され、薄膜409aと電極409d間に演算装置414により制御される駆動回路425を介して電圧が印加されるようになっており、さらにこれとは別に、支持台423上に設けられた電極409bにも演算装置414により制御される駆動回路425を介して電圧が印加されるように構成されている。したがって、本例では、薄膜409aは電極409dとの間に印加される電圧と電極409bに印加される電圧による静電気力とにより二重に変形され得、上記例に示した何れのものよりもより多くの変形パターンが可能であり、かつ、応答性も速いという利点がある。
【0103】
そして、薄膜409a、電極409d間の電圧の符号を変えれば、可変形状鏡を凸面にも凹面にも変形させることができる。その場合、大きな変形を圧電効果で行ない、微細な形状変化を静電気力で行なってもよい。また、凸面の変形には圧電効果を主に用い、凹面の変形には静電気力を主に用いてもよい。なお、電極409dは電極409bのように複数の電極から構成されてもよい。この様子を図21に示した。なお、本発明では、圧電効果と電歪効果、電歪をすべてまとめて圧電効果と述べている。従って、電歪材料も圧電材料に含むものとする。
【0104】
図22は本発明の変倍光学系に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
本例の可変形状鏡は、電磁気力を利用して反射面の形状を変化させ得るようにしたもので、支持台423の内部底面上には永久磁石426が、頂面上には窒化シリコン又はポリイミド等からなる基板409eの周縁部が載置固定されており、基板409eの表面にはアルミニウム等の金属コートで作られた薄膜409aが付設されていて、可変形状鏡409を構成している。
【0105】
基板409eの下面には複数のコイル427が配設されており、これらのコイル427はそれぞれ駆動回路428を介して演算装置414に接続されている。したがって、各センサー415,416,417,424からの信号によって演算装置414において求められる光学系の変化に対応した演算装置414からの出力信号により、各駆動回路428から各コイル427にそれぞれ適当な電流が供給されると、永久磁石426との間に働く電磁気力で各コイル427は反発又は吸着され、基板409e及び薄膜409aを変形させる。
【0106】
この場合、各コイル427はそれぞれ異なる量の電流を流すようにすることもできる。また、コイル427は1個でもよいし、永久磁石426を基板409eに付設しコイル427を支持台423の内部底面側に設けるようにしてもよい。また、コイル427はリソグラフィー等の手法で作るとよく、さらに、コイル427には強磁性体よりなる鉄心を入れるようにしてもよい。
【0107】
この場合、薄膜コイル427の巻密度を、図23に示すように、場所によって変化させることにより、基板409e及び薄膜409aに所望の変形を与えるようにすることもできる。また、コイル427は1個でもよいし、また、これらのコイル427には強磁性体よりなる鉄心を挿入してもよい。
【0108】
図24は本発明の変倍光学系に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
本例の可変形状鏡では、基板409eは鉄等の強磁性体で作られており、反射膜としての薄膜409aはアルミニウム等からなっている。この場合、薄膜コイルを設けなくてもすむから、構造が簡単で、製造コストを低減することができる。また、電源スイッチ413を切換え兼電源開閉用スイッチに置換すれば、コイル427に流れる電流の方向を変えることができ、基板409e及び薄膜409aの形状を自由に変えることができる。
【0109】
図25は本例におけるコイル427の配置を示し、図26はコイル427の他の配置例を示しているが、これらの配置は、図22に示した実施例にも適用することができる。なお、図27は、図22に示した例において、コイル427を図30のように配置した場合に適する永久磁石426の配置を示している。すなわち、図27に示すように永久磁石426を放射状に配置すれば、図22に示した例に比べて、微妙な変形を基板409e及び薄膜409aに与えることができる。また、このように電磁気力を用いて基板409e及び薄膜409aを変形させる場合(図22及び図24の例)は、静電気力を用いた場合よりも低電圧で駆動できるという利点がある。
【0110】
以上いくつかの可変形状鏡の例を述べたが、ミラーの形を変形させるのに、図21の例に示すように、2種類以上の力を用いてもよい。つまり静電気力、電磁力、圧電効果、磁歪、流体の圧力、電場、磁場、温度変化、電磁波等のうちから2つ以上を同時に用いて可変形状鏡を変形させてもよい。つまり2つ以上の異なる駆動方法を用いて光学特性可変光学素子を作れば、大きな変形と微細な変形とを同時に実現でき、精度の良い鏡面が実現できる。
【0111】
また、形状可変ミラーの変形する部分の外形は、軸上光線の入射面に平行な方向に長い形状とするのが好ましく、このように構成すれば、収差補正に有利な楕円面に近い形状に変形させやすいという利点がある。前記入射面に平行な方向に長い形状としては、トラック形状、多角形、楕円等が利用できる。
【0112】
図28は本発明の変倍光学系を用いた撮像装置に適用可能な形状可変ミラーとして可変形状鏡409を用いた撮像系、例えば携帯電話のデジタルカメラ、カプセル内視鏡、電子内視鏡、パソコン用デジタルカメラ、PDA用デジタルカメラ等に用いられる撮像系の概略構成図である。
【0113】
本例の撮像系は、可変形状鏡409と、レンズ902と、固体撮像素子408と、制御系103とで一つの撮像ユニット104を構成している。本例の撮像ユニット104では、レンズ102を通った物体からの光は可変形状鏡409で集光され、固体撮像素子408の上に結像する。可変形状鏡409は、光学特性可変光学素子の一種であり、可変焦点ミラーとも呼ばれている。
【0114】
本例によれば、物体距離が変わっても可変形状鏡409を変形させることでピント合わせをすることができ、レンズをモータ等で駆動する必要がなく、小型化、軽量化、低消費電力化の点で優れている。また、撮像ユニット104は本発明の撮像系としてすべての実施例で用いることができる。また、可変形状鏡409を複数用いることでズーム、変倍の撮像系、光学系を作ることができる。
【0115】
なお、図28では、制御系103にコイルを用いたトランスの昇圧回路を含む制御系の構成例を示している。特に積層型圧電トランスを用いると、小型化できてよい。昇圧回路は本発明のすべての電気を用いる可変形状鏡、可変焦点レンズに用いることができるが、特に静電気力、圧電効果を用いる場合の可変形状鏡、可変焦点レンズに有用である。
【0116】
図29は本発明の変倍光学系に用いる形状可変ミラーとして適用可能なさらに他の例に係る、マイクロポンプ180で流体161を出し入れしミラー面を変形させる可変形状鏡188の概略構成図である。本例によれば、ミラー面を大きく変形させることが可能になるというメリットがある。マイクロポンプ180は、例えば、マイクロマシンの技術で作られた小型のポンプで、電力で動くように構成されている。マイクロマシンの技術で作られたポンプの例としては、熱変形を利用したもの、圧電材料を用いたもの、静電気力を用いたものなどがある。
【0117】
図30は本発明の変倍光学系に用いる形状可変ミラーに適用可能なマイクロポンプの一例を示す概略構成図である。本例のマイクロポンプ180では、振動板181は静電気力、圧電効果等の電気力により振動する。図30では静電気力により振動する例を示しており、図30中、182,183は電極である。また、点線は変形した時の振動板181を示している。振動板181の振動に伴い、2つの弁184,185が開閉し、流体161を右から左へ送るようになっている。
【0118】
本例の可変形状鏡188では、反射膜189が流体161の量に応じて凹凸に変形することで、可変形状鏡として機能する。可変形状鏡188は流体161で駆動されている。流体としては、シリコンオイル、空気、水、ゼリー、等の有機物、無機物を用いることができる。
【0119】
なお、静電気力、圧電効果を用いた可変形状鏡、可変焦点レンズなどにおいては、駆動用に高電圧が必要になる場合がある。その場合には、例えば図28に示すように、昇圧用のトランス、あるいは圧電トランス等を用いて制御系を構成するとよい。
【0120】
また、反射用の薄膜409aは、変形しない部分にも設けておくと、可変形状鏡の形状を干渉計等で測定する場合に、基準面として使うことができ便利である。
【0121】
図31は本発明の変倍光学系に適用可能な、可変焦点レンズを応用した可変焦点ミラーを示すものである。この可変焦点ミラー565は、第1,第2の面566a,566bを有する第1の透明基板566と、第3,第4の面567a,567bを有する第2の透明基板567とを有する。第1の透明基板566は、平板状またはレンズ状に形成して、内面(第2の面)566bに透明電極513aを設け、第2の透明基板567は、内面(第3の面)567aを凹面状に形成して、該凹面上に反射膜568を施し、さらにこの反射膜568上に透明電極513bを設ける。透明電極513a,513b間には高分子分散液晶層514を設け、これら透明電極513a,513bをスイッチ515および可変抵抗器519を経て交流電源516に接続して、高分子分散液晶層514に交流電界を印加するようにする。なお、図31では液晶分子の図示を省略してある。513a、514、513bからなる可変焦点レンズと、567、568からなる凹面鏡を組み合わせた構造になっている。
【0122】
かかる構成によれば、透明基板566側から入射する光線は、反射膜568により高分子分散液晶層514を折り返す光路となるので、高分子分散液晶層514の作用を2回もたせることができると共に、高分子分散液晶層514への印加電圧を変えることにより、反射光の焦点位置を変えることができる。この場合、可変焦点ミラー565に入射した光線は、高分子分散液晶層514を2回透過するので、高分子分散液晶層514の厚さの2倍をtとすれば、上記の各式を同様に用いることができる。なお、透明基板566または567の内面を回折格子状にして、高分子分散液晶層514の厚さを薄くすることもできる。このようにすれば、散乱光をより少なくできる利点がある。
【0123】
以上の説明では、液晶の劣化を防止するため、電源として交流電源516を用いて、液晶に交流電界を印加するようにしたが、直流電源を用いて液晶に直流電界を印加するようにすることもできる。また、液晶分子の方向を変える方法としては、電圧を変化させること以外に、液晶にかける電場の周波数、液晶にかける磁場の強さ・周波数、あるいは液晶の温度等を変化させることによってもよい。なお、本発明では図31のような形状の変化しない可変焦点ミラーも、可変形状鏡の中に含めるものとする。
【0124】
図32は本発明の変倍光学系に用いる形状可変ミラーとして適用可能な可変形状鏡のさらに他の例を示す概略構成図である。本例では、デジタルカメラに用いられるものとして説明する。図32中、411は可変抵抗器、414は演算装置、415は温度センサー、416は湿度センサー、417は距離センサー、424は振れセンサーである。
【0125】
本例の可変形状鏡45は、アクリルエラストマー等の有機材料からなる電歪材料453と間を隔てて分割電極409bを設け、電歪材料453の上に順に電極452、変形可能な基板451を設け、さらにその上に入射光を反射するアルミニウム等の金属からなる反射膜450を設けて構成されている。このように構成すると、分割電極409bを電歪材料453と一体化した場合に比べて、反射膜450の面形状が滑らかになり、光学的に収差を発生させにくくなるというメリットがある。なお、変形可能な基板451と電極452の配置は逆でも良い。
【0126】
また、図32中、449は光学系の変倍、あるいはズームを行なう釦であり、可変形状鏡45は、釦449を使用者が押すことで反射膜450の形を変形させて、変倍あるいは、ズームをすることができるように演算装置414を介して制御されている。
【0127】
なお、アクリルエラストマー等の有機材料からなる電歪材料の代わりに既に述べたチタン酸バリウム等の圧電材料を用いてもよい。
最後に、本発明で用いる用語の定義を述べておく。
【0128】
光学装置とは、光学系あるいは光学素子を含む装置のことである。光学装置単体で機能しなくてもよい。つまり、装置の一部でもよい。光学装置には、撮像装置、観察装置、表示装置、照明装置、信号処理装置等が含まれる。
【0129】
撮像装置の例としては、フィルムカメラ、デジタルカメラ、ロボットの眼、レンズ交換式デジタル一眼レフカメラ、テレビカメラ、動画記録装置、電子動画記録装置、カムコーダ、VTRカメラ、電子内視鏡等がある。デジタルカメラ、カード型デジタルカメラ、携帯端末用のデジタルカメラ、携帯電話用のデジタルカメラ、テレビカメラ、VTRカメラ、動画記録カメラなどはいずれも電子撮像装置の一例である。
【0130】
観察装置の例としては、顕微鏡、望遠鏡、眼鏡、双眼鏡、ルーペ、ファイバースコープ、ファインダー、ビューファインダー等がある。
表示装置の例としては、液晶ディスプレイ、ビューファインダー、ゲームマシン(ソニー社製プレイステーション)、ビデオプロジェクター、液晶プロジェクター、頭部装着型画像表示装置(head mounted display:HMD)、PDA(携帯情報端末)、携帯電話等がある。
【0131】
照明装置の例としては、カメラのストロボ、自動車のヘッドライト、内視鏡光源、顕微鏡光源等がある。
信号処理装置の例としては、携帯電話、パソコン、ゲームマシン、光ディスクの読取・書込装置、光計算機の演算装置等がある。
【0132】
なお、本発明の光学系は小型軽量なので、電子撮像装置、信号処理装置、特に、デジタルカメラ、携帯電話の撮像系に用いると効果がある。
撮像素子は、例えばCCD、撮像管、固体撮像素子、写真フィルム等を指す。また、平行平面板はプリズムの1つに含まれるものとする。観察者の変化には、視度の変化を含むものとする。被写体の変化には、被写体となる物体距離の変化、物体の移動、物体の動き、振動、物体のぶれ等を含むものとする。
【0133】
拡張曲面の定義は以下の通りである。
球面、平面、回転対称非球面のほか、光軸に対して偏心した球面、平面、回転対称非球面、あるいは対称面を有する非球面、対称面を1つだけ有する非球面、対称面のない非球面、自由曲面、微分不可能な点や線を有する面等、いかなる形をしていても良い。反射面でも、屈折面でも、光になんらかの影響を与えうる面ならば良い。本発明では、これらを総称して拡張曲面と呼ぶことにする。
【0134】
光学特性可変光学素子とは、可変焦点レンズ、可変形状鏡、面形状の変わる偏光プリズム、頂角可変プリズム、光偏向作用の変わる可変回折光学素子、つまり可変HOE,可変DOE等を含む。可変焦点レンズには、焦点距離が変化せず、収差量が変化するような可変レンズも含むものとする。可変形状鏡についても同様である。要するに、光学素子で、光の反射、屈折、回折等の光偏向作用が変化しうるものを光学特性可変光学素子と呼ぶ。
【0135】
情報発信装置とは、携帯電話、固定式の電話、ゲームマシン、テレビ、ラジカセ、ステレオ等のリモコンや、パソコン、パソコンのキーボード、マウス、タッチパネル等の何らかの情報を入力し、送信することができる装置を指す。撮像装置のついたテレビモニター、パソコンのモニター、ディスプレイも含むものとする。情報発信装置は、信号処理装置の中に含まれる。
【0136】
以上説明したように、本発明による光学系並びに光学装置は、例えば下記に示す特徴を備える。
(1) 式101を満たすi,jの組が少なくともいずれかの変倍状態で存在することを特徴とする、光学特性可変素子を備えた変倍光学系。
{βi−(−1)}{βj−(−1)}・fi・fj<0   ・・・式101
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
ただし、βiはi群の倍率、βjはj群の倍率、fiはi群の焦点距離、fjはj群の焦点距離である。
(2) 式102を満たすi,jの組が少なくともいずれかの変倍状態で存在することを特徴とする、光学特性可変素子を備えた変倍光学系。
{(∂βi/∂Di)・(∂IOi/∂Di)}{(∂βj/∂Dj)・(∂IOj/∂Dj)}<0   ・・・式102
i≠j、 i=0、1、2、3、・・・
j=0、1、2、3、・・・
i、jは光学素子群の番号
ただし、βiはi群の倍率、βjはj群の倍率、Diは変倍時のi群の移動量、Djは変倍時のj群の移動量、IOiはi群の物体〜像距離、IOjはj群の物体〜像距離である。
(3) 式103を満たすことを特徴とする、光学特性可変素子を備えた変倍光学系。
|IO差/IO合計T|≦0.2  ・・・式103
ただし、IO差は望遠端状態でのIO合計(=ΣIOi)を基準とした、他の状態でのIO合計との差、IO合計Tは望遠端状態におけるIO合計である。
(4) 少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする(1)に記載の変倍光学系。
(5) 正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする(1)に記載の変倍光学系。
(6) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする(1)に記載の変倍光学系。
(7) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする(1)に記載の変倍光学系。
(8) 少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする(2)に記載の変倍光学系。
(9) 正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする(2)に記載の変倍光学系。
(10) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする(2)に記載の変倍光学系。
(11) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする(2)に記載の変倍光学系。
(12) 少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする(3)に記載の変倍光学系。
(13) 正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする(3)に記載の変倍光学系。
(14) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする(3)に記載の変倍光学系。
(15) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする(3)に記載の変倍光学系。
(16) 式105を満たすことを特徴とする、光学特性可変素子を備えた変倍光学系。
|βr|>0.2  ・・・式105
ただし、βrは光学特性可変素子より後方の光学系の倍率である。
(17) 少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とする(16)に記載の変倍光学系。
(18) 正パワーの光学素子群、負パワーの光学素子群、正パワーの光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時少なくとも1つの光学素子群が移動することを特徴とする(16)に記載の変倍光学系。
(19) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記2つのなくとも1つの光学素子群が移動することを特徴とする(16)に記載の変倍光学系。
(20) 第1の光学素子群、第1の光学素子群とは異なる符号のパワーを有す第2の光学素子群、第1の光学素子群と同じ符号のパワーを有す第3の光学素子群の順に配置された光学素子を含み、かつ光学特性可変光学素子を有し変倍時、前記第1、第3の光学素子群が常に同量だけ移動することを特徴とする(16)に記載の変倍光学系。
(21) 少なくとも3つの光学素子群を有し、変倍時少なくとも1つの光学素子群が移動することを特徴とし、式110乃至112の少なくとも1つ以上をある状態で満たす光学特性可変光学素子を備えた変倍光学系。
0.2<|β1|<2  ・・・式110
0.2<|β3|<3  ・・・式111
0.4<|β2|<1.7  ・・・式112
ただし、β1は1群の倍率、β2は2群の倍率、β3は3群の倍率である。
(22) 光学面が偏心していることを特徴とする(1)乃至(21)に記載の変倍光学系。
(23) 光学面の偏心が式200を満たすことを特徴とする(1)乃至(21)に記載の変倍光学系。
【0137】
0 < |δ/f| < 0.2  ・・・式200
ただし、δはそれぞれの光学面に加えた偏心量、fは光学系の焦点距離である。
(24) 結像面が偏心していることを特徴とする(1)乃至(21)に記載の変倍光学系。
(25) 結像面の偏心C(deg)が式201を満たすことを特徴とする(1)乃至(21)に記載の変倍光学系。
【0138】
0 < |C| < 15  ・・・式201
(26) 回転対称なレンズを有すことを特徴とする(1)乃至(21)に記載の変倍光学系。
(27) 光学特性可変素子が移動する光学素子群の前方にあることを特徴とする(1)乃至(21)に記載の変倍光学系。
(28) 明るさ絞りが光学特性可変素子の後方にあることを特徴とする(1)乃至(21)に記載の変倍光学系。
(29) 最も物体寄りの光学面と、結像面の位置関係が固定されていることを特徴とする(1)乃至(21)に記載の変倍光学系。
(30) 前記光学特性可変光学素子に代えて光学特性が変わらない通常の光学素子を用いたことを特徴とする(1)乃至(21)に記載の変倍光学系。
【0139】
【発明の効果】
以上の説明から明らかなように、本発明の光学特性可変素子を備えた変倍光学系によれば、消費電力が小さく、音が静かで、応答時間が短く、機械的構造が簡単でコストダウンに寄与するとともに、外径が細く小型であるにもかかわらず、フォーカシング、及びズーミングが可能で、ズーム比の大きい変倍光学系を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1の望遠端での断面図である。
【図2】本発明の実施例1の標準状態での断面図である。
【図3】本発明の実施例1の広角端での断面図である。
【図4】本発明の実施例2の望遠端での断面図である。
【図5】本発明の実施例2の標準状態での断面図である。
【図6】本発明の実施例2の広角端での断面図である。
【図7】本発明の実施例3の望遠端での断面図である。
【図8】本発明の実施例3の標準状態での断面図である。
【図9】本発明の実施例3の広角端での断面図である。
【図10】本発明の実施例4の望遠端での断面図である。
【図11】本発明の実施例4の標準状態での断面図である。
【図12】本発明の実施例4の広角端での断面図である。
【図13】回転非対称な像面湾曲の説明図である。
【図14】回転非対称な非点収差の説明図である。
【図15】回転非対称なコマ収差の説明図である。
【図16】本発明に適用可能な形状可変ミラーとしての光学特性可変ミラーを用いたデジタルカメラのケプラー式ファインダーの概略構成図である。
【図17】本発明に用いる形状可変ミラーとして適用可能な可変形状鏡409の他の例を示す概略構成図である。
【図18】図17の例の可変形状鏡に用いる電極の一形態を示す説明図である。
【図19】図17の例の可変形状鏡に用いる電極の他の形態を示す説明図である。
【図20】本発明に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
【図21】本発明に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
【図22】本発明に用いる形状可変ミラーとして適用可能な可変形状鏡409のさらに他の例を示す概略構成図である。
【図23】図22の例における薄膜コイル427の巻密度の状態を示す説明図である。
【図24】本発明の変倍光学系に用いる形状可変ミラーとして適用可能
な可変形状鏡409のさらに他の例を示す概略構成図である。
【図25】図24の例におけるコイル427の一配置例を示す説明図である。
【図26】図24の例におけるコイル427の他の配置例を示す説明図である。
【図27】図22に示した例において、コイル427を図26のように配置した場合に適する永久磁石426の配置を示す説明図である。
【図28】本発明の変倍光学系を用いた撮像装置に適用可能な形状可変
ミラーとしての可変形状鏡409を用いた撮像系の概略構成図である。
【図29】本発明に用いる形状可変ミラーとして適用可能なさらに他の例の可変形状鏡188の概略構成図である。
【図30】本発明に用いる形状可変ミラーに適用可能なマイクロポンプの一例を示す概略構成図である。
【図31】本発明に適用可能な、可変焦点レンズを応用した可変焦点ミラーを示す図である。
【図32】本発明に用いる形状可変ミラーに適用可能な可変形状鏡のさらに他の例を示す概略構成図である。
【図33】本発明の実施例1〜4における条件式等の値を示す表である。
【符号の説明】
301  可変ミラー

Claims (3)

  1. 以下の式101を満たすi,jの組が少なくともいずれかの変倍状態で存在することを特徴とする、光学特性可変素子を備えた変倍光学系。
    {βi−(−1)}{βj−(−1)}・fi・fj<0   ・・・式101
    i≠j、 i=0、1、2、3、・・・
    j=0、1、2、3、・・・
    i、jは光学素子群の番号
    ただし、βiはi群の倍率、βjはj群の倍率、fiはi群の焦点距離、fjはj群の焦点距離である。
  2. 以下の式102を満たすi,jの組が少なくともいずれかの変倍状態で存在することを特徴とする、光学特性可変素子を備えた変倍光学系。
    {(∂βi/∂Di)・(∂IOi/∂Di)}{(∂βj/∂Dj)・(∂IOj/∂Dj)}<0   ・・・式102
    i≠j、 i=0、1、2、3、・・・
    j=0、1、2、3、・・・
    i、jは光学素子群の番号
    ただし、βiはi群の倍率、βjはj群の倍率、Diは変倍時のi群の移動量、Djは変倍時のj群の移動量、IOiはi群の物体〜像距離、IOjはj群の物体〜像距離である。
  3. 以下の式103を満たすことを特徴とする、光学特性可変素子を備えた変倍光学系。
    |IO差/IO合計T|≦0.2  ・・・式103
    ただし、IO差は望遠端状態でのIO合計(=ΣIOi)を基準とした、他の状態でのIO合計との差、IO合計Tは望遠端状態におけるIO合計である。
JP2002274010A 2002-09-19 2002-09-19 光学特性可変素子を備えた変倍光学系 Withdrawn JP2004109694A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274010A JP2004109694A (ja) 2002-09-19 2002-09-19 光学特性可変素子を備えた変倍光学系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274010A JP2004109694A (ja) 2002-09-19 2002-09-19 光学特性可変素子を備えた変倍光学系

Publications (1)

Publication Number Publication Date
JP2004109694A true JP2004109694A (ja) 2004-04-08

Family

ID=32270615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274010A Withdrawn JP2004109694A (ja) 2002-09-19 2002-09-19 光学特性可変素子を備えた変倍光学系

Country Status (1)

Country Link
JP (1) JP2004109694A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131740B2 (en) 2004-03-17 2006-11-07 Olympus Corporation Optical system and optical apparatus provided with the same
JP2008046348A (ja) * 2006-08-16 2008-02-28 Lasertec Corp 対物レンズ系、及びその対物レンズ系を利用した検査装置
KR100971447B1 (ko) 2007-02-16 2010-07-21 후지논 가부시키가이샤 줌 렌즈

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131740B2 (en) 2004-03-17 2006-11-07 Olympus Corporation Optical system and optical apparatus provided with the same
JP2008046348A (ja) * 2006-08-16 2008-02-28 Lasertec Corp 対物レンズ系、及びその対物レンズ系を利用した検査装置
KR100971447B1 (ko) 2007-02-16 2010-07-21 후지논 가부시키가이샤 줌 렌즈

Similar Documents

Publication Publication Date Title
JP4311905B2 (ja) 光学系
US7269344B2 (en) Optical apparatus
US7209295B2 (en) Optical system, and optical apparatus
US6961187B2 (en) Imaging device
US7009782B2 (en) Imaging optical system and imaging apparatus using the same
JP4685907B2 (ja) 撮像装置
US6801370B2 (en) Imaging optical system
JP2002228813A (ja) 変位検出機能を備えた可変形状鏡
US6924944B2 (en) Optical system, and optical apparatus
JP2004077921A (ja) ズーム光学系及びそれを用いた撮像装置
JP2002228903A (ja) 光学ユニット
US6906867B2 (en) Zoom optical system and imaging apparatus using the same
US6927920B2 (en) Zoom optical system and imaging apparatus using the same
JP2004198636A (ja) 光学系及びそれを用いた光学装置
JP2007108791A (ja) 光学装置
JP2006138950A (ja) 光学特性可変光学素子、その光偏向作用を検出する検出装置及び光学特性可変光学素子を用いた光学装置
JP2004109694A (ja) 光学特性可変素子を備えた変倍光学系
JP2002303783A (ja) 撮像装置の焦点調節ユニット
JP4307783B2 (ja) レンズ鏡胴
JP2005266128A (ja) 光学系及びそれを備えた光学装置
JP2006053275A (ja) 光学系
JP2006053274A (ja) 光学系及びそれを備えた光学装置
JP2004102219A (ja) 光学系及びそれを用いた光学装置
JP2003233006A (ja) ズーム光学系及びそれを用いた撮像装置
JP2007121944A (ja) 撮像光学系および観察光学系

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110