【0001】
【発明が属する技術分野】
本発明は、建物の内部で植物を栽培するために適した建物の構造に関し、特に栽培植物にとって最良の環境を提供し、年間を通じて計画生産を可能とし、光熱量等のランニングコストと自然環境に与える負荷を最小に抑制できると共に建物内部での光量の均一化を図る、植物栽培工場を提供するものである。
【0002】
【従来の技術】
通常の春野菜等の種蒔きは3月〜4月頃の日中気温である15℃〜20℃が適温であり、これらの作物の成育環境は5月〜6月の自然環境である温度20℃〜25℃、湿度60%〜70%、照度3万〜4万ルクスが最適とされている。
また、従来公知の植物栽培建物としては、ビニールハウスやガラス温室等が一般的であって、その他の建物を用いる場合には、室内照度を十分に取るために大きな採光窓部を設ける等の手法が採用されていた。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の植物栽培工場又は建物にあっては、自然光を多く利用すると室内からの放熱が大きく、光熱費が増大すると共に自然環境にも負荷をかける欠点があった。また、採光量を制限すると、栽培室内での光量分布に大きなばらつきが生ずる欠点の他、無駄なエネルギーの消費にもなっていた。本発明はこのような点に鑑み、上記植物栽培に最適な室内環境を容易に作り出し、また、作物の種類によって異なる最適条件を通年で可能とし、しかも熱損失を少なくすると共に十分かつ均一な照度を自然光より得るようにした植物栽培工場を提供するものである。
【0004】
【課題を解決するための手段】
本発明は植物栽培工場のための建物構造であって、建物の略南側面を構成するガラス窓側面と天井部及び略北側面を構成するドーム形壁面とを有し、上記ガラス窓側面は複数の柱と梁で支持される二重ガラス窓により構成され、上記ドーム形壁面はリブ付外鈑と断熱層と内張鈑からなる壁体であり、該内張鈑の内側面は鏡面とされており、上記ドーム形壁面の少なくとも北側略半分は円弧状に湾曲されている。
また、少なくとも採光量調節用カーテンと温度、湿度、炭酸ガス濃度の調節手段を有し、植物栽培工場のための建物は、床暖房用基礎上に設置されている。
【0005】
【発明の実施の形態】
本発明の実施の形態を図1乃至図3により説明する。
図1は、本発明に係る植物栽培工場のための建物10の外観の一部を示す斜視図であって、一般的に南側面を構成するガラス窓側面20と、該ガラス窓側面20の上端部から建物10の天井部及び北側壁面を構成するドーム形壁面30とから構成され、該建物10の長手方向の少なくとも両端面には端壁体11,11(図には一方を示す)が設けられている。
【0006】
また、端壁体11,11の他にも建物10の内部適所には、該端壁体11と同様の中間壁体が任意数設置されるが、これらは図示が省略されている。そして、これら端壁体11及び中間壁体の夫々には、当然に扉12,12が設置されている。この様な植物栽培工場を形成する建物10は一般的に基礎13の上に設置され、上述のごとく建物10の長手方向が略東西方向に沿って設置され、従って図2から明らかなように、該建物10の南側がガラス窓側面20による自然光の採光側となり、北側がドーム形壁面30による光遮蔽構造とされている。
なお、ここでガラス窓と言う用語は、厳密にガラス板を用いたものに限定する意味ではなく、透明板材からなる通常の窓を意味し、実施例の場合には二重の板ガラス窓を用いている。
【0007】
ガラス窓側面20自体の構造は格別新規なものではなく、多数の柱21〜21と梁22〜22からなる構造体にフレーム23〜23を設置し、該フレーム23〜23部分には二重の板ガラス24〜24を装着することにより、採光を保証しながら断熱性を確保している。
【0008】
建物10の天井部及び北側壁面部を構成するドーム形壁面30は、後にその構造を詳述するけれども、全体が湾曲した壁を構成する構造体として形成され、上記ガラス窓側面20の柱21〜21、梁22〜22と共に建物10の骨格を形成している。そして図2からも明らかなように、建物10の側面視略中央部分から北側の側面は、その湾曲状態が概略4分の1の円弧状を呈している。
【0009】
上記建物10の長さ方向、すなわち略東西方向の長さは適宜であり、例えば数10mから100m以上でも良いけれども、該建物10の断面寸法は、この実施例の場合、ガラス窓側面20とドーム形壁面30の各基礎部分における巾Dは約10mであり、ドーム形壁面30の最高位置である屋根頂部の高さHは約6m、ガラス窓側面20の上部梁22の高さhは約5mとして設計されている。
【0010】
建物10の基礎は、一般的なべた基礎13の上部に断熱材層14を施し、床材内に多数の温水用パイプ15を敷設して床暖房形式としている。なお、建物10の室内には、例えばクーラー16、加湿器17,17及び温度、湿度、光量、炭酸ガス量等を自動的に制御するための各種のセンサー18が設けられている。
また、図2中の符号19A〜19Aは給気ダクトのためのパイプの断面を示し、同じく19Bは室内換気のための排気ファンを夫々示している。
【0011】
上述のガラス窓側面20は、全面を二重ガラス窓面とされており、フレーム23〜23に透明ガラス24〜24を二重に設置したものである。
また、該ガラス窓側面20の上端部には、カーテン25のための昇降機が設けられており、センサー18による光量の変化を感知して自動的に作動するものである。
【0012】
同様に、センサー18からの温度信号によって、クーラー16又は給気ダクトからの給気温度を調節可能であると共に、床面に埋設された温水用パイプ15による給湯温度を調節出来る構造である。更に同様に、室内の湿度を例えば60%〜70%に維持するために、センサー18の信号によって加湿器17,17を作動制御することができ、更に、室内の炭酸ガスの濃度も調節可能としている。
【0013】
本発明の最も特徴的構成であるドーム形壁面30の構造を図2及び図3によって説明する。
上述のようにドーム形壁面30は、ガラス窓側面20の柱21〜21、梁22〜22と共に、建物10のための骨格をなす構造体を構成し、そのため、該ドーム形壁面30の外皮構造である外鈑31は、例えば厚さ1mm程度の鉄板を用いて、これを例えば300mm間隔で折曲してリブ32を設けている。
【0014】
図3に示す、ドーム形壁面30の一部断面から明らかなように、通常の圧延剛鈑の巾方向に数個所の折曲部を形成してリブ32とし、高さ約100mm程度のリブ32を形成する。続いて、このような複数のリブ32部分を有する波板をその巾方向で隣接させ、該リブ部分で互いに接続して接続部33とすることにより任意巾の波板である外鈑31を構成する。
【0015】
このような外鈑31はそのリブ32を外方とし、且つ該リブ32を建物10の巾方向に指向するごとく配置すると共に、図2に示すごとく全体を湾曲させる。この場合、外鈑31により形成されるドーム形壁面30の形状が、特に建物10の略中央部から北側の部分において、その形状が4分の1の円弧状となるごとく湾曲成形される。また、ドーム形壁面30の建物中央部より南側部分においても、緩やかな曲線となるように湾曲され、例えば実施例として、建物10の天井頂部からガラス窓側面20の上方梁22までを、約1mの緩やかな勾配を付けて湾曲させる。
【0016】
上述のごとくドーム形に形成された外鈑31の裏面には、例えば硬質発泡ウレタンのごとき材料を吹付ける等して、約100mm厚さの断熱層34を形成する。この場合、上記発泡ウレタン層の形成の手順は、本発明の要旨と関係なく自由であると共に、断熱材そのものを限定するものでもない。
【0017】
符号35で示す内張鈑は特に重要であって、例えば厚さ約0.3mm程度のステンレス鋼板を用いて、その建物内空間側を鏡面とするためのものである。
従って、上記リブ付き外鈑31と鏡面構成用の内張鈑35とによって発泡ウレタン断熱層34とサンドイッチ状に固定されて構成されたドーム形壁面30は、それ自体で建物10の構造体を構成する他に、後述するように、建物内部からの反射光の殆どを再反射することによって、一度入射した採光を効率良く均等に利用することができる。また、これらの外鈑31、断熱層34、内張鈑35の固定は、例えばネジ杆によりナットで固定することができる。
【0018】
上述の実施例のごとき本発明の建物にあっては、ガラス窓側面20からカーテン25により調節されて入射する自然光が、建物内部のラック上のプランター内の植物に当り、その他の光線は夫々の照射位置で反射される。そして、該反射された光線の多くはドーム形壁面30の内張鈑35に達して更に反射され、その方向は概略、ドーム形壁面30の中心方向に指向される。
そして、該ドーム形壁面30の内張鈑35は鏡面に構成されているので、反射を繰り返すことによって結果的に、入射光をより均一にかつ効率よく利用できるものである。
【0019】
【発明の効果】
本発明によれば、二重窓構造のガラス窓側面20とドーム形壁面30とを建物10の構造体としているので、植物栽培工場としての建物自体が極めて簡素であり、かつ堅牢である。また、ガラス窓側面20は二重ガラス構造であるために、広い開口面としても室内からの熱の放出を少なくすることができる。そして、ドーム形壁面30の北側略半分を円弧状の曲面とし、しかも内面を鏡面としているので、調節して採光した光線を効率良く、しかも平均して植物に照射することができる。
そして、該ドーム形壁面30の外鈑31は、リブ付き波板とされ、それ自体で構造体を構成できると共に、例えば高質発泡ウレタンのサンドイッチ構造により、上記鏡面鈑35と相俟って、極めて均質な光を栽培植物に照射することができる効果を奏するものである。
この様に、本発明の植物栽培工場用の建物によれば、室内からの熱の放出を最小限とすると共に、調節された入射光を効率良くしかも均等に栽培植物に照射することができる。
【図面の簡単な説明】
【図1】植物栽培工場用建物の一部分の斜視図である。
【図2】図1に示す建物の横断面図である。
【図3】ドーム形壁面の部分断面図である。
【符号の説明】
10 建物
11 端壁体
12 扉
13 基礎
14 断熱材層
15 温水用パイプ
16 クーラー
17 加湿器
18 センサー
19A 給気ダクトパイプ
19B 排気ファン
20 ガラス窓側面
21 柱
22 梁
23 フレーム
24 透明ガラス
25 カーテン
30 ドーム形壁面
31 外鈑
32 リブ
33 接続部
34 発泡ウレタン断熱層
35 内張鈑[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a building suitable for cultivating plants inside a building, and in particular, provides a best environment for cultivated plants, enables planned production throughout the year, reduces running costs such as light energy and natural environment. An object of the present invention is to provide a plant cultivation factory capable of minimizing the applied load and achieving uniform light quantity inside the building.
[0002]
[Prior art]
For sowing ordinary spring vegetables and the like, the optimal temperature is 15 ° C to 20 ° C, which is the daytime temperature between March and April, and the growing environment of these crops is the natural temperature of 20 ° C which is the natural environment between May and June. -25 ° C, humidity 60% -70%, and illuminance 30,000-40,000 lux are optimal.
In addition, as a conventionally known plant cultivation building, a greenhouse or a glass greenhouse is generally used, and when other buildings are used, a method such as providing a large daylighting window portion to sufficiently obtain indoor illuminance is used. Was adopted.
[0003]
[Problems to be solved by the invention]
However, such a conventional plant cultivation factory or building has a drawback that if a large amount of natural light is used, heat is radiated from the interior of the room, which increases the utility cost and places a burden on the natural environment. In addition, when the amount of collected light is limited, there is a drawback that a large variation occurs in the amount of light in the cultivation room, and further, useless energy is consumed. In view of the above, the present invention easily creates an optimal indoor environment for the above-described plant cultivation, and enables year-round optimal conditions that vary depending on the type of crop, and furthermore, reduces heat loss and provides sufficient and uniform illuminance. And a plant cultivation factory that obtains natural light from natural light.
[0004]
[Means for Solving the Problems]
The present invention is a building structure for a plant cultivation factory, having a glass window side forming a substantially south side of the building, a ceiling and a dome-shaped wall forming a substantially north side, and the glass window side has a plurality of sides. The dome-shaped wall surface is a wall body composed of a ribbed outer plate, a heat insulating layer, and a lining plate, and the inner surface of the lining plate is a mirror surface. At least a substantially half of the dome-shaped wall surface on the north side is curved in an arc shape.
In addition, a building for a plant cultivation factory is installed on a floor heating base, which has at least a curtain for controlling the amount of collected light and means for controlling the temperature, humidity, and carbon dioxide concentration.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view showing a part of the exterior of a building 10 for a plant cultivation factory according to the present invention, in which a glass window side surface 20 generally constituting a south side surface and an upper end of the glass window side surface 20 are shown. And a dome-shaped wall surface 30 constituting the northern side wall surface of the building 10 from the outside, and end walls 11, 11 (one is shown in the figure) are provided on at least both end surfaces in the longitudinal direction of the building 10. Have been.
[0006]
In addition to the end walls 11, 11, an arbitrary number of intermediate walls similar to the end walls 11 are installed at appropriate places inside the building 10, but these are not shown. Doors 12 are naturally installed on each of the end wall 11 and the intermediate wall. The building 10 forming such a plant cultivation factory is generally installed on a foundation 13, and as described above, the longitudinal direction of the building 10 is installed substantially along the east-west direction, and therefore, as apparent from FIG. The south side of the building 10 is a side where natural light is collected by the glass window side surface 20, and the north side is a light shielding structure by a dome-shaped wall surface 30.
Note that the term glass window here does not mean that the window is strictly limited to the one using a glass plate, but means a normal window made of a transparent plate material, and in the case of the embodiment, a double plate glass window is used. ing.
[0007]
The structure of the glass window side surface 20 itself is not particularly novel, and frames 23 to 23 are installed on a structure composed of a large number of columns 21 to 21 and beams 22 to 22. By mounting the plate glasses 24 to 24, heat insulation is ensured while ensuring lighting.
[0008]
The dome-shaped wall surface 30 constituting the ceiling portion and the north side wall surface portion of the building 10 is formed as a structure which constitutes a curved wall as a whole, though its structure will be described in detail later. 21 and the beams 22 to 22 form the skeleton of the building 10. As is clear from FIG. 2, the curved side of the building 10 on the north side from the substantially central portion in the side view has a substantially quarter arc shape.
[0009]
The length direction of the building 10, that is, the length in the substantially east-west direction is appropriate, and may be, for example, several tens of meters to 100 m or more. The width D at each foundation portion of the shaped wall 30 is about 10 m, the height H of the roof top, which is the highest position of the dome shaped wall 30, is about 6 m, and the height h of the upper beam 22 on the glass window side 20 is about 5 m. Is designed as
[0010]
The foundation of the building 10 is of a floor heating type in which a heat insulating material layer 14 is provided on a general solid foundation 13 and a number of hot water pipes 15 are laid in the floor material. In the room of the building 10, for example, a cooler 16, humidifiers 17, 17 and various sensors 18 for automatically controlling the temperature, humidity, light amount, carbon dioxide gas amount and the like are provided.
Reference numerals 19A to 19A in FIG. 2 indicate cross sections of pipes for an air supply duct, and 19B indicates an exhaust fan for indoor ventilation.
[0011]
The above-mentioned glass window side surface 20 has a double-glazed window surface on the entire surface, in which transparent glasses 24 to 24 are double-installed on frames 23 to 23.
An elevator for the curtain 25 is provided at the upper end of the side surface 20 of the glass window, and automatically operates by detecting a change in the amount of light by the sensor 18.
[0012]
Similarly, the structure is such that the supply air temperature from the cooler 16 or the supply air duct can be adjusted by the temperature signal from the sensor 18 and the hot water supply temperature by the hot water pipe 15 buried in the floor can be adjusted. Similarly, the operation of the humidifiers 17, 17 can be controlled by the signal of the sensor 18 in order to maintain the indoor humidity at, for example, 60% to 70%, and the concentration of the carbon dioxide in the room can be adjusted. I have.
[0013]
The structure of the dome-shaped wall surface 30, which is the most characteristic configuration of the present invention, will be described with reference to FIGS.
As described above, the dome-shaped wall surface 30 together with the columns 21 to 21 and the beams 22 to 22 of the glass window side surface 20 constitute a structure that forms a skeleton for the building 10, and therefore, the outer skin structure of the dome-shaped wall surface 30 The outer plate 31 is a steel plate having a thickness of about 1 mm, for example, and is bent at, for example, 300 mm intervals to provide ribs 32.
[0014]
As is apparent from the partial cross section of the dome-shaped wall surface 30 shown in FIG. 3, several bent portions are formed in the width direction of a normal rolled hard plate to form ribs 32, and the ribs 32 having a height of about 100 mm are formed. To form Subsequently, the corrugated sheet having a plurality of ribs 32 is made adjacent to each other in the width direction, and the ribs are connected to each other to form a connection portion 33, thereby forming the outer sheet 31 having an arbitrary width. I do.
[0015]
Such an outer plate 31 has its ribs 32 facing outward, and the ribs 32 are arranged so as to be directed in the width direction of the building 10, and are entirely curved as shown in FIG. In this case, the shape of the dome-shaped wall surface 30 formed by the outer plate 31 is curved and formed so that the shape becomes a quarter-arc shape, particularly in a portion on the north side from the substantially central portion of the building 10. Also, the dome-shaped wall 30 is curved so as to have a gentle curve also in the southern part from the center of the building. For example, as an example, the distance from the top of the ceiling of the building 10 to the upper beam 22 of the glass window side surface 20 is about 1 m. Curve with a gentle slope.
[0016]
As described above, a heat insulating layer 34 having a thickness of about 100 mm is formed on the back surface of the outer plate 31 formed in a dome shape, for example, by spraying a material such as hard urethane foam. In this case, the procedure of forming the urethane foam layer is free regardless of the gist of the present invention, and does not limit the heat insulating material itself.
[0017]
The lining plate indicated by reference numeral 35 is particularly important, and is, for example, a stainless steel plate having a thickness of about 0.3 mm, which is used to make the interior space side of the building a mirror surface.
Accordingly, the dome-shaped wall surface 30 which is fixed to the urethane foam insulation layer 34 in a sandwich-like manner by the ribbed outer plate 31 and the mirror-finished lining plate 35 constitutes the structure of the building 10 by itself. In addition, as will be described later, most of the reflected light from the inside of the building is re-reflected, so that the light once incident can be efficiently and uniformly used. Further, the outer plate 31, the heat insulating layer 34, and the lining plate 35 can be fixed with a nut, for example, with a screw rod.
[0018]
In the building of the present invention as in the above-described embodiment, the natural light which is adjusted by the curtain 25 from the glass window side surface 20 and hits the plant in the planter on the rack inside the building, and other light beams are respectively emitted. It is reflected at the irradiation position. Most of the reflected light beam reaches the lining 35 of the dome-shaped wall surface 30 and is further reflected, and its direction is roughly directed toward the center of the dome-shaped wall surface 30.
Since the lining plate 35 of the dome-shaped wall surface 30 is formed as a mirror surface, incident light can be used more uniformly and efficiently as a result of repeated reflection.
[0019]
【The invention's effect】
According to the present invention, since the glass window side surface 20 and the dome-shaped wall surface 30 of the double window structure are used as the structure of the building 10, the building itself as a plant cultivation factory is extremely simple and robust. Further, since the glass window side surface 20 has a double-glazed structure, heat release from the room can be reduced even with a wide opening surface. Further, since approximately half of the dome-shaped wall surface 30 on the north side is formed into an arcuate curved surface and the inner surface is formed as a mirror surface, it is possible to efficiently irradiate the plant with light rays adjusted and collected efficiently and on average.
The outer plate 31 of the dome-shaped wall surface 30 is a corrugated plate with ribs, and can constitute a structure by itself. For example, a sandwich structure made of high-quality urethane foam, together with the mirror surface plate 35, It has the effect of irradiating extremely homogeneous light to the cultivated plant.
As described above, according to the building for a plant cultivation factory of the present invention, it is possible to minimize the release of heat from the room and irradiate the adjusted incident light to the cultivated plant efficiently and uniformly.
[Brief description of the drawings]
FIG. 1 is a perspective view of a part of a plant cultivation factory building.
FIG. 2 is a cross-sectional view of the building shown in FIG.
FIG. 3 is a partial sectional view of a dome-shaped wall surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Building 11 End wall body 12 Door 13 Foundation 14 Heat insulation material layer 15 Hot water pipe 16 Cooler 17 Humidifier 18 Sensor 19A Air supply duct pipe 19B Exhaust fan 20 Glass window side surface 21 Column 22 Beam 23 Frame 24 Transparent glass 25 Curtain 30 Dome Shaped wall surface 31 Outer plate 32 Rib 33 Connecting part 34 Foamed urethane insulation layer 35 Lining plate