JPH08172934A - Plant-cultivating facility house - Google Patents

Plant-cultivating facility house

Info

Publication number
JPH08172934A
JPH08172934A JP6316657A JP31665794A JPH08172934A JP H08172934 A JPH08172934 A JP H08172934A JP 6316657 A JP6316657 A JP 6316657A JP 31665794 A JP31665794 A JP 31665794A JP H08172934 A JPH08172934 A JP H08172934A
Authority
JP
Japan
Prior art keywords
temperature
building
room
plant
lower chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6316657A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizushima
宜彦 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP6316657A priority Critical patent/JPH08172934A/en
Publication of JPH08172934A publication Critical patent/JPH08172934A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)

Abstract

PURPOSE: To provide the house capable of stably realizing plant cultivation in high harvest while reducing the production cost. CONSTITUTION: This house A virtually closed by wall layers 3 with thermal insulation and free from any window facing on the outside is divided into two floors, upper room B and lower room C, through an intermediate layer 4 with thermal insulation as well, and the layer 4 is afforded with openings respectively openable at the same time by doors 5-7. Lighting lamps 8 and a plant-cultivating facility are installed in the lower room C, while the upper room B represents a space free from any virtual heat source. For the temperature control of the lower room C, the doors 5-7 are subjected to opening/closing control to substitute the air in the room B(C) for that in the room C(B), thus keeping the temperature of the lower room C constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、完全制御型植物工場の
生産コストを低減することができると共に、収穫率の高
い植物栽培を安定的に実現することができる植物栽培施
設建屋に関し、特に、その構造の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant cultivation facility building capable of reducing the production cost of a fully controlled plant factory and stably realizing plant cultivation with a high yield rate, and particularly, It concerns the improvement of its structure.

【0002】[0002]

【従来の技術】従来、自然環境の変化の影響を受けない
ようにして植物を栽培する植物工場に関わる技術として
は、実開昭60−85142号公報、特開昭62−28
2526号公報、特開昭63−119631号公報、特
開平5−38227号公報、特開平5−308857号
公報に開示されたものがある。
2. Description of the Related Art Conventionally, as a technique relating to a plant factory for cultivating plants without being affected by changes in the natural environment, Japanese Utility Model Laid-Open No. Sho 60-85142 and Japanese Patent Laid-Open No. 62-28.
2526, JP-A-63-119631, JP-A-5-38227, and JP-A-5-308857.

【0003】植物工場と言われるものの内、従来のいわ
ゆる温室、ビニールハウス等の栽培施設は、太陽光併用
型と言われるもので、壁面は断熱的構造を持たず、通気
性良く、密閉構造とはいえない。また透光性の窓を有し
ている。
Among the so-called plant factories, conventional cultivation facilities such as so-called greenhouses and greenhouses are so-called solar combined type, and the wall surface does not have an adiabatic structure, has good ventilation, and has a closed structure. I can't say. It also has a light-transmitting window.

【0004】一方、外部環境から断熱され実質的に密閉
された建屋内に人工照明、空調設備、温度制御設備など
を設置することにより、人工的に環境を調整して植物の
生産速度を早めるものを完全制御型植物工場と言う。
On the other hand, artificial lighting, air conditioning equipment, temperature control equipment, etc. are installed in a building that is insulated from the external environment and is substantially sealed to artificially adjust the environment to accelerate the production rate of plants. Is called a fully controlled plant factory.

【0005】完全制御型植物工場は、密閉された建屋の
中で人工照明により植物を育成するものであるから、太
陽光併用型と対比して、事業として次のような特長を有
する。1.最適な成長条件を設定することができるの
で、成長速度が早く、したがって、生産量、施設回転率
が高い。このため、生産単価が安くなる。
Since the fully controlled plant factory grows plants by artificial lighting in a closed building, it has the following features as a business in comparison with the solar combined type plant. 1. Since optimal growth conditions can be set, the growth rate is fast, and therefore the production volume and facility turnover rate are high. Therefore, the production unit price is reduced.

【0006】2.外界の気象条件に無関係に生産できる
ので、計画生産ができ、納期の不確実性がない。
2. Since it can be produced regardless of the weather conditions in the outside world, planned production is possible and there is no uncertainty of delivery date.

【0007】3.完全無農薬、無病虫害が実現でき、密
植率を高くとれるので生産性が上がり、また付加価値を
高めることができる。更に、労働者の健康を守り、環境
を破壊することもない。
3. It is completely pesticide-free and pest-free, and because it has a high dense planting rate, it can improve productivity and add value. Furthermore, it protects the health of workers and does not damage the environment.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、完全制
御型植物工場の問題点は、人工照明に関係する問題であ
って、そのためのコストと、ランプの熱源による夏季冷
房のコストにある。冬季の暖房は、密閉構造なので、従
来の温室と異なって内部のランプ熱源により、大部分賄
われ、暖房コストは極めて少ない特長がある。その代わ
り夏季の冷房コストは重要な問題となっており、これを
軽減させれば、完全制御型植物工場の経済性を飛躍的に
向上させることができる。
However, the problem of the fully controlled plant factory is the problem related to artificial lighting, and the cost therefor and the cost of summer cooling by the heat source of the lamp. Since the heating in winter is a closed structure, unlike the conventional greenhouse, it is mostly covered by the internal lamp heat source, and the heating cost is extremely low. Instead, the cooling cost in summer is an important issue, and if it is reduced, the economic efficiency of a fully controlled plant factory can be dramatically improved.

【0009】本発明は、このような技術的課題に鑑みて
なされたものであり、生産コストを低減しつつ収穫率の
高い植物栽培を安定的に実現することができる植物栽培
施設建屋を提供することを目的とする。
The present invention has been made in view of the above technical problems, and provides a plant cultivation facility building capable of stably realizing plant cultivation with a high yield while reducing production costs. The purpose is to

【0010】[0010]

【課題を解決するための手段】このような目的を達成す
るために本発明は、植物栽培施設建屋において、断熱的
な壁層により実質的に密閉されて、外部への窓を有しな
い建屋の内部が上下二階に分かれ、その中間層は同じく
断熱的に構成されており、同時に開閉できる開口部を備
えており、その下階に植物栽培施設を配置し、また、上
階には実質的な熱源を設置しないことを特徴とする構造
にした。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides a plant cultivation facility building which is substantially sealed by an insulating wall layer and has no window to the outside. The inside is divided into upper and lower two floors, and the middle layer is also constructed in a heat insulating manner and has an opening that can be opened and closed at the same time.The plant cultivation facility is placed on the lower floor and the upper floor is substantially The structure is characterized by not installing a heat source.

【0011】[0011]

【作用】このような構造によると、前記断熱的な壁層に
より、建屋内は自然光と外気温から遮断される。建屋内
は前記中間層によって上階と下階に分割され、更に、そ
の中間層(すなわち、下階の天井および上階の床に担当
するものを指す)には、上階の空間と下階の空間とを断
続することできる開口部が設けられている。そして、下
階の上部に人工照明を設けて栽培を行い、植物を栽培し
ている下階の室温が上昇する夏季等においては、その開
口部を開くと、下階の上部空間に蓄積している人工照明
等に起因する熱を上階に排出することができ、植物が栽
培されている下階の下部空間に下がってくる相対的に冷
えた空気(涼気)によって、その下階の温度を略一定に
安定化することができる。また、たとえ、栽培のための
最適温度を越える室温となって、冷却装置によって強制
冷却する必要場ある場合であっても、消費電力の低減を
図ることができる。
According to such a structure, the building is shielded from natural light and outside temperature by the adiabatic wall layer. The building is divided into upper and lower floors by the middle floor, and the middle floor (that is, the one in charge of the ceiling of the lower floor and the floor of the upper floor) has a space of the upper floor and a lower floor. There is provided an opening that can be connected to and disconnected from the space. Then, artificial lighting is provided on the upper part of the lower floor to cultivate, and in the summer when the room temperature of the lower floor where the plant is cultivated rises, when the opening is opened, it accumulates in the upper space of the lower floor. The heat from the existing artificial lighting can be discharged to the upper floor, and the temperature of the lower floor can be controlled by the relatively cool air (cool air) that descends to the lower space of the lower floor where the plants are cultivated. It can be stabilized at a substantially constant level. Further, even if there is a room where the temperature exceeds the optimum temperature for cultivation and forced cooling is required by the cooling device, power consumption can be reduced.

【0012】[0012]

【実施例】以下、本発明による一実施例を図面と共に説
明する。尚、図1及び図2は、建屋の構造を示す縦断面
図、図3及び図5はその機能及び効果を説明するための
説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings. 1 and 2 are longitudinal sectional views showing the structure of the building, and FIGS. 3 and 5 are explanatory views for explaining the function and effect thereof.

【0013】図1及び図2に基づいて構造を説明する。
建屋Aの外形は、通気性を有さず且つ断熱性と遮光性
(光を透過しない性質)を有する素材、例えばガラスウ
ールを介在させたコンクリートブロックやストレート材
等を外壁1に用いて構築され、更にその外壁1の内面に
更に上記同様の性質を有する内壁2が積層されている。
このように、外壁1と内壁2との積層構造の壁(以下、
壁層という)3で建屋Aを構築することによって、建屋
Aの内部が外部環境から影響を受けないようにほぼ完全
に密閉されている。尚、現実には、壁層3を構成する外
壁1と内壁2の特性上、理想的な完全密閉は不可能であ
るが、可能な限り密閉性が得られる構造とする。これ
は、後記するように、生産性を高めるために炭酸ガスの
施用を前提としているので、密閉性は必要条件であり、
従って建屋Aは冷房を必要とするときでも通常のハウス
施設のように外気を通風させることができない。建屋は
実質的に密閉構造をとるのである。
The structure will be described with reference to FIGS. 1 and 2.
The outer shape of the building A is constructed by using, as the outer wall 1, a material that does not have air permeability and has heat insulating properties and light shielding properties (a property that does not transmit light), such as a concrete block or a straight material in which glass wool is interposed. Further, an inner wall 2 having the same properties as described above is further laminated on the inner surface of the outer wall 1.
Thus, the wall of the laminated structure of the outer wall 1 and the inner wall 2 (hereinafter,
By constructing the building A with the wall layer 3), the inside of the building A is almost completely sealed so as not to be affected by the external environment. In reality, ideal complete sealing is impossible due to the characteristics of the outer wall 1 and the inner wall 2 that form the wall layer 3, but the structure is such that the hermeticity is obtained as much as possible. As described later, this is premised on the application of carbon dioxide gas in order to increase the productivity, so the hermeticity is a necessary condition,
Therefore, the building A cannot ventilate the outside air like a normal house facility even when it requires cooling. The building is essentially a closed structure.

【0014】更に、建屋Aの内部は、上記の壁層3と同
様の壁(以下、中間層という)4によって上下2段に仕
切られることにより、屋根裏側の上部室Bと下部室Cと
が構成されている。尚、中間層4の1又は2以上の箇所
には開口部が形成されており、中間層4の所定部分に取
り付けられた蝶番機構を介して揺動可能に支持されてい
る開閉扉5〜7を、図1に示す如く閉じると、上記開口
部を密閉し、図2に示す如く開くと、開口部を介して上
部室Bと下部室Cとを連通することができるようになっ
ている。
Further, the inside of the building A is divided into two upper and lower parts by a wall (hereinafter referred to as an intermediate layer) 4 similar to the above wall layer 3, so that an upper chamber B and a lower chamber C on the attic side are separated. It is configured. An opening is formed in one or more places of the mid layer 4, and the open / close doors 5 to 7 are swingably supported via a hinge mechanism attached to a predetermined part of the mid layer 4. Is closed as shown in FIG. 1, the opening is sealed, and when opened as shown in FIG. 2, the upper chamber B and the lower chamber C can be communicated with each other through the opening.

【0015】下部室Cには、中間層4の一端に固着され
た照明ランプ8〜10が設けられている。これらの照明
ランプ8〜10の個数は3個に限定されるものではな
く、建屋Aの規模に応じて適宜の数に決められると共
に、夫々の設置間隔も適宜に設定される。また、照明ラ
ンプ8〜10は、自然光と同様の波長光を出射するナト
リウムランプやハロゲンランプその他のランプが適用さ
れる。
The lower chamber C is provided with illumination lamps 8 to 10 fixed to one end of the intermediate layer 4. The number of these illumination lamps 8 to 10 is not limited to three, and can be set to an appropriate number according to the scale of the building A, and the installation intervals of each can also be set appropriately. Further, as the illumination lamps 8 to 10, a sodium lamp, a halogen lamp, or another lamp that emits light having a wavelength similar to natural light is applied.

【0016】更に、下部室Cには、必要によってこの室
温を常時検出する1又は2以上の温度センサ(図示せ
ず)が設置されると共に、設定温度を基準として、その
検出温度の変動を無くすように冷気または暖気を下部室
Cへ供給するエアーコンディショナー11が設置するこ
とができる。このエアーコンディショナー11は、動作
時には、下部室C側の壁層3の所定部分に穿設された穴
に設けられた排気管12を介して下部室C内の空気等を
吸入し、その吸入した空気等を熱交換器(図示せず)で
冷気または暖気に熱交換して、壁層3の他の部分に穿設
された穴に設けられている供給管13を介して再び下部
室Cへ供給する。尚、排気管12及び供給管13と上記
の穴との間に隙間が生じないように密閉処理されてお
り、且つ下部室Cの空気等がエアーコンディショナー1
1と排気管12及び供給管13による閉ループ内を循環
するので、上部室Bと下部室Cは外気から遮断される。
Further, if necessary, one or more temperature sensors (not shown) for constantly detecting the room temperature are installed in the lower chamber C, and the fluctuation of the detected temperature is eliminated based on the set temperature. Thus, the air conditioner 11 that supplies cold air or warm air to the lower chamber C can be installed. During operation, the air conditioner 11 inhales air and the like in the lower chamber C through an exhaust pipe 12 provided in a hole formed in a predetermined portion of the wall layer 3 on the lower chamber C side, and inhales the air. Air or the like is heat-exchanged to cool air or warm air by a heat exchanger (not shown), and then, to the lower chamber C again via the supply pipe 13 provided in the hole formed in the other portion of the wall layer 3. Supply. The exhaust pipe 12 and the supply pipe 13 are hermetically sealed so that no gap is formed between the holes, and the air in the lower chamber C is prevented.
Since it circulates in the closed loop formed by 1, the exhaust pipe 12 and the supply pipe 13, the upper chamber B and the lower chamber C are shut off from the outside air.

【0017】更に、図示していないが、下部室C内にお
いて植物Dを栽培するための灌水用配管や培地、更に、
植物の光合成に必須の炭酸ガスを供給し且つその濃度を
調整する炭酸ガス供給調整系が設けられている。
Further, although not shown, an irrigation pipe and a medium for cultivating the plant D in the lower chamber C, and
A carbon dioxide gas supply adjusting system is provided for supplying carbon dioxide gas essential for photosynthesis of plants and adjusting the concentration thereof.

【0018】次に、図3及び図4に基づいて、このよう
に外部環境から遮断された建屋Aの機能を説明する。
尚、発明の原理を理解し易くするために、植物の成長に
最適な下部室C内の温度をTCO(例えば、20℃)に保
持するように制御するものとし、下部室C内の実際の温
度をTC 、上部室Bの実際の温度をTB 、更に外気の実
際の温度をTO とする。更に、照明ランプ8〜10は、
植物の成長にとって最適な条件の一定照度で常に点灯さ
れる。
Next, the function of the building A thus shielded from the external environment will be described with reference to FIGS. 3 and 4.
In order to facilitate understanding of the principle of the invention, it is assumed that the temperature in the lower chamber C that is optimal for plant growth is controlled to be maintained at T CO (for example, 20 ° C), and the actual temperature in the lower chamber C is controlled. Is T C , the actual temperature of the upper chamber B is T B , and the actual temperature of the outside air is T O. Furthermore, the illumination lamps 8-10 are
It is always lit with a constant illuminance that is optimal for plant growth.

【0019】図3において、冬季のように、下部室Cの
温度に対して外気温度TO が低い場合には、壁層3の断
熱効果と照明ランプ8〜10による発熱により、下部室
Cの温度TC は、外気温度TO よりも高くなる。更に、
壁層3及び中間層4は完全な断熱効果を発揮するもので
はなく、実質的に断熱効果を発揮するものであるので、
熱源の効果をも有している照明ランプ8〜10から離れ
ている上部室Bの温度TB は、下部室Cの温度TC より
も低く且つ外気温度TO よりも高い状態となる。即ち、
O <TB <TC の関係が保たれる。更に、上部室B
は、植物を栽培している下部室Cにとって緩衝作用を発
揮するので、下部室Cの温度TC は外気温度TO からの
影響を受け難く、下部室Cの保温性が保たれる。
In FIG. 3, when the outside air temperature T O is lower than the temperature of the lower chamber C as in winter, the heat insulation effect of the wall layer 3 and the heat generated by the illumination lamps 8 to 10 cause the lower chamber C to be heated. The temperature T C becomes higher than the outside air temperature T O. Furthermore,
Since the wall layer 3 and the intermediate layer 4 do not exert a perfect heat insulating effect, but substantially exert a heat insulating effect,
The temperature T B of the upper chamber B, which is separated from the illumination lamps 8 to 10, which also has the effect of a heat source, is lower than the temperature T C of the lower chamber C and higher than the outside air temperature T O. That is,
The relationship of T O <T B <T C is maintained. Furthermore, upper chamber B
Has a buffering effect on the lower chamber C in which the plant is cultivated, so that the temperature T C of the lower chamber C is unlikely to be affected by the outside air temperature T O, and the heat retaining property of the lower chamber C is maintained.

【0020】ここで、照明ランプ8〜10と壁層3及び
中間層4による保温効果によっても、現実に下部室Cの
温度TC が設定温度TCOよりも所定の許容範囲を越えて
低下した場合には、必要に応じて設置された温度センサ
の検出信号に応じてエアーコンディショナー11が起動
し、供給管13を介して下部室C内に暖気を供給し、実
際の温度TC が設定温度TCOに戻ると、エアーコンディ
ショナー11の電源を切って停止させる。
Here, due to the heat retaining effect of the illumination lamps 8 to 10 and the wall layer 3 and the intermediate layer 4, the temperature T C of the lower chamber C actually drops below the set temperature T CO by more than a predetermined allowable range. In this case, the air conditioner 11 is activated in response to the detection signal of the temperature sensor installed as necessary, warm air is supplied into the lower chamber C via the supply pipe 13, and the actual temperature T C becomes the set temperature. After returning to T CO , the air conditioner 11 is turned off and stopped.

【0021】また、上記所定の許容範囲を越えて温度T
C が設定温度TCOよりも上昇した場合には、後述の図4
に示すように、開閉扉5〜7を開き、中間層4の開口部
を介して熱を上部室Bへ逃がし、下部室Cの温度TC
設定温度TCOになると、開閉扉5〜7を閉じて、再び上
部室Bと下部室Cとの間を中間層4で遮断する。
If the temperature T exceeds the predetermined allowable range,
If C has risen above the set temperature T CO, the temperature of FIG.
As shown in FIG. 5, the opening / closing doors 5 to 7 are opened, heat is released to the upper chamber B through the opening of the intermediate layer 4, and when the temperature T C of the lower chamber C reaches the set temperature T CO , the opening / closing doors 5 to 7 are opened. Is closed, and the upper chamber B and the lower chamber C are again blocked by the intermediate layer 4.

【0022】このように、開閉扉5〜7の開閉操作を行
うことによって、下部室Cの温度調節を行うことは、エ
アーコンディショナー11の使用頻度を大幅に低減する
ことができ、それに伴って消費電力の大幅低減と、植物
の成長性を維持しつつ生産コストの低減を図ることがで
きる。
By controlling the temperature of the lower chamber C by opening and closing the opening and closing doors 5 to 7 as described above, the frequency of use of the air conditioner 11 can be greatly reduced, and the consumption of air can be reduced accordingly. It is possible to significantly reduce power consumption and reduce production costs while maintaining the growth of plants.

【0023】次に、図1に示す如く開閉扉5〜7を閉じ
た状態において、夏季のように、外気温度TO が設定温
度TCOと比較して高くなる場合には、エアーコンディシ
ョナー11を作動させないで長期間経過すれば、外気温
度TO と上部室Bの温度TBと下部室Cの温度TC の関
係は、一般的には、TC >TB >TO となる。そして、
壁層3と中間層4及び上部室Bが存在していても、現実
には、下部室Cの温度TC は設定温度TCOよりも上昇し
やすいこととなる。これは好ましい状況ではない。
Next, with the open / close doors 5 to 7 closed as shown in FIG. 1, when the outside air temperature T O becomes higher than the set temperature T CO as in the summer, the air conditioner 11 is turned on. After a lapse of a long period of time not operate, the relationship between the temperature T C of the outside air temperature T the temperature of the O and the upper chamber B T B and a lower chamber C is generally a T C> T B> T O. And
Even if the wall layer 3, the intermediate layer 4, and the upper chamber B are present, in reality, the temperature T C of the lower chamber C tends to rise above the set temperature T CO . This is not a favorable situation.

【0024】このように、温度TC が設定温度TCOより
も所定の許容範囲を越えて上昇する場合には、図4に示
す如く、開閉扉5〜7を開放する。即ち、図1に示すよ
うに開閉扉5〜7を閉めたままにしておくと、上部室B
内の温度TB は、周知のごとく高い温度の空気等が上昇
するから、実際には上部空間ほど高温となり、中間層4
に近い空間ほど低温となるという温度分布を有し、一
方、下部室C内の実際の温度も、中間層4に近い上部空
間の方が照明ランプ8〜10の発熱や上昇熱のために高
温となり、地面に近い下部空間の方が低温となる。更
に、上部室Bの中間層4に近い空間の温度TBLは、照明
ランプ8〜10の発熱を中間層4によって遮断されてい
ることにより、下部室Cの上部空間の温度TCUよりも低
温になる(TBL<TCU)。
In this way, when the temperature T C rises above the set temperature T CO over a predetermined allowable range, the opening / closing doors 5 to 7 are opened as shown in FIG. That is, if the opening and closing doors 5 to 7 are kept closed as shown in FIG.
As is well known, the temperature T B in the inside rises because the temperature of the air and the like rises. Therefore, the temperature in the upper space actually becomes higher, and the intermediate layer 4
Has a temperature distribution such that the lower the space is, the lower the temperature distribution becomes, while the actual temperature in the lower chamber C is higher in the upper space closer to the intermediate layer 4 due to the heat generation and rising heat of the illumination lamps 8 to 10. And the lower space near the ground has a lower temperature. Further, the temperature T BL of the space near the intermediate layer 4 of the upper chamber B is lower than the temperature T CU of the upper space of the lower chamber C because the heat generation of the illumination lamps 8 to 10 is blocked by the intermediate layer 4. (T BL <T CU ).

【0025】そこで、下部室Cの実測温度TC が設定温
度TCOよりも所定の許容範囲を越えて上昇する場合に
は、図4に示す如く、開閉扉5〜7を開放し、上部室B
の温度TBLの空気等(図中に涼気として示す)を下部室
Cへ自然降下させると共に、下部室Cの温度TCUの空気
等を上部室Bへ自然上昇させて、入れ替えを自然に行わ
せる。これにより、下部室Cの温度TC は下がり、所定
の設定温度TCOに近づくよう調整することができる。
[0025] Therefore, if the measured temperature T C of the lower chamber C rises above a predetermined acceptable range than the set temperature T CO, as shown in FIG. 4, it opens the door 5-7, the upper chamber B
The air or the like at the temperature T BL (shown as cool air in the figure) is naturally lowered to the lower chamber C, and the air or the like at the temperature T CU of the lower chamber C is naturally raised to the upper chamber B to perform the replacement naturally. Let As a result, the temperature T C of the lower chamber C can be lowered and adjusted to approach a predetermined set temperature T CO .

【0026】但し、かかる開閉扉5〜7を開放しても温
度TC が十分に下がらない場合には、エアーコンディシ
ョナー11を起動させて、下部室C内を強制冷却する。
このときTC <TB <TO となる。これは冬期の場合と
逆であって、(TO −TC )>(TB −TC )のよう
に、上階と下階との温度差を小さくすることができる。
すなわち上方からの外気熱が上階を経由して下階へ及ぶ
のを最小限に止めることができる。
However, if the temperature T C does not fall sufficiently even if the opening / closing doors 5 to 7 are opened, the air conditioner 11 is activated to forcibly cool the inside of the lower chamber C.
At this time, T C <T B <T O. This is a reverse in the case of winter, it is possible to so small a temperature difference between the upper floor and the lower floor (T O -T C)> ( T B -T C).
That is, it is possible to minimize the outside heat from above reaching the lower floor via the upper floor.

【0027】このように、開閉扉5〜7の開閉操作を行
うことによって、下部室Cの温度調節を行うことは、た
とえエアーコンディショナー11を使用する事態が生じ
たとしても、その使用頻度を大幅に低減することができ
るので、それに伴って消費電力の大幅低減と、植物の成
長性を維持しつつ生産コストの低減を図ることができ
る。
In this way, by controlling the temperature of the lower chamber C by opening / closing the opening / closing doors 5 to 7, even if the air conditioner 11 is used, the frequency of its use is greatly increased. As a result, it is possible to significantly reduce the power consumption and to reduce the production cost while maintaining the growth of plants.

【0028】尚、詳細にみれば、下部室C内において
も、中間層4に近い上部空間の温度の方が植物の栽培さ
れている地面に近い下部空間の温度よりも低くなるとい
う温度分布を生じることとなる。そして、設定温度TCO
と温度センサにより検出される実際の温度TC は、たと
えば植物の栽培されている一定の空間領域(比較的下部
の空間)の温度に設定されており、実際の温度TC が設
定温度TCOとほぼ等しい状態であっても、中間層4に近
い上部空間の実際の温度は、設定温度TCOよりも高くな
る。しかし、中間層4に近い上部空間の実際の温度が高
くなることは、冬季のように外気温度が低下する場合に
は、外気温度TO 及び上部室Bの温度Tに対する緩衝
効果を発揮することとなる。そして、開閉扉5〜7を開
閉制御することによって、この中間層4に近い上部空間
の上昇温度を上部室Bへ逃がすだけで、温度Tを大
きな温度変動を伴うことなく調整することができる。
In detail, even in the lower chamber C, the temperature distribution in the upper space near the intermediate layer 4 is lower than the temperature in the lower space near the ground where the plants are cultivated. Will occur. And the set temperature T CO
The actual temperature T C detected by the temperature sensor and the temperature sensor is set to, for example, the temperature of a constant space region (relatively lower space) where the plant is cultivated, and the actual temperature T C is the set temperature T CO. The actual temperature of the upper space near the intermediate layer 4 is higher than the set temperature T CO even in a state substantially equal to. However, the fact that the actual temperature of the upper space near the middle layer 4 becomes high exerts a buffering effect on the outside air temperature T O and the temperature T B of the upper chamber B when the outside air temperature decreases like in winter. It will be. Then, by controlling the opening / closing of the opening / closing doors 5 to 7, it is possible to adjust the temperature T C without causing a large temperature fluctuation by only letting the rising temperature of the upper space near the intermediate layer 4 escape to the upper chamber B. .

【0029】このように、この実施例によれば、簡素な
構造により完全制御型植物工場の建屋Aを実現すること
ができ、特に、中間層4により上部室Bと下部室Cに分
離して、適宜に中間層4の開口部を開閉制御するように
したので、電力消費の大きなエアーコンディショナー1
1等を使用することなく、又はその使用頻度を大幅に低
減して、最適条件の温度管理を可能にするという優れた
機能を発揮する。また、このような温度管理を可能にす
ることができるのは、建屋A内を開閉扉8〜9を備えた
中間層4によって上部室Bと下部室Cとに区分けして、
上部室Bの空間内に温度調節時に使用するための空気お
よびその他の物体の熱容量等を貯蓄するようにした点に
ある。そして、極めて簡素な構造で実現されている点に
優れた特徴を有する。
As described above, according to this embodiment, the building A of the completely controlled plant factory can be realized with a simple structure, and in particular, the upper chamber B and the lower chamber C are separated by the intermediate layer 4. Since the opening and closing of the opening of the mid layer 4 is controlled appropriately, the air conditioner 1 that consumes a large amount of power is required.
It exerts an excellent function of enabling temperature control under optimal conditions without using 1 or the like or by greatly reducing the frequency of use. Further, such temperature control can be made possible by dividing the inside of the building A into the upper chamber B and the lower chamber C by the intermediate layer 4 having the opening and closing doors 8 to 9,
The point is that the heat capacity and the like of air and other objects used for temperature control are stored in the space of the upper chamber B. And, it has an excellent feature in that it is realized with an extremely simple structure.

【0030】尚、上部室Bの容積は、下部室C内におけ
る植物の生産量を考慮しつつ、その温度調整に必要な空
気等の体積を算出することによって、最適に設計するこ
とが望ましい。
Incidentally, it is desirable that the volume of the upper chamber B is optimally designed by taking into consideration the production amount of plants in the lower chamber C and calculating the volume of air or the like required for the temperature adjustment.

【0031】次に、シミュレーションの結果を示す。こ
のような大規模となる植物工場の効果を、実際に建屋A
を構築して具体的実験結果にて開示することは困難な場
合があるので、シミュレーションの結果を示すものとす
る。
Next, the result of the simulation will be shown. The effect of such a large-scale plant factory is actually
Since it may be difficult to construct the above and disclose it in concrete experimental results, the simulation results are shown below.

【0032】一般的な場合、例えば建坪が300m2
建屋Aを構築するものとして、平均熱伝導率が約0.1
(W/m・K)且つ厚さが約10cmの壁層3と中間層
4を用いて密閉した建屋Aを構築する。そして、下部室
Cに植物を栽培するための水耕設備を内蔵すると共に、
最適栽培条件を満足する照度で照明ランプ8〜10を点
灯させるようにする。この場合には、照明ランプ8〜1
0の電力消費量は、50kW程度となる。
In the general case, for example, assuming that a building A having a floor area of 300 m 2 is constructed, the average thermal conductivity is about 0.1.
(W / mK) and a thickness of about 10 cm is used to construct a closed building A using the wall layer 3 and the intermediate layer 4. And, while incorporating the hydroponic equipment for cultivating the plant in the lower chamber C,
The illumination lamps 8 to 10 are turned on with an illuminance that satisfies the optimum cultivation conditions. In this case, the illumination lamps 8 to 1
The power consumption of 0 is about 50 kW.

【0033】夏季などにおいて(図3を参照)、外気温
O が例えば32℃であるものとすると、外部から建屋
A内に侵入するパワーは約10kWとなる。上部室Bと
下部室Cの実効熱容量が同程度とし、中間層4の開口部
を開閉扉5〜7で閉じると、上部室Bで30℃、下部室
Cの植物栽培されている近傍の空間の温度TC =22℃
を保つために、下部室Cに設置されたエアーコンディシ
ョナーの空調用の電力は20kWを要する。
When the outside air temperature T O is 32 ° C., for example, in summer (see FIG. 3), the power that intrudes into the building A from the outside is about 10 kW. When the effective heat capacities of the upper chamber B and the lower chamber C are about the same, and the opening of the intermediate layer 4 is closed by the opening / closing doors 5 to 7, the upper chamber B has a temperature of 30 ° C. Temperature T C = 22 ℃
In order to maintain the above, the air conditioning power installed in the lower chamber C requires 20 kW for air conditioning.

【0034】本発明の場合のように中間層4に設ける開
口部の開口面積を適当に選び、下部室Cにエアーコンデ
ィショナー11を設置したとき、上部室BではTB =2
7℃、下部室Cの植物栽培されている近傍の空間の温度
C =22℃となる。これは、上部室Bには、下部室C
からの暖気の上昇があるからである。中間層を介しての
温度差が小さいため、変調用消費電力は10kWとな
る。以上の結果から明らかなように、電力消費の節約が
明らかである。
As in the case of the present invention, when the opening area of the opening provided in the intermediate layer 4 is appropriately selected and the air conditioner 11 is installed in the lower chamber C, T B = 2 in the upper chamber B.
7 ° C., the temperature T C of the space in the lower chamber C in the vicinity where the plants are cultivated is 22 ° C. This is the upper chamber B, the lower chamber C
This is because there is a rise in warm air from. Since the temperature difference through the intermediate layer is small, the power consumption for modulation is 10 kW. As is clear from the above results, the saving of power consumption is clear.

【0035】一方、冬季のように(図4を参照)、外気
温がTO =0℃の場合には、下部室Cの設定温度TCO
20℃に保つこととするならば、開口部を開放すると、
下部室Cの植物栽培されている近傍の空間の温度TC
15℃となる。これは、上部室Bから冷気が直接に効果
すると共に、暖房熱容量が増加したからである。上部室
Bの温度TB も15℃となる。従って、この場合にはエ
アーコンディショナー11によって暖房する必要がある
ので不利である。一方、中間層4の開口部を開閉扉5〜
7によって閉じれば、自己発熱により、ほぼ暖房を必要
とせずに、設定温度TCOが得られる。このとき、上部室
Bの温度はTB =10℃となる。
On the other hand, (see Figure 4) as in winter, when the outside air temperature is T O = 0 ° C., if it is assumed that to keep the set temperature T CO in the lower chamber C to 20 ° C., the openings Is released,
Temperature of the space in the lower chamber C in the vicinity where the plant is cultivated T C =
It becomes 15 ° C. This is because the cold air directly acts from the upper chamber B and the heating heat capacity increases. Temperature T B of the upper chamber B also becomes 15 ° C.. Therefore, in this case, it is necessary to heat by the air conditioner 11, which is disadvantageous. On the other hand, the opening of the middle layer 4 is opened and closed with a door 5 to
If it is closed by 7, the set temperature T CO can be obtained with almost no heating due to self-heating. At this time, the temperature of the upper chamber B becomes T B = 10 ° C.

【0036】以上のシミュレーション結果からも明らか
なように、夏季や冬季等の外気温度が設定温度から大き
く変動する場合があっても、年間を通して所望の温度設
定が可能となり、そのための電力消費量も大幅に低減す
ることができる。そして、季節を問わず通年で植物栽培
(生産)を行うことができる。
As is clear from the above simulation results, even if the outside air temperature in summer or winter varies greatly from the set temperature, it is possible to set the desired temperature throughout the year, and the power consumption for that is also possible. It can be significantly reduced. Then, plant cultivation (production) can be performed all year round regardless of the season.

【0037】尚、この実施例では、建屋Aの内部を中間
層4にて上下段の2分割にし、上部室Aと下部室Bとの
間で熱対流を行わせることによって安価な温度調整を可
能にする場合を説明したが、かかる基本構造を有して更
に各種の構造的な変形を加えるようにしてもよい。
In this embodiment, the inside of the building A is divided into upper and lower halves by the intermediate layer 4, and heat convection is performed between the upper chamber A and the lower chamber B, so that the temperature can be adjusted inexpensively. Although the case has been described above, it is possible to have such a basic structure and further add various structural modifications.

【0038】また、一般的に建屋内を一定温度に保つ方
法としては、植物栽培を行うための第1の建屋を構築し
て、更にこの第1の建屋よりも大容積の第2の建屋で第
1の建屋全体を包含するようにする所謂二重構造にする
ことが考えられるが、かかる構造によれば、図1〜図4
に示したこの実施例とは異なり、屋根と壁の全てが第
1,第2の建屋毎に独立して必要となり、実質的に2個
の建屋を建てることとなる。したがって、コスト面での
問題が生じることは勿論のこと、大規模の植物工場を構
築することの技術的困難を生じる。
Further, generally, as a method for keeping the inside of the building at a constant temperature, the first building for cultivating plants is constructed, and the second building having a larger volume than the first building is constructed. A so-called double structure that encloses the entire first building is conceivable. According to such a structure, the structure shown in FIGS.
Unlike this embodiment shown in FIG. 2, all of the roof and the wall are required independently for each of the first and second buildings, and substantially two buildings are built. Therefore, not only the cost problem arises, but also the technical difficulty of constructing a large-scale plant factory arises.

【0039】これに対して、この実施例を含む本発明に
よれば、基本的には、中間層にて1個の建屋内を上下2
分割する構造で温度調節が可能であるから、特に大規模
の植物工場を構築する場合に優れた効果を発揮する。但
し、上述の一般的に考えられ得る所謂二重構造を実現す
る第1,第2の建屋に対して、この実施例に示したよう
な中間層を夫々備えるような場合は、本発明から容易に
想到し得る技術であるから、このような変更構造は、本
発明の技術を利用したものである。
On the other hand, according to the present invention including this embodiment, basically, one building in the middle layer is divided into upper and lower parts.
Since the temperature can be controlled by the divided structure, it exhibits an excellent effect especially when constructing a large-scale plant factory. However, in the case where the above-mentioned generally conceivable so-called double structure is provided with the intermediate layers as shown in this embodiment for the first and second buildings, respectively, it is easy to realize from the present invention. Such a modified structure utilizes the technique of the present invention.

【0040】因みに、この実施例に係わる構造の建屋を
使用して年間の諸費用を算出したところ、軒下3m程
度、璧層3と中間層4には約5cm厚さのグラスウール
断熱壁を適用した建坪100坪の建屋の場合には、冷暖
房に必要な電力消費を20%〜30%削減することがで
きた。
By the way, when the annual expenses were calculated using the building having the structure according to this example, a glass wool heat insulating wall having a thickness of about 5 cm was applied to the wall layer 3 and the intermediate layer 4 about 3 m below the eaves. In the case of a building with a building area of 100 tsubo, the power consumption required for air conditioning can be reduced by 20% to 30%.

【0041】[0041]

【発明の効果】以上に説明したように本発明によれば、
断熱的な壁層により建屋内は自然光と外気温から遮断さ
れ、建屋内は中間層によって上階と下階に分割され、更
に、その中間層には、上階の空間と下階の空間とを断続
することできる開口部が設けられ、そして、下階の上部
に人工照明を設けて栽培を行い、植物を栽培している下
階の室温が上昇する夏季等においては、その開口部を開
くと、下階の上部空間に蓄積している人工照明等に起因
する熱を上階に排出することができ、植物が栽培されて
いる下階の下部空間に下がってくる相対的に冷えた空気
(涼気)によって、その下階の温度を略一定に安定化す
ることができる。また、たとえ、栽培のための最適温度
を越える室温となって、冷却装置によって強制冷却する
必要場ある場合であっても、消費電力の低減を図ること
ができる。
According to the present invention as described above,
The insulating wall layer shields the building from natural light and outside temperature, and the middle layer divides the building into upper and lower floors. An opening that can be intermittently provided is provided, and artificial lighting is provided at the upper part of the lower floor to cultivate, and the opening is opened in the summer, when the room temperature of the lower floor where the plant is growing rises. And the heat caused by artificial lighting etc. accumulated in the upper space of the lower floor can be discharged to the upper floor, and the relatively cool air coming down to the lower space of the lower floor where plants are cultivated. By (cool air), the temperature of the lower floor can be stabilized at a substantially constant level. Further, even if there is a room where the temperature exceeds the optimum temperature for cultivation and forced cooling is required by the cooling device, power consumption can be reduced.

【0042】このように、季節の変化に係わりなく通年
で植物栽培を行うことができ、そのための生産コストを
低減することができる完全制御型植物工場を提供するこ
とができる。
As described above, it is possible to provide a completely controlled plant factory capable of cultivating plants throughout the year irrespective of seasonal changes and reducing the production cost therefor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による植物栽培施設建屋の一実施例の構
造を示す縦断面図である。
FIG. 1 is a vertical sectional view showing the structure of an embodiment of a plant cultivation facility building according to the present invention.

【図2】本発明による植物栽培施設建屋の一実施例の構
造を更に示す縦断面図である。
FIG. 2 is a vertical cross-sectional view further showing the structure of one embodiment of the plant cultivation facility building according to the present invention.

【図3】一実施例の機能を説明するために図1に対応し
て示す縦断面図である。
FIG. 3 is a longitudinal sectional view corresponding to FIG. 1 for explaining the function of the embodiment.

【図4】一実施例の機能を更に説明するために図2に対
応して示す縦断面図である。
FIG. 4 is a vertical cross-sectional view corresponding to FIG. 2 for further explaining the function of one embodiment.

【符号の説明】[Explanation of symbols]

A…建屋、B…上部室、C…下部室、D…栽培される植
物、1…外壁、2…内壁、3…壁層、4…中間層、5〜
7…開閉扉、8〜10…照明ランプ、11…エアーコン
ディショナー、12…排気管、13…供給管。
A ... Building, B ... Upper chamber, C ... Lower chamber, D ... Plants to be cultivated, 1 ... Outer wall, 2 ... Inner wall, 3 ... Wall layer, 4 ... Intermediate layer, 5
7 ... Opening / closing door, 8-10 ... Illumination lamp, 11 ... Air conditioner, 12 ... Exhaust pipe, 13 ... Supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断熱的な壁層により実質的に密閉され
て、外部への窓を有しない建屋の内部が上下二階に分か
れ、その中間層は同じく断熱的に構成されており、同時
に開閉できる開口部を備えており、その下階に植物栽培
施設を配置し、また、上階には実質的な熱源を設置しな
いことを特徴とする植物栽培施設建屋。
1. An inside of a building that is substantially closed by an insulating wall layer and has no window to the outside is divided into upper and lower two floors, and an intermediate layer thereof is also constructed in an insulating manner and can be opened and closed at the same time. A plant cultivation facility building that has an opening, a plant cultivation facility is located on the lower floor, and no substantial heat source is installed on the upper floor.
JP6316657A 1994-12-20 1994-12-20 Plant-cultivating facility house Pending JPH08172934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6316657A JPH08172934A (en) 1994-12-20 1994-12-20 Plant-cultivating facility house

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6316657A JPH08172934A (en) 1994-12-20 1994-12-20 Plant-cultivating facility house

Publications (1)

Publication Number Publication Date
JPH08172934A true JPH08172934A (en) 1996-07-09

Family

ID=18079462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6316657A Pending JPH08172934A (en) 1994-12-20 1994-12-20 Plant-cultivating facility house

Country Status (1)

Country Link
JP (1) JPH08172934A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039002A (en) * 2007-08-07 2009-02-26 Fairy Angel Inc Vegetable growing equipment
JP2011010623A (en) * 2009-07-03 2011-01-20 Daiwa House Industry Co Ltd Related production system for fungus and plant
KR101328692B1 (en) * 2011-05-31 2013-11-14 재단법인 포항산업과학연구원 Building structure with plant factory system
KR101363041B1 (en) * 2012-07-23 2014-02-17 (주)파인바이오 Energy saving greenhouse
KR20160021479A (en) * 2014-08-18 2016-02-26 박태재 assembly structure having storage space

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039002A (en) * 2007-08-07 2009-02-26 Fairy Angel Inc Vegetable growing equipment
JP2011010623A (en) * 2009-07-03 2011-01-20 Daiwa House Industry Co Ltd Related production system for fungus and plant
KR101328692B1 (en) * 2011-05-31 2013-11-14 재단법인 포항산업과학연구원 Building structure with plant factory system
KR101363041B1 (en) * 2012-07-23 2014-02-17 (주)파인바이오 Energy saving greenhouse
KR20160021479A (en) * 2014-08-18 2016-02-26 박태재 assembly structure having storage space

Similar Documents

Publication Publication Date Title
JP5603658B2 (en) Plant environmental management system
JP5224895B2 (en) House for plant cultivation
KR101703170B1 (en) Environment-control system for plant factory and Environment-control method using the same
JP5595452B2 (en) House for plant cultivation
CN102422794B (en) Informationized flue-cured tobacco seedling greenhouse
CN108522091A (en) A kind of household growth chamber and its multiobjective optimization control method
WO2011148522A1 (en) Greenhouse cultivation system
CN109076830A (en) A kind of greenhouse
CN105676922A (en) Greenhouse regulation and control optimization method
JPH08172934A (en) Plant-cultivating facility house
JP5830211B2 (en) Greenhouse cultivation system
KR20180089601A (en) Environment-control system for plant factory and Environment-control method using the same
KR101406092B1 (en) System and Method for control of temperature and humidity in greenhouse
CN110140557B (en) Utilize breeding room of underground earth temperature regulation
CN205431264U (en) Solar energy plant factory greenhouse
CN103444466B (en) Double-heat-source semi-automatic cultivation facilitating system for large cherries
CN210352435U (en) Intelligent spawn running shed
KR20130067926A (en) Mushroom growing standards house
CN104855174A (en) Intelligent greenhouse system capable of realizing self-adapting adjustment
JPS63137620A (en) Plant culture plant
GB2215357A (en) Greenhouse utilizing insulation and reflected sunlight
CN206941955U (en) The insulation temperature control enclosing of glass sunlight house
KR20060032737A (en) Electric heating germ cart and mushroom growing-house using the same
JPH06105623A (en) Device for controlling air conditioning of green house
Sun et al. Field investigation of non-uniform environment in a Venlo-type greenhouse in Yangling, China