JP2004103784A - Plating method for semiconductor wafer - Google Patents

Plating method for semiconductor wafer Download PDF

Info

Publication number
JP2004103784A
JP2004103784A JP2002262815A JP2002262815A JP2004103784A JP 2004103784 A JP2004103784 A JP 2004103784A JP 2002262815 A JP2002262815 A JP 2002262815A JP 2002262815 A JP2002262815 A JP 2002262815A JP 2004103784 A JP2004103784 A JP 2004103784A
Authority
JP
Japan
Prior art keywords
wiring
pattern
plating
chip
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002262815A
Other languages
Japanese (ja)
Other versions
JP3843919B2 (en
Inventor
Keiji Mayama
真山 恵次
Akihiro Niimi
新美 彰浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002262815A priority Critical patent/JP3843919B2/en
Publication of JP2004103784A publication Critical patent/JP2004103784A/en
Application granted granted Critical
Publication of JP3843919B2 publication Critical patent/JP3843919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a depositing method which makes difference in the thickness of wiring within a chip or between chips in the same semiconductor wafer. <P>SOLUTION: This plating method for the semiconductor wafer forms a dummy pattern which is not related with electrical connection which has to be formed in a semiconductor chip within a wafer or within a chip in addition to a wiring pattern related with electrical connection, and simultaneously performs electroplating to the wiring pattern and the dummy pattern so as to make a difference in the thickness of plating layers to be formed on the wiring pattern within the chip or between the chips by using the difference of current density. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウェハのめっき方法に係り、より詳しくは、同一ウェハ内において電気的接続に関係する配線パターンとは別に電気的接続に関係しないダミーパターンを設けてめっきすることにより、めっき層厚さに差を設けることを可能にした半導体ウェハのめっき方法に関する。
【0002】
【従来の技術】
同一チップ内で、例えば、大電流を必要とする配線と信号として用いる配線のように、異なる配線容量に対する配線層を形成したい場合に、配線を厚くできれば配線幅を増やさずに大きな電流を流すことができるので、チップ面積の増大を防ぐことが可能である。
【0003】
しかし、従来、半導体ウェハ上への配線の形成は、スパッタ法又は蒸着法で成膜する場合でも、ウェハ全体に金属膜を成膜し、その金属膜上にレジストを形成しパターニングし、それをマスクにしてエッチングすることで配線を形成している。この場合、ウェハ内に形成される金属膜の厚さはウェハ全面で同じ厚さになる。また、予めレジストのパターイングを行ってからスパッタ法又は蒸着法で成膜する場合でも同様な結果となり、ウェハ内で異なる膜厚の配線を形成することは困難であった。
【0004】
【発明が解決しようとする課題】
そこで、本発明は、同一チップ内で配線層厚さに差を設けることを可能にした半導体ウェハの配線層形成方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、同一ウェハ内において、半導体チップに形成すべき電気的接続に関係する配線パターンとは別にウェハ内又はチップ内に電気的接続に関係しないダミーパターンを設け、前記配線パターンおよび前記ダミーパターンに同時に電解めっきを行うことにより、電流密度の差を利用して、チップ内又はチップ間の配線パターンに形成するめっき層の厚さに差をつけることを特徴とする半導体ウェハのめっき方法を形成する。
【0006】
本発明者はウェハ上への配線の形成を電解めっきで形成することに着目した。即ち、電解めっきでは、被めっき面積に応じて電界集中に差が生じる性質を利用し、ウェハ上の目的をする配線パターンが形成されていない部分又は、機能上配線を必要としない部分に、ダミーパターン(めっきレジスト開口)を形成すれば、被めっき面積を故意に変化させ、そのダミーパターンの有無の差により、配線厚さに差をつけてめっき層を形成することが可能になる。また、ダミーパターンの面積(幅や長さ)によっても電界集中が制御されるので、配線を任意の厚さに変えることも可能になる。こうして、配線に流れる電流容量によって配線厚さに差を設けることにより、例えば、大電流を必要とする配線と信号として用いる配線の間でも、信号系をまとめてその周りにダミーパターンを形成し、電界集中に差をつけることで信号系の配線層の厚さを薄くして大電流配線の厚さを確保することが可能である。
【0007】
【発明の実施の形態】
はじめに図1を参照して従来の配線層の形成方法を説明する。図1の上図(あ)は半導体ウェハ1を上から見た図である。下図は半導体ウェハの配線形成工程順の模式断面図である。ウェハ1の全面に金属層2をスパッタ法、蒸着法などで形成し(図1(い))、次いでレジスト膜3を形成およびパターニングし(図1(う))、レジストパターン3をマスクとして金属層2をエッチングすることで金属層2のパターニングを行い(図1(え))、その後レジスト3を除去すれば金属層パターン2が得られる。この方法では、配線パターンに係りなく、ウェハの全面(チップ全表面)に同一厚さの金属層2が形成される(図1(い))。
【0008】
これに対して、本発明を実施する態様を図2〜6を参照して説明する。本発明では電界めっきを行うので、図2を参照すると、めっきパターンはウェハ11全面にめっき下地層(例えば、Cu/Cr又はCu/Ti)12を形成後その上にレジスト膜13を形成し、レジスト膜13に開口部14を形成することにより、その開口部14が例えばCu,Ni,Auで選択的にめっきされる領域になる性質を利用して、配線パターンおよびダミーパターンを形成する。開口部14に選択めっきを行った後、レジスト膜13を除去してめっきパターン15を得る。図3〜6における配線パターンおよびダミーパターンはこのようなレジスト膜の開口部、又はそれを利用して形成した金属めっき層である。
【0009】
図3を参照すると、半導体ウェハ内には多数のチップ21とその間を分割するスクライブライン22が存在し、チップ21内に配線パターン23が形成されるとともに、スクライブライン22内にはダミーパターン24が形成されている。通常のチップ21内における配線パターン23だけの場合と比べて、スクライブライン22内にはダミーパターン24が形成されているために、配線パターン23付近におけるめっきの面積および密度が増加してめっき電界集中が緩和(もしくは低下)するために、配線パターン23に形成されるめっき層の厚さTが、ダミーパターン24が形成されていない場合T(図4)と比べて薄くなる。
【0010】
図3では、ダミーパターンをスクライブラインに形成したが、図5のように、ダミーパターン26はチップ内であっても配線パターン23に影響のない領域に形成してもよい。結果として、配線パターン23に対するめっき電界集中が緩和(もしくは低下)して、めっき層の厚さTが薄くなる。このチップ内に形成したダミーパターンの金属めっき層26は配線パターン23に影響がないものであるからそのまま残してチップ(LSI)を形成してもよいし、必要ならダミーパターンの金属めっき層26だけを後から選択的に除去してもよい。
【0011】
さらに、図6を参照すると、半導体ウェハの1つのチップ31内において、大電流を流すべき配線パターン32と、信号系の配線パターン33とが存在する場合、一般的に大電流系配線32は幅広パターンであるのに対して信号系配線パターンは細線パターンであることにより電流容量を異ならせている。本発明ではさらに、信号系配線33近くにダミーパターン34を形成して信号系配線領域を密パターンにするとともに、必要に応じて大電流系配線32を信号系配線から距離Lを遠ざけることにより粗パターンとして形成し、電界めっきを行う。この場合、電界集中に差が生じ、粗パターンの領域では電流密度が高くなり、密パターン領域では電流密度が低くなることで、大電流系配線32のめっき層は厚く、信号系配線33のめっき層は薄く形成することが可能である。大電流系配線32のめっき層を厚く形成することで、容易に大電流配線の厚さが確保されるので、配線密度を高めることが可能である。
【0012】
電界めっき方法そのものは公知の方法でよく、銅めっき、ニッケルめっき、金めっきなどいずれにも適用可能である。
【0013】
【発明の効果】
本発明によれば、本発明者はウェハ上への配線の形成を電解めっきで形成し、かつウェハ上の目的をする配線パターンが形成されていない部分又は機能上配線を必要としない部分にダミーパターンを形成して、被めっき面積を故意に変化させ、そのダミーパターンの有無の差により配線厚さに差をつけてめっき層を形成することで、同一ウェハ内においてチップ内又はチップ間の配線の厚さに差をつける配線形成方法が提供される。例えば、大電流を必要とする配線と信号として用いる配線の間でも、信号系をまとめてその周りにダミーパターンを形成し、電界集中に差をつけることで信号系の配線層の厚さを薄くして大電流配線の厚さを確保することが可能である。
【図面の簡単な説明】
【図1】従来の配線形成方法を示す。
【図2】めっきによる配線形成方法を示す。
【図3】本発明によるダミーパターンを利用しためっき厚さに差を設けるめっき方法を説明する図である。
【図4】図3と対照して、本発明によるダミーパターンを利用しためっき厚さに差を設けるめっき方法を説明する図である。
【図5】本発明によるダミーパターンを利用しためっき厚さに差を設ける別のめっき方法を説明する図である。
【図6】本発明によるダミーパターンを利用した大電流系配線と信号系配線にめっき厚さに差を設けるめっき方法を説明する図である。
【符号の説明】
1…半導体ウェハ
2…金属層
3…レジスト層
11…半導体ウェハ
12…下地層
13…レジスト層
15…めっき層
21…半導体チップ
22…スクライブライン
23…配線パターン
24…ダミーパターン
31…半導体チップ
32…大電流系配線
33…信号系配線
34…ダミーパターン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for plating a semiconductor wafer, and more specifically, to provide a plating method by providing a dummy pattern not related to electrical connection separately from a wiring pattern related to electrical connection in the same wafer to perform plating. The present invention relates to a method for plating a semiconductor wafer, which makes it possible to provide a difference.
[0002]
[Prior art]
In the same chip, for example, when it is desired to form wiring layers for different wiring capacities, such as a wiring requiring a large current and a wiring used as a signal, a large current can be applied without increasing the wiring width if the wiring can be made thicker. Therefore, an increase in chip area can be prevented.
[0003]
However, conventionally, when forming a wiring on a semiconductor wafer, even if a film is formed by a sputtering method or a vapor deposition method, a metal film is formed on the entire wafer, a resist is formed on the metal film, and patterning is performed. Wiring is formed by etching using a mask. In this case, the thickness of the metal film formed in the wafer is the same over the entire surface of the wafer. Further, the same result is obtained when a film is formed by a sputtering method or a vapor deposition method after a resist is previously patterned, and it is difficult to form wirings having different film thicknesses in a wafer.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for forming a wiring layer on a semiconductor wafer, which makes it possible to provide a difference in wiring layer thickness within the same chip.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a dummy pattern that is not related to electrical connection in a wafer or a chip in a same wafer, separately from a wiring pattern related to electrical connection to be formed on a semiconductor chip. By simultaneously performing electrolytic plating on the wiring pattern and the dummy pattern, utilizing the difference in current density, making a difference in the thickness of the plating layer formed in the wiring pattern in the chip or between the chips. A method of plating a semiconductor wafer to be formed.
[0006]
The present inventor has paid attention to the formation of wiring on a wafer by electrolytic plating. That is, in the electroplating, a property that a difference in electric field concentration occurs depending on an area to be plated is used, and a dummy portion is formed on a portion of a wafer where a target wiring pattern is not formed or a portion that does not require functional wiring. By forming a pattern (plating resist opening), the area to be plated is intentionally changed, and the plating layer can be formed with a difference in the wiring thickness depending on the presence or absence of the dummy pattern. In addition, since the electric field concentration is controlled by the area (width and length) of the dummy pattern, the wiring can be changed to an arbitrary thickness. In this way, by providing a difference in the wiring thickness according to the current capacity flowing through the wiring, for example, even between a wiring requiring a large current and a wiring used as a signal, a signal system is collectively formed and a dummy pattern is formed therearound, By making a difference in electric field concentration, it is possible to reduce the thickness of the signal wiring layer and secure the thickness of the large current wiring.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a conventional method for forming a wiring layer will be described with reference to FIG. The upper diagram (A) of FIG. 1 is a diagram of the semiconductor wafer 1 as viewed from above. The lower figure is a schematic cross-sectional view in the order of the wiring formation process of the semiconductor wafer. A metal layer 2 is formed on the entire surface of the wafer 1 by a sputtering method, a vapor deposition method or the like (FIG. 1 (A)), and then a resist film 3 is formed and patterned (FIG. 1 (U)). The metal layer 2 is patterned by etching the layer 2 (FIG. 1 (e)), and then the metal layer pattern 2 is obtained by removing the resist 3. In this method, the metal layer 2 having the same thickness is formed on the entire surface of the wafer (the entire surface of the chip) regardless of the wiring pattern (FIG. 1 (i)).
[0008]
On the other hand, an embodiment of the present invention will be described with reference to FIGS. Since electroplating is performed in the present invention, referring to FIG. 2, a plating pattern is formed by forming a plating base layer (for example, Cu / Cr or Cu / Ti) 12 on the entire surface of a wafer 11 and then forming a resist film 13 thereon. By forming an opening 14 in the resist film 13, a wiring pattern and a dummy pattern are formed by utilizing the property that the opening 14 becomes a region selectively plated with, for example, Cu, Ni, or Au. After selective plating is performed on the opening 14, the resist film 13 is removed to obtain a plating pattern 15. The wiring pattern and the dummy pattern in FIGS. 3 to 6 are openings of such a resist film or metal plating layers formed using the openings.
[0009]
Referring to FIG. 3, a large number of chips 21 and scribe lines 22 for dividing the chips are present in the semiconductor wafer, a wiring pattern 23 is formed in the chips 21, and a dummy pattern 24 is formed in the scribe lines 22. Is formed. Since the dummy pattern 24 is formed in the scribe line 22 as compared with the case where only the wiring pattern 23 in the normal chip 21 is used, the plating area and the density near the wiring pattern 23 increase, and the plating electric field concentration occurs. There to alleviate (or decreased), the thickness T 1 of the plated layer formed on the wiring pattern 23 is thinner as compared with the case where the dummy patterns 24 are not formed T 2 (FIG. 4).
[0010]
In FIG. 3, the dummy pattern is formed on the scribe line. However, as shown in FIG. 5, the dummy pattern 26 may be formed in the chip or in a region which does not affect the wiring pattern 23. As a result, the plating electric field concentration on the wiring pattern 23 is relaxed (or decreased), the thickness T 3 of the plating layer becomes thinner. Since the metal pattern layer 26 of the dummy pattern formed in this chip does not affect the wiring pattern 23, the chip (LSI) may be formed as it is, and if necessary, only the metal pattern layer 26 of the dummy pattern may be formed. May be selectively removed later.
[0011]
Further, referring to FIG. 6, when a wiring pattern 32 through which a large current is to flow and a signal wiring pattern 33 are present in one chip 31 of the semiconductor wafer, the large current wiring 32 is generally wide. In contrast to the pattern, the signal wiring pattern is a thin line pattern, so that the current capacity is different. Further, in the present invention, a dummy pattern 34 is formed near the signal-system wiring 33 to make the signal-system wiring region a dense pattern, and the large-current-system wiring 32 is separated from the signal-system wiring by a distance L, if necessary. Form as a pattern and perform electroplating. In this case, a difference occurs in the electric field concentration, and the current density increases in the coarse pattern region and the current density decreases in the dense pattern region. The layer can be formed thin. By forming the plating layer of the high-current wiring 32 thick, the thickness of the high-current wiring can be easily secured, so that the wiring density can be increased.
[0012]
The electroplating method itself may be a known method, and can be applied to any of copper plating, nickel plating, gold plating, and the like.
[0013]
【The invention's effect】
According to the present invention, the present inventor forms the wiring on the wafer by electrolytic plating, and a dummy is formed on a portion of the wafer where a desired wiring pattern is not formed or a portion that does not require functional wiring. By forming a pattern, intentionally changing the area to be plated, and forming a plating layer with a difference in wiring thickness depending on the presence or absence of the dummy pattern, wiring within a chip or between chips within the same wafer And a method for forming a wiring that makes the thickness of the wiring different. For example, even between a wiring requiring a large current and a wiring used as a signal, a signal system is collectively formed, a dummy pattern is formed therearound, and the thickness of the signal system wiring layer is reduced by making a difference in electric field concentration. Thus, the thickness of the large current wiring can be secured.
[Brief description of the drawings]
FIG. 1 shows a conventional wiring forming method.
FIG. 2 shows a wiring forming method by plating.
FIG. 3 is a diagram illustrating a plating method for providing a difference in plating thickness using a dummy pattern according to the present invention.
FIG. 4 is a view illustrating a plating method for providing a difference in plating thickness using a dummy pattern according to the present invention, in contrast to FIG. 3;
FIG. 5 is a diagram illustrating another plating method for providing a difference in plating thickness using a dummy pattern according to the present invention.
FIG. 6 is a view illustrating a plating method for providing a difference in plating thickness between a large current wiring and a signal wiring using a dummy pattern according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 semiconductor wafer 2 metal layer 3 resist layer 11 semiconductor wafer 12 underlayer 13 resist layer 15 plating layer 21 semiconductor chip 22 scribe line 23 wiring pattern 24 dummy pattern 31 semiconductor chip 32 Large current system wiring 33 ... Signal system wiring 34 ... Dummy pattern

Claims (1)

同一ウェハ内において、半導体チップに形成すべき電気的接続に関係する配線パターンとは別にウェハ内又はチップ内に電気的接続に関係しないダミーパターンを設け、前記配線パターンおよび前記ダミーパターンに同時に電解めっきを行うことにより、電流密度の差を利用して、チップ内又はチップ間の配線パターンに形成するめっき層の厚さに差をつけることを特徴とする半導体ウェハのめっき方法。In the same wafer, a dummy pattern not related to the electrical connection is provided in the wafer or chip separately from the wiring pattern related to the electrical connection to be formed on the semiconductor chip, and the wiring pattern and the dummy pattern are simultaneously electroplated. A method of making a difference in the thickness of a plating layer formed in a wiring pattern in a chip or between chips by utilizing a difference in current density.
JP2002262815A 2002-09-09 2002-09-09 Semiconductor wafer plating method Expired - Fee Related JP3843919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262815A JP3843919B2 (en) 2002-09-09 2002-09-09 Semiconductor wafer plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262815A JP3843919B2 (en) 2002-09-09 2002-09-09 Semiconductor wafer plating method

Publications (2)

Publication Number Publication Date
JP2004103784A true JP2004103784A (en) 2004-04-02
JP3843919B2 JP3843919B2 (en) 2006-11-08

Family

ID=32262757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262815A Expired - Fee Related JP3843919B2 (en) 2002-09-09 2002-09-09 Semiconductor wafer plating method

Country Status (1)

Country Link
JP (1) JP3843919B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220870A (en) * 2006-02-16 2007-08-30 Casio Comput Co Ltd Semiconductor board and method for manufacturing semiconductor element
JP2012054530A (en) * 2010-08-05 2012-03-15 Renesas Electronics Corp Semiconductor device
JP2018010931A (en) * 2016-07-12 2018-01-18 新光電気工業株式会社 Wiring board and manufacturing method of the same
WO2023058497A1 (en) * 2021-10-06 2023-04-13 株式会社村田製作所 Electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220870A (en) * 2006-02-16 2007-08-30 Casio Comput Co Ltd Semiconductor board and method for manufacturing semiconductor element
JP2012054530A (en) * 2010-08-05 2012-03-15 Renesas Electronics Corp Semiconductor device
JP2018010931A (en) * 2016-07-12 2018-01-18 新光電気工業株式会社 Wiring board and manufacturing method of the same
WO2023058497A1 (en) * 2021-10-06 2023-04-13 株式会社村田製作所 Electronic component

Also Published As

Publication number Publication date
JP3843919B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US6344125B1 (en) Pattern-sensitive electrolytic metal plating
TWI278263B (en) Circuit board structure and method for fabricating the same
JPH11340265A (en) Semiconductor device and its manufacture
US20090061175A1 (en) Method of forming thin film metal conductive lines
US8324097B2 (en) Method of forming a copper topped interconnect structure that has thin and thick copper traces
KR940010224A (en) A circuit comprising a thin film component and electrical interconnects on a major surface of an insulated substrate and a method of forming the same
JPH05218645A (en) Manufacture of thin multilayer wiring board
JP3843919B2 (en) Semiconductor wafer plating method
US9258880B2 (en) Package substrate and die spacer layers having a ceramic backbone
US6475703B2 (en) Method for constructing multilayer circuit boards having air bridges
JP2004193457A (en) Method for forming two-layer bump
JP2007180476A (en) Manufacturing method of circuit board, and circuit board
JPH08250858A (en) Circuit board
JP4913082B2 (en) Three-dimensional structure manufacturing method and three-dimensional structure
JP2007116149A (en) Electronic interconnection and method of fabricating the same
JPH03104230A (en) Manufacture of semiconductor device
JPH08125332A (en) Manufacture of multilayer circuit board
JP3174411B2 (en) Method of manufacturing multilayer thin film wiring board
JPH04350940A (en) Manufacture of semiconductor device
CN109413847A (en) Metallized substrate and its manufacturing method
JP2006229017A (en) Manufacturing method of thick-film electronic component
JPS63161646A (en) Manufacture of semiconductor device
US7397122B2 (en) Metal wiring for semiconductor device and method for forming the same
JPS6270594A (en) Selective plating method
JPS63117446A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041025

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Effective date: 20060630

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees