JP2004096012A - 窒化物半導体素子の製造方法 - Google Patents

窒化物半導体素子の製造方法 Download PDF

Info

Publication number
JP2004096012A
JP2004096012A JP2002258016A JP2002258016A JP2004096012A JP 2004096012 A JP2004096012 A JP 2004096012A JP 2002258016 A JP2002258016 A JP 2002258016A JP 2002258016 A JP2002258016 A JP 2002258016A JP 2004096012 A JP2004096012 A JP 2004096012A
Authority
JP
Japan
Prior art keywords
substrate
nitride semiconductor
ground
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002258016A
Other languages
English (en)
Inventor
Motonobu Takeya
竹谷 元伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002258016A priority Critical patent/JP2004096012A/ja
Publication of JP2004096012A publication Critical patent/JP2004096012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】割れを生じることなく基板を研削することができる窒化物半導体素子の製造方法を提供する。
【解決手段】GaNよりなる基板11に、窒化物半導体により素子構造20を形成したのち、素子構造20の上にシリコングリースよりなる平坦化層33形成する。次いで、基板11を上部電極42に対向配置された下部電極43の上に、平坦化層33を接触させて載置し、RIEにより研削する。基板11に機械的な力が加わることがないため、基板11の割れを生じることなく基板11を研削することができる。また、基板11と下部電極43との間の隙間が平坦化層33により埋められ、基板11に面内温度分布が生じることが抑制される。従って、基板11を均一に研削することができ、素子の特性を均一化することができる。
【選択図】    図5

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体よりなる素子構造を有する窒化物半導体素子の製造方法に係り、特に端面を形成するための基板の厚みを調整する工程を含む窒化物半導体素子の製造方法に関する。
【0002】
【従来の技術】
GaN,AlGaN混晶あるいはAlInGaN混晶などの窒化物半導体は、可視領域から紫外領域までの発光を得ることができる発光素子の構成材料として有望視されている。特に、窒化物半導体を用いた発光ダイオード(LED;Light Emitting Diode)については既に実用化が図られており、大きな注目を集めている。また、窒化物半導体を用いた半導体レーザ(LD;Laser Diode )の実現も報告されており、光ディスク装置の光源を初めとした応用が期待されている。
【0003】
【発明が解決しようとする課題】
このような窒化物半導体を用いた素子(以下、「窒化物半導体素子」という。)は、例えば、所定の厚みを有する基板に窒化物半導体により素子構造を形成したのち、基板を研削し、そののち素子毎に劈開することにより作製される。基板を研削するのは、基板が厚すぎると劈開することが難しいからである。
【0004】
基板を研削する従来の技術としては、図8に示したような研磨機を用いた方法がある。すなわち、基板101を、例えば、ステンレスなどよりなる保持板111に、サファイアよりなる保護板102を挟んで素子構造側が保護板102に接するように接着剤103により保持したのち、ダイヤモンド砥粒などの研磨剤が塗布された研磨定盤112上に載置し、保持板111および研磨定盤112の双方を矢印X方向に回転させると共に、基板101の上から所定の圧力Pを加えることにより研削する。なお、保護板102は、基板101と保持板111とが直接接することにより素子構造に傷ができるのを防止するためのものである。
【0005】
しかしながら、この方法では、例えば、基板101の表面にパーティクルや、半導体の異常成長により生成した突起などが存在したり、基板101が反っていたりすると、均等に圧力Pが加わらず、基板101が割れてしまう虞がある。特に、GaNよりなる基板101は劈開性が高いため割れやすいという問題がある。
【0006】
本発明はかかる問題点に鑑みてなされたもので、その目的は、割れを生じることなく基板を研削することができる窒化物半導体素子の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明による窒化物半導体素子の製造方法は、ドライエッチングにより基板の裏面を研削することによって、基板の厚みを薄くする工程を含むものである。
【0008】
本発明による窒化物半導体素子の製造方法では、基板はドライエッチング、例えばRIE(Reactive Ion Etching;反応性イオンエッチング)による物理化学的反応により、すなわち基板に機械的な力が加わることなく研削される。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0010】
図1〜図7を参照して本発明の一実施の形態に係る窒化物半導体レーザの製造方法について説明する。なお、窒化物半導体というのは、ガリウム(Ga),アルミニウム(Al),インジウム(In)およびホウ素(B)などからなる短周期型周期表の3B族元素のうちの少なくとも1種と、窒素(N),ヒ素(As)およびリン(P)などからなる短周期型周期表の5B族元素のうちの少なくとも窒素とを含むものをいう。
【0011】
まず、n型不純物としてケイ素(Si)を添加したGaNの単結晶よりなる厚みが300μmの基板を用意し、その表面を有機溶剤などを用いて洗浄する。次いで、図1に示したように、基板11の上に、窒化物半導体よりなる素子構造20を例えば8μmの厚みで形成する。具体的には、例えば、MOCVD(Metal Organic Chemical Vapor Deposition ;有機金属化学気相成 )装置を用いて、MOCVD法により基板11のc面上に、n型不純物としてケイ素を添加したn型GaNよりなるn型コンタクト層21、ケイ素を添加したn型AlGaN混晶よりなるn型クラッド層22、ケイ素を添加したn型GaNよりなるn型ガイド層23、組成の異なるGax In1−x N(但し、1≧x≧0)混晶層を積層した多重量子井戸構造を有する活性層24、p型不純物としてマグネシウム(Mg)を添加したGaNよりなるp型ガイド層25、マグネシウムを添加したAlGaN混晶よりなるp型クラッド層26、マグネシウムを添加したGaNよりなるp型コンタクト層27を順次成長させる。このように素子構造20が形成された基板11は、各層の熱膨張係数の違いにより、通常、図2に示したように、素子構造20側が凸状となるように湾曲している。
【0012】
なお、素子構造20を形成する際、ガリウムの原料ガスとしては例えばトリメチルガリウム((CH3 3 Ga)、アルミニウムの原料ガスとしては例えばトリメチルアルミニウム((CH3 3 Al)、インジウムの原料ガスとしては例えばトリメチルインジウム((CH3 3 In)、窒素の原料ガスとしては例えばアンモニア(NH3 )をそれぞれ用いる。また、ケイ素の原料ガスとしては例えばモノシラン(SiH3 )を用い、マグネシウムの原料ガスとしては例えばビス=シクロペンタジエニルマグネシウム((C5 5 2 Mg)を用いる。
【0013】
p型コンタクト層27を形成したのち、図3に示したように、例えば、p型コンタクト層27の上に図示しないマスク層を形成し、このマスク層を利用して例えばp型コンタクト層27およびp型クラッド層26の一部を選択的に除去して、p型クラッド層26の上部およびp型コンタクト層27を細い帯状(リッジ状)とする。そののち、図示しないマスク層を除去し、全面(すなわちp型クラッド層26およびp型コンタクト層27の上)に、例えば蒸着法により二酸化ケイ素(SiO2 )よりなる絶縁膜31を形成する。次いで、例えば、絶縁膜31の上に、図示しないレジスト膜を塗布形成し、このレジスト膜をマスクとして、絶縁膜31を選択的に除去し、p型コンタクト層27を露出させる。そののち、全面(すなわちp型コンタクト層27および図示しないレジスト膜の上)に、例えば、パラジウム(Pd),白金(Pt)および金(Au)の各金属を順次蒸着し、次いでレジスト膜をその上に積層された金属と共に除去(リフトオフ)することにより、p側電極32を形成する。
【0014】
p側電極32を形成したのち、図4に示したように、素子構造20側の全面(すなわち、絶縁膜31およびp側電極32の上)に、例えば、シリコングリースあるいはワックスなどの流動性があり熱伝導性が良好な材料を塗布することにより、基板11に応力が加わらず、かつ基板11の形状を保持できるように、平坦化層33を形成し、素子構造20の上面を平坦化する。この平坦化層33を形成する理由は、詳細は後述するが、後続のRIEの処理(図5)において、基板11に面内温度分布が生じることを抑制するためである。
【0015】
平坦化層33を形成したのち、例えば、ドライエッチングの一種であるRIEにより基板11を研削する。図5は、基板11を研削する際に用いるRIE装置の構成を表すものである。このRIE装置は、反応室41の内部に、対向配置された平行平板型の上部電極42と下部電極43とを備えている。上部電極42はコンデンサ44を介して高周波電源45に接続されており、下部電極43はコンデンサ46を介して高周波電源47に接続されている。
【0016】
このようなRIE装置を用い、基板11の裏面を研削し、基板11の厚みを薄くする。具体的には、まず、素子構造20が形成された基板11を、平坦化層33を下部電極43に接触させて下部電極43上に載置する。次いで、図示しないガス供給源から反応性ガスとして塩素(Cl2 )200sccm(standard cubic centimeter per minute)とアルゴン(Ar)500sccmとの混合ガスを導入し、反応室41の内圧を10mTorr(約1.333Pa)とする。また、高周波電源45により上部電極42に13.56MHz、500Wの高周波電力を印加すると共に、高周波電源47により下部電極43に1MHz、−100Vのバイアスを印加する。これにより、上部電極42と下部電極43との間にプラズマを発生させ、発生したプラズマ中のイオンを基板11に入射させ、図6に示したように、基板11の裏面全体をエッチングする。その際、効果的に基板11のエッチングを行うには、高周波電源45,47の出力を調整し、エッチング速度を20μm/h以上とすることが好ましく、60μm/hとすればより好ましい。また、研削後の基板11の厚みは50μm以上200μm以下とすることが好ましい。後続の工程において、薄すぎると割れやすく、厚すぎると劈開により形成される端面の平坦性が悪化するからである。
【0017】
なお、RIEにより処理した基板11がプラズマにより表面が荒れている場合には、RIEにより基板11を研削したのち、「従来の技術」の項で説明した研磨機を用いて、基板11の裏面全体を基板11が割れないように、低加重で短時間、更に研磨してもよい。
【0018】
次いで、図7に示したように、平坦化層33をアセトン等の有機溶剤を用いて除去したのち、基板11の裏面に、開口を有する図示しないレジスト膜を塗布形成する。そののち、このレジスト膜の上に例えば真空蒸着法によりチタン(Ti),白金および金を順次蒸着し、レジスト膜をその上に形成されたチタン,白金および金と共に除去(リフトオフ)し、n側電極34を形成する。
【0019】
n側電極34を形成したのち、基板11をp側電極32の延在方向に対して垂直にスクライブにより所定の幅で劈開し、レーザ構造の端面を形成する。そののち、レーザ光を射出する側の端面に例えば反射率が10%の図示しない反射膜を形成し、他方の端面には例えば反射率が90%の図示しない反射膜をそれぞれ形成する。反射膜を形成したのち、基板11をp側電極32の延在方向に対して平行に所定の位置で分割(ペレタイズ)する。これにより、窒化物半導体レーザが完成する。
【0020】
このように本実施の形態では、基板11の裏面全体をRIEにより、物理化学的に研削するようにしたので、例えば、研磨機を用いて研削する場合のように基板11に機械的な力が加わることがないため、基板11の割れを生じることなく基板11を研削することができる。よって、研削を安定に行うことができ、歩留まりを向上させることができる。また、研磨機を用いて研削する場合と異なり、複数の基板11を同時に研削することが可能であるので、量産性を向上させることもできる。
【0021】
また、本実施の形態では、素子構造20に平坦化層33を形成し、素子構造20の上面、すなわち基板11の表面を平坦化するようにしたので、基板11をRIE装置の下部電極43に載置した際に、下部電極43と基板11との間の隙間が平坦化層33により埋められる。よって、下部電極43と基板11との間に隙間が存在しないので、基板11に面内温度分布が生じることが抑制される。よって、基板11の裏面全体を均一に研削することができ、素子の特性を均一化することができる。
【0022】
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、反応性ガスとして、塩素とアルゴンとの混合ガスを用いるようにしたが、それらを単独で用いてもよく、窒素(N2 ),四フッ化炭素(CF4 )あるいは三フッ化窒素(NF3 )などの他の反応性ガスを単独あるいは混合して用いてもよい。
【0023】
また、上記実施の形態では、RIEにより基板11を研削する場合について説明したが、ガスエッチング,プラズマエッチング,スパッタエッチング,反応性スパッタエッチング,イオンビームエッチングあるいは反応性イオンビームエッチングなどの他のドライエッチングにより基板を研削するようにしてもよい。但し、RIEは物理反応および化学反応の両方を利用した異方性エッチングであるので、研磨効率の観点からはRIEが望ましい。
【0024】
更に、平坦化層33としては、流動性があって、熱伝導性が良好なものであれば、シリコングリースおよびワックス以外の他の材料により形成するようにしてもよい。他の材料としては、レジストなどが挙げられる。
【0025】
加えて、上記実施の形態では、素子構造上にp側電極32を形成したのちに、基板11を研削するようにしたが、素子構造を形成した直後に研削するようにしてもよい。
【0026】
更にまた、上記実施の形態では、GaNよりなる基板11を用いるようにしたが、サファイア,炭化ケイ素(SiC)またはスピネル(MgAl2 4 )などの他の材料よりなる基板を用いてもよい。これらの材料を用いる場合には、n側電極とp側電極とを基板の反対側に設けるのではなく、n側電極を基板の表面側、すなわちp側電極と同一側に設けるようにする。
【0027】
加えてまた、本発明は、半導体レーザ以外の発光ダイオードあるいは電界トランジスタなどの他の窒化物半導体素子を製造する場合についても適用することができる。
【0028】
更にまた、上記実施の形態では、MOCVD法により素子構造20を形成する場合について説明したが、MBE(Molecular Beam Epitaxy ;分子線エピタキシー)法,ハイドライド気相成長法あるいはハライド気相成長法などの他の方法により形成するようにしてもよい。なお、ハイドライド気相成長法とはハイドライド(水素化物)が反応もしくは原料ガスの輸送に寄与する気相成長法のことであり、ハライド気相成長法とはハライド(ハロゲン化物)が反応もしくは原料ガスの輸送に寄与する気相成長法のことである。
【0029】
【発明の効果】
以上説明したように請求項1ないし請求項8のいずれか1項に記載の窒化物半導体素子の製造方法によれば、基板の裏面全体をドライエッチングにより研削するようにしたので、基板に機械的な力が加わることがないため、基板の割れを生じることなく基板を研削することができる。よって、研削を安定に行うことができ、歩留まりを向上させることができる。また、複数の基板を同時に研削することが可能であるので、量産性を向上させることもできる。
【0030】
また、請求項4ないし請求項6のいずれか1項に記載の窒化物半導体素子の製造方法によれば、素子構造上に平坦化層を形成し、素子構造の上面を平坦化するようにしたので、例えば、反応性イオンエッチングにより基板を研削する際、基板を素子構造の平坦化面を接触させて電極に載置すれば、基板と電極との間の隙間が平坦化層により埋められる。すなわち、電極と基板との間に隙間が存在しなくなり、基板に面内温度分布が生じることが抑制される。従って、基板を均一に研削することができ、素子の特性を均一化することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る窒化物半導体素子の製造工程を表す断面図である。
【図2】図1に示した製造工程により素子構造が形成された基板の状態を表す断面図である。
【図3】図2に続く製造工程を表す断面図である。
【図4】図3に続く製造工程を表す断面図である。
【図5】本発明一実施の形態に係る窒化物半導体素子を製造する際に用いるRIE装置の概略構成を表す断面図である。
【図6】図4に続く製造工程を表す断面図である。
【図7】図6に続く製造工程を表す断面図である。
【図8】基板を研削する従来の方法を表す断面図である。
【符号の説明】
11,101…基板、20…素子構造、21…n型コンタクト層、22…n型クラッド層、23…n型ガイド層、24…活性層、25…p型ガイド層、26…p型クラッド層、27…p型コンタクト層、31…絶縁膜、32…p側電極、33…平坦化層、34…n側電極、41…反応室、42…上部電極、43…下部電極、44,46…コンデンサ、45,47…高周波電源、102…保護板、103…接着剤、111…保持板、112…研磨定盤、P…圧力

Claims (8)

  1. 基板上に窒化物半導体よりなる素子構造を有する窒化物半導体素子の製造方法であって、
    ドライエッチングにより前記基板の裏面を研削することによって、前記基板の厚みを薄くする工程を含む
    ことを特徴とする窒化物半導体素子の製造方法。
  2. 前記ドライエッチングとして反応性イオンエッチングを用いる
    ことを特徴とする請求項1記載の窒化物半導体素子の製造方法。
  3. 前記基板上に素子構造を形成したのち、前記基板を研削する
    ことを特徴とする請求項1記載の窒化物半導体素子の製造方法。
  4. 更に、前記素子構造上に平坦化層を形成し、前記素子構造の上面を平坦化する工程を含む
    ことを特徴とする請求項3記載の窒化物半導体素子の製造方法。
  5. 前記平坦化層を、シリコングリースにより形成する
    ことを特徴とする請求項4記載の窒化物半導体素子の製造方法。
  6. 前記基板を、対向配置された平行平板型電極の一方の上に、前記素子構造の平坦化面を接触させて載置し、反応性イオンエッチングにより研削する
    ことを特徴とする請求項4記載の窒化物半導体素子の製造方法。
  7. 前記基板として窒化ガリウム(GaN)よりなるものを用いる
    ことを特徴とする請求項1記載の窒化物半導体素子の製造方法。
  8. 前記基板を、50μm以上200μm以下の厚みとなるまで研削する
    ことを特徴とする請求項1記載の窒化物半導体素子の製造方法。
JP2002258016A 2002-09-03 2002-09-03 窒化物半導体素子の製造方法 Pending JP2004096012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258016A JP2004096012A (ja) 2002-09-03 2002-09-03 窒化物半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258016A JP2004096012A (ja) 2002-09-03 2002-09-03 窒化物半導体素子の製造方法

Publications (1)

Publication Number Publication Date
JP2004096012A true JP2004096012A (ja) 2004-03-25

Family

ID=32062793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258016A Pending JP2004096012A (ja) 2002-09-03 2002-09-03 窒化物半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP2004096012A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073940A (ja) * 2005-08-09 2007-03-22 Sharp Corp Iii族窒化物半導体の加工方法、iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、iii族窒化物半導体レーザ素子の製造方法およびiii族窒化物半導体レーザ素子
WO2008018237A1 (fr) * 2006-08-07 2008-02-14 Sumitomo Electric Industries, Ltd. SUBSTRAT GaxIn1-xN ET PROCÉDÉ DE NETTOYAGE DE SUBSTRAT GaxIn1-xN
KR20150058024A (ko) * 2013-11-20 2015-05-28 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 Iii족 질화물 반도체 장치의 제조 장치 및 제조 방법 및 반도체 웨이퍼의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073940A (ja) * 2005-08-09 2007-03-22 Sharp Corp Iii族窒化物半導体の加工方法、iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、iii族窒化物半導体レーザ素子の製造方法およびiii族窒化物半導体レーザ素子
JP4678691B2 (ja) * 2005-08-09 2011-04-27 シャープ株式会社 Iii族窒化物半導体の加工方法、iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体レーザ素子の製造方法
WO2008018237A1 (fr) * 2006-08-07 2008-02-14 Sumitomo Electric Industries, Ltd. SUBSTRAT GaxIn1-xN ET PROCÉDÉ DE NETTOYAGE DE SUBSTRAT GaxIn1-xN
KR20150058024A (ko) * 2013-11-20 2015-05-28 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 Iii족 질화물 반도체 장치의 제조 장치 및 제조 방법 및 반도체 웨이퍼의 제조 방법
KR102330144B1 (ko) * 2013-11-20 2021-11-22 고쿠리츠 다이가쿠 호우징 도우카이 고쿠리츠 다이가쿠 기코우 Iii족 질화물 반도체 장치의 제조 장치 및 제조 방법 및 반도체 웨이퍼의 제조 방법

Similar Documents

Publication Publication Date Title
US10453998B2 (en) Vertical topology light emitting device
US9786810B2 (en) Method of fabricating optical devices using laser treatment
JP3164016B2 (ja) 発光素子および発光素子用ウエハの製造方法
US9722398B2 (en) Optical device structure using GaN substrates for laser applications
JP5780605B2 (ja) レーザ利用のためのgan基板を用いた光学素子構造
US6635901B2 (en) Semiconductor device including an InGaAIN layer
CN1979887B (zh) 自支撑氮化镓单晶衬底及其制造方法
US8975615B2 (en) Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material
EP2863444B1 (en) Vertical structure LEDs
US20120161187A1 (en) Grown Photonic Crystals in Semiconductor Light Emitting Devices
JP2009081374A (ja) 半導体発光素子
JP2003063897A (ja) 窒化物系iii−v族化合物半導体基板およびその製造方法ならびに半導体発光素子の製造方法ならびに半導体装置の製造方法
US6888867B2 (en) Semiconductor laser device and fabrication method thereof
JP2005268581A (ja) 窒化ガリウム系化合物半導体発光素子
JP2002185085A (ja) 窒化物系半導体レーザ素子及びチップ分割方法
JP3165374B2 (ja) 化合物半導体の電極の形成方法
JPH09283861A (ja) 3族窒化物半導体レーザダイオードの製造方法
JP2003347660A (ja) 窒化物半導体装置の製造方法
US20130015480A1 (en) Semiconductor light emmiting device
JP5206985B2 (ja) 立方晶型窒化物半導体ウェハ及びその製造方法、並びに立方晶型窒化物半導体自立基板の製造方法
JP2004096012A (ja) 窒化物半導体素子の製造方法
JPH11177185A (ja) 窒化ガリウム系化合物半導体レーザ
JP2000082866A (ja) 窒化物半導体レ―ザ素子及びその製造方法
JP2005051173A (ja) Iii族窒化物半導体発光素子およびその製造方法
JP4400864B2 (ja) 半導体発光素子の製造方法