JP2004095766A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2004095766A
JP2004095766A JP2002253545A JP2002253545A JP2004095766A JP 2004095766 A JP2004095766 A JP 2004095766A JP 2002253545 A JP2002253545 A JP 2002253545A JP 2002253545 A JP2002253545 A JP 2002253545A JP 2004095766 A JP2004095766 A JP 2004095766A
Authority
JP
Japan
Prior art keywords
semiconductor device
gate electrode
insulating layer
impurity
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002253545A
Other languages
English (en)
Inventor
Hiroyuki Shimada
島田 浩行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002253545A priority Critical patent/JP2004095766A/ja
Publication of JP2004095766A publication Critical patent/JP2004095766A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】良好な素子特性を有する半導体装置の製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法は、(a)p型の半導体基板10に、ゲート絶縁層12およびゲート電極14を順次形成し、(b)前記ゲート電極14をマスクとして、前記半導体基板10にn型の不純物を導入して、その後熱処理を行ない、第1の不純物領域32、42を形成し、(c)前記ゲート電極14の側面にサイドウォール絶縁層16を形成し、(d)n型の不純物を導入して、ソース/ドレイン領域30、40のための第2の不純物領域を形成すること、を含み、前記(b)では、リンを0.2〜2keVの加速エネルギーでイオン注入することにより、不純物を導入する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、良好な素子特性を有する半導体装置の製造方法に関する。
【0002】
【背景技術および発明が解決しようとする課題】
MOSトランジスタにおけるリーク電流の一つに、GIDL(Gate Induced Drain Leak Current)と呼ばれるものがある。GIDLとは、ゲート電極とドレインとが重なる部分に電界が集中するために、この高電界により薄い空乏層が形成されて価電子帯から伝導帯へ電子がトンネリングすることにより起こる。近年の半導体装置の微細化および高集積化に伴い、MOSトランジスタにおいて短チャネル効果を抑制するためにゲート酸化膜が薄膜化されてゲート電界が強まるに従い、GIDLの問題は顕著になってきている。
【0003】
このようなGIDLを減少させるために、以下の2つの方法が試みられている。第1に、ゲート電極の側面と半導体基板との界面において、ゲート酸化膜の膜厚を厚くする方法。第2に、エクステンション領域の不純物濃度を適度に低くすることにより、電界の集中を緩和する方法。しかし、近年の半導体装置の微細化に伴い、GIDLのさらなる低減が求められている。
【0004】
本発明の目的は、微細化された半導体装置であって、GIDLの低減を図ることができる半導体装置の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、
(a)半導体基板内に設けられたp型の不純物領域の上方に、ゲート絶縁層およびゲート電極を順次形成する工程と、
(b)前記ゲート電極をマスクとして、前記半導体基板内にリンを0.2〜2keVの加速エネルギーで注入することにより、第1の不純物領域を形成する工程と、
(c)前記ゲート電極の側面にサイドウォール絶縁層を形成する工程と、
(d)前記ゲート電極および前記サイドウォール絶縁層をマスクとして、前記半導体基板内にn型の不純物を注入することにより、ソース/ドレイン領域のための第2の不純物領域を形成する工程と、
を含む。
【0006】
本発明の半導体装置の製造方法によれば、第1の不純物領域の形成の際に、不純物としてはリンを用いて、イオン注入の加速エネルギーは0.2〜2keVで行なう。これにより、リンを浅く打ちこむことができる。その結果、微細な半導体装置に適した不純物領域を形成することができ、GIDLを減少させることができる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
1.半導体装置
まず、本実施の形態にかかる製造方法により形成される半導体装置100について図1を参照しながら説明する。半導体装置100は、トレンチ素子分離領域20により素子領域が画定されたp型の半導体基板10を有する。尚、本実施の形態においてはp型の半導体基板を用いて説明するが、特にp型半導体基板に限定されることは無く、半導体基板内に形成されたp型不純物領域であれば良い。また、本実施の形態においては、半導体基板はバルクのシリコン基板に限らず、SOI基板であっても良い。半導体基板10の上方には、ゲート絶縁層12が形成されている。ゲート絶縁層12の上方には、ゲート電極14が形成されている。ゲート電極14の幅(以下、「ゲート長」ということもある)は、0.1μm以下である。
【0008】
ゲート絶縁層12の下方の半導体基板10内には、チャネル領域が形成される。チャネル領域を挟んで高濃度n型不純物領域30,40が形成されている。n型不純物領域30,40は、ソース領域あるいはドレイン領域となる(以下、ソース/ドレイン領域30,40と記載することもある)。ゲート絶縁層12とn型不純物領域30との間において、半導体基板10内に低濃度n型不純物領域32が形成されている。また、ゲート絶縁層12とn型不純物領域領域40との間において、半導体基板10内に低濃度n型不純物領域42が形成されている。n型不純物領域32、42は、不純物としてリンをイオン注入して形成されている。また、n型不純物領域30、40も、不純物としてリンをイオン注入して形成されることが好ましい。
【0009】
型不純物領域32、42の上方には、ゲート電極14の側壁に、サイドウォール絶縁層16が形成されている。サイドウォール絶縁層16に覆われていないn型不純物領域30、40の上面には、シリサイド層72が形成されている。また、ゲート電極14の上には、シリサイド層74が形成されている。
2.半導体装置の製造方法
次に、半導体装置100の製造方法について図面を参照しながら説明する。図2〜4は、図1に示す半導体装置の製造工程を模式的に示す断面図である。本実施の形態では、ゲート長が0.1μm以下のnMOSトランジスタの形成方法について説明する。
【0010】
(1)まず、図2に示すように、p型の半導体基板(以下「半導体基板」という)10に、公知の方法により、pウエル(図示せず)を形成する。次に、公知の方法により、トレンチ素子分離領域20を形成する。
【0011】
次に、半導体基板10に、しきい値の調整のためp型の不純物を導入し、不純物領域を形成する。たとえば、不純物としては、ボロンをイオン注入することができ、イオン注入のドーズ量は、たとえば1×1012〜1×1013cm−2とすることができる。この不純物領域のうち、ゲート絶縁層12の下方にあるものは、チャネル領域として機能することができる。
【0012】
(2)次に、半導体基板10の上に、ゲート絶縁層12を形成するのための絶縁層(図示せず)を形成する。次に、その絶縁層の上に、ゲート電極14となる不純物がドープされたポリシリコン層(図示せず)を形成する。ポリシリコン層は、たとえばCVD法により形成される。
【0013】
次に、リソグラフィおよびエッチングにより、ポリシリコン層および絶縁層をパターニングし、図2に示すように、ゲート絶縁層12とゲート電極14とを形成する。このパターニングでは、ゲート電極14の幅は、0.1μm以下に設定されている。その後、必要に応じて、酸化雰囲気で熱処理を施し、イオン注入時のダメージを回復させる。
【0014】
(3)次に、図3に示すように、半導体基板10内にn型の不純物60をイオン注入により導入し、n型不純物領域32,42を形成する。n型不純物領域32,42は、エクステンション領域となる。
【0015】
このイオン注入では、リンをイオン注入する。リンのイオン注入の条件は、加速エネルギーが0.2keV〜2keVである。加速エネルギーが0.2keVより小さい場合、半導体基板10内にリンを十分に注入することができない。また、加速エネルギーが2keVを超える場合、所望の領域よりも深い領域にまでリンが注入されてしまい、ゲート電極14のゲート長が0.1μmのデバイスにおいて最適なエクステンション領域を形成することができない。
【0016】
ついで、熱処理を行ない、n型不純物領域32,42の形成の際に生じた結晶欠陥を回復させる。熱処理としては、RTA法(Rapid ThermalAnnealing)や、固相エピタキシー法(Solid Phase Epitaxy:SPE法)により行なうことができる。固相エピタキシー法は、450℃の低温で熱処理が行なわれる。そのため、イオン注入により形成された不純物領域をあまり拡散させることなく結晶化を行なうことができる。
【0017】
(4)次に、図4に示すように、ゲート電極14の両サイドにおいて、公知の方法により、サイドウォール絶縁層16を形成する。たとえば、次のようにして、サイドウォール絶縁層16を形成することができる。CVD法などによって、酸化シリコン膜(図示せず)を全面に形成する。次いで、反応性イオンエッチングなどによって、酸化シリコン膜を異方性エッチングすることにより、サイドウォール絶縁層16を形成することができる。サイドウォール絶縁層16の材質としては、酸化シリコン膜の他に窒化シリコン膜で形成することができる。
【0018】
(5)次に、図1に示すように、ゲート電極14およびサイドウォール絶縁層16をマスクとして、半導体基板10内にn型の不純物をイオン注入する。この不純物のイオン注入において、ゲート電極14およびサイドウォール絶縁層16は、不純物をブロックする役割を果たす。その結果、このイオン注入工程においては、ゲート絶縁層12およびサイドウォール絶縁層16の下の半導体基板10に不純物が注入されない。その後、必要に応じて熱処理を行ない、サイドウォール絶縁層16の側方の半導体基板10内にソース/ドレイン領域30、40が形成される。n型の不純物としては、たとえば、リンやヒ素を用い、好ましくはリンである。リンでイオン注入する場合、加速エネルギーを調整することなどにより、所望のソース/ドレイン領域30、40を形成することができる。
【0019】
(6)次に、図1に示すように、シリサイド形成用の金属(図示せず)を全面的に形成する。シリサイド形成用の金属として、コバルトを用いることができる。ついで、半導体基板10およびゲート電極14の上に形成された金属をシリサイド化反応させることにより、ソース/ドレイン領域30、40の上にシリサイド層72を、ゲート電極14の上にシリサイド層74を形成することができる。シリサイド形成用の金属としては、コバルトの他に、チタンやニッケルなどを用いることができる。
【0020】
以上の工程により、本実施の形態にかかる半導体装置100が完成する。
【0021】
本実施の形態の半導体装置の製造方法の利点は以下の通りである。
【0022】
本実施の形態の製造方法では、n型不純物領域(エクステンション領域)32、42は、不純物としてリンを用い、0.2keV〜2keVの加速エネルギーでイオン注入することにより形成される。リンは、原子量が小さいために打ちこみの時のダメージが少なく、所望のエクステンション領域を良好に形成することができる。
【0023】
nMOSトランジスタにおいては、近年の半導体装置の微細化に伴い、エクステンション領域やソース/ドレイン領域を浅く形成するために、不純物としてヒ素が用いられることが多い。これは、ヒ素は、リンなどの他のn型の不純物と比較すると、打ちこみエネルギーが同じであれば、浅く打ちこむことができ、また、拡散係数が小さいため、イオン注入した後の熱処理においての拡散を抑えることができるという利点があるためである。しかし、不純物層をヒ素で形成している場合、GIDLが増加することがある。次に、不純物としてヒ素を用いた場合と、本実施の形態とを比較して本実施の形態の利点について説明する。
【0024】
図5のグラフのX軸は電圧を示し、Y軸はドレイン電流を示す。サブスレッショルド特性の傾きが減少することは、GIDLが増加していると考えられ、MOSトランジスタのスイッチング特性が劣化することを意味する。
【0025】
図5に示すグラフにおいて、破線は、エクステンション領域を形成する際の不純物としてヒ素を用いて、加速エネルギーを5keVでイオン注入して得られた半導体装置のサブスレッショルド特性を示す。実線は、本実施の形態により得られる半導体装置のサブスレッショルド特性を示す。図5のグラフより明らかなように、実線で示される曲線は破線で示される曲線よりも傾きが大きい。すなわち、エクステンション領域をリンを用いて0.2keV〜2keVの加速エネルギーでイオン注入により形成すると、ヒ素で形成した場合よりもGIDLを減少させることができる。
【0026】
これは、ヒ素でエクステンション領域を形成する場合には、ヒ素は原子量が大きいため、イオン注入時のダメージが大きく結晶欠陥が増え、リーク電流が増えるが、リンを所定の加速エネルギーでイオン注入した場合には、浅い不純物層を良好に形成できるためにリーク電流を減らすことができると考えられる。
【0027】
よって、本実施の形態の製造方法によれば、微細化された半導体装置においても、GIDLが減少した半導体装置を形成することができる。
【0028】
以上、本発明の実施の形態について述べたが、本発明は上述の実施の形態に制限されず本発明の要旨の範囲内で変更することができる。
【図面の簡単な説明】
【図1】本実施の形態にかかる半導体装置を模式的に示す断面図である。
【図2】本実施の形態による半導体装置の製造工程を模式的に示す断面図である。
【図3】本実施の形態による半導体装置の製造工程を模式的に示す断面図である。
【図4】本実施の形態による半導体装置の製造工程を模式的に示す断面図である。
【図5】本実施の形態にかかる半導体装置のサブスレッショルド特性を示す図である。
【符号の説明】
10 半導体基板、 12 ゲート絶縁層、 14 ゲート電極、 16 サイドウォール絶縁層、 20 素子分離領域、 30、40 ソース/ドレイン領域、 32、42 低濃度不純物領域、 72、74 シリサイド層、
100、 半導体装置

Claims (3)

  1. (a)半導体基板内に設けられたp型の不純物領域の上方に、ゲート絶縁層およびゲート電極を順次形成する工程と、
    (b)前記ゲート電極をマスクとして、前記半導体基板内にリンを0.2〜2keVの加速エネルギーで注入することにより、第1の不純物領域を形成する工程と、
    (c)前記ゲート電極の側面にサイドウォール絶縁層を形成する工程と、
    (d)前記ゲート電極および前記サイドウォール絶縁層をマスクとして、前記半導体基板内にn型の不純物を注入することにより、ソース/ドレイン領域のための第2の不純物領域を形成する工程と、
    を含む、半導体装置の製造方法。
  2. 請求項1において、
    前記ゲート電極の幅は、0.1μm以下である、半導体装置の製造方法。
  3. 請求項1または2に記載の半導体装置の製造方法により形成された、半導体装置。
JP2002253545A 2002-08-30 2002-08-30 半導体装置の製造方法 Withdrawn JP2004095766A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253545A JP2004095766A (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253545A JP2004095766A (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2004095766A true JP2004095766A (ja) 2004-03-25

Family

ID=32059514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253545A Withdrawn JP2004095766A (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2004095766A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041265B1 (ko) * 2004-06-26 2011-06-14 엘지디스플레이 주식회사 다결정 실리콘 박막 트랜지스터 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041265B1 (ko) * 2004-06-26 2011-06-14 엘지디스플레이 주식회사 다결정 실리콘 박막 트랜지스터 및 그 제조방법

Similar Documents

Publication Publication Date Title
KR101811796B1 (ko) 급경사 접합 프로파일을 갖는 소스/드레인 영역들을 구비하는 반도체 소자 및 그 제조방법
KR100713680B1 (ko) 반도체 장치 및 그 제조 방법
JP2000243854A (ja) 半導体装置及びその製造方法
US6743704B2 (en) Method of manufacturing a semiconductor device
JPH09135025A (ja) 半導体装置の製造方法
US20070052026A1 (en) Semiconductor device and method of manufacturing the same
US7151032B2 (en) Methods of fabricating semiconductor devices
US7235450B2 (en) Methods for fabricating semiconductor devices
JP4186247B2 (ja) 半導体装置の製造方法および導電性シリコン膜の形成方法
JP2004095766A (ja) 半導体装置の製造方法
JPWO2004107450A1 (ja) 半導体装置と半導体装置の製造方法
KR100677774B1 (ko) 반도체 소자의 제조방법
JPH0575045A (ja) 半導体装置の製造方法
JPH11330271A (ja) 半導体装置の製造方法
KR100588787B1 (ko) 반도체 소자 제조방법
KR100639023B1 (ko) 반도체 소자의 제조 방법
JPH04330782A (ja) 微細半導体装置およびその製造方法
US20070200151A1 (en) Semiconductor device and method of fabricating the same
CN112309866A (zh) 一种半导体器件及其制备方法
JP2000012836A (ja) 半導体装置および半導体装置の製造方法
JP2005175378A (ja) 半導体装置およびその製造方法
KR100546812B1 (ko) 반도체 소자 제조방법
KR100657754B1 (ko) 반도체 소자의 얇은 접합 제조 방법
JP3108927B2 (ja) 半導体装置の製造方法
JP2004014779A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101