JP2004092541A - ガス燃料内燃機関の燃料供給制御装置 - Google Patents

ガス燃料内燃機関の燃料供給制御装置 Download PDF

Info

Publication number
JP2004092541A
JP2004092541A JP2002255869A JP2002255869A JP2004092541A JP 2004092541 A JP2004092541 A JP 2004092541A JP 2002255869 A JP2002255869 A JP 2002255869A JP 2002255869 A JP2002255869 A JP 2002255869A JP 2004092541 A JP2004092541 A JP 2004092541A
Authority
JP
Japan
Prior art keywords
fuel
pressure
gas
injection
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002255869A
Other languages
English (en)
Inventor
Hiroaki Nihei
仁平 裕昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002255869A priority Critical patent/JP2004092541A/ja
Publication of JP2004092541A publication Critical patent/JP2004092541A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

【課題】燃料貯蔵容器内のガス燃料を有効に利用する。
【解決手段】筒内にガス燃料を直接噴射する燃料噴射弁を具備する。ガス燃料圧Pが下限圧PLMTよりも高いときには、レギュレータの設定圧PRが高設定圧PHに設定され、圧縮行程に燃料噴射が行われ、オーバラップ期間が存在し、冷却水切替弁の設定温度TTHWが高設定温度THに設定される。ガス燃料圧Pが下限値PLMTよりも低くなると、レギュレータの設定圧PRが低設定圧PLに切り替えられ、吸気行程に燃料噴射が行われ、点火時期が圧縮行程噴射が行われるときよりも遅角され、オーバラップ期間がゼロにされ、冷却水切替弁の設定温度TTHWが低設定温度TLに切り替えられる。
【選択図】   図10

Description

【0001】
【発明の属する技術分野】
本発明はガス燃料内燃機関の燃料供給制御装置に関する。
【0002】
【従来の技術】
従来より、例えば水素ガスのようなガス燃料を用いた内燃機関が知られている。
【0003】
【発明が解決しようとする課題】
ところが、液体燃料と比べると、ガス燃料は気体であるのでそもそも体積が大きく、しかも単位体積当たりの発熱量が小さいので或る一定の機関出力を得るために必要な燃料量が多くなる。従って、ガス燃料を吸気通路に供給すると、その分だけ空気を吸入できなくなり、即ち吸気充填効率が低下する。
【0004】
この問題は、筒内にガス燃料を直接噴射する燃料噴射弁を設け、圧縮行程に燃料噴射弁から筒内にガス燃料を噴射するようにすれば、解決できると考えられる。
【0005】
しかしながら、圧縮行程に筒内にガス燃料を噴射するためには比較的高い噴射圧を必要とする。従って、ガス燃料が消費されるにつれて燃料ボンベ内のガス燃料圧が次第に低下すると、最終的には内燃機関にガス燃料を供給することができなくなり、その結果燃料ボンベ内のガス燃料を有効に利用できないという問題点がある。例えば、燃料ボンベの容量が20MPaである場合に許容最低圧力が5MPaであると、燃料ボンベ内に充填されたガス燃料の25パーセントを用いることができず、即ち燃料ボンベが25パーセントのデッドボリュームを有していることと同じになる。
【0006】
そこで本発明の目的は、燃料貯蔵容器内のガス燃料を有効に利用することができるガス燃料内燃機関の燃料供給制御装置を提供することにある。
【0007】
【課題を解決するための手段】
前記課題を解決するために1番目の発明によれば、筒内にガス燃料を直接噴射する燃料噴射弁を具備し、燃料貯蔵容器内のガス燃料圧を該燃料噴射弁と燃料貯蔵容器間の減圧手段によりその設定圧まで減圧した後に、該設定圧でもって燃料噴射弁からガス燃料を噴射するようにしたガス燃料内燃機関の燃料供給制御装置において、減圧手段をその設定圧が変更可能な減圧手段から形成し、燃料貯蔵容器内のガス燃料圧が低いときには高いときに比べて、減圧手段の設定圧を低く設定すると共に燃料噴射時期を進角するようにしている。
【0008】
また、2番目の発明によれば1番目の発明において、燃料貯蔵容器内のガス燃料圧が予め定められた下限圧よりも高いときには、減圧手段の設定圧を第1の設定圧に設定した上で圧縮行程にガス燃料を噴射する圧縮行程噴射を行い、燃料貯蔵容器内のガス燃料圧が該下限圧よりも低くなったときには、減圧手段の設定圧を第1の設定圧よりも低い第2の設定圧に設定した上で吸気行程にガス燃料を噴射する吸気行程噴射を行うようにしている。
【0009】
また、3番目の発明によれば2番目の発明において、吸気行程噴射が行われるときには、プレイグニッションが生ずるのを抑制するために、空気過剰率が限界過剰率よりも小さくならないように燃料噴射量を制限している。
【0010】
また、4番目の発明によれば2番目の発明において、吸気行程噴射が行われるときの点火時期を、圧縮行程噴射が行われるときの点火時期よりも遅角するようにしている。
【0011】
また、5番目の発明によれば2番目の発明において、吸気弁と排気弁とが同時に開弁しているオーバラップ期間を制御するためのオーバラップ期間制御手段を具備し、吸気行程噴射が行われるときのオーバラップ期間をその最小値に設定している。
【0012】
また、6番目の発明によれば2番目の発明において、機関冷却水温を制御するための水温制御手段を具備し、吸気行程噴射が行われるときの機関冷却水温を、圧縮行程噴射が行われるときの機関冷却水温よりも低くなるようにしている。
【0013】
また、7番目の発明によれば1番目の発明において、前記ガス燃料が水素ガスである。
【0014】
【発明の実施の形態】
図1はガス燃料として水素ガスを用いた場合を示している。しかしながら、他のガス燃料を用いた場合にも本発明を適用することができる。
【0015】
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気ポート、8は排気ポート、9は点火栓を夫々示す。吸気ポート7は対応する吸気枝管10を介してサージタンク11に連結され、サージタンク11は吸気ダクト12を介してエアクリーナ13に連結される。吸気ダクト12内にはステップモータ14により駆動されるスロットル弁15が配置される。一方、排気ポート8は排気マニホルド16及び排気管17を介して触媒コンバータ18に接続される。本発明による実施例では、スロットル弁15は例えばアイドル運転のように要求負荷が極めて低いときを除いて、ほとんどの機関運転状態において全開に保持され、従って吸入空気量がほぼ一定に維持される。
【0016】
図1に示されるように、点火栓9はシリンダヘッド3の内壁面のほぼ中央部に配置される。これに対し、燃料噴射弁6はシリンダヘッド3の内壁面の周縁部に配置される。
【0017】
燃料噴射弁6は筒内にガス燃料を直接噴射するためのものである。図1に示されるように、各燃料噴射弁6は共通の燃料デリバリパイプ19に連結され、燃料デリバリパイプ19はレギュレータ20を介してガス燃料貯蔵容器即ち燃料ボンベ21に連結される。燃料ボンベ21内のガス燃料はレギュレータ20により設定圧まで減圧された後に燃料デリバリパイプ19に供給され、次いで設定圧でもって燃料噴射弁6から筒内に噴射される。
【0018】
図2は本発明による実施例のレギュレータ20を詳しく示している。図2に示されるように、レギュレータ20はその設定圧が互いに異なる一対のレギュレータ20H,20Lと、燃料デリバリパイプ19及び燃料ボンベ21をいずれか一方のレギュレータ20H,20Lに選択的に接続する電気制御式三方弁20Vとを具備する。レギュレータ20Hの設定圧は高設定圧PHに設定されており、レギュレータ20Lの設定圧は低設定圧PL(<PH)に設定されている。従って、燃料デリバリパイプ19及び燃料ボンベ21がレギュレータ20Hに接続されるとレギュレータ20の設定圧PRが高設定圧PHに設定されて噴射圧が高設定圧PHに維持され、燃料デリバリパイプ19及び燃料ボンベ21がレギュレータ20Lに接続されるとレギュレータ20の設定圧PRが低設定圧PLに設定されて噴射圧が低設定圧PLに維持される。このように本発明による実施例では、レギュレータ20の設定圧を変更できるようになっている。なお、高設定圧PHは例えば5MPa程度であり、低設定圧PLは例えば0.3MPa程度にすることができる。
【0019】
更に、図1に示されるように、吸気弁7aと排気弁とが同時に開弁しているオーバラップ期間を制御するオーバラップ期間制御装置22が設けられる。このオーバラップ期間制御装置22は本発明による実施例では、吸気弁7aの開弁時期を変更する開弁時期変更装置22aから形成される。開弁時期変更装置22aは図3に示されるように、吸気弁7aの開弁時期を、最も進角された開弁時期ADVと最も遅角された開弁時期RTDとの間で例えば連続的に変更することができる。
【0020】
図3においてEXは排気弁の開弁時期を示している。従って、図3に示される例では、吸気弁7aの開弁時期がADVになるとオーバラップ期間がOWになり、吸気弁7aの開弁時期が遅角されるにつれてオーバラップ期間が短くなり、吸気弁7aの開弁時期がRTDになるとオーバラップ期間がゼロになる。
【0021】
再び図1を参照すると、シリンダブロック2の冷却水通路2aは冷却水循環路23の一部を形成しており、この冷却水循環路23内には冷却水ポンプ24とラジエータ25とが配置されている。また、ラジエータ25を迂回するバイパス通路26が設けられ、このバイパス通路26はサーモスタットを内蔵した冷却水切替弁27を介して冷却水循環路23に接続される。冷却水切替弁27は冷却水温度が設定温度よりも低いときには冷却水がバイパス通路26内を流通するようにし、冷却水温度が設定温度よりも高くなると冷却水がラジエータ25内を流通して冷却水温度が低下するようにしている。
【0022】
本発明による実施例では、冷却水切替弁27はその設定温度を、例えば設定温度を高設定温度THと低設定温度TL(<TH)との間で変更可能になっている。従って、冷却水切替弁27の設定温度が高設定温度THに設定されると機関温度が比較的高くなり、低設定温度TLに設定されると機関温度が比較的低くなるということになる。このように本発明による実施例では、機関本体1の冷却強さを変更できるようになっている。
【0023】
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、常時電源に接続されているB−RAM(バックアップRAM)35、入力ポート36、及び出力ポート37を具備する。スロットル弁15上流の吸気ダクト12内には、吸入空気の質量流量Gaを表す出力電圧を発生するエアフロメータ40が取り付けられ、燃料ボンベ21には燃料ボンベ21内のガス燃料圧Pを表す出力電圧を発生するガス燃料圧センサ41が取り付けられる。また、冷却水通路2aには機関冷却水温THWを表す出力電圧を発生する水温センサ42が取り付けられる。アクセルペダル(図示しない)にはアクセルペダルの踏み込み量を表す出力電圧を発生する踏み込み量センサ43が取り付けられる。アクセルペダルの踏み込み量は要求負荷Lを表している。これらセンサ40,41,42,43の出力信号は対応するAD変換器38を介して入力ポート36に入力される。更に、入力ポート36にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ44が接続される。CPU34内ではクランク角センサ44からの出力パルスに基づいて機関回転数Nが算出される。一方、出力ポート37は対応する駆動回路39を介して燃料噴射弁6、点火栓9、ステップモータ14、レギュレータ20の三方弁20V(図2)、開弁時期変更装置22a、及び切替弁27にそれぞれ接続される。
【0024】
図4に示されるように、燃料噴射量QFは要求負荷Lに応じて定まり、即ち要求負荷Lが高くなるにつれて多くなる。一方、本発明による実施例では上述したように、ほとんどの機関運転領域において吸入空気量が一定に維持されるので、要求負荷Lが高くなって燃料噴射量QFが多くなるにつれて空気過剰率λが小さくなる。なお、図4においてFLは全負荷を表している。
【0025】
さて、本発明による実施例では、燃料ボンベ21内のガス燃料圧Pに応じて異なる燃料噴射制御が行われる。まず、燃料ボンベ21内のガス燃料圧Pが比較的高い通常運転時の燃料噴射制御について説明する。
【0026】
通常運転時には、レギュレータ20の設定圧PRを高設定圧PHに設定した上で、吸気弁が閉弁している圧縮行程に燃料噴射弁6からガス燃料を噴射する圧縮行程噴射が行われる。この場合、燃料噴射時期θINJは圧縮行程中に定められたθINJcに設定される。このθINJcは圧縮行程噴射が行われたときにガス燃料と空気との混合を最適にする燃料噴射時期であって、機関運転状態例えば燃料噴射量QF及び機関回転数Nの関数として図5(A)に示されるマップの形で予めROM32内に記憶されている。
【0027】
また、通常運転時の点火時期θIGは圧縮行程噴射に最適なθIGcに設定される。このθIGcは機関運転状態例えば燃料噴射量QF及び機関回転数Nの関数として図5(B)に示されるマップの形で予めROM32内に記憶されている。
【0028】
更に、通常運転時には、吸気弁開弁時期θIVも機関運転状態に応じて制御される。この場合の吸気弁開弁時期θIVは例えば例えば燃料噴射量QF及び機関回転数Nの関数として図5(C)に示されるマップの形で予めROM32内に記憶されている。また、冷却水切替弁27の設定温度TTHWは高設定温度THに設定されている。
【0029】
このように圧縮行程噴射を行うと、吸入充填効率を低下させることなく多量のガス燃料を供給することができ、従って大きな機関出力を確保することができる。
【0030】
一方、水素ガスは着火エネルギがかなり小さいので、例えば吸気行程にガス燃料を噴射するとガス燃料の予熱時間が長くなり、このため混合気が点火栓9により点火する前に自着火する、いわゆるプレイグニッションが生ずる恐れがある。
本発明による実施例では、上述したように圧縮行程噴射が行われ、従ってプレイグニッションが生ずるのを抑制することができる。
【0031】
ところが、冒頭で述べたように、圧縮行程に筒内にガス燃料を噴射するためには比較的高い噴射圧を必要とする。しかしながら、ガス燃料が消費され従って燃料ボンベ21内の燃料残量が少なくなるにつれて、燃料ボンベ21内のガス燃料圧Pが次第に低下し、ついには圧縮行程にガス燃料を良好に噴射するのが困難になる。ガス燃料圧Pが筒内圧PCよりも高ければ一応の燃料噴射を行うことは可能であるけれども、ガス燃料圧Pが低くなり従って筒内圧PCとの差(=P−PC)が小さくなるにつれて、ガス燃料を要求量だけ噴射するために必要な燃料噴射時間が好ましくなく長くなる。
【0032】
一方、図6に示されるように、筒内圧PCは進角すればするほど低くなり、吸気弁が開弁している吸気行程まで進角すると更に低くなる。従って、吸気行程に燃料噴射を行えば、比較的低い噴射圧でもって短時間のうちに燃料噴射を行うことができる。このことは燃料ボンベ21内のガス燃料を有効に利用できるということを意味している。
【0033】
そこで本発明による実施例では、ガス燃料圧Pが予め定められた下限値PLMTよりも低くなったときには、レギュレータ20の設定圧PRを低設定圧PLに設定した上で吸気行程にガス燃料を噴射する吸気行程噴射を行うようにしている。この場合、燃料噴射時期θINJが吸気行程中に定められたθINJiに設定される。このθINJiは吸気行程噴射が行われたときにガス燃料と空気との混合を最適にする燃料噴射時期であって、機関運転状態例えば燃料噴射量QF及び機関回転数Nの関数として図7(A)に示されるマップの形で予めROM32内に記憶されている。なお、下限値PLMTは高設定圧PHよりも若干高く設定される。
【0034】
従って、一般的にいうと、ガス燃料圧Pが低いときには高いときに比べて、レギュレータ20の設定圧を低く設定すると共に、燃料噴射時期を進角するようにしているということになる。
【0035】
ところが、吸気行程噴射を行うと上述したように、ガス燃料の予熱時間が長くなりプレイグニッションが生じやすくなる。また、吸気行程噴射を行うとガス燃料の分だけ吸入空気量が減少し、従って圧縮行程噴射が行われるときよりも空気過剰率λが小さくなるので、これによってもプレイグニッションが生じやすくなる。
【0036】
そこで本発明による実施例では、吸気行程噴射が行われるときには、プレイグニッションが生ずるのを抑制するために、空気過剰率λが限界過剰率λLMTよりも小さくならないようにしている。具体的には、限界過剰率λLMTに相当する限界噴射量QFLMTよりも多くならないように燃料噴射量QFを制限している。即ち、図8に示されるように、要求負荷Lが高くなっても、燃料噴射量QFが限界噴射量QFLMTまでに抑制される。
【0037】
図9は限界噴射量QFLMTを示している。図9に示されるように、限界噴射量QFLMTは筒内壁温を表す機関冷却水温度THWが高くなるにつれて小さくなり、機関回転数Nが低くなるにつれて小さくなる。機関冷却水温THWが高くなるにつれて又は機関回転数Nが低くなるにつれて、プレイグニッションが生じやすくなるからである。なお、限界噴射量QFLMTは機関冷却水温THW及び機関回転数Nの関数として図9に示されるマップの形で予めROM32内に記憶されている。
【0038】
このように燃料噴射量QFが抑制されると機関出力が抑制されることになり、車両の実際の加速が車両運転者の感覚と異なるようになる。そこで、燃料噴射量QFが限界噴射量QFLMTまで抑制されていることを車両運転者に知らせる警報装置を設けることもできる。
【0039】
一方、吸気行程噴射が行われるときには、点火時期θIGは吸気行程噴射に最適なθIGiに設定される。このθIGiは機関運転状態例えば燃料噴射量QF及び機関回転数Nの関数として図7(B)に示されるマップの形で予めROM32内に記憶されている。
【0040】
吸気行程噴射に最適な点火時期θIGiは圧縮行程噴射に最適な点火時期θIGcよりも遅角されている。吸気行程噴射が行われるときには圧縮行程噴射が行われるときに比べて空気過剰率λが小さくなり、空気過剰率λが1,0よりも大きいときには空気過剰率λが小さくなるにつれて燃焼速度が高くなるからである。
【0041】
なお、吸気行程噴射に最適な点火時期θIGiを、圧縮行程噴射に最適な点火時期θIGcを空気過剰率λの減少分に応じて遅角側に補正することにより、求めることもできる。
【0042】
更に、吸気行程噴射が行われるときには、吸気弁開弁時期θIVが最も遅角された開弁時期RTDに保持され、従ってオーバラップ期間がゼロないし最小に維持される。このようにすると、排気ガスが例えば排気脈動により燃焼室5内に逆流するのを阻止することができ、従って筒内温度を低く維持することができる。
【0043】
また、吸気行程噴射が行われるときには、冷却水切替弁27の設定温度TTHWが低設定温度TLに切り替えられ、これによっても筒内温度が低く維持される。
【0044】
このように筒内温度を低く維持することによって、プレイグニッションが生ずるのを更に抑制することができる。
【0045】
図10は一定の機関運転状態においてガス燃料圧Pの変化に対する燃料噴射時期、点火時期などの変化を示している。図10からわかるように、ガス燃料圧Pが下限圧PLMTよりも高いときには、レギュレータ20の設定圧PRが高設定圧PHに設定され、圧縮行程に燃料噴射が行われ、オーバラップ期間が存在し、冷却水切替弁27の設定温度TTHWが高設定温度THに設定される。
【0046】
これに対し、ガス燃料圧Pが下限値PLMTよりも低くなると、レギュレータ20の設定圧PRが低設定圧PLに切り替えられ、吸気行程に燃料噴射が行われ、点火時期が圧縮行程噴射が行われるときよりも遅角され、オーバラップ期間がゼロにされ、冷却水切替弁27の設定温度TTHWが低設定温度TLに切り替えられる。
【0047】
このように本発明による実施例では、ガス燃料圧Pが下限圧PLMTよりも低くなっても機関への燃料供給を継続して行うことができ、燃料ボンベ21内のガス燃料を有効に利用することができる。このことはガス燃料内燃機関車両の走行可能距離が長くなるということも意味している。
【0048】
図11は本発明による実施例の燃料噴射制御ルーチンを示している。このルーチンは予め定められた設定クランク角毎の割り込みによって実行される。
【0049】
図11を参照すると、まずステップ100では、図4のマップから燃料噴射量QFが算出される。続くステップ101では、燃料ボンベ21内のガス燃料圧Pが下限圧PLMTよりも低いか否かが判別される。P≧PLMTのときには次いでステップ102に進み、レギュレータ20の設定圧PRが高設定圧PHに設定される。続くステップ103では図5(A)のマップから圧縮行程噴射に最適な燃料噴射時期θINJcが算出され、続くステップ104ではθINJcが燃料噴射時期θINJとされる。続くステップ105では図5(B)のマップから圧縮行程噴射に最適な点火時期θIGcが算出され、続くステップ106ではθIGcが点火時期θIGとされる。続くステップ107では吸気弁開弁時期θIVが図5(C)のマップから算出され、続くステップ108では冷却水切替弁27の設定温度TTHWが高設定温度THに設定される。
【0050】
これに対し、P<PLMTになったときにはステップ101からステップ109に進み、レギュレータ20の設定圧PRが低設定圧PLに設定される。続くステップ110では限界噴射量QFLMTが図9のマップから算出され、続くステップ111ではステップ100で算出された燃料噴射量QFが限界噴射量QFLMTよりも多いか否かが判別される。QF≦QFLMTのときにはステップ113にジャンプし、QF>QFLMTのときには次いでステップ112に進み、限界噴射量QFLMTが燃料噴射量QFとされる。
【0051】
続くステップ113では図7(A)のマップから吸気行程噴射に最適な燃料噴射時期θINJiが算出され、続くステップ114ではθINJiが燃料噴射時期θINJとされる。続くステップ115では図7(B)のマップから吸気行程噴射に最適な点火時期θIGiが算出され、続くステップ116ではθIGiが点火時期θIGとされる。続くステップ117では吸気弁開弁時期θIVが最も遅角されたRTDとされ、続くステップ118では冷却水切替弁27の設定温度TTHWが低設定温度TLに設定される。
【0052】
【発明の効果】
燃料貯蔵容器内のガス燃料を有効に利用することができる。
【図面の簡単な説明】
【図1】ガス燃料内燃機関の全体図である。
【図2】レギュレータの詳細図である。
【図3】吸気弁及び排気弁のリフト量を示す線図である。
【図4】圧縮行程噴射における空気過剰率λ及び燃料噴射量QFを示す線図である。
【図5】圧縮行程噴射における燃料噴射時期θINJc、点火時期θIGc、及び吸気弁開弁時期θIVを示す線図である。
【図6】筒内圧の変化を示す線図である。
【図7】吸気行程噴射における燃料噴射時期θINJi及び点火時期θIGiを示す線図である。
【図8】吸気行程噴射における空気過剰率λ及び燃料噴射量QFを示す線図である。
【図9】限界噴射量QFLMTを示す線図である。
【図10】一定の機関運転状態における燃料噴射時期などの変化を示す線図である。
【図11】本発明による実施例の燃料噴射制御を実行するためのフローチャートである。
【符号の説明】
1…機関本体
5…燃焼室
6…燃料噴射弁
20…レギュレータ
21…燃料ボンベ
22…オーバラップ期間制御装置
27…冷却水切替弁
41…ガス燃料圧センサ

Claims (7)

  1. 筒内にガス燃料を直接噴射する燃料噴射弁を具備し、燃料貯蔵容器内のガス燃料圧を該燃料噴射弁と燃料貯蔵容器間の減圧手段によりその設定圧まで減圧した後に、該設定圧でもって燃料噴射弁からガス燃料を噴射するようにしたガス燃料内燃機関の燃料供給制御装置において、減圧手段をその設定圧が変更可能な減圧手段から形成し、燃料貯蔵容器内のガス燃料圧が低いときには高いときに比べて、減圧手段の設定圧を低く設定すると共に燃料噴射時期を進角するようにしたガス燃料内燃機関の燃料供給制御装置。
  2. 燃料貯蔵容器内のガス燃料圧が予め定められた下限圧よりも高いときには、減圧手段の設定圧を第1の設定圧に設定した上で圧縮行程にガス燃料を噴射する圧縮行程噴射を行い、燃料貯蔵容器内のガス燃料圧が該下限圧よりも低くなったときには、減圧手段の設定圧を第1の設定圧よりも低い第2の設定圧に設定した上で吸気行程にガス燃料を噴射する吸気行程噴射を行うようにした請求項1に記載のガス燃料内燃機関の燃料供給制御装置。
  3. 吸気行程噴射が行われるときには、プレイグニッションが生ずるのを抑制するために、空気過剰率が限界過剰率よりも小さくならないように燃料噴射量を制限する請求項2に記載のガス燃料内燃機関の燃料供給制御装置。
  4. 吸気行程噴射が行われるときの点火時期を、圧縮行程噴射が行われるときの点火時期よりも遅角するようにした請求項2に記載のガス燃料内燃機関の燃料供給制御装置。
  5. 吸気弁と排気弁とが同時に開弁しているオーバラップ期間を制御するためのオーバラップ期間制御手段を具備し、吸気行程噴射が行われるときのオーバラップ期間をその最小値に設定した請求項2に記載のガス燃料内燃機関の燃料供給制御装置。
  6. 機関冷却水温を制御するための水温制御手段を具備し、吸気行程噴射が行われるときの機関冷却水温を、圧縮行程噴射が行われるときの機関冷却水温よりも低くなるようにした請求項2に記載のガス燃料内燃機関の燃料供給制御装置。
  7. 前記ガス燃料が水素ガスである請求項1に記載のガス燃料内燃機関の燃料供給制御装置。
JP2002255869A 2002-08-30 2002-08-30 ガス燃料内燃機関の燃料供給制御装置 Pending JP2004092541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255869A JP2004092541A (ja) 2002-08-30 2002-08-30 ガス燃料内燃機関の燃料供給制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255869A JP2004092541A (ja) 2002-08-30 2002-08-30 ガス燃料内燃機関の燃料供給制御装置

Publications (1)

Publication Number Publication Date
JP2004092541A true JP2004092541A (ja) 2004-03-25

Family

ID=32061248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255869A Pending JP2004092541A (ja) 2002-08-30 2002-08-30 ガス燃料内燃機関の燃料供給制御装置

Country Status (1)

Country Link
JP (1) JP2004092541A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051583A (ja) * 2005-08-18 2007-03-01 Mazda Motor Corp エンジンの制御装置
JP2008038796A (ja) * 2006-08-08 2008-02-21 Hitachi Ltd 車両用エンジンの可変動弁制御装置
JP2008267276A (ja) * 2007-04-20 2008-11-06 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2011163322A (ja) * 2010-02-15 2011-08-25 Nippon Soken Inc 内燃機関の制御装置
JP2013104361A (ja) * 2011-11-14 2013-05-30 Toyota Motor Corp 内燃機関の燃料噴射装置
WO2013099094A1 (ja) * 2011-12-27 2013-07-04 株式会社デンソー 内燃機関の制御装置
JP2013136992A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 内燃機関
JP2014080925A (ja) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd 内燃機関の制御装置及びその制御方法
US20220154654A1 (en) * 2020-11-17 2022-05-19 Volvo Truck Corporation Method for controlling injection in a combustion engine
CN114893311A (zh) * 2022-03-15 2022-08-12 中国第一汽车股份有限公司 氢气直喷系统的控制方法、控制装置、处理器及电子装置
GB2622271A (en) * 2022-09-12 2024-03-13 Jaguar Land Rover Ltd Control system and method for hydrogen fuelled internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051583A (ja) * 2005-08-18 2007-03-01 Mazda Motor Corp エンジンの制御装置
JP2008038796A (ja) * 2006-08-08 2008-02-21 Hitachi Ltd 車両用エンジンの可変動弁制御装置
JP2008267276A (ja) * 2007-04-20 2008-11-06 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2011163322A (ja) * 2010-02-15 2011-08-25 Nippon Soken Inc 内燃機関の制御装置
JP2013104361A (ja) * 2011-11-14 2013-05-30 Toyota Motor Corp 内燃機関の燃料噴射装置
JP2013133792A (ja) * 2011-12-27 2013-07-08 Denso Corp 内燃機関の制御装置
WO2013099094A1 (ja) * 2011-12-27 2013-07-04 株式会社デンソー 内燃機関の制御装置
JP2013136992A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 内燃機関
JP2014080925A (ja) * 2012-10-17 2014-05-08 Mitsubishi Heavy Ind Ltd 内燃機関の制御装置及びその制御方法
US20220154654A1 (en) * 2020-11-17 2022-05-19 Volvo Truck Corporation Method for controlling injection in a combustion engine
US11512654B2 (en) * 2020-11-17 2022-11-29 Volvo Truck Corporation Method for controlling injection in a combustion engine
CN114893311A (zh) * 2022-03-15 2022-08-12 中国第一汽车股份有限公司 氢气直喷系统的控制方法、控制装置、处理器及电子装置
GB2622271A (en) * 2022-09-12 2024-03-13 Jaguar Land Rover Ltd Control system and method for hydrogen fuelled internal combustion engine
EP4336036A1 (en) * 2022-09-12 2024-03-13 Jaguar Land Rover Limited Control system and method for hydrogen fuelled internal combustion engine

Similar Documents

Publication Publication Date Title
US7121261B2 (en) Fuel supply apparatus for internal combustion engine
US7841316B2 (en) Controller for direct injection engine
JP2006046084A (ja) 内燃機関の点火時期制御装置
JP2005155464A (ja) 燃料噴射装置
KR100898884B1 (ko) 내연 엔진용 제어 장치
CN100513774C (zh) 内燃机的点火时间控制装置
JP3799898B2 (ja) 筒内噴射式エンジンの制御装置
JP2004092541A (ja) ガス燃料内燃機関の燃料供給制御装置
US9896994B2 (en) Control apparatus of engine
JP4833786B2 (ja) 予混合圧縮自着火エンジンの制御装置及び制御方法
JP4539171B2 (ja) 内燃機関の制御装置
JP2019152136A (ja) 内燃機関
JP2004245126A (ja) 高圧縮比過給式リーンバーンエンジンの運転モード制御装置
US6508227B2 (en) Method of operating an internal combustion engine
JP4529835B2 (ja) 内燃機関の制御装置
JP4376723B2 (ja) 内燃機関の点火時期制御方法
US6625974B1 (en) Method for operating an internal combustion engine
JP2016217286A (ja) エンジンシステムの制御装置
JP2006169994A (ja) 内燃機関の制御装置
CN101605975A (zh) 内燃机的控制装置
JP2005194965A (ja) エンジンの燃料噴射制御装置
JPS5828559A (ja) 火花点火式エンジンの空燃比制御方法
JP2014088779A (ja) 内燃機関の制御装置
JP6210744B2 (ja) 内燃機関の制御装置
JP4811139B2 (ja) 内燃機関の吸排気弁制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819