JP2014088779A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2014088779A
JP2014088779A JP2012237693A JP2012237693A JP2014088779A JP 2014088779 A JP2014088779 A JP 2014088779A JP 2012237693 A JP2012237693 A JP 2012237693A JP 2012237693 A JP2012237693 A JP 2012237693A JP 2014088779 A JP2014088779 A JP 2014088779A
Authority
JP
Japan
Prior art keywords
target
egr rate
coolant temperature
actual
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237693A
Other languages
English (en)
Inventor
Katsumasa Kurachi
克昌 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2012237693A priority Critical patent/JP2014088779A/ja
Publication of JP2014088779A publication Critical patent/JP2014088779A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】吸気のEGR率をできるだけ高めながら、混合気の燃焼の不安定化をより確実に防止できる制御装置を提供する。
【解決手段】目標EGR率が高くなるほど目標冷却液温を高く設定するとともに、目標EGR率及び目標冷却液温が上昇したときに、実際のEGR率を即時には上昇させず、目標冷却液温に追従する実際の冷却液温を計測した上で、その冷却液温の上昇の推移に応じて徐々に上昇させる。
【選択図】図4

Description

本発明は、排気ガス再循環(Exhaust Gas Recirculation)装置が付帯した内燃機関を制御する制御装置に関する。
気筒内の燃焼温度を低下させてNOxの排出量を削減しつつ、ポンピングロスの低減を図るEGR装置が公知である。EGR装置は、排気経路と吸気経路とをEGR通路を介して接続し、気筒内で発生する燃焼ガスの一部をEGR通路経由で吸気経路に還流させて吸気に混入するものである。
近時では、エミッション及び燃費性能に対する要求が益々高まっており、EGRガスの還流量も増大する傾向にある。多量のEGRガスを還流させている状況下で、気筒の燃焼室内の温度が低下すると、混合気の燃焼が不安定となり、時には失火に至る。
このような燃焼の不安定化を抑止するべく、内燃機関の冷却液(冷却水)が循環する流路上に設けられたサーモスタットの開弁温度をEGRガス量に応じて調整し、EGRガス量が多いほど冷却液温が高くなるように制御することが試みられている(例えば、下記特許文献を参照)。
しかしながら、EGRガス量が増加したときに冷却液温が上昇するようにサーモスタットの開弁温度を調整したとしても、冷却液の熱容量の存在により、実際の冷却液温の上昇には遅れが発生する。つまり、吸気のEGR率の増加に冷却液温の上昇が必ずしも追従せず、気筒の燃焼室内の温度が低い状況下で混合気の燃焼が不安定化する問題を十分に解消するには至っていない。
実開昭60−095127号公報
本発明は、吸気のEGR率をできるだけ高めながら、混合気の燃焼の不安定化をより確実に防止することを所期の目的とする。
本発明では、排気ガス再循環装置が付帯した液体冷却式の内燃機関を制御するものであって、目標EGR率が高くなるほど目標冷却液温を高く設定するとともに、目標EGR率及び目標冷却液温が変動したときに、実際のEGR率を即時には変動させず、目標冷却液温に追従する実際の冷却液温を計測した上で、その冷却液温の変動の推移に応じて徐々に変動させることを特徴とする内燃機関の制御装置を構成した。
センサを介して計測される冷却液温の上昇の推移は、気筒の燃焼室内の温度の上昇の推移に対して遅れると予想される。そこで、目標EGR率と目標EGR率が上昇する直前のEGR率との差分に対する、単位時間あたりの実際のEGR率の上昇の割合を、目標冷却液温と目標冷却液温が上昇する直前の冷却液温との差分に対する、単位時間あたりの実際の冷却液温の上昇の割合よりも大きくすることが好ましい。いわば、EGR率を冷却液温よりも幾分速く上昇させることで、燃焼の不安定化を回避しつつポンピングロスの一層の削減を追求する。
尤も、目標EGR率及び目標冷却液温が上昇したときに、計測した実際の冷却液温が既に目標冷却液温よりも高いならば、実際のEGR率を即時に目標EGR率まで上昇させて構わない。
本発明によれば、吸気のEGR率をできるだけ高めながら、混合気の燃焼の不安定化をより確実に防止することが可能となる。
本発明の一実施形態における車両用内燃機関の全体構成を示す図。 同実施形態における内燃機関の冷却系統の構成を示す図。 要求負荷と目標EGR率との関係を示す図。 同実施形態の内燃機関の制御装置が実行する制御の内容を説明するタイミング図。 同実施形態の内燃機関の制御装置が実行する制御の内容を説明するタイミング図。 同実施形態の内燃機関の制御装置が実行する制御の内容を説明するタイミング図。 同実施形態の内燃機関の制御装置が実行する制御の内容を説明するタイミング図。
本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。
吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、排気ターボ過給機5のコンプレッサ51、インタクーラ35、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。
排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42、排気ターボ過給機5の駆動タービン52及び排気浄化用の三元触媒41を配置している。加えて、タービン52を迂回する排気バイパス通路43、及びこのバイパス通路43の入口を開閉するバイパス弁であるウェイストゲートバルブ44を設けてある。ウェイストゲートバルブ44は、アクチュエータに制御信号mを入力することで開閉操作することが可能な電動ウェイストゲートバルブであり、そのアクチュエータとしてDCサーボモータを用いている。
排気ターボ過給機5は、駆動タービン52とコンプレッサ51とを同軸で連結し連動するように構成したものである。そして、駆動タービン52を排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサ51にポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。
本実施形態の内燃機関には、外部EGR装置2が付帯している。外部EGR装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通するEGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。
本実施形態の内燃機関は、液体冷却式のものである。図2に、内燃機関の冷却系統を示す。内燃機関のシリンダブロック61の内部、及びシリンダヘッド62の内部にはそれぞれ、冷却液(冷却水)が流通するウォータジャケットが形成されている。内燃機関の外部には、これらシリンダブロック61及びシリンダヘッド62を冷却する過程で昇温した冷却液の温度を低下させるための放熱手段63、64が配設されている。かかる放熱手段としては、車両のキャビン側に設置される暖房用のヒータ63や、車両のフロントグリルの後背に設置されるラジエータ64が挙げられる。
ラジエータ64には、ファン65が付設されている。ラジエータファン65は、電動のファンモータにより回転駆動される。ファンモータは、車載のバッテリから電力の供給を受ける。ラジエータ64に流入する冷却液の流量は、サーモスタット(または、流量制御バルブ)67によって調節される。例えば、内燃機関の冷間始動直後等、冷却液温が低いときにはサーモスタット67は閉弁し、ラジエータ64に冷却液が流れ込まない。
ウォータポンプ66は、内燃機関のクランクシャフトから駆動力の伝達を受けて回転する機械式のものである。ウォータポンプ66は、放熱手段63、64において放熱し温度が低下した冷却液を吸引し、その冷却液をシリンダブロックに向けて再び送り出す。ウォータポンプ66による冷却液の吐出量、即ち冷却系統を循環する冷却液の流量は、エンジン回転数に依存する。
本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。
入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号(N信号)b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求負荷)として検出するセンサから出力されるアクセル開度信号c、ブレーキペダルの踏込量を検出するセンサから出力されるブレーキ踏量信号d、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号e、内燃機関の冷却液温を検出する液温センサから出力される冷却液温信号f、吸気カムシャフトまたは排気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号(G信号)g、シリンダブロック61に設置され気筒1でのノッキングに起因した振動を検出するノックセンサから出力されるノック信号h等が入力される。
出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、ウェイストゲートバルブ44に対して開度操作信号m、ファンモータに対してラジエータファン65の回転をON/OFFさせまたは回転速度を調節するための制御信号n、サーモスタット67に対してその開弁温度を指令する信号(または、流量制御バルブ67に対して開度操作信号)o等を出力する。
ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求されるEGR率(または、EGR量)といった各種運転パラメータを決定する。運転パラメータの決定手法自体は、既知のものを採用することが可能である。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、m、n、oを出力インタフェースを介して印加する。
本実施形態のECU0は、気筒1に充填される吸気のEGR率の制御に際し、現在の内燃機関の運転領域[エンジン回転数,要求負荷(即ち、アクセル開度、気筒1に充填される吸気量、またはサージタンク33内の吸気圧力)]に応じた目標EGR率を設定する。
図3に、アクセル開度に基づく要求負荷と、気筒1に充填される吸気について要求されるEGRガス量を示す目標EGR率との関係の概略を示す。特に、要求負荷との関係において、目標EGR率は、中負荷領域で最も高く、低負荷領域及び高負荷領域ではそれよりも低い。低負荷領域では、要求負荷が低くなるほど目標EGR率が低下する。高負荷領域では、要求負荷が高くなるほど目標EGR率が低下する。
ECU0のメモリには予め、運転領域の指標値[エンジン回転数,要求負荷]と目標過給圧との関係を規定したマップデータが格納されている。ECU0は、現在の運転領域[エンジン回転数,要求負荷]をキーとして当該マップを検索し、設定するべき目標EGR率を読み出す。そして、読み出した目標EGR率を具現するために必要となるEGRバルブ23の開度を演算して、EGRバルブ23をその開度に操作する。
吸気のEGR率を高める、即ちEGRバルブ23の開度を大きく開ければ、内燃機関のポンピングロスが低下し、実効的な燃費の向上を期待できる。だが、気筒1の燃焼室内の温度が低い状況で、EGR率を過剰に高めると、混合気の燃焼が不安定となり、失火に至るおそれもある。燃焼の不安定化は、内燃機関の回転速度の変動や、未燃燃料成分を含んだ排気ガスの排出につながるため、避けなければならない。
よって、本実施形態では、目標EGR率が高くなるほど目標冷却液温を高く設定することで、吸気のEGR率が高いほど気筒1のボアから熱が奪われにくくなるようにする、ひいては気筒1の燃焼室内温度を高めるようにしている。例えば、目標EGRが20%以下の状況では目標冷却液温を80℃に設定し、目標EGRが25%の状況では目標冷却液温を85℃に設定し、目標EGRが30%の状況では目標冷却液温を90℃に設定する。
本実施形態のECU0は、内燃機関の運転領域が遷移して目標EGR率及び目標冷却液温が上昇したときに、実際のEGR率を即時には上昇させず、実際の冷却液温をセンサを介して計測した上で、その冷却液温の上昇の推移に応じて徐々に上昇させる制御を行う。
図4ないし図7に、本実施形態のECU0によるEGR率及び冷却液温の制御の例を示す。図中、細い実線は目標EGR率及び目標冷却液温を表し、太い破線は実際のEGR率及び実際の冷却液温を表している。
図4に示すように、目標EGR率が20%から30%に上昇すると、目標冷却液温も80℃から90℃へと上昇する。ECU0は、実際の冷却液温をこの目標冷却液温に追従させるべく、ラジエータファン65の回転を操作したり、サーモスタット(または、流量制御弁)67の開度を操作したりするフィードバック制御を行う。
だが、実際の冷却液温の上昇は、目標冷却液温の上昇に対して必然的に遅れる。実際の吸気のEGR率を目標EGR率に即時的に追従させてしまうと、実際の冷却液温が未だ目標冷却液温に到達していない、例えば冷却液温が82℃であるにもかかわらず、吸気のEGR率が目標EGR率である30%まで上昇してしまう。さすれば、気筒1の燃焼室内温度が低い状況で多量のEGRガスを含む吸気が充填されることとなり、燃焼の不安定化または失火を招来する。
そこで、本実施形態のECU0は、図4に示している通り、センサを介して計測される冷却液温が目標冷却液温に到達するのに要する時間と同程度の時間をかけて、EGR率が目標EGR率に到達するよう、EGRバルブ23の開度を操作する。これにより、燃焼の不安定化を回避しつつ、可及的にEGR率を増大させてポンピングロスを低減せしめることができる。
なお、図5に示しているように、EGR率を冷却液温よりも幾分速く上昇させることで、ポンピングロスの一層の削減を追求してもよい。この場合、ECU0は、目標EGR率と目標EGR率が上昇する直前のEGR率との差分(10%)に対する単位時間あたりの実際のEGR率の上昇の割合を、目標冷却液温と目標冷却液温が上昇する直前の冷却液温との差分(10℃)に対する単位時間あたりの実際の冷却液温の上昇の割合よりも大きくする。例えば、計測された冷却液温の上昇の割合が単位時間あたり一割(1℃)であるときに、実際のEGR率の上昇の割合が単位時間あたり二割(2%)となるように、EGRバルブ23の開度を操作する。
但し、目標EGR率及び目標冷却液温が上昇したときに、センサを介して計測された実際の冷却液温が既に目標冷却液温よりも高いならば、気筒1の燃焼室内の温度が十分に高く、混合気の燃焼の不安定化に対して余裕があると考えられるので、実際のEGR率を即時に目標EGR率まで上昇させる。
図6に示す例では、目標EGR率が0%から30%に上昇し、目標冷却液温も80℃から90℃へと上昇したが、実際の冷却液温は既に95℃となっている。このような状況は、高負荷の運転領域から中負荷の運転領域に遷移するような場合に起こる。ECU0は、実際のEGR率を目標EGR率である30%に即時に上昇させるべく、EGRバルブ23を速やかに開放する。
また、何らかの理由により、内燃機関の冷却液温を引き下げる必要が生じたときには、目標液温が現状の液温よりも低い温度に再設定される。これに伴い、目標EGR率も低下することとなるが、このような場合においても、目標EGR率の変動と実際のEGR率の変動との間に遅延を設ければ、ポンピングロスを少しでも多く減少させることに奏効する。即ち、図7に示している通り、センサを介して計測される冷却液温が目標冷却液温に到達するのに要する時間と同程度の時間をかけて、EGR率が目標EGR率に到達するよう、EGRバルブ23の開度を操作する。
とは言え、運転領域の遷移により目標EGR率が低下する過程では、目標EGR率の変動と実際のEGR率の変動との間に必ずしも遅延を設ける必要はなく、実際のEGR率を即時に目標EGR率に追従させてもよい。EGR率を低下させることは、混合気の燃焼をより安定なものとするからである。
本実施形態では、排気ガス再循環装置2が付帯した液体冷却式の内燃機関を制御するものであって、目標EGR率が高くなるほど目標冷却液温を高く設定するとともに、目標EGR率及び目標冷却液温が変動したときに、実際のEGR率を即時には変動させず、目標冷却液温に追従する実際の冷却液温を計測した上で、その冷却液温の変動の推移に応じて徐々に変動させることを特徴とする内燃機関の制御装置0を構成した。
本実施形態によれば、吸気のEGR率をできるだけ高めながら、混合気の燃焼の不安定化をより確実に防止することが可能となる。燃焼不安定または失火に対する耐力が向上することは、目標EGR率をより高く設定できることにつながり、ポンピングロスの低減、燃費の良化に貢献する。
また、センサを介して計測される冷却液温の上昇の推移は、気筒の燃焼室内の温度の上昇の推移に対して遅れると予想される。目標EGR率と目標EGR率が上昇する直前のEGR率との差分に対する、単位時間あたりの実際のEGR率の上昇の割合を、目標冷却液温と目標冷却液温が上昇する直前の冷却液温との差分に対する、単位時間あたりの実際の冷却液温の上昇の割合よりも大きくすれば、燃焼の不安定化を回避しつつポンピングロスをより一層削減できる。
加えて、目標EGR率及び目標冷却液温が上昇したときに、計測した実際の冷却液温が目標冷却液温よりも高いならば、実際のEGR率を即時に目標EGR率まで上昇させるようにしているので、燃焼の不安定化の懸念に乏しい状況においてEGRガスの還流量を速やかに増大させることができ、実用燃費性能の向上に資する。
なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、冷却液温を制御するための具体的手段は、ラジエータファン65やサーモスタット(または、流量制御弁)67に限定されない。ウォータポンプ66が電動ポンプである場合には、このウォータポンプ66による冷却液の吐出量を操作することで、冷却液温を制御することが可能である。
その他、各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、車両等に搭載される内燃機関の制御に適用することができる。
0…制御装置(ECU)
2…排気ガス再循環装置
23…EGRバルブ
65…ラジエータファン
67…サーモスタット(または、流量制御弁)

Claims (3)

  1. 排気ガス再循環装置が付帯した液体冷却式の内燃機関を制御するものであって、
    目標EGR率が高くなるほど目標冷却液温を高く設定するとともに、
    目標EGR率及び目標冷却液温が変動したときに、実際のEGR率を即時には変動させず、目標冷却液温に追従する実際の冷却液温を計測した上で、その冷却液温の変動の推移に応じて徐々に変動させる
    ことを特徴とする内燃機関の制御装置。
  2. 目標EGR率と目標EGR率が上昇する直前のEGR率との差分に対する、単位時間あたりの実際のEGR率の上昇の割合を、目標冷却液温と目標冷却液温が上昇する直前の冷却液温との差分に対する、単位時間あたりの実際の冷却液温の上昇の割合よりも大きくする請求項1記載の制御装置。
  3. 目標EGR率及び目標冷却液温が上昇したときに、計測した実際の冷却液温が目標冷却液温よりも高いならば、実際のEGR率を即時に目標EGR率まで上昇させる請求項1または2記載の内燃機関の制御装置。
JP2012237693A 2012-10-29 2012-10-29 内燃機関の制御装置 Pending JP2014088779A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237693A JP2014088779A (ja) 2012-10-29 2012-10-29 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237693A JP2014088779A (ja) 2012-10-29 2012-10-29 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2014088779A true JP2014088779A (ja) 2014-05-15

Family

ID=50790870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237693A Pending JP2014088779A (ja) 2012-10-29 2012-10-29 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2014088779A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225805A1 (en) * 2016-03-28 2017-10-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
KR20180116909A (ko) * 2017-04-18 2018-10-26 현대자동차주식회사 연료 개질 시스템 및 냉각수 공급 제어 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225805A1 (en) * 2016-03-28 2017-10-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2017180112A (ja) * 2016-03-28 2017-10-05 トヨタ自動車株式会社 内燃機関
KR20180116909A (ko) * 2017-04-18 2018-10-26 현대자동차주식회사 연료 개질 시스템 및 냉각수 공급 제어 방법
KR102335331B1 (ko) * 2017-04-18 2021-12-03 현대자동차 주식회사 연료 개질 시스템 및 냉각수 공급 제어 방법

Similar Documents

Publication Publication Date Title
US9670831B2 (en) Temperature control apparatus for intercooler
US9879617B2 (en) Control apparatus of engine
JP5288046B2 (ja) 内燃機関の制御装置
US11181054B2 (en) Intake-air temperature controlling device for engine
US20130319382A1 (en) Exhaust gas recirculation apparatus of internal combustion engine
JP2007211594A (ja) エンジン
JP2020105912A (ja) 過給機付エンジンの吸気温度制御装置
JP6565875B2 (ja) 内燃機関の制御装置
JP5679185B2 (ja) 内燃機関の制御装置
JP2014088779A (ja) 内燃機関の制御装置
JP2017007516A (ja) 制御装置
JP2009299506A (ja) 内燃機関の吸気制御装置
JP7239883B2 (ja) エンジンの冷却装置
JP2014169648A (ja) 内燃機関の過給機制御装置
US8408189B2 (en) Petrol engine having a low-pressure EGR circuit
US9885293B2 (en) Control apparatus of engine
JP2020105911A (ja) 過給機付エンジンの吸気温度制御装置
US11230981B2 (en) Supercharger-equipped engine
JP2010151095A (ja) 圧縮自己着火式エンジンの制御方法及びその装置
JP2021042720A (ja) 内燃機関の制御装置
JP2014088782A (ja) 内燃機関の制御装置
JP2013238136A (ja) 内燃機関の制御装置
JP2021116770A (ja) 内燃機関装置の制御装置
JP2022053989A (ja) エンジン装置
JP6230337B2 (ja) 内燃機関の制御装置