JP2004088865A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2004088865A
JP2004088865A JP2002244569A JP2002244569A JP2004088865A JP 2004088865 A JP2004088865 A JP 2004088865A JP 2002244569 A JP2002244569 A JP 2002244569A JP 2002244569 A JP2002244569 A JP 2002244569A JP 2004088865 A JP2004088865 A JP 2004088865A
Authority
JP
Japan
Prior art keywords
fuse
output
diode rectifier
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244569A
Other languages
English (en)
Inventor
Toshiaki Oka
岡 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002244569A priority Critical patent/JP2004088865A/ja
Publication of JP2004088865A publication Critical patent/JP2004088865A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供する。
【解決手段】三相交流電源1U、1V、1Wに、入力ヒューズ2U、2V、2Wを介して接続されたダイオード整流回路3と、このダイオード整流回路の直流出力部に接続された平滑コンデンサ4と、前記ダイオード整流回路の直流出力部の電圧を検出する直流電圧検出回路7と、この直流電圧検出回路7の出力で前記ヒューズ2U、2V、2Wの動作状態を判別する手段とで構成し、前記手段は、電源投入時からの前記直流電圧検出回路7の出力が、所定時間内に所定レベル以上に到達したか否かで、前記ヒューズ2U、2V、2Wの動作状態を判別するようにする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、1つまたは複数個の三相ダイオード整流器を用い、直流電力を得る電力変換装置に関する。
【0002】
【従来の技術】
交流電源から直流電圧を得る場合、ダイオード整流器が広く用いられている。ダイオード整流器は回路構成が簡単であり、容易に直流電圧が得られるため、多岐にわたる応用分野に使用されている。
【0003】
従来より、ダイオード整流器において、ダイオードの短絡故障や直流短絡故障が発生した場合に、電源短絡故障へ被害拡大しないように、ダイオード整流器の各入力に速断ヒューズ等の保護回路を挿入している。これらの速断ヒューズの溶断検出は、一般的には機械的接点スイッチが用いられ、各接点の出力を制御系回路にフィードバックしている。
【0004】
図18は、従来の三相ダイオード整流器の交流入力ヒューズ溶断検出回路を持つ電力変換装置の構成図である。三相交流電源1U、1V、1Wからそれぞれヒューズ2U、2V、2Wを介し、三相ダイオードコンバータ3へ給電する。この三相ダイオードコンバータ3の出力である直流電力は平滑コンデンサ4に蓄えられる。各ヒューズ2U、2V、2Wは溶断検出用にヒューズ溶断検出接点5U、5V、5Wを持ち、この接点信号は制御回路6に入力され、ヒューズがひとつでも溶断した場合、速やかに装置を停止させる。
【0005】
【発明が解決しようとする問題】
しかしながら、このように構成されたダイオード整流器の入力ヒューズ溶断検出回路は、ヒューズごとに機械式接点スイッチを必要とし、またそれぞれの回路に対し各々絶縁する必要がある。このため、外形が大きくなり、また配線コストがかかるなどの問題がある。
【0006】
従って、本発明は、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、このダイオード整流回路の直流出力部に接続された平滑コンデンサと、前記ダイオード整流回路の直流出力部の電圧を検出する直流電圧検出回路と、この直流電圧検出回路の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、電源投入時からの前記直流電圧検出回路の出力が、所定時間内に所定レベル以上に到達したか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする。
【0008】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、このダイオード整流回路の直流出力部に接続された平滑コンデンサと、前記ダイオード整流回路の直流出力部の電圧を検出する直流電圧検出回路と、この直流電圧検出回路の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、前記直流電圧検出回路の出力に含まれるリップル周波数が所定値以下になったか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする。
【0009】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、このダイオード整流回路の直流出力部に接続された平滑コンデンサと、前記ダイオード整流回路の直流出力部の電流を検出する直流電流検出器と、この直流電流検出器の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、電源投入時からの前記直流電流検出器の出力が、所定時間内に所定レベル以下に到達したか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする。
【0010】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、このダイオード整流回路の直流出力部に接続された平滑コンデンサと、前記ダイオード整流回路の直流出力部の電流を検出する直流電流検出器と、この直流電流検出器の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、前記直流電流検出器の出力に含まれるリップル周波数が所定値以下になったか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする。
【0011】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、前記ダイオード整流回路の直流出力部に接続された平滑コンデンサと、前記ダイオード整流回路の入力電流を検出する交流電流検出器と、この交流電流検出器の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、前記交流電流検出器の出力が所定のレベル以下になったか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする。
【0012】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、夫々入力ヒューズを介して接続された複数個のダイオード整流回路と、これらの複数個のダイオード整流回路の夫々の直流出力部に接続された平滑コンデンサと、前記複数個のダイオード整流回路の夫々の直流出力部の電圧を検出する直流電圧検出回路と、この直流電圧検出回路の夫々の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、前記直流電圧検出回路の夫々の出力の差が所定レベル以上になったか否かで、前記夫々のヒューズの動作状態を判別するようにしたことを特徴とする。
【0013】
上記目的を達成するため、本発明の電力変換装置は、三相交流電源に、夫々入力ヒューズを介して接続された複数個のダイオード整流回路と、これらの複数個のダイオード整流回路の夫々の直流出力部に接続された平滑コンデンサと、前記複数個のダイオード整流回路の夫々の直流出力部の電流を検出する直流電流検出器と、この直流電流検出器の夫々の出力で前記ヒューズの動作状態を判別する手段とから構成され、前記手段は、前記夫々の直流電流検出器の出力の差が所定レベル以上になったか否かで、前記夫々のヒューズの動作状態を判別するようにしたことを特徴とする
本発明によれば、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0014】
【発明の実施の形態】
(第1の実施の形態)
以下に本発明による電力変換装置の第1の実施の形態を図1乃至図3を参照して説明する。図1は本発明の第1の実施の形態に係る電力変換装置の構成図である。
【0015】
三相交流電源1U、1V、1Wからそれぞれヒューズ2U、2V、2Wを介し、三相ダイオードコンバータ3へ給電する。この三相ダイオードコンバータ3の出力である直流電力は平滑コンデンサ4に蓄えられる。ここで、各ヒューズ2U、2V、2Wは、溶断検出用のヒューズ溶断検出接点は持たない。
【0016】
直流電圧検出回路7は、平滑コンデンサ4に加わる電圧を検出する。この信号を受け、ヒューズ溶断判定回路8でヒューズ溶断の判別を行い、この出力を制御回路6へ供給する。
【0017】
図2は図1のヒューズ溶断判定回路8の詳細を示す構成図である。図2において、ヒューズ溶断判定回路8は、時間設定器9と、直流電圧が0電圧から変化し始めてから設定された時間後の電圧を出力する電圧タイマ出力器10と、この出力と、検出電圧レベル設定器11からの設定電圧レベルとを比較する電圧比較回路12とから構成される。
【0018】
以上説明したヒューズ溶断判定回路8の動作について以下説明する。
【0019】
図3に全てのヒューズが健全な場合と、ひとつのヒューズが溶断した場合の電源投入時からの直流電圧の時間推移を示す。全てのヒューズが健全な場合は、三相全波整流の状態となり、平滑コンデンサ4への充電時間は比較的短いが、ひとつのヒューズが溶断した場合、単相全波整流の状態となり、三相全波整流の状態と比較して、ピーク電圧は同じでも、平均電圧がより低い状態での充電となるため、平滑コンデンサ4への充電時間は長くなる。従って、時間設定器9の設定時間と、検出電圧レベル設定器11の設定レベルを適切な値に選定すれば、ヒューズ溶断検出を行うことが可能となる。
【0020】
この設定時間、設定レベルの決定の方法として、電源および直流部のCR時定数と、電源電圧から演算する方法や、ヒューズが健全な場合の三相全波整流波形を測定して決定する方法がある。
【0021】
このように第1の実施の形態では、直流電圧検出回路7とヒューズ溶断判定回路8を用いるだけで、入力ヒューズ溶断検出を行うことができる。
【0022】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0023】
(第2の実施の形態)
図4は本発明の第2の実施の形態におけるヒューズ溶断判定回路8の詳細を示す構成図である。ここで、本発明の第2の実施の形態における全体の構成は、図1の本発明の第1の実施の形態に係る電力変換装置の構成図と全く同一である。
【0024】
図4において、ヒューズ溶断判定回路8は、電圧リップルの周波数を検出する電圧リップル周波数検出回路13と、検出周波数設定器14からの設定周波数とを比較する周波数比較回路15とからなる。
【0025】
図5に、全てのヒューズが健全な場合と、ひとつのヒューズが溶断した場合の直流電圧波形を示す。全てのヒューズが健全な場合は、三相全波整流の状態となり、整流回路のリップル周波数は基本周波数の6倍であるが、ひとつのヒューズが溶断した場合は、単相全波整流の状態となるので、リップル周波数は基本周波数の2倍となる。従って、リップルの周波数と比較する設定周波数を適切な値とすれば、ヒューズ溶断検出を行うことができる。
【0026】
リップル周波数の検出アルゴリズムとしては、以下の方法を採用できる。
【0027】
通常、三相全てが健全で全波整流を行っている状態で、かつ直流側に最大負荷を持つ場合の直流電圧の最小値Vdc(min)は、入力交流の線間電圧実効値をVinとすると、
Vdc(min)=√2×Vin×√3/2
である。
【0028】
従って、直流電圧を随時監視し、上記Vdc(min)を下回ったときに、カウンタの計測を開始し、各サンプリング毎にカウントアップしていく。そしてVdc(min)を上回ってから、再度下回るまでのカウントの差から、電圧リップルの周波数を検出できる。
【0029】
上記方法によると、三相全てのヒューズが健全な時は、直流電圧は上記Vdc(min)を下回ることは無いので、カウント値は0のままカウントアップされず、周波数も無限大である。
【0030】
一方、何れかのヒューズが溶断していても、負荷電流が低い場合は、上記Vdc(min)を下回ることはなくヒューズの溶断を検出できないが、交流ヒューズを流れる電流も低いので装置の運転能力内であり、運転継続可能である。
【0031】
このように第2の実施の形態では、直流電圧検出回路7とヒューズ溶断判定回路8を用いるだけで、入力ヒューズ溶断検出を行うことができる。また、たとえ何れかのヒューズが溶断していたとしても、装置の限界まで、運転を継続することができる。
【0032】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0033】
(第3の実施の形態)
以下本発明による電力変換装置の第3の実施の形態を図6乃至図8を参照して説明する。図6は、本発明の第3の実施の形態に係る電力変換装置の構成図である。この第3の実施の形態の各部について、図1の第1の実施の形態に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この第3の実施の形態が第1の実施の形態と異なる点は、図1の直流電圧検出回路7に代えて、直流電流検出器16を用いている点及びヒューズ溶断判定回路8の具体的構成が異なる点である。
【0034】
図7は図6のヒューズ溶断判定回路8の詳細を示す回路図である。図7において、ヒューズ溶断判定回路8は、時間設定器9と、直流電流が0電流から変化し始めてから設定された時間後の電流を出力する電流タイマ出力器17と、検出電流レベル設定器18からの設定レベルとを比較する電流比較回路19とからなる。
【0035】
以上説明したヒューズ溶断判定回路8の動作について以下説明する。
【0036】
図8に全てのヒューズが健全な場合と、ひとつのヒューズが溶断した場合の電源投入時からの直流電流の時間推移を示す。ひとつのヒューズが溶断した場合、図5の単相全波整流波形で平滑コンデンサ4を充電していくため、全てのヒューズが健全な場合の三相全波整流波形による充電と比較して、充電時間は長くなる。従って、設定時間および比較する設定レベルを適切な値を選定すれば、ヒューズ溶断検出を行うことができる。
【0037】
この時間、設定レベルの決定の方法として、電源および直流部のCR時定数と、電源電圧から演算する方法や、ヒューズが健全な場合の波形を測定して決定する方法がある。
【0038】
このように第3の実施の形態では、直流電流検出器16とヒューズ溶断判定回路8を用いるだけで、入力ヒューズ溶断検出を行うことができる。
【0039】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0040】
(第4の実施の形態)
図9は本発明の第4の実施の形態における電力変換装置のヒューズ溶断判定回路8の詳細を示す構成図である。本発明の第4の実施の形態の全体の構成は、図6の本発明の第3の実施の形態に係る電力変換装置の構成図と全く同一である。
【0041】
図9において、ヒューズ溶断判定回路8は、電流リップルの周波数を検出する電流リップル周波数検出回路20と、検出周波数設定器14からの設定周波数とを比較する周波数比較回路15とからなる。
【0042】
図10に全てのヒューズが健全な場合と、ひとつのヒューズが溶断した場合の直流電流波形を示す。全てのヒューズが健全な場合は、三相全波整流の状態となるため、整流回路のリップル周波数は基本周波数の6倍であるが、ひとつのヒューズが溶断した場合、単相全波整流の状態となり、リップル周波数は基本周波数の2倍となる。従って、リップルの周期と比較する設定周期を適切に選定すれば、ヒューズ溶断検出を行うことができる。
【0043】
リップル周波数の検出アルゴリズムには以下の方法がある。
【0044】
通常、コンバータ部分の直流電流の最大値は、装置容量により決定される。
【0045】
直流電流を随時監視し、上記電流最大値を上回ったときに、カウンタの計測を開始し、各サンプリング毎にカウントアップしていく。そして電流最大値を下回ってから、再度上回るまでのカウントの差から、電流リップルの周波数を検出できる。
【0046】
上記方法によると、三相全てのヒューズが健全な場合、直流電流は上記電流最大値を上回ることは無いので、カウント値は0のままカウントアップされず、周波数も無限大である。
【0047】
尚、何れかのヒューズが溶断していても、負荷電流が低い場合は、電流最大値を上回ることがないため、ヒューズ切れの検出ができないが、交流ヒューズを流れる電流も低いので、装置の運転能力内であり、運転継続可能である。
【0048】
このように第7の実施の形態では、直流電流検出器16とヒューズ溶断判定回路8を用いるだけで、入力ヒューズ溶断検出を行うことができる。また、たとえ何れかのヒューズが溶断していたとしても、装置の限界まで、運転を継続することができる。
【0049】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0050】
(第5の実施の形態)
以下本発明による電力変換装置の第5の実施の形態を図11乃至図13を参照して説明する。図11は、本発明の第5の実施の形態に係る電力変換装置の構成図である。この第5の実施の形態の各部について、図1の第1の実施の形態に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この第5の実施の形態が第1の実施の形態と異なる点は、図1の直流電圧検出回路7に代えて、交流電流検出器21を用いている点である。この交流電流検出器21は、三相交流電源のうちの1相、例えばU相に設けている。
【0051】
図12は図11のヒューズ溶断判定回路8の詳細を示す回路図である。図12において、ヒューズ溶断判定回路8は、検出された1相分の交流電流値が0であるかどうか判別する電流比較回路19aと、検出された1相分の交流電流値と検出電流レベル設定器18からの設定レベルとを比較する電流比較回路19bと、論理和回路22とからなる。
【0052】
交流電流検出回路21を取り付けたU相のヒューズ2Uが溶断すれば、その相に流れる電流は0になるので、電流比較回路19aの論理出力は真となる。また、交流電流検出回路を取り付けない相のヒューズが溶断すれば、図13に示すように、単相全波整流状態となり、ヒューズが溶断しないときの三相全波整流状態に比べて電流最大値が大きくなる。従って、比較する電流設定レベルを適切な値に選定すれば、この時の電流比較回路19bの論理出力は真となる。これらの論理和を論理和回路22でとることで、何れかの相のヒューズが溶断した場合でも、ヒューズ溶断検出を行うことができる。
【0053】
図11では、U相に電流検出器を入れた場合を示したが、他の相に入れた場合でも同様である。また、1つだけの相に入れた場合を示したが、2つの相に入れた場合や、一括して1つの電流検出器で、2相分の電流を検出しても、同様の効果が得られる。
【0054】
このように第5の実施の形態では、少なくともひとつの交流電流検出器21とヒューズ溶断判定回路8を用いるだけで、入力ヒューズ溶断検出を行うことができる。
【0055】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0056】
(第6の実施の形態)
以下本発明による電力変換装置の第6の実施の形態を図14及び図15を参照して説明する。図14は、本発明の第6の実施の形態に係る電力変換装置の構成図である。この第6の実施の形態の各部について、図1の第1の実施の形態に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この第6の実施の形態が第1の実施の形態と異なる点は、図1のダイオード整流回路に加え、三相交流電源1aU、1aV、1aW、ヒューズ2aU、2aV、2aW、ダイオードコンバータ3a、及び平滑コンデンサ4aで構成される図1のダイオード整流回路と同一構成のダイオード整流回路をもう一つ持ち、それぞれの電圧検出回路7、7aの出力をヒューズ溶断判定回路8へ入力している点である。
【0057】
図15は図14のヒューズ溶断判定回路8の詳細を示す回路図である。図15において、ヒューズ溶断判定回路8は、直流電圧検出回路7、7aで夫々検出された電圧間の差と電圧検出レベル設定器11からの電圧設定レベルとを比較する電圧比較回路12とからなる。
【0058】
第1の実施の形態と同様、全てのヒューズが健全である場合は三相全波整流した電圧波形になるが、あるひとつのヒューズが溶断した場合、単相全波整流になることから、一方の整流回路のヒューズが溶断すると、他方の整流回路との電圧差が大きくなる。従って、この設定レベルを適切な値に選定すれば、ヒューズ溶断検出を行うことができる。
【0059】
また、ヒューズが溶断した場合、必ず溶断した側の電圧が低くなることから、電圧の大きさの違いで、どちら側のヒューズが溶断したかも判定することができる。
【0060】
図14では、各入力交流電源が独立した場合を示したが、電源が共通でも同様の効果がある。また、直流母線について各々独立させた場合を示したが、入力交流電源が絶縁されている場合は直流の一方の母線を共通にして、2倍の直流電圧を生成する場合も考えられ、同様なヒューズ溶断検出が可能である。
【0061】
このように第6の実施の形態では、直流電圧検出回路7、7aとヒューズ溶断判定回路8を用いるだけで、入力ヒューズ溶断検出を行うことができる。
【0062】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0063】
(第7の実施の形態)
以下本発明による電力変換装置の第7の実施の形態を図16及び図17を参照して説明する。図16は、本発明の第7の実施の形態に係る電力変換装置の構成図である。この第7の実施の形態の各部について、図14の第6の実施の形態に係る電力変換装置の各部と同一部分は同一符号で示し、その説明は省略する。この第7の実施の形態が第6の実施の形態と異なる点は、図14の電圧検出回路7、7aに代えて、電流検出器16、16aを設け、夫々の出力をヒューズ溶断判定回路8へ入力している点である。
【0064】
図17は図16のヒューズ溶断判定回路8の詳細を示す回路図である。図17において、ヒューズ溶断判定回路8は、直流電流検出回路16、16aで夫々検出された電流間の差と検出電流レベル設定器18からの電流設定レベルとを比較する電流比較回路19とからなる。
【0065】
第4の実施の形態同様、全てのヒューズが健全である場合、三相全波整流した電流波形になるが、あるひとつのヒューズが溶断した場合、単相全波整流になることから、一方の整流回路のヒューズが溶断すると、他方の整流回路との電流差が大きくなる。従って、この電流設定レベルを適切な値に選定すれば、ヒューズ溶断検出を行うことができる。
【0066】
また、ヒューズが溶断した場合、必ず溶断した側の電流が大きくなることから、電流の大きさの違いで、どちら側のヒューズが溶断したかも判定することができる。
【0067】
図16では、各入力交流電源が独立した場合を示したが、電源が共通でも同様の効果がある。また、直流母線について各々独立させた場合を示したが、入力交流電源が絶縁されている場合は直流の一方の母線を共通にして、2倍の直流電圧を生成する場合も考えられ同様なヒューズ溶断検出が可能である。
【0068】
このように第7の実施の形態では、直流電流検出器16a、16bとヒューズ溶断判定回路8を用いるだけで、入力ヒューズの溶断検出を行うことができる。
【0069】
従って、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【0070】
【発明の効果】
以上述べたように本発明によれば、機械式接点を用いずにヒューズの溶断検出を行うことが可能な、小型、低コストの電力変換装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1及び第2の実施の形態に係る電力変換装置の構成図。
【図2】本発明の第1の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図3】三相全波整流および単相全波整流時の起動時の整流電圧波形例。
【図4】本発明の第2の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図5】三相全波整流および単相全波整流時の負荷時の整流電圧波形例。
【図6】本発明の第3及び第4の実施の形態に係る電力変換装置の構成図。
【図7】本発明の第3の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図8】三相全波整流および単相全波整流時の起動時の整流電流波形例。
【図9】本発明の第4の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図10】三相全波整流および単相全波整流時の負荷時の整流電流波形例。
【図11】本発明の第5の実施の形態に係る電力変換装置の構成図。
【図12】本発明の第5の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図13】三相全波整流および単相全波整流時の負荷時の交流電流波形例。
【図14】本発明の第6の実施の形態に係る電力変換装置の構成図。
【図15】本発明の第6の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図16】本発明の第7の実施の形態に係る電力変換装置の構成図。
【図17】本発明の第7の実施の形態におけるヒューズ溶断判定回路の詳細構成図。
【図18】従来の電力変換装置のヒューズ溶断検出回路を示す構成図。
【符号の説明】
1U、1V、1W、1aU、1aV、1aW…三相交流電源
2U、2V、2W、2aU、2aV、2aW…ヒューズ
3、3a…三相ダイオードコンバータ
4、4a…平滑コンデンサ
5U、5V、5W…ヒューズ溶断検出接点
6…制御回路
7、7a…直流電圧検出回路
8…ヒューズ溶断判定回路
9…時間設定器
10…電圧タイマ出力器
11…検出電圧レベル設定器
12…電圧比較回路
13…電圧リップル周波数検出回路
14…検出周波数設定器
15…周波数比較回路
16、16a…直流電流検出器
17…電流タイマ出力器
18…検出電流レベル設定器
19、19a、19b…電流比較回路
20…電流リップル周波数検出回路
21…交流電流検出器
22…論理和回路

Claims (7)

  1. 三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、
    このダイオード整流回路の直流出力部に接続された平滑コンデンサと、
    前記ダイオード整流回路の直流出力部の電圧を検出する直流電圧検出回路と、
    この直流電圧検出回路の出力で前記ヒューズの動作状態を判別する手段と
    から構成され、
    前記手段は、電源投入時からの前記直流電圧検出回路の出力が、所定時間内に所定レベル以上に到達したか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
  2. 三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、
    このダイオード整流回路の直流出力部に接続された平滑コンデンサと、
    前記ダイオード整流回路の直流出力部の電圧を検出する直流電圧検出回路と、
    この直流電圧検出回路の出力で前記ヒューズの動作状態を判別する手段と
    から構成され、
    前記手段は、前記直流電圧検出回路の出力に含まれるリップル周波数が所定値以下になったか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
  3. 三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、
    このダイオード整流回路の直流出力部に接続された平滑コンデンサと、
    前記ダイオード整流回路の直流出力部の電流を検出する直流電流検出器と、
    この直流電流検出器の出力で前記ヒューズの動作状態を判別する手段と
    から構成され、
    前記手段は、電源投入時からの前記直流電流検出器の出力が、所定時間内に所定レベル以下に到達したか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
  4. 三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、
    このダイオード整流回路の直流出力部に接続された平滑コンデンサと、
    前記ダイオード整流回路の直流出力部の電流を検出する直流電流検出器と、
    この直流電流検出器の出力で前記ヒューズの動作状態を判別する手段と
    から構成され、
    前記手段は、前記直流電流検出器の出力に含まれるリップル周波数が所定値以下になったか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
  5. 三相交流電源に、入力ヒューズを介して接続されたダイオード整流回路と、
    前記ダイオード整流回路の直流出力部に接続された平滑コンデンサと、
    前記ダイオード整流回路の入力電流を検出する交流電流検出器と、
    この交流電流検出器の出力で前記ヒューズの動作状態を判別する手段と
    から構成され、
    前記手段は、前記交流電流検出器の出力が所定のレベル以下になったか否かで、前記ヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
  6. 三相交流電源に、夫々入力ヒューズを介して接続された複数個のダイオード整流回路と、
    これらの複数個のダイオード整流回路の夫々の直流出力部に接続された平滑コンデンサと、
    前記複数個のダイオード整流回路の夫々の直流出力部の電圧を検出する直流電圧検出回路と、
    この直流電圧検出回路の夫々の出力で前記ヒューズの動作状態を判別する手段とから構成され、
    前記手段は、前記直流電圧検出回路の夫々の出力の差が所定レベル以上になったか否かで、前記夫々のヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
  7. 三相交流電源に、夫々入力ヒューズを介して接続された複数個のダイオード整流回路と、
    これらの複数個のダイオード整流回路の夫々の直流出力部に接続された平滑コンデンサと、
    前記複数個のダイオード整流回路の夫々の直流出力部の電流を検出する直流電流検出器と、
    この直流電流検出器の夫々の出力で前記ヒューズの動作状態を判別する手段と
    から構成され、
    前記手段は、前記夫々の直流電流検出器の出力の差が所定レベル以上になったか否かで、前記夫々のヒューズの動作状態を判別するようにしたことを特徴とする電力変換装置。
JP2002244569A 2002-08-26 2002-08-26 電力変換装置 Pending JP2004088865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244569A JP2004088865A (ja) 2002-08-26 2002-08-26 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244569A JP2004088865A (ja) 2002-08-26 2002-08-26 電力変換装置

Publications (1)

Publication Number Publication Date
JP2004088865A true JP2004088865A (ja) 2004-03-18

Family

ID=32052997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244569A Pending JP2004088865A (ja) 2002-08-26 2002-08-26 電力変換装置

Country Status (1)

Country Link
JP (1) JP2004088865A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117023A (ja) * 2012-12-07 2014-06-26 Toshiba Mitsubishi-Electric Industrial System Corp 双方向コンバータおよびそれを用いた無停電電源装置
CN105305840A (zh) * 2014-06-20 2016-02-03 株式会社安川电机 电力转换装置、状态检测装置以及状态检测方法
CN111295828A (zh) * 2017-11-06 2020-06-16 大金工业株式会社 电力变换装置和空调装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117023A (ja) * 2012-12-07 2014-06-26 Toshiba Mitsubishi-Electric Industrial System Corp 双方向コンバータおよびそれを用いた無停電電源装置
CN105305840A (zh) * 2014-06-20 2016-02-03 株式会社安川电机 电力转换装置、状态检测装置以及状态检测方法
US10018665B2 (en) 2014-06-20 2018-07-10 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus, status detection device, and method for status detection
CN111295828A (zh) * 2017-11-06 2020-06-16 大金工业株式会社 电力变换装置和空调装置
US11611285B2 (en) * 2017-11-06 2023-03-21 Daikin Industries, Ltd. Power converter and air conditioner
CN111295828B (zh) * 2017-11-06 2023-09-12 大金工业株式会社 电力变换装置和空调装置

Similar Documents

Publication Publication Date Title
JP5045687B2 (ja) 電源装置、空気調和機
JPH07222436A (ja) 平滑用電解コンデンサの寿命検出装置
JP6126081B2 (ja) サイリスタ起動装置
JP5068860B2 (ja) バッテリ充電装置
JP2011155803A (ja) 停電検出機能を有するモータ駆動装置
JP2010259153A (ja) 電源装置
JP5986005B2 (ja) 無停電電源装置
JP2015046962A (ja) 三相交流電源の欠相検出装置
JPH0880055A (ja) インバータ装置
JPH02231922A (ja) モータ駆動装置における瞬時停電回復時の突入電流防止制御方式
JP2002233160A (ja) インバータ制御装置
JP2004088865A (ja) 電力変換装置
JP5985972B2 (ja) 双方向コンバータおよびそれを用いた無停電電源装置
JP5667915B2 (ja) 直流電源装置
JP3530759B2 (ja) 電力変換装置の故障検出装置
JP2001218474A (ja) インバータの地絡検出方法および検出装置
KR101506010B1 (ko) 무정전 전원장치의 직류단 전압 불평형 제어 장치
JP2004140969A (ja) 電力変換装置用平滑コンデンサの充電方法
JP6106981B2 (ja) 電子回路装置
JP2004056893A (ja) 電力変換装置の異常検出方法
JP2005192353A (ja) 電源異常検出装置及びこれを使用した電力供給装置
JP4921656B2 (ja) 電力系統の事故検出装置
JP2001268819A (ja) 電源装置及び給電方法
KR20020071610A (ko) 인버터의 직류 커패시터 노화 감시 방법
JPH07184316A (ja) 欠相検出回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Effective date: 20090303

Free format text: JAPANESE INTERMEDIATE CODE: A02