JP2004087827A - Wiring board for mounting thermoelement and thermoelement module - Google Patents

Wiring board for mounting thermoelement and thermoelement module Download PDF

Info

Publication number
JP2004087827A
JP2004087827A JP2002247328A JP2002247328A JP2004087827A JP 2004087827 A JP2004087827 A JP 2004087827A JP 2002247328 A JP2002247328 A JP 2002247328A JP 2002247328 A JP2002247328 A JP 2002247328A JP 2004087827 A JP2004087827 A JP 2004087827A
Authority
JP
Japan
Prior art keywords
thermoelectric element
metal plate
insulating substrate
wiring board
thermoelement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247328A
Other languages
Japanese (ja)
Inventor
Takeshi Hayamizu
早水 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002247328A priority Critical patent/JP2004087827A/en
Publication of JP2004087827A publication Critical patent/JP2004087827A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that an insulating interval between electrodes becomes narrow, that the adjacent electrodes are shorted, and that a laser diode mounted on a cold heat module cannot normally and stably be operated, when an area of a thermoelement mounting face of the electrode is expanded for increasing the area for mounting thermoelement to improve the thermal conversion efficiency of the cold heat module in a wiring board for mounting thermoelement. <P>SOLUTION: In the wiring board for mounting a thermoelement 8, a plurality of metal plates 5 to which one end of each thermoelement 1 is bonded are bonded to one main face of an insulating substrate 2 made of ceramics. In the metal plate 5, a cross section is in a trapezoidal shape where a base of a side to which the end of the thermoelement 1 is bonded is longer than a base of a side connected to the insulating substrate 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板に関し、とりわけ温度制御用の電子冷熱モジュールに用いられる熱電素子搭載用配線基板およびこれを用いた熱電素子モジュールに関する。
【0002】
【従来の技術】
熱電素子であるペルチェ素子は、P型半導体から成るP型素子およびN型半導体から成るN型素子を交互に電気接続し通電した場合に、P型、N型素子の接合部分に生じるペルチェ効果といわれる冷却/発熱効果を発生する素子である。このぺルチェ素子は、通常複数のP型およびN型素子を搭載した熱電素子モジュールとして半導体装置等の冷却・温度制御に使用される。このような熱電素子モジュールは、図3に斜視図で示すように、複数個のN型およびP型ペルチェ素子1を、絶縁基板2と、絶縁基板2上に形成された電極と成る金属板5とで構成された2枚1対の熱電素子搭載用配線基板8a、8bの間に挟持することにより製作され、N型、P型のペルチェ素子1は、金属板5上に電気的に直列に、熱的に並列となるように、交互に並ぶ形で挟持される。
【0003】
この熱電素子モジュール9を構成する熱電素子搭載用配線基板8a、8bは、ペルチェ素子1の保持、ペルチェ素子1間の配線およびペルチェ素子1と熱電素子モジュール9に実装される半導体装置(図示せず)および放熱基板(図示せず)等との熱交換を担う。また、このような熱電素子搭載用配線基板8a、8bを構成する絶縁基板2は、熱伝導性に優れた窒化アルミニウム質焼結体やアルミナ質焼結体等の磁器が使用される。
【0004】
近年使用が増加している光エレクトロニクス半導体装置用の熱電素子モジュールにおいて、熱電素子モジュールに実装するレーザダイオード等は、発熱密度が高い上、レーザダイオード等を実装した熱電素子モジュールを大きさの制約がある気密性容器内に組み付ける必要があり、そのために、熱電素子モジュールの熱変換効率の高効率化・小型化の要求は特に強い。
【0005】
一般に、熱電素子素子搭載用配線基板8a、8bの金属板から成る電極5は、ペルチェ素子1の作動電流による金属板5自体のジュール発熱による熱電素子モジュール9の熱変換効率の低下を防ぎ、金属板5の熱抵抗を低減させるため、銅やアルミニウムなどの高熱伝導率・高電気伝導率を持つ金属導体が用いられる。また、熱電素子モジュール9の熱変換効率を向上させるためには、熱電素子搭載用配線基板8a、8b間へ実装されるペルチェ素子1はできるだけ接合面積の大きいものを用いることが有効である。大きさの制約がある気密性容器の中で、この接合面積を広げて熱変換効率を向上させるために、熱電素子素子搭載用配線基板8a、8bの金属板5ペルチェ素子搭載面の面積はできるだけ広いほうが好ましく、各金属板5は、狭い絶縁間隔で配置されることが求められている。
【0006】
このような熱電素子搭載用配線基板の電極を形成する方法としては、特開平3−263882号公報に示されるような粗面化した磁器上に無電解銅めっきおよび電解銅めっきを組み合わせて形成するめっき法や、実開昭63−20465号に示されるようなDBC(Direct Bonding Copper)法で接合した銅層をフォトリソエッチング法によりパターニングする方法、モリブデン−マンガンまたは基板と同時焼成されたタングステン等の焼成層から成るメタライズ層と、ニッケルめっき層とから成るパターンを下地とし、接合部材である半田や活性金属ろう材を介して銅電極を接合する方法などが知られている。
【0007】
特に、高効率の熱電素子モジュールでは、微細な加工方法で電極となる金属板5を形成するために、その金属板5の厚みは0.03〜0.1mmの範囲で用いられることが多く、その形成法としては、めっき法またはDBC法が用いられていた。
【0008】
【発明が解決しようとする課題】
熱電素子モジュールの性能を左右する熱変換効率を高めるには、搭載するペルチェ素子の数、もしくはその面積を増やすことが有効である。しかしながら、レーザダイオード等を実装した熱電素子モジュールは、大きさの制約がある気密性容器内に組み付ける必要があるため小型化の要求は強く、いたずらにペルチェ素子の数や面積を増やして熱電素子モジュールを大きくすることはできない。このため、熱電素子モジュールの限られた大きさの中で、ペルチェ素子の面積を増やす必要がある。
【0009】
しかしながら、従来のめっき法やDBC法で形成される金属板105の断面形状は、図2に従来の熱電素子搭載用配線基板の断面図で示すように、ペルチェ素子101を搭載する側の底辺の長さが絶縁基板102に接合される側の底辺の長さより短い台形状をしている。このため、接合面積の大きいペルチェ素子101を搭載するために金属板105の面積を大きくすると、各金属板105間の絶縁間隔が狭くなり、めっきにより各金属板105を形成する場合には、絶縁間隔までめっきがはみ出して隣接する金属板105で短絡してしまうという問題点を、エッチングにより絶縁間隔を形成する場合には、絶縁間隔部分にエッチング残りが発生し隣接する金属板105間で短絡してしまうという問題点を有していた。
【0010】
本発明は、このような従来の問題点に鑑み完成されたものであり、ペルチェ素子を搭載するために電極の面積を広くすることができるとともに、隣接する電極である金属板間の絶縁間隔が狭くなったとしても金属板間に電極を形成するめっきやエッチング残りが発生して隣接する金属板間で短絡することがなく、実装されるレーザダイオードを長期にわたり正常かつ安定に動作させることができる熱電素子搭載用配線基板およびこれを用いた熱電素子モジュールを提供することにある。
【0011】
【課題を解決するための手段】
本発明の熱電素子搭載用配線基板は、セラミックスから成る絶縁基板の一主面に、熱電素子の端部が接合される複数の金属板を接合して成る熱電素子搭載用配線基板であって、前記金属板は、その断面の形状が前記熱電素子の端部が接合される側の底辺が前記絶縁基板に接合される側の底辺より長い台形状であることを特徴とするものである。
【0012】
また、本発明の熱電素子モジュールは、一対の上記の熱電素子搭載用配線基板の間に、複数個の熱電素子がそれぞれ両端部を前記金属板に接合されて成り、一方の前記熱電素子搭載用配線基板の前記絶縁基板の他主面に半導体素子が搭載されることを特徴とするものである。
【0013】
本発明の熱電素子搭載用配線基板によれば、金属板の断面の形状を熱電素子の端部が接合される側の底辺が絶縁基板に接合される側の底辺より長い台形状としたことから、接合面積の大きい熱電素子を搭載するために電極と成る金属板の面積を大きくし、各金属板間の絶縁間隔を狭くしたとしても、隣接する電極間に電極を形成するめっきが被着したりエッチング残りが発生して隣接する電極間で短絡することのない熱電素子搭載用配線基板とすることができる。
【0014】
また、本発明の熱電素子モジュールによれば、一対の上記の熱電素子搭載用配線基板の間に、複数個の熱電素子の両端がそれぞれ両端部を金属板に接合されて成り、一方の熱電素子搭載用配線基板の絶縁基板の他主面に半導体素子が搭載されることから、隣接する電極と成る金属板間で短絡することがなく、実装されるレーザダイオードを長期にわたり正常かつ安定に動作させることができる熱電素子モジュールとすることができる。
【0015】
【発明の実施の形態】
次に、本発明の熱電素子搭載用配線基板を添付の図面に基づいて詳細に説明する。
図1は、本発明の熱電素子搭載用配線基板の実施の形態の一例を示す断面図である。図1において、1はペルチェ素子等の熱電素子、2は絶縁基板、3は活性金属ろう材層等の接合部材、5は電極である金属板、6は放熱板、7はめっき皮膜であり、主に絶縁基板2、金属板5、接合部材3で本発明の熱電素子搭載用配線基板8が構成される。
【0016】
熱電素子搭載用配線基板8は、電気絶縁材料から成る絶縁基板2と、この一主面に活性金属ろう材等の接合部材3を介して接合された厚みが0.03〜0.1mmの良熱伝導性の金属から成る金属板5とから構成されている。なお、絶縁基板2の他主面に活性金属ろう材等の接合部材3を介して接合された良熱伝導性の金属から成る放熱板6を備える場合も有る。さらに、電極と成る金属板5および放熱板6は、熱電素子1の端部の接合および熱電素子モジュールの実装に適するようにニッケルおよび金等から成るめっき皮膜7を施してもよい。
【0017】
以下、熱電素子搭載用配線基板8の製造方法に基づいて、本発明の熱電素子搭載用配線基板8について説明する。
まず、絶縁基板2と、電極と成る金属板5および放熱板6を形成するための銅箔とを準備する。
絶縁基板2は、その厚みが0.1〜0.5mm、長さおよび幅が50〜80mm×60〜120mmの長方形状であり、金属板5の支持部材として機能し、酸化アルミニウム質焼結体・窒化アルミニウム質焼結体・炭化珪素質焼結体等の電気絶縁材料で形成されている。
【0018】
絶縁基板2は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機溶剤・溶媒を添加混合して泥漿状となすとともに、これを従来周知のドクターブレード法やカレンダーロール法によりシート状に成形してセラミックグリーンシート(セラミック生シート)を得て、しかる後、このセラミックグリーンシートを複数枚積層し、高温(約1600℃)で焼成することによって製作される。
【0019】
ここで、この絶縁基板2は、熱伝導率の大きな窒化アルミニウム質焼結体(熱伝導率:75W/m・K以上)から成るものであることが特に好ましい。これは、絶縁基板2は、レーザダイオード等にて発生する熱を外部に放熱する際に、熱抵抗としてその放熱を妨げるため、熱電素子モジュールにした場合に冷却効果を発熱部に作用させ、冷却能力の高い熱電素子モジュールの性能を十分発揮させるためには、より熱伝導率の高い窒化アルミニウム質焼結体が特に良いことによる。
【0020】
金属板5は、銅や銅合金等の良熱伝導性の金属から成り、熱電素子1を支持する機能を有する。このような金属板5は、絶縁基板2に金属板5と成る金属箔を活性金属ろう材等の接合部材3を介して接合後、エッチング加工法により所定形状および所定の大きさに形成される。
【0021】
また、金属板5は、その材質が熱伝導率の大きな銅(熱伝導率:約400W/(m・K))であることが特に好ましい。これは、金属板5がレーザダイオード等にて発生する熱を外部に放熱する際に、熱抵抗としてその放熱を妨げるため、熱電素子モジュールでの冷却効果を発熱部に作用させ、冷却能力の高い熱電素子モジュールの性能を十分発揮させるためには、より熱伝導率の高い銅(Cu)が特によいことによる。
【0022】
なお、金属板5が銅から成る場合、これを無酸素銅で形成しておくと、後述する活性金属ろう材を用いて絶縁基板2に接合する際に、銅の表面が銅の内部に存在する酸素により酸化されることがなく活性金属ろう材との濡れ性が良好となり、絶縁基板2への活性金属ろう材を介しての接合が強固なものとなる。従って、金属板5が銅から成る場合、これを無酸素銅で形成しておくことが好ましい。
【0023】
次に、接合部材3となるろう材ペーストを準備する。接合部材3は半田や活性金属ろう材等から成り、接合部材3が活性金属ろう材から成る場合は、銀粉末および銅粉末、または銀−銅合金粉末、またはこれらの混合粉末から成るろう材粉末、ならびにチタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種より成る活性金属ろう材粉末混合物に、融点が1200℃以上で、比表面積が0.1から2m/g、好ましくは0.5から2m/gである高融点金属粉末の凝集体を5〜20体積%加えた混合物に、適当な有機溶剤、溶媒、分散剤を添加混合し、混練することによって活性金属のろう材ペーストが作製される。
【0024】
次に、絶縁基板2の一主面にろう材ペーストを従来周知のスクリーン印刷法を用いて、例えば、15〜30μmの厚さで所定パターンに塗布し、所定パターンに塗布されたろう材ペースト上に金属板5が銅から成る場合は、金属板5となる銅箔を載置する。
【0025】
そして、絶縁基板2と銅箔との間に配されているろう材ペーストを、銅箔に3〜10kPaの荷重をかけながら非酸化性雰囲気中で800℃に加熱し、ろう材ペーストの有機溶剤や溶媒・分散剤を気散させるとともに活性金属ろう材を溶融させて絶縁基板2と銅箔とを接合させることによって、絶縁基板2の上面に金属板5、下面に放熱板6となる銅箔が取着されることとなる。
【0026】
なお、ろう材粉末は、例えば、共晶合金から成る場合は銀と銅がそれぞれ72質量%と28質量%含有されている共晶合金で形成されている。また、ろう材粉末の粒径が1μm未満になると、ろう材粉末の比表面積が大きくなってろう材粉末表面に形成される酸化皮膜中に多くの酸素が存在し、この酸素によって活性金属ろう材の絶縁基板2や銅箔に対する濡れ性が低下して、絶縁基板2と銅箔からなる金属板5との接合強度が低下してしまう危険性がある。従って、ろう材粉末はその粒径を1μm以上としておくことが好ましい。
【0027】
さらに、チタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種より成る活性金属粉末は、ろう材を絶縁基板2に強固に接着する作用をなし、活性金属粉末の添加量が2質量%未満となると活性金属の絶対量が不足してろう材を絶縁基板2に強固に接着させることができなくなる傾向がある。また、活性金属粉末の添加量が5質量%を超えると活性金属と絶縁基板2との間に脆弱な反応層が厚く形成され、結果的にろう材と絶縁基板2との接着強度が低下する傾向がある。従って、活性金属の添加量は2〜5質量%の範囲にしておくことが好ましい。
【0028】
また、高融点金属粉末の凝集体は活性金属ろう材に対する接触部分において、金属板5に比べ大きな表面積を持つことから、金属板5への活性金属ろう材成分の拡散を制御する作用をなす。高融点金属粉末の凝集体は、その比表面積が0.1m/g未満となると、高融点金属粉末の凝集体の表面積が小さくなって金属板5への活性金属ろう材成分の拡散を制御する作用が低下してしまう危険性がある。また比表面積が2m/gを超えると、粉末表面に形成される酸化皮膜中に多くの酸素が存在し、この酸素によってろう材の高融点金属粉末の凝集体に対する濡れ性が低下して、金属板5への活性金属ろう材成分の拡散を制御する作用が低下してしまう危険性がある。従って、高融点金属粉末の凝集体は比表面積を0.1から2m/g、さらに好ましくは0.5から2m/gとすることが好ましい。
【0029】
なお、高融点金属粉末の凝集体の添加量は、高融点金属粉末の凝集体の比表面積により調整されるが、5体積%未満となると、銅箔への活性金属ろう材成分の拡散を制御する作用効果が低下し、熱電素子搭載用配線基板への熱電素子1であるペルチェ素子の搭載を阻害する恐れがある。また20体積%を超えると絶縁基板2および金属板5に対するろう材の接合面積が小さくなって絶縁基板2への金属板5のろう付け強度が低下してしまう傾向にある。従って、高融点金属粉末の凝集体の添加量は5〜20体積%の範囲としておくことが好ましい。
【0030】
次に、絶縁基板2の上面に取着された金属板5上にスクリーン印刷法またはドライフィルムレジスト等を用いたフォトリソ法により所望の電極形状に合わせたエッチングレジスト膜を形成する。
【0031】
次にエッチング処理して回路パターン状のレジスト膜に対応した回路を形成する。エッチングは、例えば、金属板5が銅または銅合金であり、エッチング液が塩化第2鉄である場合、比重が42〜47ボーメで、温度が45℃程度の塩化第2鉄溶液を用い、両面スプレー方式のエッチング装置に、絶縁基板2に銅箔が取着された基板を投入し、スプレー圧2.5×10Pa程度で行なわれる。
【0032】
なお、エッチング時間は、銅箔の塩化第2鉄溶液に対する溶解量・銅箔の厚み等により調整されるが、通常行なわれるエッチング時間の1.3〜1.8倍の時間をかけてエッチングすることで、断面形状が熱電素子1の端部が接合される側の底辺が絶縁基板2に接合される側の底辺より長い台形状とすることができる。そして、本発明の熱電素子搭載用配線基板8においては、このことが重要である。
【0033】
本発明の熱電素子搭載用配線基板8によれば、金属板5の断面の形状を、熱電素子1の端部が接合される側の底辺を絶縁基板2に接合される側の底辺より長い台形状としたことから、接合面積の大きい熱電素子1を搭載するために電極と成る金属板5の面積を大きくし、各金属板5間の絶縁間隔が狭くしたとしても、隣接する電極間に電極を形成するエッチング残りが発生して隣接する電極間で短絡することのない熱電素子搭載用配線基板8とすることができる。
【0034】
なお、銅箔上に形成するエッチングレジスト膜は、通常より長くなるエッチング時間を見越し、通常のエッチング削れ量の1.3〜1.8倍の削れ量で形成することが重要である。
【0035】
なお、金属板5は、その側面と絶縁基板2側の表面とのなす角度を50〜80°とすることが好ましい。金属板5の側面と絶縁基板2側の表面とのなす角度が50°未満の場合、熱伝素子1を搭載支持する金属板5の回路パターン端部で強度が弱くなることから、良好な状態で熱伝素子1を支持することができなくなる傾向があり、80°を超えると熱電素子1の接合面積を増加させることができなくなることから、熱変換効率向上の効果が得られなくなる傾向がある。従って、金属板5は、その側面と絶縁基板2側の表面とのなす角度を50〜80°とすることが好ましい。
【0036】
そしてエッチングの後、レジストを剥離することにより、所望の形状の金属板5、放熱板6が得られる。なお、レジストの除去にはエッチングレジスト膜のタイプにより、アルカリ水溶液や有機溶剤が用いられる。
【0037】
また、金属板5、放熱板6の表面にニッケルから成る良導電性で、かつ耐蝕性およびはんだ濡れ性が良好なめっき皮膜7を被着させておくと、熱電素子1を搭載し、熱電素子モジュールを組み立てる工程や、熱電素子モジュールに半導体装置等を組み付ける際の熱工程に対して、金属板5、放熱板6の酸化を防止することができる。熱電素子搭載用配線基板8への熱電素子1であるぺルチェ素子等の実装に高温はんだ等を用いる場合には、熱電素子搭載用配線基板8の耐熱性を高めるため、めっき皮膜7をニッケルと金の2層から構成する場合もある。その場合は、ニッケルめっきの後に置換金めっきまたは、還元金めっきを用いた無電解金を実施すればよい。
【0038】
かくして本発明の熱電素子搭載用配線基板8によれば、金属板5の断面の形状を、熱電素子1の端部が接合される側の底辺が絶縁基板2に接合される側の底辺より長い台形状としたことから、接合面積の大きい熱電素子1を搭載するために電極と成る金属板5の面積を大きくし、各金属板5間の絶縁間隔を狭くしたとしても、隣接する電極と成る金属板5間に電極を形成するめっきが被着したりエッチング残りが発生して隣接する金属板5間で短絡することのない熱電素子搭載用配線基板8とすることができる。
【0039】
次に、本発明の熱電素子モジュールを、図3を用いて詳細に説明する。図3は、本発明の熱電素子モジュールの実施の形態の一例を示す断面図である。
本発明の熱電素子モジュール9は、一対の上述の熱電素子搭載用配線基板8a・8bの間に、複数個の熱電素子1がそれぞれ両端部を金属板5に接合されて成り、一方の熱電素子搭載用配線基板8の絶縁基板2の他主面に半導体素子が搭載される。
【0040】
熱電素子1は、Bi−Te系材料・Fe−Si系材料・Si−Ge系材料・Co−Sb系材料等の焼結体により構成されている。熱電素子1が例えばBi−Te系材料から成る場合であれば、主な特性が、例えば、P型熱電素子のゼーベック係数は200μV/K、N型熱電素子のゼーベック係数は−200μV/K、P型・N型熱電素子共に比抵抗率は1mΩ・cm、P型・N型熱電素子共に熱伝導率が1.5W/m・Kとなっている。
【0041】
熱電素子1は、そのままでは半田等のろう材での接合が困難であるため、その端面には良伝導性で、かつ耐食性および、ろう材との濡れ性を高める表面処理としてニッケルめっき等を被着させておくことが望ましい。
【0042】
そして、一対の熱電素子搭載用配線基板8a・8bの間に、複数個の熱電素子1の両端部を金属板5に半田等の導電性接合部材を介して接合することにより本発明の熱電素子モジュール9となる。なお、導電性接合部材が半田から成る場合、熱電素子搭載用配線基板8表面の金属板5に半田ペーストを従来周知のスクリーン印刷法を採用して印刷した後、半田ペーストが印刷された1対の熱電素子搭載用配線基板8a・8b間に複数個の熱電素子1を両端部が半田ペーストと接合するように挟み込み、所定温度のリフロー炉で加熱することにより熱電素子モジュール9が製作される。
【0043】
かくして、本発明の熱電素子モジュール9によれば、一対の上記の熱電素子搭載用配線基板8a・8bの間に、複数個の熱電素子1がそれぞれ両端部を金属板5に接合されて成り、一方の熱電素子搭載用配線基板8a・8bの絶縁基板2の他主面に半導体素子が搭載されることから、隣接する金属板5間で短絡することがなく、実装されるレーザダイオード等の半導体素子を長期にわたり正常かつ安定に動作させることができる熱電素子モジュール9とすることができる。
【0044】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更を行なっても差し支えない。
【0045】
【発明の効果】
本発明の熱電素子搭載用配線基板によれば、金属板の断面の形状を熱電素子の端部が接合される側の底辺が絶縁基板に接合される側の底辺より長い台形状としたことから、接合面積の大きい熱電素子を搭載するために電極と成る金属板の面積を大きくし、各金属板間の絶縁間隔を狭くしたとしても、隣接する電極間に電極を形成するめっきが被着したりエッチング残りが発生して隣接する電極間で短絡することのない熱電素子搭載用配線基板とすることができる。
【0046】
また、本発明の熱電素子モジュールによれば、一対の上記の熱電素子搭載用配線基板の間に、複数個の熱電素子の両端がそれぞれ両端部を金属板に接合されて成り、一方の熱電素子搭載用配線基板の絶縁基板の他主面に半導体素子が搭載されることから、隣接する電極と成る金属板間で短絡することがなく、実装されるレーザダイオードを長期にわたり正常かつ安定に動作させることができる熱電素子モジュールとすることができる。
【図面の簡単な説明】
【図1】本発明の熱電素子搭載用配線基板の実施の形態の一例を示す断面図である。
【図2】従来の熱電素子搭載用配線基板の断面図である。
【図3】本発明の熱電素子モジュールの実施の形態の一例を示す断面図である。
【符号の説明】
1・・・・・・・・・・熱電素子
2・・・・・・・・・・絶縁基板
3・・・・・・・・・・接合部材
5・・・・・・・・・・金属板
6・・・・・・・・・・放熱板
8、8a、8b・・・・熱電素子搭載用配線基板
9・・・・・・・・・・熱電素子モジュール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board, and more particularly to a wiring board for mounting a thermoelectric element used for an electronic cooling / heating module for temperature control and a thermoelectric element module using the same.
[0002]
[Prior art]
The Peltier element, which is a thermoelectric element, is called a Peltier effect that occurs at a junction between a P-type element and an N-type element when a P-type element made of a P-type semiconductor and an N-type element made of an N-type semiconductor are alternately electrically connected and energized. This element generates a cooling / heating effect. The Peltier element is usually used as a thermoelectric element module on which a plurality of P-type and N-type elements are mounted, for cooling and controlling the temperature of a semiconductor device or the like. As shown in a perspective view in FIG. 3, such a thermoelectric element module includes a plurality of N-type and P-type Peltier elements 1, an insulating substrate 2 and a metal plate 5 serving as an electrode formed on the insulating substrate 2. The N-type and P-type Peltier elements 1 are manufactured by being sandwiched between a pair of thermoelectric element mounting wiring boards 8a and 8b composed of , So as to be thermally parallel.
[0003]
The thermoelectric element mounting wiring boards 8a and 8b constituting the thermoelectric element module 9 hold a Peltier element 1, wiring between the Peltier elements 1, and a semiconductor device (not shown) mounted on the Peltier element 1 and the thermoelectric element module 9. ) And a heat exchange board (not shown). Further, as the insulating substrate 2 forming the thermoelectric element mounting wiring boards 8a and 8b, a porcelain such as an aluminum nitride sintered body or an alumina sintered body having excellent thermal conductivity is used.
[0004]
In thermoelectric element modules for optoelectronic semiconductor devices, which have been increasingly used in recent years, the laser diode mounted on the thermoelectric element module has a high heat generation density, and the size of the thermoelectric element module mounted with the laser diode is limited. It is necessary to assemble it in a certain airtight container, and therefore, there is a particularly strong demand for a high efficiency and small size heat conversion efficiency of the thermoelectric element module.
[0005]
In general, the electrodes 5 formed of metal plates of the thermoelectric element mounting wiring boards 8a and 8b prevent a decrease in the heat conversion efficiency of the thermoelectric element module 9 due to Joule heat generated by the metal plate 5 itself due to the operating current of the Peltier element 1, and In order to reduce the thermal resistance of the plate 5, a metal conductor having high thermal conductivity and high electrical conductivity such as copper or aluminum is used. Further, in order to improve the heat conversion efficiency of the thermoelectric element module 9, it is effective to use a Peltier element 1 mounted between the thermoelectric element mounting wiring boards 8a and 8b with a bonding area as large as possible. In an airtight container having a size restriction, the area of the metal plate 5 and the Peltier element mounting surface of the thermoelectric element mounting wiring boards 8a and 8b should be as small as possible in order to increase the bonding area and improve the heat conversion efficiency. It is preferable that the metal plates 5 be wide, and that the metal plates 5 be arranged at a narrow insulating interval.
[0006]
As a method of forming the electrodes of the wiring board for mounting thermoelectric elements, a method of forming a combination of electroless copper plating and electrolytic copper plating on a roughened porcelain as disclosed in JP-A-3-263882. A plating method, a method in which a copper layer joined by a direct bonding copper (DBC) method as shown in Japanese Utility Model Application Laid-Open No. 63-20465 is patterned by a photolithographic etching method, molybdenum-manganese or tungsten co-fired with a substrate. There has been known a method of bonding a copper electrode through a solder or an active metal brazing material as a bonding member using a pattern formed of a metalized layer formed of a fired layer and a nickel plating layer as a base.
[0007]
In particular, in a high-efficiency thermoelectric element module, in order to form the metal plate 5 serving as an electrode by a fine processing method, the thickness of the metal plate 5 is often used in a range of 0.03 to 0.1 mm. As a forming method, a plating method or a DBC method has been used.
[0008]
[Problems to be solved by the invention]
In order to increase the heat conversion efficiency that affects the performance of the thermoelectric element module, it is effective to increase the number of Peltier elements mounted or the area thereof. However, there is a strong demand for miniaturization of thermoelectric element modules on which laser diodes and the like are mounted because they must be assembled in an airtight container with a limited size. Cannot be increased. Therefore, it is necessary to increase the area of the Peltier element within the limited size of the thermoelectric element module.
[0009]
However, the cross-sectional shape of the metal plate 105 formed by the conventional plating method or DBC method is, as shown in the cross-sectional view of the conventional thermoelectric element mounting wiring board in FIG. It has a trapezoidal shape whose length is shorter than the length of the bottom side on the side joined to the insulating substrate 102. For this reason, when the area of the metal plate 105 is increased to mount the Peltier element 101 having a large bonding area, the insulation interval between the metal plates 105 is reduced, and when the metal plate 105 is formed by plating, the insulation is reduced. The problem of plating protruding up to the gap and short-circuiting at the adjacent metal plate 105 is a problem. When forming an insulation gap by etching, etching residue occurs at the insulation gap and short-circuiting occurs between adjacent metal plates 105. Had the problem that
[0010]
The present invention has been completed in view of such a conventional problem, and the area of the electrodes can be increased in order to mount the Peltier element, and the insulating interval between adjacent metal plates is reduced. Even if it becomes narrow, there is no plating or etching residue that forms an electrode between the metal plates, and there is no short circuit between adjacent metal plates, and the mounted laser diode can operate normally and stably for a long time. An object of the present invention is to provide a thermoelectric element mounting wiring board and a thermoelectric element module using the same.
[0011]
[Means for Solving the Problems]
The thermoelectric element mounting wiring board of the present invention is a thermoelectric element mounting wiring board formed by joining a plurality of metal plates to which one end of the thermoelectric element is joined to one main surface of an insulating substrate made of ceramics, The metal plate has a cross-sectional shape that is a trapezoidal shape in which a bottom side to which an end of the thermoelectric element is joined is longer than a bottom side to be joined to the insulating substrate.
[0012]
Further, the thermoelectric element module of the present invention includes a plurality of thermoelectric elements each having both ends joined to the metal plate between a pair of the thermoelectric element mounting wiring boards, and one of the thermoelectric element mounting wiring boards. A semiconductor element is mounted on the other main surface of the insulating substrate of the wiring board.
[0013]
According to the thermoelectric element mounting wiring board of the present invention, the cross section of the metal plate has a trapezoidal shape in which the bottom of the thermoelectric element to which the end is joined is longer than the bottom of the side to which the thermoelectric element is joined to the insulating substrate. In order to mount a thermoelectric element with a large bonding area, even if the area of the metal plate serving as an electrode is increased and the insulation interval between each metal plate is reduced, plating that forms an electrode between adjacent electrodes adheres. A wiring board for mounting a thermoelectric element can be provided which does not cause short-circuit between adjacent electrodes due to generation of etching residue.
[0014]
According to the thermoelectric element module of the present invention, both ends of a plurality of thermoelectric elements are joined to a metal plate at both ends, respectively, between the pair of the thermoelectric element mounting wiring boards. Since the semiconductor element is mounted on the other main surface of the insulating substrate of the mounting wiring board, the mounted laser diode can operate normally and stably for a long time without short-circuiting between adjacent metal plates serving as electrodes. Thermoelectric element module.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the thermoelectric element mounting wiring board of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board for mounting a thermoelectric element of the present invention. In FIG. 1, 1 is a thermoelectric element such as a Peltier element, 2 is an insulating substrate, 3 is a joining member such as an active metal brazing material layer, 5 is a metal plate as an electrode, 6 is a radiator plate, 7 is a plating film, A wiring board 8 for mounting a thermoelectric element of the present invention mainly includes the insulating substrate 2, the metal plate 5, and the joining member 3.
[0016]
The wiring board 8 for mounting a thermoelectric element has a good thickness of 0.03 to 0.1 mm, which is joined to the insulating substrate 2 made of an electrically insulating material via a joining member 3 such as an active metal brazing material. And a metal plate 5 made of a heat conductive metal. In some cases, a heat radiating plate 6 made of a metal having good thermal conductivity is joined to the other main surface of the insulating substrate 2 via a joining member 3 such as an active metal brazing material. Further, the metal plate 5 serving as an electrode and the heat radiating plate 6 may be provided with a plating film 7 made of nickel, gold, or the like so as to be suitable for joining the ends of the thermoelectric element 1 and mounting the thermoelectric element module.
[0017]
Hereinafter, the thermoelectric element mounting wiring board 8 of the present invention will be described based on a method of manufacturing the thermoelectric element mounting wiring board 8.
First, an insulating substrate 2 and a copper foil for forming a metal plate 5 and a heat radiating plate 6 serving as electrodes are prepared.
The insulating substrate 2 has a rectangular shape having a thickness of 0.1 to 0.5 mm, a length and a width of 50 to 80 mm × 60 to 120 mm, functions as a support member for the metal plate 5, and has a sintered body of aluminum oxide. -It is formed of an electrical insulating material such as an aluminum nitride sintered body and a silicon carbide sintered body.
[0018]
When the insulating substrate 2 is made of, for example, a sintered body of aluminum oxide, an appropriate organic solvent and a solvent are added to and mixed with raw material powders of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. to form a slurry. At the same time, it is formed into a sheet by a well-known doctor blade method or calender roll method to obtain a ceramic green sheet (ceramic green sheet). Thereafter, a plurality of the ceramic green sheets are laminated and heated at a high temperature (about 1600). C).
[0019]
Here, it is particularly preferable that the insulating substrate 2 is made of an aluminum nitride sintered body having a high thermal conductivity (thermal conductivity: 75 W / m · K or more). This is because the heat generated by the laser diode or the like is dissipated to the outside when the insulating substrate 2 dissipates heat as a thermal resistance. In order to sufficiently exhibit the performance of a high performance thermoelectric element module, an aluminum nitride sintered body having a higher thermal conductivity is particularly good.
[0020]
The metal plate 5 is made of a metal having good thermal conductivity such as copper or a copper alloy, and has a function of supporting the thermoelectric element 1. Such a metal plate 5 is formed into a predetermined shape and a predetermined size by an etching method after bonding a metal foil to be the metal plate 5 to the insulating substrate 2 via a bonding member 3 such as an active metal brazing material. .
[0021]
It is particularly preferable that the metal plate 5 is made of copper having a high thermal conductivity (thermal conductivity: about 400 W / (m · K)). This is because when the metal plate 5 dissipates the heat generated by the laser diode or the like to the outside, it disturbs the heat dissipation as thermal resistance, so that the cooling effect of the thermoelectric element module acts on the heat generating part, and the cooling capacity is high. In order to sufficiently exhibit the performance of the thermoelectric element module, copper (Cu) having a higher thermal conductivity is particularly preferable.
[0022]
In the case where the metal plate 5 is made of copper, if the metal plate 5 is formed of oxygen-free copper, the surface of the copper is present inside the copper when the metal plate 5 is bonded to the insulating substrate 2 using an active metal brazing material described later. The wettability with the active metal brazing material is improved without being oxidized by the generated oxygen, and the bonding to the insulating substrate 2 via the active metal brazing material is strengthened. Therefore, when the metal plate 5 is made of copper, it is preferable to form the metal plate 5 with oxygen-free copper.
[0023]
Next, a brazing material paste to be the joining member 3 is prepared. The joining member 3 is made of solder, an active metal brazing material, or the like. When the joining member 3 is made of an active metal brazing material, a brazing material powder made of silver powder and copper powder, silver-copper alloy powder, or a mixed powder thereof is used. And an active metal brazing powder mixture comprising at least one of titanium, zirconium, hafnium and hydrides thereof having a melting point of 1200 ° C. or more and a specific surface area of 0.1 to 2 m 2 / g, preferably 0.5 to the mixture was added 5-20 volume% agglomerates of the refractory metal powder is 2m 2 / g from a suitable organic solvent, solvent, dispersing agent were added and mixed, brazing material paste of the active metal by kneading It is made.
[0024]
Next, a brazing material paste is applied on one main surface of the insulating substrate 2 in a predetermined pattern with a thickness of, for example, 15 to 30 μm by using a conventionally known screen printing method, and the brazing material paste is coated on the predetermined pattern. When the metal plate 5 is made of copper, a copper foil to be the metal plate 5 is placed.
[0025]
Then, the brazing material paste disposed between the insulating substrate 2 and the copper foil is heated to 800 ° C. in a non-oxidizing atmosphere while applying a load of 3 to 10 kPa to the copper foil, and the organic solvent of the brazing material paste is heated. By dispersing the solvent and dispersant, and melting the active metal brazing material and joining the insulating substrate 2 and the copper foil, the copper foil serving as the metal plate 5 on the upper surface of the insulating substrate 2 and the radiator plate 6 on the lower surface Will be attached.
[0026]
When the brazing material powder is made of a eutectic alloy, for example, it is formed of a eutectic alloy containing 72% by mass and 28% by mass of copper, respectively. Further, when the particle size of the brazing filler metal powder is less than 1 μm, the specific surface area of the brazing filler metal powder increases, and a large amount of oxygen is present in an oxide film formed on the surface of the brazing filler metal powder. There is a risk that the wettability to the insulating substrate 2 and the copper foil may decrease, and the bonding strength between the insulating substrate 2 and the metal plate 5 made of the copper foil may decrease. Therefore, it is preferable that the particle size of the brazing filler metal powder be 1 μm or more.
[0027]
Further, the active metal powder composed of at least one of titanium, zirconium, hafnium and hydrides thereof has an effect of firmly adhering the brazing material to the insulating substrate 2, and the addition amount of the active metal powder is less than 2% by mass. If so, the absolute amount of the active metal is insufficient, and the brazing material tends to be unable to be firmly bonded to the insulating substrate 2. On the other hand, if the addition amount of the active metal powder exceeds 5% by mass, a brittle reaction layer is formed between the active metal and the insulating substrate 2, and as a result, the adhesive strength between the brazing material and the insulating substrate 2 decreases. Tend. Therefore, it is preferable that the addition amount of the active metal be in the range of 2 to 5% by mass.
[0028]
Further, since the aggregate of the high melting point metal powder has a larger surface area than the metal plate 5 in the contact portion with the active metal brazing material, it acts to control the diffusion of the active metal brazing material component into the metal plate 5. When the specific surface area of the aggregate of the high melting point metal powder is less than 0.1 m 2 / g, the surface area of the aggregate of the high melting point metal powder becomes small and the diffusion of the active metal brazing material component to the metal plate 5 is controlled. There is a danger that the action to be performed will be reduced. When the specific surface area exceeds 2 m 2 / g, a large amount of oxygen is present in the oxide film formed on the powder surface, and the oxygen reduces the wettability of the brazing material with respect to the aggregate of the high melting point metal powder, There is a risk that the effect of controlling the diffusion of the active metal brazing material component into the metal plate 5 may be reduced. Accordingly, the aggregate of the high melting point metal powder preferably has a specific surface area of 0.1 to 2 m 2 / g, more preferably 0.5 to 2 m 2 / g.
[0029]
The amount of the aggregate of the high melting point metal powder is adjusted by the specific surface area of the aggregate of the high melting point metal powder. When the amount is less than 5% by volume, the diffusion of the active metal brazing material component into the copper foil is controlled. Therefore, there is a possibility that the mounting of the Peltier element as the thermoelectric element 1 on the wiring board for mounting the thermoelectric element is hindered. On the other hand, if it exceeds 20% by volume, the bonding area of the brazing material to the insulating substrate 2 and the metal plate 5 tends to be small, and the brazing strength of the metal plate 5 to the insulating substrate 2 tends to decrease. Therefore, it is preferable to set the amount of the aggregate of the high melting point metal powder in the range of 5 to 20% by volume.
[0030]
Next, an etching resist film corresponding to a desired electrode shape is formed on the metal plate 5 attached to the upper surface of the insulating substrate 2 by a screen printing method or a photolithography method using a dry film resist or the like.
[0031]
Next, a circuit corresponding to the resist film having a circuit pattern is formed by etching. For example, when the metal plate 5 is made of copper or a copper alloy and the etching solution is ferric chloride, the etching is performed using a ferric chloride solution having a specific gravity of 42 to 47 Baume and a temperature of about 45 ° C. The substrate having the copper foil attached to the insulating substrate 2 is put into a spray-type etching apparatus, and the spraying is performed at a spray pressure of about 2.5 × 10 5 Pa.
[0032]
The etching time is adjusted depending on the amount of the copper foil dissolved in the ferric chloride solution, the thickness of the copper foil, and the like, and the etching is performed for 1.3 to 1.8 times the usual etching time. Thereby, the cross-sectional shape can be formed in a trapezoidal shape in which the base on the side where the end of the thermoelectric element 1 is bonded is longer than the base on the side where the end is bonded to the insulating substrate 2. This is important in the thermoelectric element mounting wiring board 8 of the present invention.
[0033]
According to the thermoelectric element mounting wiring board 8 of the present invention, the shape of the cross section of the metal plate 5 is such that the bottom of the thermoelectric element 1 to which the end is joined is longer than the bottom of the side to be joined to the insulating substrate 2. Due to the shape, even if the area of the metal plate 5 serving as an electrode is increased to mount the thermoelectric element 1 having a large bonding area, and the insulation interval between the metal plates 5 is reduced, the electrode is provided between adjacent electrodes. Can be obtained as a wiring board 8 for mounting a thermoelectric element, which does not cause an etching residue and short-circuit between adjacent electrodes.
[0034]
It is important that the etching resist film formed on the copper foil is formed with a shaving amount of 1.3 to 1.8 times the normal etching shaving amount in anticipation of an etching time longer than usual.
[0035]
Preferably, the angle between the side surface of the metal plate 5 and the surface on the side of the insulating substrate 2 is 50 to 80 °. If the angle between the side surface of the metal plate 5 and the surface on the side of the insulating substrate 2 is less than 50 °, the strength becomes weak at the end of the circuit pattern of the metal plate 5 on which the thermoelectric element 1 is mounted and supported. When the temperature exceeds 80 °, the junction area of the thermoelectric element 1 cannot be increased, so that the effect of improving the heat conversion efficiency tends not to be obtained. . Therefore, the angle between the side surface of the metal plate 5 and the surface on the side of the insulating substrate 2 is preferably set to 50 to 80 °.
[0036]
After etching, the resist is peeled off, so that the metal plate 5 and the heat radiating plate 6 having desired shapes are obtained. Note that an alkaline aqueous solution or an organic solvent is used for removing the resist depending on the type of the etching resist film.
[0037]
If a plating film 7 made of nickel and having good conductivity, good corrosion resistance and good solder wettability is applied to the surfaces of the metal plate 5 and the heat radiating plate 6, the thermoelectric element 1 is mounted. Oxidation of the metal plate 5 and the heat radiating plate 6 can be prevented in a process of assembling the module and a heating process in assembling the semiconductor device or the like to the thermoelectric element module. When high-temperature solder or the like is used for mounting the Peltier element or the like as the thermoelectric element 1 on the wiring board 8 for mounting a thermoelectric element, the plating film 7 is made of nickel in order to increase the heat resistance of the wiring board 8 for mounting the thermoelectric element. It may be composed of two layers of gold. In that case, electroless gold using displacement gold plating or reduced gold plating may be performed after nickel plating.
[0038]
Thus, according to the thermoelectric element mounting wiring board 8 of the present invention, the cross-sectional shape of the metal plate 5 is such that the bottom of the thermoelectric element 1 on the side joined to the insulating substrate 2 is longer than the bottom on the side joined to the insulating substrate 2. Due to the trapezoidal shape, even if the area of the metal plate 5 serving as an electrode is increased to mount the thermoelectric element 1 having a large bonding area, and the insulation interval between the metal plates 5 is reduced, the electrode becomes an adjacent electrode. The thermoelectric element mounting wiring board 8 can be prevented from being short-circuited between the adjacent metal plates 5 due to plating forming an electrode between the metal plates 5 or the occurrence of etching residue.
[0039]
Next, the thermoelectric element module of the present invention will be described in detail with reference to FIG. FIG. 3 is a sectional view showing an example of the embodiment of the thermoelectric element module of the present invention.
The thermoelectric element module 9 of the present invention includes a plurality of thermoelectric elements 1 each having both ends joined to a metal plate 5 between a pair of the above-described thermoelectric element mounting wiring boards 8a and 8b. A semiconductor element is mounted on the other main surface of the insulating substrate 2 of the mounting wiring board 8.
[0040]
The thermoelectric element 1 is made of a sintered body such as a Bi-Te-based material, an Fe-Si-based material, a Si-Ge-based material, and a Co-Sb-based material. If the thermoelectric element 1 is made of, for example, a Bi—Te-based material, the main characteristics are, for example, the Seebeck coefficient of the P-type thermoelectric element is 200 μV / K, the Seebeck coefficient of the N-type thermoelectric element is −200 μV / K, P The specific resistivity is 1 mΩ · cm for both the P-type and N-type thermoelectric elements, and the thermal conductivity is 1.5 W / m · K for both the P-type and N-type thermoelectric elements.
[0041]
Since it is difficult to join the thermoelectric element 1 with a brazing material such as solder as it is, its end face is coated with nickel plating or the like as a surface treatment that has good conductivity, corrosion resistance and wettability with the brazing material. It is desirable to wear it.
[0042]
The thermoelectric element of the present invention is joined by joining both ends of the plurality of thermoelectric elements 1 to the metal plate 5 via a conductive joining member such as solder between a pair of thermoelectric element mounting wiring boards 8a and 8b. It becomes module 9. When the conductive joining member is made of solder, a solder paste is printed on the metal plate 5 on the surface of the thermoelectric element mounting wiring board 8 by using a conventionally known screen printing method, and then the solder paste is printed. A plurality of thermoelectric elements 1 are sandwiched between the thermoelectric element mounting wiring boards 8a and 8b so that both ends are joined to the solder paste, and the thermoelectric elements 1 are heated in a reflow furnace at a predetermined temperature to manufacture the thermoelectric element module 9.
[0043]
Thus, according to the thermoelectric element module 9 of the present invention, a plurality of thermoelectric elements 1 are joined to the metal plate 5 at both ends, respectively, between the pair of the thermoelectric element mounting wiring boards 8a and 8b, Since the semiconductor element is mounted on the other main surface of the insulating substrate 2 of one of the thermoelectric element mounting wiring boards 8a and 8b, there is no short circuit between the adjacent metal plates 5 and the semiconductor such as a laser diode to be mounted is mounted. The thermoelectric element module 9 can operate the element normally and stably for a long time.
[0044]
It should be noted that the present invention is not limited to the above embodiments, and various changes may be made without departing from the spirit of the present invention.
[0045]
【The invention's effect】
According to the thermoelectric element mounting wiring board of the present invention, the cross section of the metal plate has a trapezoidal shape in which the bottom of the thermoelectric element to which the end is joined is longer than the bottom of the side to which the thermoelectric element is joined to the insulating substrate. In order to mount a thermoelectric element with a large bonding area, even if the area of the metal plate serving as an electrode is increased and the insulation interval between each metal plate is reduced, plating that forms an electrode between adjacent electrodes adheres. A wiring board for mounting a thermoelectric element can be provided which does not cause short-circuit between adjacent electrodes due to generation of etching residue.
[0046]
According to the thermoelectric element module of the present invention, both ends of a plurality of thermoelectric elements are joined to a metal plate at both ends, respectively, between the pair of the thermoelectric element mounting wiring boards. Since the semiconductor element is mounted on the other main surface of the insulating substrate of the mounting wiring board, the mounted laser diode can operate normally and stably for a long time without short-circuiting between adjacent metal plates serving as electrodes. Thermoelectric element module.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board for mounting a thermoelectric element of the present invention.
FIG. 2 is a cross-sectional view of a conventional wiring board for mounting thermoelectric elements.
FIG. 3 is a sectional view showing an example of an embodiment of the thermoelectric element module of the present invention.
[Explanation of symbols]
1 ... thermoelectric element 2 ... insulating substrate 3 ... joining member 5 ... Metal plate 6 Heatsinks 8, 8a, 8b Wiring board 9 for mounting thermoelectric elements Thermoelectric element modules

Claims (2)

セラミックスから成る絶縁基板の一主面に、熱電素子の端部が接合される複数の金属板を接合して成る熱電素子搭載用配線基板であって、前記金属板は、その断面の形状が前記熱電素子の端部が接合される側の底辺が前記絶縁基板に接合される側の底辺より長い台形状であることを特徴とする熱電素子搭載用配線基板。A thermoelectric element mounting wiring board formed by joining a plurality of metal plates to which one end of a thermoelectric element is joined to one principal surface of an insulating substrate made of ceramics, wherein the metal plate has a cross-sectional shape of A thermoelectric element mounting wiring board, wherein a bottom side of the thermoelectric element to which the end is joined is longer in a trapezoid than a bottom side of the thermoelectric element to be joined to the insulating substrate. 一対の請求項1記載の熱電素子搭載用配線基板の間に、複数個の熱電素子がそれぞれ両端部を前記金属板に接合されて成り、一方の前記熱電素子搭載用配線基板の前記絶縁基板の他主面に半導体素子が搭載されることを特徴とする熱電素子モジュール。A thermoelectric element mounting wiring board according to claim 1, a plurality of thermoelectric elements each having both ends joined to the metal plate, and one of the thermoelectric element mounting wiring boards having the insulating substrate. A thermoelectric element module having a semiconductor element mounted on another main surface.
JP2002247328A 2002-08-27 2002-08-27 Wiring board for mounting thermoelement and thermoelement module Pending JP2004087827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247328A JP2004087827A (en) 2002-08-27 2002-08-27 Wiring board for mounting thermoelement and thermoelement module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247328A JP2004087827A (en) 2002-08-27 2002-08-27 Wiring board for mounting thermoelement and thermoelement module

Publications (1)

Publication Number Publication Date
JP2004087827A true JP2004087827A (en) 2004-03-18

Family

ID=32055006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247328A Pending JP2004087827A (en) 2002-08-27 2002-08-27 Wiring board for mounting thermoelement and thermoelement module

Country Status (1)

Country Link
JP (1) JP2004087827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513060A (en) * 2018-11-16 2022-02-07 バーケン エナジー, エルエルシー Thermal lens electrodes in thermoelectric generators to improve performance
CN114220777A (en) * 2021-12-15 2022-03-22 东北大学 Finned heat collector and non-contact thermoelectric module heat collecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513060A (en) * 2018-11-16 2022-02-07 バーケン エナジー, エルエルシー Thermal lens electrodes in thermoelectric generators to improve performance
JP7453973B2 (en) 2018-11-16 2024-03-21 エーティーエス アイピー, エルエルシー Thermal lens electrodes in thermoelectric generators for improved performance
CN114220777A (en) * 2021-12-15 2022-03-22 东北大学 Finned heat collector and non-contact thermoelectric module heat collecting device

Similar Documents

Publication Publication Date Title
US6787706B2 (en) Ceramic circuit board
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP2010238753A (en) Heat radiating member, and module using the same
JPH0613726A (en) Ceramic circuit substrate
JP5902557B2 (en) Multilayer wiring board and electronic device
JP5960522B2 (en) Ceramic circuit board and electronic device using the same
JP3840132B2 (en) Peltier device mounting circuit board
JP2012074591A (en) Circuit board and electronic divice
JPH11340600A (en) Ceramic circuit board
JP2004087827A (en) Wiring board for mounting thermoelement and thermoelement module
JP3933287B2 (en) Circuit board with heat sink
JP4471470B2 (en) Semiconductor device
JP4646417B2 (en) Ceramic circuit board
JP3929660B2 (en) Insulating alumina substrate and alumina copper-clad circuit substrate
JP2005340559A (en) Ceramic substrate for thermoelectric exchange module
JP5665479B2 (en) Circuit board and electronic device
JP2004087927A (en) Ceramic substrate
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP2004063794A (en) Ceramic substrate for thermoelectric exchange module
JP3588315B2 (en) Semiconductor element module
JP2000277662A (en) Ceramic circuit board
JP2005340565A (en) Ceramic substrate for thermoelectric exchange module
JP2013012687A (en) Ceramic circuit board and electronic device using the same
JP3954912B2 (en) Manufacturing method of ceramic circuit board
JP2003007936A (en) Power module substrate