JP3929660B2 - Insulating alumina substrate and alumina copper-clad circuit substrate - Google Patents

Insulating alumina substrate and alumina copper-clad circuit substrate Download PDF

Info

Publication number
JP3929660B2
JP3929660B2 JP30965399A JP30965399A JP3929660B2 JP 3929660 B2 JP3929660 B2 JP 3929660B2 JP 30965399 A JP30965399 A JP 30965399A JP 30965399 A JP30965399 A JP 30965399A JP 3929660 B2 JP3929660 B2 JP 3929660B2
Authority
JP
Japan
Prior art keywords
alumina
substrate
copper
insulating
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30965399A
Other languages
Japanese (ja)
Other versions
JP2001127224A (en
Inventor
政信 石田
成樹 山田
正光 鬼谷
智英 長谷川
晃久 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30965399A priority Critical patent/JP3929660B2/en
Publication of JP2001127224A publication Critical patent/JP2001127224A/en
Application granted granted Critical
Publication of JP3929660B2 publication Critical patent/JP3929660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

【0001】
【発明の属する技術分野】
本発明は、高熱伝導性を有する絶縁性のアルミナ質基板と、それを絶縁基板としその表面に銅箔または銅板を貼り付けた銅貼回路基板に関する。
【0002】
【従来技術】
近年、産業機器の分野ではMOSFETやIGBTなどのパワー系デバイスを用いたパワーモジュールが電車、電気自動車などの電動車両における制御基板に適用されつつある。これらのパワー系デバイスに使用される電流は数十〜数百Aを超え、また電圧も数百Vと非常に高電力となるため、パワー系デバイスから発生する熱も大きく、この熱によるデバイスの誤動作あるいは破壊を防止するために、発生熱をいかに系外に放出するかが大きな問題になっている。そのために、かかるパワー系デバイスを搭載する配線基板に対しては、絶縁基板として高い熱伝導性が要求されている。
【0003】
従来から、デバイスから発生した熱を放熱するための好適なセラミックスとしては、炭化珪素、ベリリウム、窒化アルミニウム等のセラミックスが用いられてきたが、量産性、安全性などの点から窒化アルミニウム質セラミックスが最も多く用いられてきた。
【0004】
しかし、窒化アルミニウム質セラミックスは非常に高価であることから、使用される分野が限られている。しかしながら、安価な材料として一般に絶縁基板として用いられるアルミナセラミックスは熱伝導率がせいぜい十数W/m・Kであり、パワーデバイス等に使用するには十分な熱放散性があるとは言えない。そこで、このアルミナセラミックスの絶縁基板の放熱性を向上させるために、基板内部にビア導体やメタライズ層を形成する方法が検討されている。
【0005】
【発明が解決しようとする課題】
アルミナセラミックスに用いられる導体材料は、アルミナセラミックスの焼成温度が通常1600℃以上と高温であるために、このアルミナセラミックスと同時焼成可能なメタライズとして、高融点金属であるタングステンまたはモリブデンを主とする導体材料が一般的に用いられているが、タングステンあるいはモリブデンは熱伝導率としてはそれほど高くなく、アルミナ基板内部に具備させることによる熱伝導性の向上効果はあまり期待できない。
【0006】
良熱伝導材料として銅が最もよく知られているが、銅の融点が1100℃付近であって、アルミナセラミックスと同時焼成すると焼成中に銅成分がアルミナセラミックス中に拡散あるいは揮散してしまい良好な導体層が形成できないものであった。
【0007】
一方、特許第2666744号には、平均粒径1μm以下のアルミナの微粉末を用い1200℃以下の低温で金、銀、銅、等と同時焼成する方法が開示されているが、このような微粉を用いることは工程上、大きな困難を伴うことになり、コストアップにつながるものである。
【0008】
また、特許第2822811号には、銅を含有するビア導体を同時焼成により形成し、配線抵抗の小さい基板構造が開示されているが、ビア導体が基板表裏面に露出しているため基板の絶縁性が保てない。また、特開平7−15101には1083℃〜1800℃にて銅等と同時焼成する方法が開示されているが、前記と同様にビアが基板表裏面に露出しているため基板の絶縁性が保てないため放熱基板として使用できない。
【0009】
従って、本発明は、アルミナセラミックスを基材としてなり、銅を含む導体が内蔵された絶縁性を有する高熱伝導性を有するアルミナ質基板と、これを絶縁基板として用い、放熱特性に優れた銅貼回路基板を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、上記課題に対して検討を重ねた結果、アルミナセラミックスを基材として、内部に銅と、タングステンおよび/またはモリブデンとの複合材料からなる導体によって、平面導体と垂直導体とを格子状に埋設することによって、銅の拡散または揮散を抑制し、銅の拡散距離を小さくできることを見出し本発明に至った。
【0011】
即ち、本発明の絶縁性アルミナ質基板は、相対密度95%以上のアルミナを主成分とするセラミックスからなる基板内部に、銅を10〜70重量%、タングステンおよび/またはモリブデンを30〜90重量%の割合で含有する導体からなる平面導体と垂直導体とを前記基板の表面に露出しないように埋設してなり、熱伝導率が30W/m・K以上であることを特徴とするものである。
【0012】
また、本発明のアルミナ質銅貼回路基板は、相対密度95%以上のアルミナを主成分とするセラミックスからなる絶縁基板表面に、銅箔または銅板からなる配線層が被着形成されてなり、前記絶縁基板内部に、銅を10〜70重量%、タングステンおよび/またはモリブデンを30〜90重量%の割合で含有する導体からな平面導体と垂直導体とを基板の表面に露出しないように埋設してなり、且つ熱伝導率が30W/m・K以上であることを特徴とするものである。
【0013】
なお、上記の絶縁性アルミナ質基板およびアルミナ質銅貼回路基板においては、アルミナを主成分とするセラミックスが、MnO2を2.0〜10.0重量%の割合で含有することによって1500℃以下の低温で焼成することができる結果、銅の拡散などを防止することができる。
【0014】
また、前記平面導体および前記垂直導体と、前記絶縁基板表面間に存在する表面絶縁層の厚さを100〜300μmとすることによって、基板全体としての熱抵抗を小さくすることができる。
【0015】
さらに、平面的にみて、前記垂直導体の断面積の合計が、前記絶縁基板の面積の40〜80%を占めることが基板の熱抵抗を下げ、高熱伝導化を図る上で望ましい。
【0016】
【発明の実施の形態】
図1に、本発明の絶縁性のアルミナ質基板を絶縁基板として用いたアルミナ質銅貼回路基板の概略断面図を示した。
【0017】
図1の回路基板においては、アルミナセラミックスからなる絶縁基板1を具備し、この絶縁基板1の表面には、銅箔または銅板からなる配線層2が被着形成されている。そして、この絶縁基板1の内部には、平面導体3および垂直導体4が格子状に、基板の表面に露出しないように埋設されている。また、この配線層2の表面には、パワー素子、トランジスタ素子などの発熱性素子5が搭載される。
【0018】
本発明によれば、この平面導体3および垂直導体4が、アルミナセラミックスと同時焼成によって形成されたものであり、これらを形成している導体が、銅を10〜70重量%、タングステンおよび/又はモリブデンを30〜90重量%の割合で含有する導体からなることが重要である。
【0019】
これは、この絶縁基板1内部に内蔵された平面導体3および垂直導体4が銅単味からなると、熱膨張差によって絶縁層間にデラミネーションが発生してしまうのに対して、タングステンあるいはモリブデンを所定量含有せしめることによって、アルミナセラミックスとの熱膨張差が小さく成るためにデラミネーションの発生を抑制することができる。
【0020】
従って、本発明において、銅の含有量が10重量%よりも少ない、言い換えればタングステンまたはモリブデンの含有量が90重量%よりも多いと、熱拡散が小さくなり、高熱伝導化が達成できず、銅含有量が70重量%よりも多く、言い換えれば、タングステンあるいはモリブデンの含有量が30重量%よりも少ないとデラミネーションが発生する。なお望ましい範囲は、銅が40〜60重量%、タングステンおよび/またはモリブデンが60〜40重量%である。
【0021】
また、この平面導体3および垂直導体4は、実質的に信号の伝達には寄与しないことから、平面導体3と垂直導体4とを格子状に配設することができる。例えば、図1の絶縁基板1の断面図に示されるように、平面導体3を基板表面に平行に複数層形成するとともに、図2の絶縁基板1の平面透視図に示されるように、所定の直径を有する垂直導体4をアレイ状にその平面導体3同士を接続するように配置することによって、絶縁基板1全体の放熱性を均一化することができるとともに、絶縁基板の高熱伝導化を図ることができる。
【0022】
この時、例えば、配線層2の表面に搭載された発熱性素子から発生した熱を絶縁基板1の裏面に伝達する役目は、主として垂直導体4が担うことになる。従って絶縁基板1の厚み方向への熱伝達性を向上させる上で、この絶縁基板1を平面的にみたときの、図2で示されるような垂直導体4の断面積の合計が、絶縁基板1の面積の40〜80%を占めることが望ましい。特に、垂直導体4の直径は0.05〜1mmが適当であり、またこの直径はすべて同一ではなく、放熱性が特に要求される発熱性素子5搭載部の直下部分のみを他の部分よりも直径を大きくしたり、特に密に配設することもできる。
【0023】
また、絶縁基板1から熱を厚み方向に伝達する場合、絶縁基板1の表面から平面導体3や垂直導体4までの表面絶縁層a,bの厚さが厚すぎると、熱伝達性が低下し、また薄すぎると、銅の拡散によって絶縁基板表面の絶縁性が低下してしまうために、平面導体3および垂直導体4と、絶縁基板1表面間に存在する表面絶縁層a,bの厚さが100〜300μmであることが望ましい。
【0024】
なお、本発明における絶縁基板の絶縁性とは、少なくともこの表面絶縁層a,bにおける体積固有抵抗が1013Ω−cm以上であることを意味するものであり、銅の拡散が顕著に発生するとこの部分の絶縁性が劣化し、抵抗値は1013Ω−cmよりも低くなってしまう。
【0025】
一方、絶縁基板1を構成するアルミナセラミックスとしては、相対密度が95%以上の緻密質からなり、前記平面導体3および垂直導体4と同時焼成する上で、焼結助剤として、MnO2、SiO2およびMgO、CaO、SrO等のアルカリ土類元素酸化物を合計で2〜15重量%の割合で含有することが望ましい。これらの焼結助剤の量が2重量%よりも少ないと、前記銅含有導体からなる平面導体3や垂直導体4との同時焼結性が低下し、15重量%よりも多いと、アルミナセラミックス自体の熱伝導性が低下するためである。
【0026】
特に、このアルミナセラミックスは、銅の拡散を防止する上で、1500℃以下、特に1200〜1400℃の温度で焼成することが望ましい。このような低温焼結性を達成するためには、MnO2を酸化物換算で2〜10重量%の割合で含有せしめることが望ましい。
【0027】
なお、このアルミナセラミックス中には、さらに着色剤としての遷移金属、あるいはその化合物を10重量%以下の割合で含んでもよい。
【0028】
さらに、銅貼回路基板において、絶縁基板1の表面に形成される銅箔または銅板からなる配線層2は、例えば、絶縁基板1の表面に銅箔または銅板を活性金属(Ti,Zi,Hf)を含有するロウ材によって接合したり、いわゆるDBC法によって接合することもできる。その後、この金属箔や金属板の表面にレジスト塗布、露光現像、エッチング処理、レジスト除去の工程を経て、配線パターンを形成することによって作製される。
【0029】
また、この配線層2の表面には、トランジスタ素子、パワー素子、IGBTなどの発熱性素子を搭載することもできる。
【0030】
また、この絶縁基板1の裏面には、アルミニウム、銅板、銅−タングステン、などの高熱伝導性を有するヒートシンクを接合して、絶縁基板1を経由して伝達されたをヒートシンクによって系外に放熱することができる。
【0031】
次に、本発明のアルミナ質基板の製造方法について具体的に説明する。まず、アルミナセラミックスの主成分となるアルミナ原料粉末と、焼結助剤成分としてMnO2、SiO2およびMgO、CaO粉末等を2〜15重量%の割合で添加混合する。そして、この混合粉末を用いて、絶縁層を形成するためのシート状成形体を作製する。
【0032】
シート状成形体は、周知の成形方法によって作製することができ、例えば、上記混合粉末に有機バインダーや溶媒を添加してスラリーを調製し、ドクターブレード法によって形成したり、混合粉末に有機バインダーを加え、プレス成形、圧延成形等により100〜250μmの厚みのシート状成形体を作製できる。
【0033】
そして、このシート状成形体に対して垂直導体を形成するための直径が0.05〜1mmの貫通孔をシート状成形体に対してマイクロドリル、レーザー等により形成する。
【0034】
そして、この貫通孔内に、銅10〜70重量%と、タングステンおよび/またはモリブデンを30〜90重量%の割合で配合した金属粉末を含む導体ペーストを、この貫通孔内にスクリーン印刷法によって充填する。また、平面導体としては、このように垂直導体を形成したシート状成形体の表面にスクリーン印刷法などによって上記ペーストを印刷塗布する。
【0035】
その後、同様にして平面導体および/または垂直導体を形成したシート状成形体を作製した後、適宜圧着積層し作製した積層体上下面に導体ペーストが塗布されていないシートを積層圧着する。
【0036】
その後、この積層体を焼成する。本発明によれば、この焼成を、水素および窒素を含む非酸化性雰囲気中、1500℃以下,特に1200〜1400℃の温度で行うことが望ましい。また、所望により、アルゴンガス等の不活性ガスを混入してもよい。
【0037】
これは、焼成温度が1500℃より高いと、アルミナセラミックスの主結晶相の粒径が大きくなり異常粒成長が発生するようになり、銅がセラミックス中へ拡散するときのパスである粒界の長さが短くなるとともに拡散速度も速くなる結果、銅の拡散距離を30μm以下に抑制することが困難となるためである。
【0038】
次に、上記のようにして作製された絶縁基板に、Cu−Ag−Ti、Cu−Au−Tiなどの活性金属を含有するロウ材のペーストを塗布し、厚さ0.1mm以上の銅箔あるいは銅板を積層し、800〜900℃で加圧しながら焼き付けを行う。焼き付け後、銅箔や銅板にレジスト塗布、露光、現像、エッチング処理、レジスト剥離などの手法によって、所定の回路パターンからなる金属回路を形成することにより銅貼基板を得る。
【0039】
また、この配線基板に対して、パワー素子を搭載するには、金属回路上に半田ペーストを塗布した後、自動実装装置にて実装し、300〜400℃で加熱してロウ付けする。
【0040】
さらに、銅貼基板をヒートシンクなどに実装する場合には、Pb−Sn共晶半田などの半田ペーストを塗布し、300〜400℃でロウ付けすればよい。
【0041】
【実施例】
アルミナ粉末(平均粒径0.65μm)を主成分として表1、2に示すような各種焼結助剤と、成形用有機樹脂(バインダー)としてアクリル系バインダーと、トルエンを溶媒として混合した後、ドクターブレード法にて厚さ100〜250μmのシート状に成形した。そして、所定箇所に径600μmの貫通孔をレーザー光で形成した。なお、この貫通孔は、その数を増減することによって、垂直導体の面積比率が異なる種々のものを作製した。
【0042】
次に、銅粉末(平均粒径5μm)とW粉末(平均粒径1.2μm)あるいはMo粉末(平均粒径1μm)とを表1および2に示す比率で混合しアクリル系バインダーとをアセトンを溶媒として導体ペーストを調製し、貫通孔内にこの導体ペーストを充填した。さらに、この導体ペーストを用いてシート状成形体の表面に平面導体を印刷した。
【0043】
上記のようにして作製した各シート状成形体を位置合わせして積層圧着して成形体積層体を作製した後、その積層体の上下面に所定の種々の厚みを有するシート状成形体を積層した。
【0044】
その後、この成形体積層体を、水分を含む酸素含有雰囲気中(N2+O2またはH2+N2+H2O)で脱脂を行った後、表1に示した温度、雰囲気にて焼成した。
【0045】
得られた焼結体の熱伝導率をレーザーフラッシュ法により測定し、その結果を表1、2に示した。また、比較として、導体を含まない時のアルミナセラミックスの熱伝導率を測定し、導体層の効果を確認した。
【0046】
次に得られた絶縁基板を用い、活性金属ロウを塗布し、銅板を接合し、エッチング処理によって配線回路を形成し、配線回路層表面にニッケル無電解メッキを施した。そして、この回路基板の配線層上に実際に半導体チップを実装して発熱させ絶縁基板の熱抵抗を測定し、その結果を表1、2に示した。
【0047】
また、絶縁基板の体積固有抵抗として、絶縁基板の表面に形成した配線層と絶縁基板に内蔵した最上部の平面導体間の体積固有抵抗を測定し表1、2に示した。
【0048】
【表1】

Figure 0003929660
【0049】
【表2】
Figure 0003929660
【0050】
表1、2に示すように、絶縁基板中のMnO2量が2重量%よりも少ない試料No.1,2においては焼結性が劣化し相対密度95%以上に焼結できなかった。またMnO2量が10重量%よりも多い試料No.8においては、磁器自体の熱伝導率が低下するとともに、絶縁性の劣化が起こった。導体組成において、銅の含有量が10重量%よりも少ない試料No.9,10では、絶縁基板の熱伝導率が30W/m・Kよりも低くなった。また、70重量%よりも大きい試料No.17では、絶縁基板との熱膨張率差から内部導体との間に剥離が発生すると共に銅の拡散が起こり絶縁性の劣化が起こった。
【0051】
また、同時焼成の温度が1200℃よりも低い試料No.21では未焼結となった。1500℃よりも高い試料No.28では、銅がセラミックス中に拡散し絶縁基板の絶縁性が劣化した。
【0052】
表面絶縁層の厚みが100μmよりも小さい試料No.29では内部導体層から銅が拡散するため絶縁性が劣化した。また表面絶縁層の厚みが300μmよりも大きい試料No.34では、絶縁層自体の熱伝導率が律速し内部導体の効果が得られなかった。
【0053】
垂直導体の総断面積の面積比率が40%よりも小さい試料No.35では垂直導体からの熱放散が小さく熱抵抗、熱伝導率が劣化した。また、垂直導体の面積比率が80%よりも大きい試料No.38では内部導体層から銅が拡散するため絶縁基板自体の絶縁性が劣化した。
【0054】
またこれらの比較例に対して、本発明の配線基板によれば、相対密度95%以上、熱伝導率が30W/m・K以上、体積固有抵抗が1013Ω−cm以上、熱抵抗が30℃/W以下の優れた絶縁性と放熱特性を具備するものであった。
【0055】
【発明の効果】
以上詳述した通り、本発明によれば、アルミナセラミックスを基材としてなり、銅を含む高熱伝導性の導体からなる平面導体および垂直導体を内蔵するとともに、その銅の拡散を防止し、高熱伝導性および高絶縁性のアルミナ質基板を得ることができるとともに、この基板を絶縁基板としその表面に銅箔や銅板からなる配線層を形成することによって、放熱性に優れた銅貼回路基板を提供することができる。
【図面の簡単な説明】
【図1】本発明のアルミナ質銅貼基板の一実施態様を示す概略断面図である。
【図2】本発明のアルミナ質銅貼基板の絶縁基板における垂直導体の配置を説明するための平面透過図である。
【符号の説明】
1 絶縁基板
2 配線層
3 平面導体
4 垂直導体
5 発熱性素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating alumina substrate having high thermal conductivity, and a copper-clad circuit board in which a copper foil or a copper plate is bonded to the surface of the insulating alumina substrate.
[0002]
[Prior art]
In recent years, in the field of industrial equipment, power modules using power-related devices such as MOSFETs and IGBTs are being applied to control boards in electric vehicles such as trains and electric cars. The current used in these power devices exceeds several tens to several hundreds A, and the voltage is very high power of several hundreds V. Therefore, the heat generated from the power devices is large. In order to prevent malfunction or destruction, how to release the generated heat out of the system is a big problem. Therefore, high thermal conductivity is required as an insulating substrate for a wiring board on which such a power device is mounted.
[0003]
Conventionally, ceramics such as silicon carbide, beryllium, and aluminum nitride have been used as suitable ceramics for dissipating the heat generated from the device, but aluminum nitride ceramics have been used in terms of mass productivity and safety. It has been used most often.
[0004]
However, since aluminum nitride ceramics are very expensive, their fields of use are limited. However, alumina ceramics generally used as an insulating substrate as an inexpensive material have a thermal conductivity of at most a few dozen W / m · K, and cannot be said to have sufficient heat dissipation for use in power devices and the like. Therefore, in order to improve the heat dissipation of the alumina ceramic insulating substrate, a method of forming a via conductor or a metallized layer inside the substrate has been studied.
[0005]
[Problems to be solved by the invention]
The conductor material used for alumina ceramics is a conductor mainly composed of tungsten or molybdenum, which is a refractory metal, as a metallization that can be co-fired with alumina ceramics because the firing temperature of alumina ceramics is usually as high as 1600 ° C or higher. Although materials are generally used, tungsten or molybdenum is not so high in thermal conductivity, and the effect of improving thermal conductivity by being provided inside the alumina substrate cannot be expected so much.
[0006]
Copper is best known as a good heat conductive material, but the melting point of copper is around 1100 ° C., and if it is co-fired with alumina ceramics, the copper component diffuses or volatilizes in the alumina ceramics during firing. A conductor layer could not be formed.
[0007]
On the other hand, Japanese Patent No. 2666744 discloses a method of co-firing with gold, silver, copper, etc. at a low temperature of 1200 ° C. or less using fine powder of alumina having an average particle size of 1 μm or less. The use of is accompanied by great difficulty in the process, leading to an increase in cost.
[0008]
Japanese Patent No. 2822811 discloses a substrate structure in which a via conductor containing copper is formed by simultaneous firing and has a low wiring resistance. However, since the via conductor is exposed on the front and back surfaces of the substrate, insulation of the substrate is disclosed. Sex cannot be maintained. Japanese Patent Laid-Open No. 7-15101 discloses a method of co-firing with copper or the like at 1083 ° C. to 1800 ° C. However, since the vias are exposed on the front and back surfaces of the substrate as described above, the insulating properties of the substrate are improved. It cannot be used as a heat dissipation board.
[0009]
Therefore, the present invention provides an alumina substrate having high thermal conductivity and having an insulating property in which an alumina ceramic is used as a base material and a conductor containing copper is incorporated, and a copper paste having excellent heat dissipation characteristics by using this as an insulating substrate. An object is to provide a circuit board.
[0010]
[Means for Solving the Problems]
As a result of repeated studies on the above problems, the present inventors have made a plane conductor and a vertical conductor by using a conductor made of a composite material of copper and tungsten and / or molybdenum with alumina ceramic as a base material. It has been found that by burying in a lattice shape, diffusion or volatilization of copper can be suppressed, and the diffusion distance of copper can be reduced.
[0011]
That is, the insulating alumina substrate of the present invention has copper in the substrate made of ceramics having a relative density of 95% or more as a main component, copper in an amount of 10 to 70% by weight, tungsten and / or molybdenum in an amount of 30 to 90% by weight. A flat conductor and a vertical conductor made of a conductor contained at a ratio of 5 are embedded so as not to be exposed on the surface of the substrate, and the thermal conductivity is 30 W / m · K or more.
[0012]
Moreover, the alumina-based copper-clad circuit board of the present invention is formed by depositing a wiring layer made of copper foil or a copper plate on the surface of an insulating substrate made of ceramics whose main component is alumina having a relative density of 95% or more, the inner insulating substrate, embedded copper 10-70 wt%, the planar conductor and the vertical conductors tungsten and / or molybdenum of a conductor in a proportion of 30 to 90 wt% ing so as not to be exposed on the surface of the substrate And has a thermal conductivity of 30 W / m · K or more.
[0013]
In the above-described insulating alumina substrate and alumina copper-clad circuit substrate, the ceramic containing alumina as a main component contains MnO 2 at a ratio of 2.0 to 10.0% by weight, so that the temperature is 1500 ° C. or less. As a result of being able to be fired at a low temperature, copper diffusion and the like can be prevented.
[0014]
Moreover, the thermal resistance as the whole board | substrate can be made small by setting the thickness of the surface insulating layer which exists between the said plane conductor and the said perpendicular | vertical conductor, and the said insulated substrate surface to 100-300 micrometers.
[0015]
Further, in plan view, it is desirable that the total cross-sectional area of the vertical conductors occupy 40 to 80% of the area of the insulating substrate in order to reduce the thermal resistance of the substrate and increase the thermal conductivity.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic cross-sectional view of an alumina-based copper-clad circuit substrate using the insulating alumina substrate of the present invention as an insulating substrate.
[0017]
The circuit board of FIG. 1 includes an insulating substrate 1 made of alumina ceramics, and a wiring layer 2 made of copper foil or a copper plate is deposited on the surface of the insulating substrate 1. Then, the planar conductors 3 and the vertical conductors 4 are embedded in the insulating substrate 1 in a lattice shape so as not to be exposed on the surface of the substrate . In addition, a heat generating element 5 such as a power element or a transistor element is mounted on the surface of the wiring layer 2.
[0018]
According to the present invention, the planar conductor 3 and the vertical conductor 4 are formed by co-firing with alumina ceramics, and the conductor forming them is composed of 10 to 70% by weight of copper, tungsten and / or It is important to be made of a conductor containing 30 to 90% by weight of molybdenum.
[0019]
This is because when the planar conductor 3 and the vertical conductor 4 incorporated in the insulating substrate 1 are made of pure copper, delamination occurs between the insulating layers due to the difference in thermal expansion. By containing it in a constant amount, the difference in thermal expansion from alumina ceramics becomes small, so that the occurrence of delamination can be suppressed.
[0020]
Therefore, in the present invention, if the copper content is less than 10% by weight, in other words, if the content of tungsten or molybdenum is more than 90% by weight, thermal diffusion becomes small, and high thermal conductivity cannot be achieved. When the content is more than 70% by weight, in other words, when the content of tungsten or molybdenum is less than 30% by weight, delamination occurs. Desirable ranges are 40 to 60% by weight of copper and 60 to 40% by weight of tungsten and / or molybdenum.
[0021]
Further, since the planar conductor 3 and the vertical conductor 4 do not substantially contribute to signal transmission, the planar conductor 3 and the vertical conductor 4 can be arranged in a lattice shape. For example, as shown in the sectional view of the insulating substrate 1 in FIG. 1, the planar conductor 3 is formed in a plurality of layers in parallel with the substrate surface, and as shown in the planar perspective view of the insulating substrate 1 in FIG. By disposing the vertical conductors 4 having a diameter so as to connect the planar conductors 3 in an array, the heat dissipation of the entire insulating substrate 1 can be made uniform, and the thermal conductivity of the insulating substrate can be increased. Can do.
[0022]
At this time, for example, the vertical conductor 4 mainly plays a role of transmitting heat generated from the heat generating element mounted on the surface of the wiring layer 2 to the back surface of the insulating substrate 1. Therefore, in order to improve the heat transfer property in the thickness direction of the insulating substrate 1, the sum of the cross-sectional areas of the vertical conductors 4 as shown in FIG. It is desirable to occupy 40 to 80% of the area. In particular, the diameter of the vertical conductor 4 is suitably 0.05 to 1 mm, and the diameters are not all the same, and only the portion immediately below the mounting portion of the heat generating element 5 where heat dissipation is particularly required is made more than other portions. It is also possible to increase the diameter or to arrange it particularly densely.
[0023]
Further, when heat is transferred from the insulating substrate 1 in the thickness direction, if the thickness of the surface insulating layers a and b from the surface of the insulating substrate 1 to the planar conductor 3 and the vertical conductor 4 is too thick, the heat transfer performance is lowered. If the thickness is too thin, the insulation of the surface of the insulating substrate deteriorates due to copper diffusion. Therefore, the thickness of the surface insulating layers a and b existing between the planar conductor 3 and the vertical conductor 4 and the surface of the insulating substrate 1 is reduced. Is preferably 100 to 300 μm.
[0024]
The insulating property of the insulating substrate in the present invention means that the volume specific resistance in at least the surface insulating layers a and b is 10 13 Ω-cm or more, and when copper diffusion occurs remarkably. The insulating property of this part deteriorates and the resistance value becomes lower than 10 13 Ω-cm.
[0025]
On the other hand, the alumina ceramic constituting the insulating substrate 1 is made of a dense material having a relative density of 95% or more, and is simultaneously sintered with the planar conductor 3 and the vertical conductor 4, and as a sintering aid, MnO 2 , SiO 2 and alkaline earth element oxides such as MgO, CaO and SrO are desirably contained in a proportion of 2 to 15% by weight. If the amount of these sintering aids is less than 2% by weight, the co-sinterability with the planar conductor 3 and the vertical conductor 4 made of the copper-containing conductor is lowered, and if more than 15% by weight, alumina ceramics This is because the thermal conductivity of itself decreases.
[0026]
In particular, this alumina ceramic is desirably fired at a temperature of 1500 ° C. or less, particularly 1200 to 1400 ° C., in order to prevent copper diffusion. In order to achieve such low-temperature sinterability, it is desirable to contain MnO 2 at a ratio of 2 to 10% by weight in terms of oxide.
[0027]
The alumina ceramics may further contain a transition metal as a colorant or a compound thereof in a proportion of 10% by weight or less.
[0028]
Furthermore, in the copper-clad circuit board, the wiring layer 2 made of copper foil or copper plate formed on the surface of the insulating substrate 1 is made of, for example, a copper foil or copper plate on the surface of the insulating substrate 1 with an active metal (Ti, Zi, Hf). It is also possible to join with a brazing material containing bismuth or so-called DBC method. Thereafter, a wiring pattern is formed on the surface of the metal foil or metal plate through resist application, exposure development, etching treatment, and resist removal.
[0029]
Further, a heat generating element such as a transistor element, a power element, or an IGBT can be mounted on the surface of the wiring layer 2.
[0030]
Further, a heat sink having high thermal conductivity such as aluminum, copper plate, copper-tungsten, or the like is bonded to the back surface of the insulating substrate 1, and the heat transmitted via the insulating substrate 1 is dissipated outside the system by the heat sink. be able to.
[0031]
Next, the method for producing an alumina substrate of the present invention will be specifically described. First, alumina raw material powder as a main component of alumina ceramics and MnO 2 , SiO 2, MgO, CaO powder and the like as a sintering aid component are added and mixed at a ratio of 2 to 15% by weight. And the sheet-like molded object for forming an insulating layer is produced using this mixed powder.
[0032]
A sheet-like molded body can be produced by a known molding method. For example, a slurry is prepared by adding an organic binder or a solvent to the mixed powder, and the slurry is formed by a doctor blade method, or an organic binder is added to the mixed powder. In addition, a sheet-like molded body having a thickness of 100 to 250 μm can be produced by press molding, rolling molding or the like.
[0033]
And the through-hole with a diameter of 0.05-1 mm for forming a vertical conductor with respect to this sheet-like molded object is formed with a micro drill, a laser, etc. with respect to a sheet-like molded object.
[0034]
A conductive paste containing metal powder containing 10 to 70% by weight of copper and 30 to 90% by weight of tungsten and / or molybdenum is filled in the through hole by screen printing. To do. Further, as the planar conductor, the paste is printed and applied to the surface of the sheet-like molded body on which the vertical conductor is formed in this way by a screen printing method or the like.
[0035]
Thereafter, a sheet-like molded body in which a planar conductor and / or a vertical conductor is formed in the same manner is prepared, and then a sheet on which the conductor paste is not applied is laminated and pressure-bonded on the upper and lower surfaces of the laminated body that are appropriately pressure-bonded and laminated.
[0036]
Thereafter, this laminate is fired. According to the present invention, this calcination is desirably performed at a temperature of 1500 ° C. or less, particularly 1200 to 1400 ° C. in a non-oxidizing atmosphere containing hydrogen and nitrogen. Moreover, you may mix inert gas, such as argon gas, as desired.
[0037]
This is because when the firing temperature is higher than 1500 ° C., the grain size of the main crystal phase of the alumina ceramics becomes large and abnormal grain growth occurs, and the length of the grain boundary, which is a path when copper diffuses into the ceramics. This is because it becomes difficult to suppress the copper diffusion distance to 30 μm or less as a result of shortening the length and increasing the diffusion rate.
[0038]
Next, a paste of a brazing material containing an active metal such as Cu—Ag—Ti, Cu—Au—Ti is applied to the insulating substrate manufactured as described above, and a copper foil having a thickness of 0.1 mm or more is applied. Or a copper plate is laminated | stacked and baking is performed, pressing at 800-900 degreeC. After baking, a copper-clad substrate is obtained by forming a metal circuit having a predetermined circuit pattern on the copper foil or copper plate by a technique such as resist application, exposure, development, etching treatment, or resist peeling.
[0039]
In order to mount a power element on this wiring board, after applying a solder paste on a metal circuit, it is mounted by an automatic mounting apparatus and heated at 300 to 400 ° C. to be brazed.
[0040]
Furthermore, when a copper-clad substrate is mounted on a heat sink or the like, a solder paste such as Pb—Sn eutectic solder may be applied and brazed at 300 to 400 ° C.
[0041]
【Example】
After mixing alumina powder (average particle size 0.65 μm) as a main component, various sintering aids as shown in Tables 1 and 2, an acrylic binder as a molding organic resin (binder), and toluene as a solvent, It was formed into a sheet having a thickness of 100 to 250 μm by the doctor blade method. And the through-hole with a diameter of 600 micrometers was formed in the predetermined location with the laser beam. Various through-holes with different vertical conductor area ratios were produced by increasing or decreasing the number of through-holes.
[0042]
Next, copper powder (average particle size 5 μm) and W powder (average particle size 1.2 μm) or Mo powder (average particle size 1 μm) are mixed in the ratios shown in Tables 1 and 2, and acrylic binder is added to acetone. A conductor paste was prepared as a solvent, and the conductor paste was filled into the through holes. Furthermore, a planar conductor was printed on the surface of the sheet-like molded body using this conductor paste.
[0043]
Each sheet-like molded body produced as described above is aligned and laminated and pressure-bonded to produce a molded body laminate, and sheet-like molded bodies having various predetermined thicknesses are laminated on the upper and lower surfaces of the laminate. did.
[0044]
Then, this molded body laminate was degreased in an oxygen-containing atmosphere containing moisture (N 2 + O 2 or H 2 + N 2 + H 2 O), and then fired at the temperature and atmosphere shown in Table 1.
[0045]
The thermal conductivity of the obtained sintered body was measured by a laser flash method, and the results are shown in Tables 1 and 2. As a comparison, the thermal conductivity of alumina ceramics when no conductor was included was measured to confirm the effect of the conductor layer.
[0046]
Next, using the obtained insulating substrate, an active metal solder was applied, a copper plate was joined, a wiring circuit was formed by etching, and nickel electroless plating was applied to the surface of the wiring circuit layer. Then, a semiconductor chip was actually mounted on the wiring layer of the circuit board to generate heat, and the thermal resistance of the insulating board was measured. The results are shown in Tables 1 and 2.
[0047]
Further, as the volume resistivity of the insulating substrate, the volume resistivity between the wiring layer formed on the surface of the insulating substrate and the uppermost planar conductor built in the insulating substrate was measured and shown in Tables 1 and 2.
[0048]
[Table 1]
Figure 0003929660
[0049]
[Table 2]
Figure 0003929660
[0050]
As shown in Tables 1 and 2, Sample Nos. In which the amount of MnO 2 in the insulating substrate is less than 2% by weight. In 1 and 2, the sinterability deteriorated, and the relative density could not be sintered to 95% or more. In addition, Sample No. with a MnO 2 content of more than 10% by weight was used. In No. 8, the thermal conductivity of the porcelain itself decreased and the insulation deteriorated. In the conductor composition, Sample No. with a copper content of less than 10% by weight. In 9, 10, the thermal conductivity of the insulating substrate was lower than 30 W / m · K. Sample No. larger than 70% by weight. In No. 17, peeling occurred between the inner conductor and the copper due to a difference in thermal expansion coefficient with the insulating substrate, and copper was diffused, resulting in deterioration of insulation.
[0051]
In addition, the sample No. 1 whose co-firing temperature is lower than 1200 ° C. No. 21 was unsintered. Sample No. higher than 1500 ° C. In No. 28, copper diffused into the ceramic and the insulation of the insulating substrate deteriorated.
[0052]
Sample No. with a surface insulating layer thickness less than 100 μm. In 29, copper was diffused from the inner conductor layer, so that the insulation was deteriorated. In addition, the sample No. with a thickness of the surface insulating layer larger than 300 μm. In No. 34, the thermal conductivity of the insulating layer itself was rate-determined, and the effect of the inner conductor was not obtained.
[0053]
Sample No. in which the area ratio of the total cross-sectional area of the vertical conductor is smaller than 40%. In No. 35, the heat dissipation from the vertical conductor was small and the thermal resistance and thermal conductivity deteriorated. In addition, Sample No. with a vertical conductor area ratio larger than 80%. In 38, copper diffused from the inner conductor layer, so that the insulating property of the insulating substrate itself deteriorated.
[0054]
Also, with respect to these comparative examples, according to the wiring board of the present invention, the relative density is 95% or more, the thermal conductivity is 30 W / m · K or more, the volume resistivity is 10 13 Ω-cm or more, and the thermal resistance is 30. It had excellent insulating properties and heat dissipation characteristics of ℃ / W or less.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, alumina ceramic is used as a base material, and a plane conductor and a vertical conductor made of a highly heat-conductive conductor containing copper are incorporated, and diffusion of the copper is prevented and high heat conduction is achieved. A highly heat-insulating alumina substrate can be obtained, and a copper-laminated circuit board with excellent heat dissipation can be provided by using this substrate as an insulating substrate and forming a wiring layer made of copper foil or copper plate on the surface. can do.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an alumina-based copper-clad substrate of the present invention.
FIG. 2 is a plan transmission diagram for explaining the arrangement of vertical conductors on an insulating substrate of an alumina-based copper-clad substrate according to the present invention.
[Explanation of symbols]
1 Insulating substrate 2 Wiring layer 3 Planar conductor 4 Vertical conductor 5 Heat-generating element

Claims (8)

相対密度が95%以上のアルミナを主成分とするセラミックスからなる基板内部に、銅を10〜70重量%、タングステンおよび/またはモリブデンを30〜90重量%の割合で含有する導体からなる平面導体と垂直導体とを前記基板の表面に露出しないように埋設してなり、且つ熱伝導率が30W/m・K以上であることを特徴とする絶縁性アルミナ質基板。A planar conductor made of a conductor containing 10 to 70% by weight of copper, and 30 to 90% by weight of tungsten and / or molybdenum in a substrate made of ceramics whose main component is alumina having a relative density of 95% or more; An insulating alumina substrate characterized in that a vertical conductor is embedded so as not to be exposed on the surface of the substrate and has a thermal conductivity of 30 W / m · K or more. 前記アルミナを主成分とするセラミックスが、MnOを2.0〜10.0重量%の割合で含有することを特徴とする請求項1記載の絶縁性アルミナ質基板。The insulating alumina substrate according to claim 1, wherein the ceramic containing alumina as a main component contains MnO 2 at a ratio of 2.0 to 10.0% by weight. 前記平面導体および前記垂直導体と、前記基板表面間に存在する表面絶縁層の厚さが100〜300μmであることを特徴とする請求項1記載の絶縁性アルミナ質基板。2. The insulating alumina substrate according to claim 1, wherein a thickness of a surface insulating layer existing between the planar conductor and the vertical conductor and the substrate surface is 100 to 300 [mu] m. 平面的にみて、前記垂直導体の断面積の合計が、前記基板の面積の40〜80%を占めることを特徴とする請求項1記載の絶縁性アルミナ質基板。2. The insulating alumina substrate according to claim 1, wherein, in a plan view, the total cross-sectional area of the vertical conductors occupies 40 to 80% of the area of the substrate. 相対密度が95%以上のアルミナを主成分とするセラミックスからなる絶縁基板表面に、銅箔または銅板からなる配線層が被着形成されてなるアルミナ質銅貼回路基板において、前記絶縁基板内部に、銅を10〜70重量%、タングステンおよび/またはモリブデンを30〜90重量%の割合で含有する導体からな平面導体と垂直導体とを前記基板の表面に露出しないように埋設してなり、且つ熱伝導率が30W/m・K以上であることを特徴とするアルミナ質銅貼回路基板。In an alumina-based copper-clad circuit board in which a wiring layer made of copper foil or a copper plate is deposited on a surface of an insulating board made of ceramics whose main component is alumina having a relative density of 95% or more, inside the insulating board, copper 10-70 wt%, it is embedded with the plane conductor and the vertical conductors tungsten and / or molybdenum of a conductor in a proportion of 30 to 90 wt% ing so as not to be exposed to the surface of the substrate, and An alumina copper-clad circuit board having a thermal conductivity of 30 W / m · K or more. 前記アルミナを主成分とするセラミックスからなる絶縁基板が、MnOを2.0〜10.0重量%の割合で含有することを特徴とする請求項5記載のアルミナ質銅貼回路基板。6. The alumina-based copper-clad circuit board according to claim 5, wherein the insulating substrate made of ceramics containing alumina as a main component contains MnO 2 at a ratio of 2.0 to 10.0% by weight. 前記平面導体および前記垂直導体と、前記絶縁基板表面間に存在する表面絶縁層の厚さが100〜300μmであることを特徴とする請求項5記載のアルミナ質銅貼回路基板。6. The alumina-based copper-clad circuit board according to claim 5, wherein a thickness of a surface insulating layer existing between the planar conductor and the vertical conductor and the surface of the insulating substrate is 100 to 300 [mu] m. 平面的にみて、前記垂直導体の断面積の合計が、前記絶縁基板の面積の40〜80%を占めることを特徴とする請求項5記載のアルミナ質銅貼回路基板。6. The alumina-based copper-clad circuit board according to claim 5, wherein, in plan view, the total cross-sectional area of the vertical conductors occupies 40 to 80% of the area of the insulating substrate.
JP30965399A 1999-10-29 1999-10-29 Insulating alumina substrate and alumina copper-clad circuit substrate Expired - Fee Related JP3929660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30965399A JP3929660B2 (en) 1999-10-29 1999-10-29 Insulating alumina substrate and alumina copper-clad circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30965399A JP3929660B2 (en) 1999-10-29 1999-10-29 Insulating alumina substrate and alumina copper-clad circuit substrate

Publications (2)

Publication Number Publication Date
JP2001127224A JP2001127224A (en) 2001-05-11
JP3929660B2 true JP3929660B2 (en) 2007-06-13

Family

ID=17995650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30965399A Expired - Fee Related JP3929660B2 (en) 1999-10-29 1999-10-29 Insulating alumina substrate and alumina copper-clad circuit substrate

Country Status (1)

Country Link
JP (1) JP3929660B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10212495B4 (en) 2002-03-21 2004-02-26 Schulz-Harder, Jürgen, Dr.-Ing. Method for producing a metal-ceramic substrate, preferably a copper-ceramic substrate
JP2005520334A (en) * 2002-03-13 2005-07-07 スチュルス−ハーダー,ジャーヘン Process for producing a metal-ceramic substrate, preferably a copper-ceramic substrate
JP2008060172A (en) * 2006-08-29 2008-03-13 Toshiba Corp Semiconductor device
JP5167977B2 (en) * 2007-09-06 2013-03-21 日亜化学工業株式会社 Semiconductor device
WO2017144332A1 (en) * 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
CN107683017A (en) * 2017-11-07 2018-02-09 百硕电脑(苏州)有限公司 High-insulativity wiring board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286590A (en) * 1990-04-03 1991-12-17 Nippon Cement Co Ltd Ceramic wiring board
JP3677301B2 (en) * 1993-10-29 2005-07-27 京セラ株式会社 Ceramic circuit board and method for manufacturing ceramic circuit board
JP3603354B2 (en) * 1994-11-21 2004-12-22 株式会社デンソー Hybrid integrated circuit device
JP3671457B2 (en) * 1995-06-07 2005-07-13 株式会社デンソー Multilayer board
JP3266505B2 (en) * 1996-05-20 2002-03-18 京セラ株式会社 Multilayer circuit board
JP3377928B2 (en) * 1997-05-28 2003-02-17 京セラ株式会社 Circuit board
JPH11157921A (en) * 1997-09-19 1999-06-15 Matsushita Electric Ind Co Ltd Oxide ceramic material and multilayer wiring board using the same material
JP3537648B2 (en) * 1997-10-28 2004-06-14 京セラ株式会社 Aluminum nitride wiring board and method of manufacturing the same

Also Published As

Publication number Publication date
JP2001127224A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
US7574793B2 (en) Process of forming a laminate ceramic circuit board
JP2000164992A (en) Wiring board and manufacture thereof
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JP3929660B2 (en) Insulating alumina substrate and alumina copper-clad circuit substrate
JP2007273914A (en) Wiring board and method of manufacturing same
JP2001015869A (en) Wiring board
JP3668083B2 (en) Ceramic wiring board
JP5665479B2 (en) Circuit board and electronic device
JP3588315B2 (en) Semiconductor element module
JP2001185838A (en) Ceramic wiring board
JP2703426B2 (en) Circuit board
JP2000340716A (en) Wiring substrate
JPH0544840B2 (en)
JP3652192B2 (en) Silicon nitride wiring board
JP2000312057A (en) Wiring substrate and manufacture thereof
JP4575614B2 (en) Composite ceramic substrate
JP2006506810A (en) Method and structure for enhanced temperature control of high power components on multilayer LTCC and LTCC-M boards
JP4646469B2 (en) Ceramic wiring board
JP2000164996A (en) Ceramic wiring board
WO2018234451A1 (en) Thick-film paste mediated ceramics bonded with metal or metal hybrid foils and vias
JP2001102701A (en) Wiring board
JP2012134230A (en) Circuit board and electronic apparatus using the same
JPH0636474B2 (en) Method for manufacturing multilayer ceramic wiring board
Roy Ceramic packaging for electronics
JPS60120592A (en) Ceramic circuit board and method of producing ceramic circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050518

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Ref document number: 3929660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees