JP2004063794A - Ceramic substrate for thermoelectric exchange module - Google Patents

Ceramic substrate for thermoelectric exchange module Download PDF

Info

Publication number
JP2004063794A
JP2004063794A JP2002220186A JP2002220186A JP2004063794A JP 2004063794 A JP2004063794 A JP 2004063794A JP 2002220186 A JP2002220186 A JP 2002220186A JP 2002220186 A JP2002220186 A JP 2002220186A JP 2004063794 A JP2004063794 A JP 2004063794A
Authority
JP
Japan
Prior art keywords
layer
ceramic substrate
exchange module
thermoelectric
metallized layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002220186A
Other languages
Japanese (ja)
Inventor
Kosuke Katabe
形部 浩介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002220186A priority Critical patent/JP2004063794A/en
Publication of JP2004063794A publication Critical patent/JP2004063794A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic substrate for a thermoelectric exchange module in which a thermal stress occurred due to a thermal expansion difference between the ceramic substrate and a metal layer is not gathered at an outer peripheral end of a metallized layer so as to prevent the metallized layer from peeling off, and which can effectively transmit heat of a heat generation body to externally. <P>SOLUTION: In a ceramic substrate for a thermoelectric exchange module, a plurality of electrodes 2 in which a thermoelectric 5 is fixed to one main surface of a ceramic substrate 1 are formed independently, respectively. A metallized layer 3a and a Cu layer 3b in which a collar-like part 3c is provided throughout all periphery at an end on a side of the ceramic substrate 1 of a side surface thereof are sequentially stacked on substantially all surface of the other main surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野等に使用される半導体レーザ(LD)、フォトダイオード(PD)等の光半導体素子を作動時に冷却するための熱電交換モジュール用セラミック基板に関する。
【0002】
【従来の技術】
従来の光通信分野等に使用されるLD、PD等の光半導体素子を作動時に冷却するための熱電交換モジュールは、光半導体素子が作動時に発する熱を外部へ伝えることにより、光半導体素子を常に一定の温度に保持する熱電冷却装置として機能する。この熱電交換モジュール、即ち熱電冷却装置は、セラミック基板の主面においてp型とn型の熱電素子を電気的に直列または並列に接続して一体構造とした状態で、ペルチェ効果を利用して高温端の電極および低温端の電極に印加した電圧に依存して温度差を生じさせることにより低温端を冷却するものである。
【0003】
そして、従来の熱電交換モジュール用セラミック基板は、図3に電極周辺部の断面図を示すように、アルミナ(Al)セラミックスや窒化アルミニウム(AlN)セラミックス等のセラミック基板101の一方の主面に複数の電極となる銅(Cu)層102bおよび熱電交換モジュール部が設けられ、他方の主面に半導体素子等を接合するかまたは半導体素子の熱を放出するための放熱板を接合するための銅(Cu)層103bが被着される。
【0004】
Cu層102bおよびCu層103bは、セラミック基板101の両主面の全面に無電解メッキによるCu層を被着した後、Cu層102bおよびCu層103bを形成しない部位にメッキレジストを形成し、さらに電解メッキによるCu層をメッキレジストの高さよりも低い位置まで被着し、その後メッキレジストを剥離するとともにメッキレジスト直下の無電解メッキによるCu層をエッチング等により除去することにより、それぞれ独立した(電気的に絶縁された)複数の電極を構成するCu層102b、およびCu層103bとなる。
【0005】
さらに、Cu層102bの露出した主面(図3では下端面)にニッケル(Ni)メッキ層と金(Au)メッキ層を順次被着し、Sn(錫)−Ag(銀)系、Sn−Sb(アンチモン)系、Sn−Bi(ビスマス)系、Sn−Pb(鉛)系等の半田を介して、p型、n型の熱電素子104を固着することにより、製品としての熱電交換モジュールが作製される。この熱電交換モジュールにより、光半導体素子等の熱は、熱電素子104からCu層102b、セラミック基板101、Cu層102bを介して外部へ効率良く伝えられる。
【0006】
ところで、光通信分野等に使用される光半導体素子を作動時に冷却するための熱電交換モジュールには光半導体素子を実装するが、熱電交換モジュール全体の厚みを、それを組み込むパッケージに合わせて調節する必要がある。これは、光半導体素子の土台となる熱電交換モジュールの高さがパッケージの設計に対し適当でないと、光半導体素子と光ファイバを光結合させる際に不都合が生じるためである。
【0007】
熱電交換モジュールの全体の厚みを調節する際は、Cu層103bの厚みおよびセラミック基板101の厚みを調節する。これは、熱電素子104の厚みやCu層102bの厚みを調節すると、熱電素子104や電極が持つ抵抗値が変化し熱電交換モジュールの性能に大きな影響が出るためである。
【0008】
また、熱電交換モジュールの厚みを厚く調節する際には、Cu層103bのみを厚くする。Cu層103bの厚みを調節せずにセラミック基板101の厚みを調節すると、Cu層103bを厚くした場合に比較して、熱電素子104とCu層103bの上面(露出した主面)に設けられる放熱板との間の熱抵抗が上昇する。そのため、Cu層103bの厚みを調節して熱電交換モジュールの厚みを厚くすることになる。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の熱電交換モジュール用セラミック基板においては、熱電交換モジュールの伝熱経路および放熱経路にある熱電交換モジュール用セラミック基板には熱応力等の熱的な負荷がかかる。そのため、上記のようにパッケージの設計にあわせて熱電交換モジュールを厚くする際に、Cu層103bの厚みを150μm以上にすると、熱電素子104の作動時にセラミック基板101に熱が伝わった際、セラミック基板101とCu層103bの熱膨張差による熱応力が大きくなり、Cu層103bの剥がれを生じることがある。その結果、セラミック基板101とCu層103bの間に空隙が生じ熱の放出が妨げられることになる。特に、熱電素子104を接合するCu層102bよりも光半導体素子を実装したり放熱板に接合されるCu層103bの方が、面積が広くなるため、Cu層103b全体として反りが大きくなり剥がれ易い。
【0010】
そこで、図2(a)に示すように、セラミック基板101の一方の主面に、モリブデン(Mo)、マンガン(Mn)、タングステン(W)等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、スクリーン印刷法により印刷塗布し焼結することにより、メタライズ層102aおよびメタライズ層103aを形成し、メタライズ層102a,103aを、セラミック基板101とCu層102b,Cu層103bとの強固な接合媒体として用いる構成もある。この場合、メタライズ層102aとCu層102bとで電極102が構成される。
【0011】
しかしながら、図2(b)に図2(a)の要部拡大断面図を示すように、メタライズ層103aの外周端の形状は、その厚さ、印刷塗布条件、焼結等の製造条件によって、セラミック基板101とCu層103bとの熱膨張差による熱応力を、メタライズ層103aの外周端が十分に吸収し緩和させることが困難な形状となっている。即ち、メタライズ層103aの外周端面(側面)はセラミック基板101の主面に略直交した面となっており、図3の場合よりもセラミック基板101とCu層103bとの接合強度は向上するが、熱応力が発生した際にそれを吸収し緩和させるのが困難である。つまり、メタライズ層103aの外周端面が、Cu層103bの側面と略面一であるとともにセラミック基板101に対してほぼ垂直になっているため、セラミック基板101とCu層103bとの間で発生した熱応力がメタライズ層103aの外周端面に直接的に作用し、その結果、メタライズ層103aの外周端が剥離し易くなっていると考えられる。
【0012】
このように、セラミック基板101とCu層103bとの間で発生した熱応力により、セラミック基板101とメタライズ層103aとの間で剥がれが発生し、光半導体素子の熱を外部に効率良く伝達し難くなり、その結果、光半導体素子の作動性が劣化するという問題点があった。
【0013】
従って、本発明は上記問題点に鑑みて完成されたものであり、その目的は、セラミック基板と金属層との熱膨張差により発生する熱応力を金属層とセラミック基板との接合部に集中させないようにして、金属層がセラミック基板から剥れるのを防止することにより、光半導体素子の熱を外部に効率良く伝達させ得る熱電交換モジュール用セラミック基板を提供することにある。
【0014】
【課題を解決するための手段】
本発明の熱電交換モジュール用セラミック基板は、セラミック基板の一方の主面に熱電素子が固定される電極がそれぞれ独立して複数形成され、他方の主面の略全面に、メタライズ層と、側面の前記セラミック基板側の端に鍔状部が全周にわたって設けられた金属層とが順次積層されていることを特徴とする。
【0015】
本発明の熱電交換モジュール用セラミック基板は、セラミック基板の他方の主面の略全面に、メタライズ層と、側面のセラミック基板側の端に鍔状部が全周にわたって設けられた金属層とが順次積層されていることから、メタライズ層の側面が金属層の鍔状部を除く側面(側面の主部)と面一になっていないため、セラミック基板と金属層との間で発生した熱応力がメタライズ層の側面に直接的に作用せず、また鍔状部で上記熱応力を緩和することができる。さらに、セラミック基板と電極との熱膨張差により発生する熱応力、電極と熱電素子との熱膨張差により発生する熱応力等が、セラミック基板と金属層との接合部の外周端に集中するのを防ぐことができる。その結果、メタライズ層の外周端がセラミック基板から剥がれることを防ぐことができ、光半導体素子等の発熱体から発する熱を外部に効率良く伝達できる。
【0016】
本発明の熱電交換モジュール用セラミック基板において、好ましくは、前記鍔状部は、幅が5乃至300μmとされ厚さが5〜150μmとされていることを特徴とする。
【0017】
本発明の熱電交換モジュール用セラミック基板は、鍔状部は幅が5乃至300μmとされ厚さが5乃至150μmとされていることから、セラミック基板とメタライズ層との接合部の外周端に熱応力が集中するのをより有効に防いで、メタライズ層の外周端がセラミック基板から剥がれることをより有効に防ぐことができる。
【0018】
【発明の実施の形態】
本発明の熱電交換モジュール用セラミック基板を以下に詳細に説明する。図1は、本発明の熱電交換モジュール用セラミック基板について実施の形態の一例を示し、熱電交換モジュール用セラミック基板の断面図である。図1において、1はセラミック基板、2はメタライズ層2aとCu層2bとから成る電極、3aはメタライズ層、3bは金属層としてのCu層、4は放熱板であり、これらセラミック基板1、電極2、メタライズ層3a、Cu層3b、放熱板4および熱電素子5によって、光半導体素子等の発熱体の熱を外部に効率良く伝える熱電交換モジュールが構成される。また、本発明の熱電交換モジュール用セラミック基板は、セラミック基板1、メタライズ層3a、Cu層3b、電極2により構成される。
【0019】
本発明の熱電交換モジュール用セラミック基板は、セラミック基板1の一方の主面に熱電素子5が表面に固定される電極2がそれぞれ独立して複数形成され、他方の主面の略全面に、メタライズ層3aと、側面のセラミック基板1側の端に鍔状部3cが全周にわたって設けられた金属層(Cu層3b)が順次積層されている。
【0020】
本発明のセラミック基板1は、アルミナ(Al)質焼結体(アルミナセラミックス)や窒化アルミニウム(AlN)質焼結体等の焼結体(セラミックス)から成り、その作製方法は、原料粉末に適当な有機バインダや溶剤等を添加混合しペースト状と成し、このペーストをドクターブレード法やカレンダーロール法によってセラミックグリーンシートと成し、しかる後、セラミックグリーンシートに適当な打ち抜き加工を施し、これを約1600℃の高温で焼結するものである。
【0021】
セラミック基板1の一方の主面には、光半導体素子の実装や放熱板の接合をおこなう、メタライズ層3aおよびCu層3bが形成される。メタライズ層3aは厚さが5〜40μm程度である。5μm未満では、メタライズ層3a中のMn量およびガラス成分量が少なくなりセラミック基板1との接合強度が弱くなる。40μmを超えると、メタライズ層3aとセラミック基板1との熱膨張差により発生する熱応力が大きくなり、セラミック基板1との接合高度が弱くなる。
【0022】
メタライズ層3aは、その外周端が全周にわたってくぼんだ曲面から成る裾野状とされているのがよい。この場合、メタライズ層3aの外周端に加わる熱応力を有効に緩和して、メタライズ層3aが剥れるのを有効に抑えることができる。
【0023】
Cu層3bは、図1のように側面の下端に鍔状部3cが全周にわたって設けられており、好ましくは鍔状部3cは幅が5〜300μmとされ厚さが5〜150μmとされていることがよいが、このようなメタライズ層3aおよびCu層3bは、例えば以下の工程[1]〜[4]のようにして作製される。
【0024】
[1]セラミック基板1の両主面の略全面に、メタライズ層2a,3aと成るW、Mo、Mn等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、予め従来周知のスクリーン印刷法により5〜40μmの厚さで印刷塗布し、約1300℃の高温で焼結する。
【0025】
[2]図4のようにメタライズ層3a上のCu層2bおよびCu層3bを形成しない部位にメッキレジスト6aを約5〜150μm程度の厚さで形成した後、電解Cuメッキ層7aをメッキレジスト6aより高くならない程度に被着する。次に、電解Cuメッキ層7aの上面の外周部に幅5〜300μmで全周にわたってかかるようにして、メッキレジスト6a上にメッキレジスト6bを約300μm程度の厚さで形成する。次に、電解Cuメッキ層7bをメッキレジスト6bより高くならない程度に被着する。その後、メッキレジスト6a,6bを剥離することにより、セラミック基板1の他方の主面のメタライズ層3a上に、鍔状部3cを有するCu層3bが形成される。
【0026】
また、セラミック基板1の一方の主面のメタライズ層2a上のCu層2bを形成しない部位にメッキレジスト6cを約300μmの厚さで形成した後、電解Cuメッキ層7cをメッキレジスト6cの高さ(厚さ)よりも低い位置まで被着し、次にメッキレジスト6cを剥離する。これにより、セラミック基板1の一方の主面全面に形成されたメタライズ層2a上に、複数の独立したCu層2bが形成される。
【0027】
[3]複数の独立したCu層2bの直下のみにメタライズ層2aが残存するように、即ちCu層2bが互いに電気的に絶縁されるように、Cu層2b間のメタライズ層2aとCu層2b上面とセラミック基板1の一方の主面の外周部とをブラスト研磨する。ブラスト研磨は、ブラスト材がAl、SiC等のセラミック粒子から成り、その平均粒径は約25μm、ノズルからセラミック基板1の一方の主面までの距離約100mm、噴射圧力0.3MPa(メガパスカル)、噴射量160g/分、ノズル移動速度50mm/秒の条件により吹き付けることにより行なう。
【0028】
[4]その後、水洗によりブラスト材を洗浄し乾燥する。
【0029】
このようにして得られた熱電交換モジュール用セラミック基板は、ペルチェ効果によりセラミック基板1が高温もしくは低温となった際にセラミック基板1とCu層3bとの間の熱膨張差により熱応力が発生しても、Cu層3bの鍔状部3cよりも上側に起因する熱応力はCu層3bの鍔状部3cに作用し、Cu層3bの鍔状部3cに起因する熱応力はセラミック基板1とメタライズ層3aとの接合部およびメタライズ層3aとCu層3bとの接合部に作用する。従って、熱応力が鍔状部3c付近で分散されることになり、セラミック基板1とCu層3bとの間の熱膨張差により熱応力が発生しても、セラミック基板1とメタライズ層3aとの接合部に熱応力が集中しなくなり剥離が生じ難くなる。その結果、光半導体素子等の発熱体が作動時に発する熱を外部に効率良く伝達し、光半導体素子等の作動性を非常に良好なものとし得る。
【0030】
本発明において、鍔状部3cの幅が5μm未満だと、セラミック基板1とCu層3bとの間の熱膨張差により発生した熱応力を、鍔状部3cで分散させる効果が小さくなる。その結果、セラミック基板1とメタライズ層3aとの間で剥離が生し易くなる。鍔状部3cの幅が300μmを超えると、Cu層3bの体積および表面積を小さくしなければならなくなり、放熱板4を介しての光半導体素子とCu層3bとの接合面積が小さくなり、十分に熱を移動させにくくなる。
【0031】
また、鍔状部3cの厚さが5μm未満の場合、Cu層3bの側面の主部(鍔状部3c以外の部分)の下端と、メタライズ層3aおよびセラミック基板1の接合部との距離が近くなり、セラミック基板1とCu層3bとの間の熱膨張差により発生した熱応力を分散させる効果が小さくなる。その結果、セラミック基板1とメタライズ層3aとの接合部で剥離が生じ易くなる。また、鍔状部3cの厚さが150μmを超えると、略面一となっている、鍔状部3cの側面およびメタライズ層3aの側面の上下方向の長さが長くなり、従来の構成に近くなるため、鍔状部3cで熱応力を緩和する効果が小さくなる。従って、セラミック基板1とCu層3bとの間の熱膨張差により発生した熱応力が、メタライズ層3aとセラミック基板1との接合部に集中し、メタライズ層3aの剥離が生じてしまう。
【0032】
このようなメタライズ層3aおよびCu層3bの表面、メタライズ層2aおよびCu層2bからなる電極2の表面には、酸化防止および半田接合性を向上させるためにNiメッキ層、Auメッキ層が順次被着されているのがよい。
【0033】
また、Cu層3bの上面には、Sn−Ag系、Sn−Sb系、Sn−Bi系、Sn−Pb系等の半田を介して放熱板4が固着される。放熱板4としては、Cu−W等を用いる。また、放熱板4とCu層3bとの接合を強固なものとするために、放熱板4の表面にNiメッキ層、Auメッキ層等を順次被着させておいても良い。
【0034】
さらに、セラミック基板1が高温端の場合、電極2の下端面に熱電素子5を接合し、熱電素子5の下端面に電極2が形成されたもう一つのセラミック基板1を低温端として接合することにより、発熱体の熱を低温端のセラミック基板1から熱電素子5を介して高温端のセラミック基板1、そしてメタライズ層3a、Cu層3b、放熱板4から外部へと効率良く伝えることのできる熱電交換モジュールが作製できる。
【0035】
本発明の熱電交換モジュール用セラミック基板において、具体的には、図2に示した従来例のメタライズ層103aは、半田リフロー炉に入れて300℃で光半導体素子をセラミック基板に実装後−40℃〜85℃の温度サイクルを20回かけた後に剥離が生じたのに対し、本発明のメタライズ層3aは、半田リフロー炉に入れて300℃で光半導体素子をセラミック基板に実装後−40℃〜85℃の温度サイクルを2000回かけた後でも剥離が生じなかった。
【0036】
かくして、本発明の熱電交換モジュールは、その上面に非常に発熱量の大きい発熱体を固定し作動させた場合でも、本発明のメタライズ層3aおよびCu層3bを有する熱電交換モジュール用セラミック基板により、発熱体の熱を低温端側のCu層3bからセラミック基板1、熱電素子5、電極2、セラミック基板1、高温端側のCu層3b、そして放熱板4を介して外部に効率良く放散し得る信頼性の非常に高いものとなる。
【0037】
【実施例】
本発明の実施例について以下に説明する。
【0038】
Cu層3bの鍔状部3cについて、厚さおよび幅を変化させたサンプルを24種類製作しそれらの評価を行った。まず、上記工程[1]のとおりセラミック基板1の両主面にメタライズ層を形成した。メタライズ層3a上に、Cu層3bを形成しない部位にメッキレジスト6aを約200μmの厚さで形成した後、電解Cuメッキ層7aをそれぞれ3μm、5μm、30μm、150μm、155μm被着した。次に、電解Cuメッキ層7aの上面の外周部にかかるようにしてメッキレジスト6a上に全周にわたってそれぞれ幅3μm、5μm、30μm、300μm、305μmでメッキレジスト6bを約300μmの厚さで形成した。次に、電解Cuメッキ層7bを、電解Cuメッキ層7aの厚さと合計して300μmになるように被着した。その後、メッキレジスト6a,6bを剥離して、Cu層3bを形成した。
【0039】
また、セラミック基板1の一方の主面の全面に形成されたメタライズ層2a上のCu層2bを形成しない部位に、メッキレジスト6cを約300μmの厚さで形成した。次に、電解Cuメッキ層7cを厚さ100μm被着した後にメッキレジスト6cを剥離したことにより、メタライズ層2a上に複数の独立したCu層2bを形成した。その後、上記工程[3]、[4]を経て表1に示すような24種類のサンプルを得た。
【0040】
得られたサンプルを300℃の半田リフロー炉に入れて通過させた後、−40〜85℃の温度サイクル(1サイクル60分)を2000回かけた。その後、セラミック基板1とメタライズ層3aとCu層3bとの接合部の剥離の有無を顕微鏡を用い倍率20倍で観察した。その結果を表1に示す。
【0041】
【表1】

Figure 2004063794
【0042】
表1より、No.4、6、7、12〜15、17、19、20、22〜24のサンプルは、メタライズ層3aとセラミック基板1との接合部に剥離が生じた。No.4、20、23は、鍔状部3cの幅が5μm未満のため、Cu層3bとセラミック基板1との熱膨張差による熱応力を分散する効果が小さく、剥離が生じたものと思われる。
【0043】
No.6、12、13、22は、鍔状部3cの厚さが5μm未満のため、Cu層3bとセラミック基板1との熱膨張差による熱応力を分散する効果が小さく、剥離が生じたものと思われる。
【0044】
No.7、15、17は、鍔状部3cの厚さが150μmを超えるため、メタライズ層3aの側面とCu層3bの側面の形状が従来のものに近くなるため、鍔状部3cで熱応力を分散する効果が小さくなり、セラミック基板1とCu層3bとの間の熱膨張差により発生した熱応力がメタライズ層3aとセラミック基板1との接合部に集中し、メタライズ層3aとセラミック基板1との接合部で剥離が生じたものと思われる。
【0045】
No.1、9、10、14は、メタライズ層3aとセラミック基板1との接合部で剥離は生じなかったが、Cu層3bにおいて放熱板4および発熱体を接合する面積が小さくなり、十分に放熱できない構造となった。
【0046】
なお、No.10は、鍔状部3cの厚さが5μm未満であるにもかかわらず、メタライズ層3aとセラミック基板1との接合部で剥離が生じなかった。これは、鍔状部3cの幅が300μm以上と大きいため、セラミック基板1とCu層3bとの間の熱膨張差により発生した熱応力が集中する、Cu層3bの側面の主部と鍔状部3cとの間の角部と、メタライズ層3aおよびセラミック基板1の接合部との距離が、十分あるため熱応力が分散されたためと思われる。しかしながら、No.10のように鍔状部3cの幅が300μmを超えると、上記のようにCu層3bにおいて放熱板4および発熱体に接合する面積が小さくなり、十分に放熱できないものとなるという問題がある。
【0047】
No.19は、鍔状部3cの幅が5μm未満のため、Cu層3bとセラミック基板1との熱膨張差による熱応力を分散する効果が小さくなり、また鍔状部3cの厚さが150μmを超えているため、メタライズ層3aの側面とCu層3の側面の形状が従来のものに近くなり、セラミック基板1とCu層3bとの間の熱膨張差により発生した熱応力がメタライズ層3aおよびセラミック基板1の接合部にかなり集中し易くなっており、その結果、メタライズ層3aとセラミック基板1との接合部で剥離が生じたものと思われる。
【0048】
No.24は、鍔状部3cの幅が5μm未満で厚さが5μm未満のため、Cu層3bとセラミック基板1との熱膨張差による熱応力を分散する効果がかなり小さくなっており、メタライズ層3aとセラミック基板1との接合部で剥離が生じたものと思われる。
【0049】
以上より、鍔状部3cの幅が5〜300μmで厚さが5〜150μmである場合に、セラミック基板1とCu層3bとの接合部の外周端に熱応力が集中するのを有効に防いで、メタライズ層3aの外周端がセラミック基板から剥がれることを有効に防ぐことができることが判った。
【0050】
なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を施すことは何等差し支えない。
【0051】
【発明の効果】
本発明の熱電交換モジュール用セラミック基板は、セラミック基板の一方の主面に熱電素子が固定される電極がそれぞれ独立して複数形成され、他方の主面の略全面に、メタライズ層と、側面のセラミック基板側の端に鍔状部が全周にわたって設けられた金属層とが順次積層されていることにより、メタライズ層の側面が金属層の鍔状部を除く側面(側面の主部)と面一になっていないため、セラミック基板と金属層との間で発生した熱応力がメタライズ層の側面に直接的に作用せず、また鍔状部で上記熱応力を緩和することができる。さらに、セラミック基板と電極との熱膨張差により発生する熱応力、電極と熱電素子との熱膨張差により発生する熱応力等が、セラミック基板と金属層との接合部の外周端に集中するのを防ぐことができる。その結果、メタライズ層の外周端がセラミック基板から剥がれることを防ぐことができ、光半導体素子等の発熱体から発する熱を外部に効率良く伝達できる。
【0052】
従って、熱サイクルによりメタライズ層および金属層の剥離が発生することが殆どなくなるため、金属層と放熱板や光半導体素子等との接合強度が増大し、発熱体の熱を外部に効率良く伝達させて発熱体の作動性を非常に良好なものとできる。
【0053】
本発明の熱電交換モジュール用セラミック基板において、好ましくは、鍔状部は幅が5〜300μmとされ厚さが5〜150μmとされていることにより、セラミック基板とメタライズ層との接合部の外周端に熱応力が集中するのをより有効に防いで、メタライズ層の外周端がセラミック基板から剥がれることをより有効に防ぐことができる。
【図面の簡単な説明】
【図1】本発明の熱電交換モジュール用セラミック基板について実施の形態の一例を示す断面図である。
【図2】従来の熱電交換モジュール用セラミック基板の例を示し、(a)は熱電交換モジュール用セラミック基板の断面図、(b)は(a)の熱電交換モジュール用セラミック基板におけるメタライズ層およびCu層の側面の形状を示す部分拡大断面図である。
【図3】従来の熱電交換モジュール用セラミック基板の他の例を示す断面図である。
【図4】本発明の熱電交換モジュール用セラミック基板について鍔状部を形成する工程を説明するための断面図である。
【符号の説明】
1:セラミック基板
2:電極
2a:メタライズ層
2b:Cu層
3a:メタライズ層
3b:Cu層
4:放熱板
5:熱電素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic substrate for a thermoelectric exchange module for cooling an optical semiconductor element such as a semiconductor laser (LD) and a photodiode (PD) used in the field of optical communication and the like during operation.
[0002]
[Prior art]
Conventional thermoelectric exchange modules for cooling optical semiconductor devices such as LDs and PDs used in the field of optical communication and the like during operation are provided by constantly transmitting the heat generated by the operation of the optical semiconductor devices to the outside. It functions as a thermoelectric cooling device that maintains a constant temperature. This thermoelectric exchange module, that is, a thermoelectric cooler, uses a Peltier effect at a high temperature in a state where p-type and n-type thermoelectric elements are electrically connected in series or parallel on a main surface of a ceramic substrate to form an integrated structure. The low-temperature end is cooled by generating a temperature difference depending on the voltage applied to the end electrode and the low-temperature end electrode.
[0003]
A conventional ceramic substrate for a thermoelectric exchange module has an alumina (Al) as shown in FIG. 2 O 3 ) A ceramic substrate 101 such as ceramics or aluminum nitride (AlN) ceramic is provided with a copper (Cu) layer 102b serving as a plurality of electrodes and a thermoelectric exchange module portion on one main surface, and a semiconductor element or the like is joined to the other main surface. Alternatively, a copper (Cu) layer 103b for bonding a radiator plate for releasing heat of the semiconductor element is applied.
[0004]
The Cu layer 102b and the Cu layer 103b are formed by applying a Cu layer by electroless plating to the entire surface of both main surfaces of the ceramic substrate 101, and then forming a plating resist at a portion where the Cu layer 102b and the Cu layer 103b are not formed. The Cu layer formed by electrolytic plating is applied to a position lower than the height of the plating resist, and then the plating resist is peeled off, and the Cu layer formed by electroless plating immediately below the plating resist is removed by etching or the like, thereby forming independent (electrical) Cu layer 102b and Cu layer 103b constituting a plurality of electrodes (which are electrically insulated).
[0005]
Further, a nickel (Ni) plating layer and a gold (Au) plating layer are sequentially deposited on the exposed main surface (the lower end surface in FIG. 3) of the Cu layer 102b, and an Sn (tin) -Ag (silver) -based, Sn- By fixing the p-type and n-type thermoelectric elements 104 via Sb (antimony) -based, Sn-Bi (bismuth) -based, Sn-Pb (lead) -based solder, etc., a thermoelectric exchange module as a product is obtained. It is made. With this thermoelectric exchange module, heat of the optical semiconductor element and the like is efficiently transmitted from the thermoelectric element 104 to the outside via the Cu layer 102b, the ceramic substrate 101, and the Cu layer 102b.
[0006]
By the way, an optical semiconductor element is mounted on a thermoelectric exchange module for cooling an optical semiconductor element used in an optical communication field or the like during operation, but the thickness of the entire thermoelectric exchange module is adjusted according to a package in which the module is incorporated. There is a need. This is because if the height of the thermoelectric exchange module serving as the base of the optical semiconductor element is not appropriate for the design of the package, inconvenience will occur when the optical semiconductor element and the optical fiber are optically coupled.
[0007]
When adjusting the overall thickness of the thermoelectric exchange module, the thickness of the Cu layer 103b and the thickness of the ceramic substrate 101 are adjusted. This is because if the thickness of the thermoelectric element 104 or the thickness of the Cu layer 102b is adjusted, the resistance value of the thermoelectric element 104 or the electrode changes, which greatly affects the performance of the thermoelectric exchange module.
[0008]
When adjusting the thickness of the thermoelectric exchange module to be large, only the Cu layer 103b is made thick. If the thickness of the ceramic substrate 101 is adjusted without adjusting the thickness of the Cu layer 103b, the heat radiation provided on the upper surfaces (exposed main surfaces) of the thermoelectric element 104 and the Cu layer 103b can be compared with the case where the Cu layer 103b is thickened. The thermal resistance between the plates increases. Therefore, the thickness of the thermoelectric exchange module is increased by adjusting the thickness of the Cu layer 103b.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional ceramic substrate for a thermoelectric exchange module, a thermal load such as thermal stress is applied to the ceramic substrate for the thermoelectric exchange module in the heat transfer path and the heat radiation path of the thermoelectric exchange module. Therefore, if the thickness of the Cu layer 103b is set to 150 μm or more when the thermoelectric exchange module is thickened according to the design of the package as described above, when heat is transmitted to the ceramic substrate 101 during operation of the thermoelectric element 104, the ceramic substrate The thermal stress due to the difference in thermal expansion between the Cu layer 101 and the Cu layer 103b increases, and the Cu layer 103b may peel off. As a result, a gap is formed between the ceramic substrate 101 and the Cu layer 103b, thereby preventing heat release. In particular, since the Cu layer 103b mounted with an optical semiconductor element or bonded to a heat sink has a larger area than the Cu layer 102b bonded to the thermoelectric element 104, the entire Cu layer 103b is more likely to be warped and peeled off. .
[0010]
Therefore, as shown in FIG. 2A, on one main surface of the ceramic substrate 101, an organic solvent and a solvent are added to and mixed with powder of molybdenum (Mo), manganese (Mn), tungsten (W), or the like. The metal paste is printed and applied by a screen printing method and then sintered to form a metallized layer 102a and a metallized layer 103a. The metallized layers 102a and 103a are firmly bonded to the ceramic substrate 101 and the Cu layers 102b and 103b. There is also a configuration used as a simple joining medium. In this case, the electrode 102 is composed of the metallized layer 102a and the Cu layer 102b.
[0011]
However, as shown in FIG. 2B, which is an enlarged cross-sectional view of a main part of FIG. 2A, the shape of the outer peripheral edge of the metallized layer 103a depends on its thickness, printing application conditions, and manufacturing conditions such as sintering. The outer peripheral edge of the metallized layer 103a has such a shape that it is difficult to sufficiently absorb and reduce the thermal stress caused by the difference in thermal expansion between the ceramic substrate 101 and the Cu layer 103b. That is, the outer peripheral end surface (side surface) of the metallized layer 103a is a surface substantially orthogonal to the main surface of the ceramic substrate 101, and the bonding strength between the ceramic substrate 101 and the Cu layer 103b is improved as compared with the case of FIG. It is difficult to absorb and relax thermal stress when it occurs. That is, since the outer peripheral end surface of the metallized layer 103a is substantially flush with the side surface of the Cu layer 103b and substantially perpendicular to the ceramic substrate 101, the heat generated between the ceramic substrate 101 and the Cu layer 103b. It is considered that the stress acts directly on the outer peripheral end surface of the metallized layer 103a, and as a result, the outer peripheral end of the metallized layer 103a is easily peeled off.
[0012]
As described above, the thermal stress generated between the ceramic substrate 101 and the Cu layer 103b causes peeling between the ceramic substrate 101 and the metallized layer 103a, making it difficult to efficiently transfer the heat of the optical semiconductor element to the outside. As a result, there is a problem that the operability of the optical semiconductor device is deteriorated.
[0013]
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to prevent a thermal stress generated due to a difference in thermal expansion between a ceramic substrate and a metal layer from being concentrated on a joint between the metal layer and the ceramic substrate. Thus, it is an object of the present invention to provide a ceramic substrate for a thermoelectric exchange module that can efficiently transfer heat of an optical semiconductor element to the outside by preventing a metal layer from peeling off from a ceramic substrate.
[0014]
[Means for Solving the Problems]
The ceramic substrate for a thermoelectric exchange module of the present invention has a plurality of electrodes on which a thermoelectric element is fixed independently formed on one main surface of the ceramic substrate, and a metallized layer and a side surface formed on substantially the entire other main surface. A metal layer provided with a flange portion over the entire circumference at the end on the ceramic substrate side is sequentially laminated.
[0015]
In the ceramic substrate for a thermoelectric exchange module of the present invention, a metallized layer and a metal layer in which a flange portion is provided over the entire circumference at the end of the ceramic substrate on the side surface are sequentially formed on substantially the entire other main surface of the ceramic substrate. Since the metallized layers are stacked, the side surfaces of the metallized layers are not flush with the side surfaces (main portions of the side surfaces) except for the flange portions of the metal layers, so that the thermal stress generated between the ceramic substrate and the metal layers is reduced. The thermal stress does not directly act on the side surface of the metallized layer, and the above-mentioned thermal stress can be reduced by the flange portion. Furthermore, the thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrode, the thermal stress generated by the difference in thermal expansion between the electrode and the thermoelectric element, and the like are concentrated on the outer peripheral edge of the joint between the ceramic substrate and the metal layer. Can be prevented. As a result, it is possible to prevent the outer peripheral edge of the metallized layer from peeling off from the ceramic substrate, and it is possible to efficiently transmit heat generated from a heating element such as an optical semiconductor element to the outside.
[0016]
In the ceramic substrate for a thermoelectric exchange module according to the present invention, preferably, the flange portion has a width of 5 to 300 μm and a thickness of 5 to 150 μm.
[0017]
In the ceramic substrate for a thermoelectric exchange module according to the present invention, since the flange portion has a width of 5 to 300 μm and a thickness of 5 to 150 μm, thermal stress is applied to the outer peripheral end of the joint between the ceramic substrate and the metallized layer. Is more effectively prevented from being concentrated, and peeling of the outer peripheral edge of the metallized layer from the ceramic substrate can be more effectively prevented.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The ceramic substrate for a thermoelectric exchange module of the present invention will be described in detail below. FIG. 1 shows an example of an embodiment of a ceramic substrate for a thermoelectric exchange module of the present invention, and is a cross-sectional view of the ceramic substrate for a thermoelectric exchange module. In FIG. 1, reference numeral 1 denotes a ceramic substrate, 2 denotes an electrode composed of a metallized layer 2a and a Cu layer 2b, 3a denotes a metallized layer, 3b denotes a Cu layer as a metal layer, and 4 denotes a radiator plate. 2. The metallized layer 3a, the Cu layer 3b, the heat sink 4, and the thermoelectric element 5 constitute a thermoelectric exchange module that efficiently transmits heat of a heating element such as an optical semiconductor element to the outside. The ceramic substrate for a thermoelectric exchange module according to the present invention includes a ceramic substrate 1, a metallized layer 3 a, a Cu layer 3 b, and an electrode 2.
[0019]
In the ceramic substrate for a thermoelectric exchange module of the present invention, a plurality of electrodes 2 each having a thermoelectric element 5 fixed to the surface are independently formed on one main surface of the ceramic substrate 1, and metallized on substantially the entire other main surface. A layer 3a and a metal layer (Cu layer 3b) in which a flange portion 3c is provided on an end of the side surface on the ceramic substrate 1 side over the entire circumference are sequentially laminated.
[0020]
The ceramic substrate 1 of the present invention is made of alumina (Al). 2 O 3 ) Sintered body (ceramics) such as a sintered body (alumina ceramics) or an aluminum nitride (AlN) based sintered body. The manufacturing method is as follows. This paste is formed into a ceramic green sheet by a doctor blade method or a calendar roll method. Thereafter, the ceramic green sheet is appropriately punched and sintered at a high temperature of about 1600 ° C. is there.
[0021]
On one main surface of the ceramic substrate 1, a metallized layer 3a and a Cu layer 3b for mounting an optical semiconductor element and joining a heat sink are formed. Metallized layer 3a has a thickness of about 5 to 40 μm. If it is less than 5 μm, the amount of Mn and the amount of glass components in the metallized layer 3a will be small, and the bonding strength with the ceramic substrate 1 will be weak. If it exceeds 40 μm, the thermal stress generated due to the difference in thermal expansion between the metallized layer 3a and the ceramic substrate 1 increases, and the bonding height with the ceramic substrate 1 decreases.
[0022]
The metallized layer 3a is preferably formed in a skirt shape having a curved surface whose outer peripheral edge is depressed over the entire circumference. In this case, thermal stress applied to the outer peripheral edge of the metallized layer 3a can be effectively relaxed, and peeling of the metallized layer 3a can be effectively suppressed.
[0023]
As shown in FIG. 1, the Cu layer 3b is provided with a flange 3c at the lower end of the side surface over the entire circumference. Preferably, the flange 3c has a width of 5 to 300 μm and a thickness of 5 to 150 μm. Preferably, such a metallized layer 3a and a Cu layer 3b are manufactured, for example, as in the following steps [1] to [4].
[0024]
[1] A metal paste obtained by adding and mixing an organic solvent and a solvent to powders of W, Mo, Mn, etc. to be the metallized layers 2a, 3a is applied to substantially the entire surfaces of both main surfaces of the ceramic substrate 1 in advance. It is printed and applied in a thickness of 5 to 40 μm by screen printing, and sintered at a high temperature of about 1300 ° C.
[0025]
[2] As shown in FIG. 4, a plating resist 6a having a thickness of about 5 to 150 μm is formed on a portion of the metallized layer 3a where the Cu layer 2b and the Cu layer 3b are not formed, and then the electrolytic Cu plating layer 7a is plated. 6a. Next, a plating resist 6b is formed on the plating resist 6a to a thickness of about 300 μm so as to cover the entire periphery of the upper surface of the electrolytic Cu plating layer 7a with a width of 5 to 300 μm. Next, an electrolytic Cu plating layer 7b is applied so as not to be higher than the plating resist 6b. Thereafter, by removing the plating resists 6a and 6b, a Cu layer 3b having a flange portion 3c is formed on the metallized layer 3a on the other main surface of the ceramic substrate 1.
[0026]
After forming a plating resist 6c with a thickness of about 300 μm on the one main surface of the metallized layer 2a of the ceramic substrate 1 where the Cu layer 2b is not formed, the electrolytic Cu plating layer 7c is moved to the height of the plating resist 6c. The plating resist 6c is peeled off to a position lower than (thickness). Thus, a plurality of independent Cu layers 2b are formed on metallized layer 2a formed on the entire surface of one main surface of ceramic substrate 1.
[0027]
[3] The metallized layer 2a and the Cu layer 2b between the Cu layers 2b such that the metallized layer 2a remains only directly below the plurality of independent Cu layers 2b, that is, so that the Cu layers 2b are electrically insulated from each other. The upper surface and the outer peripheral portion of one main surface of the ceramic substrate 1 are blast-polished. In blast polishing, the blast material is Al 2 O 3 , SiC, etc., the average particle size of which is about 25 μm, the distance from the nozzle to one main surface of the ceramic substrate 1 is about 100 mm, the injection pressure is 0.3 MPa (megapascal), the injection amount is 160 g / min, the nozzle is It is performed by spraying under the condition of a moving speed of 50 mm / sec.
[0028]
[4] After that, the blast material is washed with water and dried.
[0029]
In the ceramic substrate for a thermoelectric exchange module obtained as described above, when the temperature of the ceramic substrate 1 becomes high or low due to the Peltier effect, thermal stress is generated due to a difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b. However, the thermal stress caused above the flange 3c of the Cu layer 3b acts on the flange 3c of the Cu layer 3b, and the thermal stress caused by the flange 3c of the Cu layer 3b It acts on the joint between the metallized layer 3a and the joint between the metallized layer 3a and the Cu layer 3b. Therefore, the thermal stress is dispersed in the vicinity of the flange portion 3c, and even if thermal stress is generated due to a difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b, the thermal stress between the ceramic substrate 1 and the metallized layer 3a is increased. Thermal stress is not concentrated at the joint, and peeling is less likely to occur. As a result, the heat generated by the heating element such as the optical semiconductor element or the like during operation can be efficiently transmitted to the outside, and the operability of the optical semiconductor element or the like can be extremely improved.
[0030]
In the present invention, when the width of the flange 3c is less than 5 μm, the effect of dispersing the thermal stress generated by the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b in the flange 3c is reduced. As a result, separation easily occurs between the ceramic substrate 1 and the metallized layer 3a. When the width of the flange portion 3c exceeds 300 μm, the volume and surface area of the Cu layer 3b must be reduced, and the bonding area between the optical semiconductor element and the Cu layer 3b via the heat sink 4 becomes small, and Transfer of heat to
[0031]
When the thickness of the flange portion 3c is less than 5 μm, the distance between the lower end of the main portion (the portion other than the flange portion 3c) of the side surface of the Cu layer 3b and the joint between the metallized layer 3a and the ceramic substrate 1 is small. As a result, the effect of dispersing the thermal stress generated by the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b decreases. As a result, peeling tends to occur at the joint between the ceramic substrate 1 and the metallized layer 3a. Further, when the thickness of the flange portion 3c exceeds 150 μm, the length in the vertical direction of the side surface of the flange portion 3c and the side surface of the metallized layer 3a, which are substantially flush, is close to the conventional configuration. Therefore, the effect of relaxing the thermal stress by the flange 3c is reduced. Therefore, the thermal stress generated by the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b concentrates on the joint between the metallized layer 3a and the ceramic substrate 1, and the metallized layer 3a is peeled off.
[0032]
The surfaces of the metallized layer 3a and the Cu layer 3b and the surface of the electrode 2 composed of the metallized layer 2a and the Cu layer 2b are successively coated with a Ni plating layer and an Au plating layer in order to prevent oxidation and improve solder jointability. Good to be worn.
[0033]
Further, the heat radiating plate 4 is fixed to the upper surface of the Cu layer 3b via an Sn-Ag-based, Sn-Sb-based, Sn-Bi-based, Sn-Pb-based solder, or the like. As the heat radiating plate 4, Cu-W or the like is used. Further, in order to strengthen the bonding between the heat radiating plate 4 and the Cu layer 3b, a Ni plating layer, an Au plating layer, or the like may be sequentially adhered to the surface of the heat radiating plate 4.
[0034]
Further, when the ceramic substrate 1 has a high temperature end, the thermoelectric element 5 is bonded to the lower end surface of the electrode 2 and another ceramic substrate 1 on which the electrode 2 is formed is bonded to the lower end surface of the thermoelectric element 5 as a low temperature end. As a result, a thermoelectric element capable of efficiently transmitting heat of the heating element from the ceramic substrate 1 at the low-temperature end to the ceramic substrate 1 at the high-temperature end via the thermoelectric element 5 and the metallized layer 3a, the Cu layer 3b, and the heat sink 4 to the outside. An exchange module can be manufactured.
[0035]
In the ceramic substrate for a thermoelectric exchange module of the present invention, specifically, the conventional metallized layer 103a shown in FIG. 2 is placed at −40 ° C. after mounting the optical semiconductor element on the ceramic substrate at 300 ° C. in a solder reflow furnace. While the peeling occurred after performing a temperature cycle of 8585 ° C. 20 times, the metallized layer 3a of the present invention was placed at −40 ° C. after mounting the optical semiconductor element on a ceramic substrate at 300 ° C. in a solder reflow furnace. No delamination occurred after 2,000 cycles of 85 ° C. temperature.
[0036]
Thus, the thermoelectric exchange module of the present invention can be manufactured by the ceramic substrate for the thermoelectric exchange module having the metallized layer 3a and the Cu layer 3b of the present invention even when the heating element having a very large calorific value is fixed and operated on the upper surface thereof. The heat of the heating element can be efficiently dissipated from the Cu layer 3b on the low-temperature end side to the outside via the ceramic substrate 1, the thermoelectric element 5, the electrode 2, the ceramic substrate 1, the Cu layer 3b on the high-temperature end side, and the radiator plate 4. It is very reliable.
[0037]
【Example】
An embodiment of the present invention will be described below.
[0038]
With respect to the flange portion 3c of the Cu layer 3b, 24 types of samples having different thicknesses and widths were manufactured and evaluated. First, metallized layers were formed on both main surfaces of the ceramic substrate 1 as in the above step [1]. After a plating resist 6a having a thickness of about 200 μm was formed on the metallized layer 3a at a portion where the Cu layer 3b was not formed, electrolytic Cu plating layers 7a were applied at 3 μm, 5 μm, 30 μm, 150 μm, and 155 μm, respectively. Next, a plating resist 6b having a width of 3 μm, 5 μm, 30 μm, 300 μm, and 305 μm was formed over the entire circumference of the plating resist 6a so as to cover the outer peripheral portion of the upper surface of the electrolytic Cu plating layer 7a with a thickness of about 300 μm. . Next, the electrolytic Cu plating layer 7b was applied so as to have a total thickness of 300 μm with the thickness of the electrolytic Cu plating layer 7a. Thereafter, the plating resists 6a and 6b were peeled off to form a Cu layer 3b.
[0039]
Further, a plating resist 6c having a thickness of about 300 μm was formed on a portion of the metallized layer 2a formed on the entire surface of one main surface of the ceramic substrate 1 where the Cu layer 2b was not formed. Next, a plurality of independent Cu layers 2b were formed on the metallized layer 2a by removing the plating resist 6c after applying the electrolytic Cu plating layer 7c to a thickness of 100 μm. Then, through the above steps [3] and [4], 24 types of samples as shown in Table 1 were obtained.
[0040]
After the obtained sample was put into a 300 ° C. solder reflow furnace and passed, a temperature cycle of −40 to 85 ° C. (1 cycle 60 minutes) was performed 2000 times. Thereafter, the presence or absence of separation at the joint between the ceramic substrate 1, the metallized layer 3a and the Cu layer 3b was observed at a magnification of 20 times using a microscope. Table 1 shows the results.
[0041]
[Table 1]
Figure 2004063794
[0042]
From Table 1, No. In samples 4, 6, 7, 12 to 15, 17, 19, 20, and 22 to 24, peeling occurred at the joint between the metallized layer 3a and the ceramic substrate 1. No. In 4, 20, and 23, since the width of the flange 3c is less than 5 μm, the effect of dispersing the thermal stress due to the difference in thermal expansion between the Cu layer 3b and the ceramic substrate 1 is small, and it is considered that peeling has occurred.
[0043]
No. 6, 12, 13 and 22 have a small effect of dispersing thermal stress due to a difference in thermal expansion between the Cu layer 3b and the ceramic substrate 1 because the thickness of the flange portion 3c is less than 5 μm, and cause peeling. Seem.
[0044]
No. 7, 15, and 17, since the thickness of the flange portion 3c exceeds 150 μm, the shape of the side surface of the metallized layer 3a and the side surface of the Cu layer 3b become close to the conventional shape. The effect of dispersion is reduced, and the thermal stress generated by the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b concentrates on the joint between the metallized layer 3a and the ceramic substrate 1, and the metallized layer 3a and the ceramic substrate 1 It is considered that peeling occurred at the joint of.
[0045]
No. In Nos. 1, 9, 10, and 14, no peeling occurred at the joint between the metallized layer 3a and the ceramic substrate 1, but the area for joining the heat radiating plate 4 and the heating element in the Cu layer 3b was reduced, so that heat could not be sufficiently dissipated. It became a structure.
[0046]
In addition, No. In No. 10, no peeling occurred at the joint between the metallized layer 3a and the ceramic substrate 1 even though the thickness of the flange portion 3c was less than 5 μm. This is because the width of the flange portion 3c is as large as 300 μm or more, so that the thermal stress generated due to the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b is concentrated. It is considered that the thermal stress was dispersed because the distance between the corner between the portion 3c and the joint between the metallized layer 3a and the ceramic substrate 1 was sufficient. However, no. If the width of the flange portion 3c exceeds 300 μm as in 10, the area of the Cu layer 3b bonded to the heat radiating plate 4 and the heating element becomes small as described above, and there is a problem that sufficient heat cannot be radiated.
[0047]
No. In No. 19, since the width of the flange portion 3c is less than 5 μm, the effect of dispersing thermal stress due to the difference in thermal expansion between the Cu layer 3b and the ceramic substrate 1 is reduced, and the thickness of the flange portion 3c exceeds 150 μm. Therefore, the shapes of the side surfaces of the metallized layer 3a and the side surfaces of the Cu layer 3 are close to conventional shapes, and the thermal stress generated due to the difference in thermal expansion between the ceramic substrate 1 and the Cu layer 3b is reduced by the metallized layer 3a and the ceramic layer. It is quite easy to concentrate on the bonding portion of the substrate 1, and as a result, it is considered that separation occurred at the bonding portion between the metallized layer 3 a and the ceramic substrate 1.
[0048]
No. 24, the effect of dispersing thermal stress due to the difference in thermal expansion between the Cu layer 3b and the ceramic substrate 1 is considerably reduced because the width of the flange 3c is less than 5 μm and the thickness is less than 5 μm. It is considered that peeling occurred at the joint between the ceramic substrate 1 and the ceramic substrate 1.
[0049]
As described above, when the width of the flange portion 3c is 5 to 300 μm and the thickness is 5 to 150 μm, it is possible to effectively prevent the thermal stress from being concentrated on the outer peripheral edge of the joint between the ceramic substrate 1 and the Cu layer 3b. Thus, it was found that the outer peripheral edge of the metallized layer 3a could be effectively prevented from peeling off from the ceramic substrate.
[0050]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the spirit of the present invention.
[0051]
【The invention's effect】
The ceramic substrate for a thermoelectric exchange module of the present invention has a plurality of electrodes on which a thermoelectric element is fixed independently formed on one main surface of the ceramic substrate, and a metallized layer and a side surface formed on substantially the entire other main surface. Since the metal layer provided with the flange portion over the entire circumference at the end on the ceramic substrate side is sequentially laminated, the side surface of the metallized layer is the same as the side surface (main portion of the side surface) excluding the flange portion of the metal layer. Since they are not the same, the thermal stress generated between the ceramic substrate and the metal layer does not directly act on the side surface of the metallized layer, and the thermal stress can be reduced by the flange. Furthermore, the thermal stress generated by the difference in thermal expansion between the ceramic substrate and the electrode, the thermal stress generated by the difference in thermal expansion between the electrode and the thermoelectric element, and the like are concentrated on the outer peripheral edge of the joint between the ceramic substrate and the metal layer. Can be prevented. As a result, it is possible to prevent the outer peripheral edge of the metallized layer from peeling off from the ceramic substrate, and it is possible to efficiently transmit heat generated from a heating element such as an optical semiconductor element to the outside.
[0052]
Accordingly, since the metallization layer and the metal layer are hardly peeled off by the heat cycle, the bonding strength between the metal layer and the heat sink or the optical semiconductor element is increased, and the heat of the heating element is efficiently transmitted to the outside. Thus, the operability of the heating element can be made very good.
[0053]
In the ceramic substrate for a thermoelectric exchange module according to the present invention, preferably, the flange portion has a width of 5 to 300 μm and a thickness of 5 to 150 μm, so that an outer peripheral end of a joining portion between the ceramic substrate and the metallized layer is provided. In this case, it is possible to more effectively prevent the thermal stress from being concentrated on the ceramic substrate, and to more effectively prevent the outer peripheral edge of the metallized layer from being peeled off from the ceramic substrate.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic substrate for a thermoelectric exchange module of the present invention.
2A and 2B show examples of a conventional ceramic substrate for a thermoelectric exchange module, in which FIG. 2A is a cross-sectional view of the ceramic substrate for a thermoelectric exchange module, and FIG. It is a partial expanded sectional view showing the shape of the side of a layer.
FIG. 3 is a cross-sectional view showing another example of a conventional ceramic substrate for a thermoelectric exchange module.
FIG. 4 is a cross-sectional view for explaining a step of forming a flange portion on the ceramic substrate for a thermoelectric exchange module of the present invention.
[Explanation of symbols]
1: Ceramic substrate
2: Electrode
2a: Metallized layer
2b: Cu layer
3a: Metallized layer
3b: Cu layer
4: Heat sink
5: Thermoelectric element

Claims (2)

セラミック基板の一方の主面に熱電素子が固定される電極がそれぞれ独立して複数形成され、他方の主面の略全面に、メタライズ層と、側面の前記セラミック基板側の端に鍔状部が全周にわたって設けられた金属層とが順次積層されていることを特徴とする熱電交換モジュール用セラミック基板。A plurality of electrodes to which the thermoelectric elements are fixed are formed independently on one main surface of the ceramic substrate. A ceramic substrate for a thermoelectric exchange module, wherein a metal layer provided over the entire circumference is sequentially laminated. 前記鍔状部は、幅が5乃至300μmとされ厚さが5乃至150μmとされていることを特徴とする請求項1記載の熱電交換モジュール用セラミック基板。The ceramic substrate for a thermoelectric exchange module according to claim 1, wherein the flange has a width of 5 to 300 m and a thickness of 5 to 150 m.
JP2002220186A 2002-07-29 2002-07-29 Ceramic substrate for thermoelectric exchange module Withdrawn JP2004063794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220186A JP2004063794A (en) 2002-07-29 2002-07-29 Ceramic substrate for thermoelectric exchange module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220186A JP2004063794A (en) 2002-07-29 2002-07-29 Ceramic substrate for thermoelectric exchange module

Publications (1)

Publication Number Publication Date
JP2004063794A true JP2004063794A (en) 2004-02-26

Family

ID=31940890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220186A Withdrawn JP2004063794A (en) 2002-07-29 2002-07-29 Ceramic substrate for thermoelectric exchange module

Country Status (1)

Country Link
JP (1) JP2004063794A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112661A1 (en) * 2006-03-31 2007-10-11 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Heat exchange enhancement
JP2008135516A (en) * 2006-11-28 2008-06-12 Yamaha Corp Bonded structure of thermoelectric conversion module
US7440280B2 (en) 2006-03-31 2008-10-21 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US7593229B2 (en) 2006-03-31 2009-09-22 Hong Kong Applied Science & Technology Research Institute Co. Ltd Heat exchange enhancement
JP2013065686A (en) * 2011-09-16 2013-04-11 Kyocera Corp Thermoelectric module
WO2018163632A1 (en) * 2017-03-10 2018-09-13 日立オートモティブシステムズ株式会社 Physical quantity measurement device and method for manufacturing same, and physical quantity measurement element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112661A1 (en) * 2006-03-31 2007-10-11 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Heat exchange enhancement
US7440280B2 (en) 2006-03-31 2008-10-21 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US7593229B2 (en) 2006-03-31 2009-09-22 Hong Kong Applied Science & Technology Research Institute Co. Ltd Heat exchange enhancement
US7651253B2 (en) 2006-03-31 2010-01-26 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US7800898B2 (en) 2006-03-31 2010-09-21 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Heat exchange enhancement
US7826214B2 (en) 2006-03-31 2010-11-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Heat exchange enhancement
JP2008135516A (en) * 2006-11-28 2008-06-12 Yamaha Corp Bonded structure of thermoelectric conversion module
JP2013065686A (en) * 2011-09-16 2013-04-11 Kyocera Corp Thermoelectric module
WO2018163632A1 (en) * 2017-03-10 2018-09-13 日立オートモティブシステムズ株式会社 Physical quantity measurement device and method for manufacturing same, and physical quantity measurement element
JPWO2018163632A1 (en) * 2017-03-10 2019-11-07 日立オートモティブシステムズ株式会社 PHYSICAL QUANTITY MEASURING DEVICE, ITS MANUFACTURING METHOD, AND PHYSICAL QUANTITY MEASURING DEVICE

Similar Documents

Publication Publication Date Title
TW583722B (en) Circuit board and method for manufacturing same
US7339791B2 (en) CVD diamond enhanced microprocessor cooling system
WO2008004552A1 (en) Ceramic-metal bonded body, method for manufacturing the bonded body and semiconductor device using the bonded body
JP6146007B2 (en) Manufacturing method of joined body, manufacturing method of power module, power module substrate and power module
US20120007117A1 (en) Submount for Electronic Die Attach with Controlled Voids and Methods of Attaching an Electronic Die to a Submount Including Engineered Voids
WO2005020315A1 (en) Substrate for device bonding, device bonded substrate, and method for producing same
JP6399906B2 (en) Power module
JP2004063794A (en) Ceramic substrate for thermoelectric exchange module
JPS62287649A (en) Semiconductor device
JP2005340559A (en) Ceramic substrate for thermoelectric exchange module
JP3798973B2 (en) Ceramic substrate for thermoelectric exchange module
JP3840132B2 (en) Peltier device mounting circuit board
JP3566670B2 (en) Ceramic substrate for thermoelectric exchange module
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
CN108369912B (en) Semiconductor device and method for manufacturing the same
JP4313964B2 (en) Ceramic substrate for thermoelectric exchange module
JP2005340565A (en) Ceramic substrate for thermoelectric exchange module
JP2003017759A (en) Ceramic substrate for thermo-electric conversion module
JP2000294868A (en) Semiconductor laser module and peltier module used for the same
JP2004259770A (en) Ceramic substrate for thermoelectric exchange module
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP2004140250A (en) Ceramic substrate for thermoelectric exchanging module
JP2003249695A (en) Thermoelectric conversion module
KR101381947B1 (en) Led module with thermoelectric semiconductor
US20220336316A1 (en) Electronic component mounting base and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061120