JP2004082512A - Biodegradable film and biodegradable bag formed of this film - Google Patents

Biodegradable film and biodegradable bag formed of this film Download PDF

Info

Publication number
JP2004082512A
JP2004082512A JP2002246474A JP2002246474A JP2004082512A JP 2004082512 A JP2004082512 A JP 2004082512A JP 2002246474 A JP2002246474 A JP 2002246474A JP 2002246474 A JP2002246474 A JP 2002246474A JP 2004082512 A JP2004082512 A JP 2004082512A
Authority
JP
Japan
Prior art keywords
film
lactic acid
value
biodegradable
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002246474A
Other languages
Japanese (ja)
Other versions
JP4210492B2 (en
Inventor
Shigenori Terada
寺田 滋憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002246474A priority Critical patent/JP4210492B2/en
Publication of JP2004082512A publication Critical patent/JP2004082512A/en
Application granted granted Critical
Publication of JP4210492B2 publication Critical patent/JP4210492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable film which has biodegradability attributed to a lactic acid system resin, physical characteristics similar to OPP, superb heat resistance and durability to humidity/heat, further with a successful rolling-up nature and outstanding bag forming fitness, and a bag formed of this biodegradable film. <P>SOLUTION: The biodegradable film is composed mainly of a lactic acid system resin and has the F2 value in the longitudinal direction adjusted to 30-55 MPa and the F2 value/F1 value ratio is set at 170% or less. In addition, the film has a layer containing 0.02-0.5 pts.wt of an inactive particle with an average particle diameter of 0.5-8 μm on the face and back of the film. The biodegradable bag is obtained by weld-cut sealing the biodegradable film like a bladder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自然環境中に棄却されても自然に分解し、無害な物質に変化する生分解性フィルムおよびこの生分解性フィルムからなる生分解性袋体に関するものである。
【0002】
【従来の技術】
近年、環境問題の高まりから、プラスチック製品が自然環境中に棄却された場合、経時的に分解・消失し、最終的に自然環境に悪影響を及ぼさないことが求められ始めている。従来のプラスチックは、自然環境中で長期にわたって安定であり、しかも嵩比重が小さいため、廃棄物埋め立て地の短命化を促進したり、自然の景観や野生動植物の生活環境を損なうといった問題点が指摘されていた。
【0003】
そこで、今日注目を集めているのは、生分解性プラスチック材料である。生分解性プラスチックは、土壌中や水中で、加水分解や生分解により、徐々に崩壊・分解が進行し、最終的に微生物の作用により無害な分解物となることが知られている。
実用化され始めている生分解性プラスチックとしては、ポリ乳酸、脂肪族ポリエステル、変性PVA、セルロースエステル化合物、デンプン変性体、およびこれらのブレンド体等があり、これらの中でもポリ乳酸は、コストパフォーマンス、植物由来原料といった特徴から大きな注目を集めている。
【0004】
乳酸系樹脂は、高剛性、透明性という特徴を有しており、これらの特徴を活かし、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)の代替分野、とりわけ、特開平7−207041号公報に開示されるように、延伸フィルム分野で利用され始めている。
また、汎用プラスチック材料には、ポリプロピレン(PP)もあり、PPの代替が可能な生分解性フィルムも求められている。PPは延伸フィルムにして使用されることが多く、このポリプロピレン延伸フィルム(OPP)は、食品包装を始めとする電子、医療、薬品、化粧品等の各種包装用フィルム、農業用フィルム、工業用保護フィルム、粘着テープ等に広く使われている。OPPは、2次加工工程や実用において要求される特性である、柔軟性、溶断シール強度、耐熱性、湿熱耐久性といった特性を満たすものである。
ところが、乳酸系樹脂からなるフィルムでは、OPPの代替を行うには硬すぎたり、溶断シール強度が低すぎるといった問題点がある。かかる問題点を解決するために、特表平8−501584号公報や特開平7−177826号公報には、乳酸系樹脂に可塑剤を添加する技術が開示されているが、これらの技術により製造したフィルムは、耐熱性(熱寸法安定性)が乏しかったり、湿熱耐久性が乏しく実用的でない。また、溶断シール(ヒートシール)袋を作るには、溶断シール機適性において、良好とは言えなかった。
特開平9−272794号公報、特開平10−100353号公報には、乳酸系樹脂にガラス転移温度が0℃以下の脂肪族ポリエステルを混合して、フィルムを柔軟にし、かつフィルムを透明にする方法が開示されているが、これら公報に開示の技術は、主に無延伸フィルムについて実施したものであり、延伸フィルムの製造にそのまま援用することはできない。さらに、これら公報では、光線透過率が65%以上のフィルムが開示されているが、光線透過率が90%を下回る範囲では透明性が不十分であり、また、フィルムのヘーズが高いと見栄えに劣る。ヘーズは、全光線透過率に対して、拡散透過率の割合を示すものであり、ヘーズが高いと、すなわちフィルムを透過する光の拡散が大きいと鮮明さは低下するので、花や野菜等の生鮮物の新鮮さ、みずみずしさが演出できず、包装内容物の商品価値を下げてしまう。
【0005】
表面の滑り性能を改良するための技術がある。例えば、特開2000−103879号公報及び特開2000−44702号公報は、乳酸系樹脂に不活性な無機粒子等を混合し、延伸して表面を粗らすことによって、フィルムの滑り性能が改良されることを開示している。また、特開平9−157408号公報は、ポリ乳酸にガラス転移温度が0℃以下の脂肪族ポリエステルを混合して成るフィルムを開示しており、ここでは、延伸時の変形挙動がポリ乳酸と異なる脂肪族ポリエステルを用いると、表面の荒れたフィルムが得られることについて言及している。ところが、特開平9−157408号公報に開示の技術では、脂肪族ポリエステルの配合量が70質量部(約41質量%)を越える範囲では、延伸・熱処理工程で破断が生じやすかった。また、フィルム表面が粗らされるために透明性が低下し、正確にはヘーズが上昇してしまい、包装内容物の商品価値を下げるという問題が生じる。
【0006】
フィルムの柔軟さは重要であり、例えば、このフィルムから溶断シール袋を形成するためには、特に柔軟性は重要であった。すなわち、溶断シール袋を製造する工程では、フィルムを巻き出した後、三角形状の板にフィルムを沿わせながら、長手方向と平行に折りこんで重ね合わせていく。したがって、通常のポリ乳酸系樹脂の2軸延伸フィルムでは硬すぎて伸びにくく、溶断シール工程で寸法差の吸収しろが乏しく、シワが入りやすかったので、OPPフィルムの代替は不可能であった。
【0007】
【発明が解決しようとする課題】
したがって、本発明の課題は、乳酸系樹脂が本来有している生分解性に加え、OPPに類似した物理特性と、優れた耐熱性、湿熱耐久性を有し、さらに良好な巻き取り性と優れた製袋適性を有する生分解性フィルム及びこのフィルムからなる袋体を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、これらの課題を解決するために、鋭意、実験、検討を重ねた結果、本発明を完成させるに至った。
すなわち、本発明の生分解性フィルムは、乳酸系樹脂を主成分とする生分解性フィルムであって、該フィルムの長手方向のF2値が30〜55MPaで、かつF2値/F1値が170%以下であり、該フィルムの表面及び裏面に平均粒子径が0.5〜8μmの不活性粒子を0.02〜0.5質量部含有する層を有することを特徴とする。
ここで、前記生分解性フィルムは、ガラス転移温度が0℃以下の脂肪族系ポリエステルを更に含有し、前記生分解性フィルム全体における乳酸系樹脂と前記脂肪族系ポリエステルの配合割合が、乳酸系樹脂:脂肪族系ポリエステル=50〜85質量%:50〜15質量%であることができる。
また、前記生分解性フィルムが表面層、中間層及び裏面層を有する積層体であって、該表面層及び該裏面層はそれぞれ乳酸系樹脂を主成分とする層であり、かつ、該中間層は乳酸系樹脂と脂肪族系ポリエステルとを含む層であることができる。
ここで、前記積層体は共押出し多層延伸フィルムであることができる。
本発明の生分解性袋体は、上記いずれかの生分解性フィルムを溶断シールすることにより袋状に成形してなることを特徴とする。
なお、シートとは、JISにおける定義上、薄く、一般にその厚さが長さと幅のわりには小さく平らな製品をいう。ところで、フィルムとは長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう(JIS K 6900)。したがって、シートの中でも厚さの特に薄いものがフィルムであるといえるが、シートとフィルムの境界は定かでなく、明確に区別しにくいので、本願においては、「シート」と称する場合でも「フィルム」を含むものとし、「フィルム」と称する場合でも「シート」を含むものとする。
【0009】
【発明の実施の形態】
本発明の生分解性フィルムは、乳酸系樹脂を主成分とする生分解性フィルムであって、フィルムの長手方向のF2値が30〜55MPaで、かつF2値/F1値が170%以下であり、このフィルムの表面及び裏面には、平均粒子径が0.5〜8μmの不活性粒子が0.02〜0.5質量部含有されている層を有することが必要である。生分解性フィルムには、ガラス転移温度が0℃以下の脂肪族系ポリエステルが含まれていてもよい。ただし、生分解性フィルム全体における乳酸系樹脂と脂肪族系ポリエステルとの配合割合は、乳酸系樹脂が50〜85質量%、脂肪族系ポリエステルが50〜15質量%の範囲で合計100質量%となるような配合割合であることが好ましい。このような配合割合で形成したフィルムは、フィルムの長手方向のF2値が30〜55MPaで、かつF2値/F1値が170%以下の条件を満足することができる。また、脂肪族系ポリエステルを用いることによって、柔軟性を付与することができる。なお、F1値及びF2値に関する説明は後記する。
ここで、生分解性フィルムは単層構成でも、2層以上の積層体でもよい。単層構成の場合には、この層に上記の不活性粒子を含有しており、2層構成の場合には、それぞれの層に上記の不活性粒子を含有しており、3層以上の積層体の場合には、表面層と裏面層のそれぞれに上記の不活性粒子を含有している。表面層、中間層及び裏面層からなる積層体の場合には、表面層及び裏面層が乳酸系樹脂を主成分とする層であり、中間層が乳酸系樹脂と脂肪族系ポリエステルとを含む層であることが好ましい。ただし、乳酸系樹脂と脂肪族系ポリエステルの配合割合は、生分解性フィルム全体に対して、乳酸系樹脂:脂肪族系ポリエステル=50〜85質量%:50〜15質量%である。なお、中間層は単層であっても2層以上の積層体であってもよく、積層体の場合には、少なくとも1層が脂肪族系ポリエステルを含む層であることが好ましい。
【0010】
本発明において使用される乳酸系樹脂は、構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸及びD−乳酸の両方である共重合体、すなわち、ポリ(DL−乳酸)、およびこれらの混合体を意味する。
乳酸系樹脂の構成としてはD−乳酸:L−乳酸=100:0〜90:10、もしくはL−乳酸:D−乳酸=0:100〜10:90であることが好ましい。かかる範囲を外れる構成の乳酸系樹脂は、結晶性が低くなり耐熱性に劣るものとなる。なお、本発明においては、異なったL−乳酸(L体)とD−乳酸(D体)の共重合比を有する複数の乳酸系樹脂をブレンドしてもよく、この場合には、複数の乳酸系樹脂のL−乳酸(L体)とD−乳酸(D体)の共重合比の平均値が上記範囲に入るようにする。L体またはD体のホモポリマーと、共重合体をブレンドすると、ブリードのしにくさと耐熱性の発現とのバランスをとることができるので好ましい。
【0011】
乳酸系樹脂の重合方法としては、縮合重合法、開環重合法等公知の方法を採用することができる。例えば、縮合重合法では、L−乳酸またはD−乳酸、あるいはこれらの混合物等を直接脱水縮合重合して任意の組成を有するポリ乳酸系重合体を得ることができる。
また、開環重合法(ラクチド法)では、乳酸の環状二量体であるラクチドを、必要に応じて重合調節剤等を用いながら、適当な触媒を使用して任意の組成、結晶性を有する乳酸系樹脂を得ることができる。ラクチドには、L−乳酸の二量体であるL−ラクチド、D−乳酸の二量体であるD−ラクチド、さらにL−乳酸とD−乳酸からなるDL−ラクチドがあり、これらを必要に応じて混合して重合することにより、任意の組成、結晶性を有する乳酸系樹脂を得ることができる。
【0012】
さらに、耐熱性向上等の必要に応じて、少量共重合成分を添加することもでき、テレフタル酸等の非脂肪族ジカルボン酸および/またはビスフェノールAのエチレンオキサイド付加物等の非脂肪族ジオール等を用いることもできる。
さらにまた、分子量増大を目的として、少量の鎖延長剤、例えば、ジイソシアネート化合物、エポキシ化合物、酸無水物等を使用することもできる。
【0013】
乳酸系樹脂は、さらにα−ヒドロキシカルボン酸等の他のヒドロキシカルボン酸単位との共重合体であっても、脂肪族ジオール及び/又は脂肪族ジカルボン酸との共重合体であってもよい。
他のヒドロキシ−カルボン酸単位としては、乳酸の光学異性体(L−乳酸に対してはD−乳酸、D−乳酸に対してはL−乳酸)、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシn−酪酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の二官能脂肪族ヒドロキシ−カルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類が挙げられる。
乳酸系樹脂に共重合される上記脂肪族ジオールとしては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。また、上記脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸等が挙げられる。
【0014】
本発明において使用される乳酸系樹脂は、重量平均分子量が5万〜40万であることが好ましく、より好ましくは10万〜25万である。分子量が小さすぎると機械物性や耐熱性等の実用物性がほとんど発現されず、大きすぎると溶融粘度が高すぎて成形加工性に劣る。
【0015】
本発明に用いられるガラス転移温度が0℃以下の脂肪族系ポリエステルとしては、乳酸系樹脂を除く脂肪族系ポリエステルが好ましいものとして挙げられる。脂肪族系ポリエステルとしては、ポリヒドロキシカルボン酸、脂肪族ジオールと脂肪族ジカルボン酸又は芳香族ジカルボン酸を縮合して得られる脂肪族ポリエステル又は脂肪族芳香族ポリエステル、環状ラクトン類を開環重合した脂肪族ポリエステル、合成系脂肪族ポリエステル、菌体内で生合成される脂肪族ポリエステル等が挙げられる。
【0016】
ここで用いられるポリヒドロキシカルボン酸としては、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等のヒドロキシカルボン酸の単独重合体や共重合体が挙げられる。
【0017】
脂肪族ポリエステル又は脂肪族芳香族ポリエステルに使用される、脂肪族ジオールとしては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。また、脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられ、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸等が挙げられる。ジカルボン酸成分として、50mol%以下のテレフタル酸等の芳香族モノマー成分を共重合すると、耐熱性や機械強度を高めることができる。このような脂肪族系ポリエステルとして、イーストマンケミカル社製のイースターバイオや、BASF社製のエコフレックス等が例示される。
これらの脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる脂肪族ポリエステルや、脂肪族ジオール、脂肪族ジカルボン酸及び芳香族ジカルボン酸を縮合して得られる脂肪族芳香族ポリエステルは、上記の各化合物の中からそれぞれ1種類以上を選んで縮重合し、さらに、必要に応じてイソシアネート化合物等でジャンプアップして所望のポリマーを得ることができる。
【0018】
環状ラクトン類を開環重合した脂肪族ポリエステルは、環状モノマーとして、ε−カプロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン等の1種類又はそれ以上を重合することによって得られる。
合成系脂肪族ポリエステルとしては、環状酸無水物とオキシラン類、例えば、無水コハク酸とエチレンオキサイド、プロピレンオキサイド等との共重合体が挙げられる。
【0019】
菌体内で生合成される脂肪族ポリエステルとしては、アルカリゲネスユートロファスをはじめとする菌体内でアセチルコエンチームA(アセチルCoA)により生合成される脂肪族ポリエステルが挙げられる。この菌体内で生合成される脂肪族ポリエステルは、主にポリ−β−ヒドロキシ酪酸(ポリ3HB)であるが、プラスチックスとしての実用特性向上のために、ヒドロキシ吉草酸(HV)を共重合し、ポリ(3HB−CO−3HV)の共重合体にすることが工業的に有利である。HV共重合比は、一般的に0〜40mol%が好ましい。さらに、ヒドロキシ吉草酸のかわりに3−ヒドロキシヘキサノエート、3−ヒドロキシオクタノエート、3−ヒドロキシオクタデカノエート等の長鎖のヒドロキシアルカノエートを共重合してもよい。
【0020】
生分解性フィルム全体として、乳酸系樹脂50〜85質量%とガラス転移点が0℃以下の脂肪族系ポリエステル50〜15質量%を混合することにより、OPPに類似の特性を有するフィルムとして好適な特性が付与され、後述する製袋適性においても良好になる。なお、脂肪族系ポリエステルの添加量が過多の場合は、高温下ではフィルム表面にべたつきが生じることがあり、熱寸法安定性が得られないこともある。
【0021】
ところで、乳酸系樹脂にガラス転移温度が0℃以下の脂肪族系ポリエステルを配合すると、延伸時の変形挙動が異なるため表面が荒れたフィルムとなり、ヘーズが上昇する。このフィルムの両面に、乳酸系樹脂を主成分とする表面層と裏面層とを積層することにより、ヘーズの小さいフィルムを得ることができる。これは、表面層と裏面層によって、乳酸系樹脂と脂肪族ポリエステルとを含む層(例えば中間層)の表面粗さによる透過光の拡散が抑制され、ヘーズを低下させることができるからである。
全光線透過率が90%以上の場合には、一応透明性は確保される。ただし、フィルムのヘーズが高いと見栄えに劣る。ヘーズは、全光線透過率に対して、拡散透過率の割合を示すものであり、ヘーズが高い、すなわちフィルムを透過する光の拡散が高いと、鮮明さは低下する。特に生鮮物の包装等に使用する場合には、新鮮さ、みずみずしさが演出できず、包装内容物の商品価値を下げてしまう。したがって、鮮明さが要求される場合には、ヘーズが6%以下であることが好ましく、ヘーズが5%以下であることが更に好ましい。
【0022】
しかしながら、表面層と裏面層を有する構成の場合に、これらの層の表面が全く荒れていないとフィルムの巻き取り性が低下してしまうので、袋体を製造する上で不都合である。ところが、本発明においては、表面及び裏面は不活性粒子を含有するので、本発明の構成によれば、フィルムの巻き取り性が低下することはない。混合した不活性粒子が、延伸・熱処理工程でフィルム表面に多数の突起となって現れ、その結果、フィルムの摩擦係数を低下させるとともに、巻き上げるフィルムとフィルムの隙間に適度に空気を含ませるので、巻き取ったフィルムは外観もきれいに仕上がる。適度に空気を含まない場合は、ぎすぎすした巻き上げ感があり、フィッシュアイと呼ばれる「粒跡」が巻き上げ物のあちこちに現れるようになる。また、表面層及び裏面層を有する積層構成の場合には、表裏層にのみ粒子を混合するので、全層(単層)にわたって粒子を混合する場合よりも、フィルム全体の光線透過率は高く、ヘーズも低くなり、透明性について有利である。
【0023】
混合する不活性粒子の粒子径は、平均で0.5μm〜8μmの範囲であり、好ましくは1〜4μmの範囲である。また、不活性粒子の混合部数は各層の重量に対して0.02〜0.5質量部であることが必要であり、好ましくは0.05〜0.4質量部である。粒子径が平均で0.5μmより小さいと、または混合部数が0.02質量部より少ないと、ヘーズは小さいがフィルムの滑りが悪くなり、巻き取り性が低下する。一方、粒子径が8μmより大きいか、または、混合部数が4質量部より多いと、巻き取り性は向上するが、ヘーズが高くなる。したがって、上記範囲内で粒子径と混合部数を調整することによって、所望のヘーズ値と巻き取り性を有するフィルムを得ることができる。
【0024】
使用される不活性粒子としては、PETやOPP等に使用されている公知の粒子を使用することができる。かかる不活性粒子としては、例えば、シリカ、タルク、カオリン、炭酸カルシウム、酸化チタン等の無機粒子、あるいはアクリレート粒子、スチレン粒子等の樹脂系有機粒子等が挙げられる。後者の樹脂系有機粒子は、使用可能であるというだけであり、自然環境への親和性という観点からは天然に存在する無機粒子と比較すると大幅に劣り、しかも生分解性も充分ではないので、使用を避ける方が好ましい。
【0025】
以上の他に、各層には、本発明の効果を損なわない範囲で、熱安定剤、抗酸化剤、UV吸収剤、光安定剤、顔料、着色剤、滑剤、核剤、無機フィラー、可塑剤等の添加剤を処方することもできる。
【0026】
脂肪族系ポリエステルの種類や配合割合、表裏層と中間層との厚み等は、適宜選択することが出来るが、以下の製袋性の点を考慮して選択することが好ましい。
すなわち、例えば、溶断シール袋を製造する際には、フィルムに一定荷重をかけながら巻き出した後、三角形状の板にフィルムを沿わせながら、長手方向と平行に折りこんで重ね合わせて、それを送り出しながら、所定のピッチで一定長さに溶断シールする。しかしフィルムに「たるみ」があると、重ね合わせた寸法が異なってしまい、その寸法の違いによる歪みがしわとなって出現したり、シール部に浮きが生じたり、それらが原因でシール強度が著しく劣る部分が出来たりする。
【0027】
「たるみ」は、延伸、熱処理もしくは冷却工程で温度むらがあり、フィルム内で寸法差ができることが原因となって生じたり、フィルムの厚みに偏りがあって、巻き上げてロール状にしたときにコブが発生し、その部分に歪みが生じることが原因となって生じる。一般に包装用、工業用に使用されるフィルムの製造者は、厚み精度の向上ならびに「たるみ」のないように注意しながらフィルムを製造しているが、設備上の不備や気温の変化等、内的・外的要因により、「たるみ」はなかなかなくせないのが現状である。
【0028】
このような「たるみ」等による製袋時の不具合が発生しやすいという問題を解決するための指標としては、F2値を30〜55MPaで、かつF2値/F1値が170%以下にすることである。F1値およびF2値とは、フィルムがそれぞれ1%および2%伸びたときの強さ(荷重)を、フィルムの厚みで除した値である。すなわち、F1値やF2値が小さいと、小さな荷重でフィルムが伸びやすく、製袋時の巻き出し荷重や送り出し荷重によって、重ね合わせによる寸法差を吸収することができ、また、折り目の部分で傷などが入ることも少ない。さらに、F2値/F1値が低いほど、たるみ部分が一旦伸びきって仕上がった袋でも、応力を解放した後にカール等による変形が少なく、きれいな仕上がりになる。乳酸系樹脂のみからなる延伸フィルムは、延伸条件にもよるが、F2値は60MPa以上と大きく、また3〜4%伸ばすと降伏点を超えるので、実質的に「たるみ」を吸収することは困難である。
F2値が55MPaより大きいと、しわや、傷が入りやすく、F2値が30MPaより小さいと、フィルムが伸びきって変形が大きくなり、袋にした後の仕上がりが劣ったものとなる。また、F2/F1値が170%を越えても、仕上がりが劣ったものになる。
したがって、生分解性フィルムの長手方向のF2値は30〜55MPaであり、かつF2値/F1値が170%以下であることが必要である。
【0029】
本発明の生分解性シートは、延伸されていることが好ましい。延伸フィルムは、通常の延伸フィルム成形法であれば、任意の方法をとることができる。フィルム原料を、あらかじめ同方向二軸押出機、ニーダー、ヘンシェルミキサー等を用いてプレコンパウンドしても構わないし、各原料をドライブレンドし、直接、押出機に投入しても構わない。可塑剤等の液状成分は、固体成分と同時にブレンドしても良いが、固体成分とは別に、ポンプ等を用いて押出機のベント口から注入することもできる。延伸フィルム成形法の具体例としては、ロール延伸、テンター延伸法、チューブラー法、インフレーション法などを採用することができる。
【0030】
延伸条件としては、フィルム温度が50〜100℃であることが好ましく、更に好ましくは60〜90℃であり、延伸倍率が、少なくとも一軸方向に1.5〜5.0倍の範囲で調整されることが好ましい。延伸条件がかかる範囲外では、破断や白化が生じたり、ドローダウン等のトラブルが発生する場合があり、延伸が困難になることがある。
【0031】
フィルムの延伸に続いて、本発明の効果をより高めるために、幅固定で熱処理を行うことが望ましい。熱処理条件としては、温度が70〜160℃であることが好ましく、更に好ましくは90〜150℃であり、処理時間が2秒から5分の範囲で調整されることが好ましい。処理温度がかかる範囲を下回ると、熱処理効果が得られにくく、上回るとフィルムがドローダウンしやすい。処理時間が、2秒より短いと熱処理効果が得られにくく、5分より長くなると熱処理設備が長大なものになってしまうので、経済性が低下する。
【0032】
乳酸系樹脂のD体とL体の比率、脂肪族系ポリエステルの選択、延伸および熱処理の効果により、本発明においては、120℃×15分における加熱収縮率を長手方向(TD)、幅方向(MD)共に10%以下に低減することが好ましく、本発明において達成可能である。かかる範囲内であれば、良好な耐熱性(熱寸法安定性)を実現することができるので、印刷、製袋等の2次加工中や、保管中にフィルムが収縮したり、波打ちやカールなどの不具合が発生することもなく、実用的である。
【0033】
フィルムの厚みは、特に限定するものではないが、包装用、袋用としては7〜100μmであることが好ましい。例えば3層構成の場合には、表面層と裏面層の厚みはそれぞれ0.5μm以上あることが好ましい。表面層及び裏面層がそれぞれ0.5μm以上あれば、混合した無機粒子等の脱落が生じることがない。
【0034】
以上のようにして作成された乳酸系樹脂フィルムは、OPPに類似の物性を有し、溶断シール袋にも好適に加工することができる。また、ポリ乳酸系樹脂を主成分とする表裏層を設けることにより、ヘーズの上昇を抑えることができ、さらにまた、その表裏層に無機粒子を混合するにより、フィルムに良好な巻き取り性を付与することができる。
【0035】
【実施例】
以下に、本発明の実施例を示すが、以下の実施例は、本発明を好適に説明するための例示に過ぎず、何ら本発明を限定するものではない。
以下の実施例中に示す測定値は、下記に示すような条件で測定を行って算出したものであり、また、評価は、下記に示す評価方法によって行ったものである。
【0036】
《測定方法及び評価方法》
(1)F1値、F2値およびF2値/F1値
フィルムを長手方向(MD)に沿って、長さが140〜160mm程度、幅3mmの大きさとなるように、ノッチや傷がつかないように注意しながら鋭利な刃物で試験片を切り出した。この試験片を、東洋精機(株)製のテンシロンII型引張試験機を用い、その引張試験機のつかみ具に距離100mmでチャックし、引張速度5mm/分で引っ張った。試験片(フィルム)が1%および2%伸びたときの荷重を測定し、下記式にそれぞれの値を代入してF1値及びF2値を求めた。このF1値及びF2値から、F2/F1値を算出した。但し、引張試験機のつかみ具に試験片をチャックする際には垂直に装着しないと正確な伸びを求めることができないので、この点に注意して実施した。なお、測定雰囲気温度は23±2℃であった。
F1 = (1%伸びたときの荷重)/(フィルムの断面積)
F2 = (1%伸びたときの荷重)/(フィルムの断面積)
【0037】
(2)全光線透過率およびヘーズ
JIS K 7105に基づいて、全光線透過率および拡散透過率を求めた。次に、この値を下記式に代入してヘーズを算出した。
ヘーズ(%) = (拡散透過率/全光線透過率)×100
【0038】
(3)巻き取り性
製膜時にワインダーで巻き上げたフィルムを、スリッターを用いて所定の幅、ここでは600mm幅に切断し、この幅で巻き上げていった時のフィルムロール状物の外観を目視観察し、評価を行った。評価基準は、フィルムにしわが入り、巻き上げたフィルムロール状物に粒跡が認められた場合には、劣悪な製品であると判定して記号「×」で表し、粒跡は認められないがフィルムにしわが入りやすい場合には記号「△」で表し、フィルムにしわも粒跡もいずれも認められない場合には、良好な製品であるとして記号「○」で表記した。
【0039】
(4)溶断シール製袋機適性
トタニ技研工業(株)製の溶断シール製袋機HK−40Vを用いて、製袋を行った。幅600mmのフィルムロールを用いて、間口148mm×長さ300mmのサイドシール袋を最適条件で100枚作製した。シワやカールの発生が認められなかった袋の枚数を数え、下記に示す基準で評価を行った。
○  シワやカールの発生が認められなかった袋が、900〜1000枚できた
△  シワやカールの発生が認められなかった袋が、700〜899枚できた
×  シワやカールの発生が認められない袋が、699枚以下しかできなかった
【0040】
(5)総合評価(仕上がり性)
下記に示す評価基準にしたがって評価を行った。
○  ヘーズ、巻き取り性、製袋機適性の全てにおいて良好であるもの
△  ヘーズは低いが、巻き取り性及び製袋機適性には優れているもの
×  製袋機適性が不良であるもの
【0041】
《乳酸系樹脂の製造》
ピューラックジャパン社製のL−ラクチド(商品名「PURASORB L」)97kgと同社製のDL−ラクチド(商品名「PURASORB DL」)3kgに、オクチル酸スズを15ppm添加し、攪拌機と加熱装置とを備えた500Lのバッチ式重合槽に入れた。次いで窒素置換を行い、温度185℃、攪拌速度100rpmで60分間重合を行った。得られた溶融物を、真空ベントを3段備えた三菱重工社製の40mmφ、同方向2軸押出機に供し、ベント圧4torrで脱気しながら、200℃でストランド状に押し出してペレット化し、ペレット形状の乳酸系樹脂を得た。得られた乳酸系樹脂は、重量平均分子量が約20万、L体含有量が98.6%であった。
【0042】
《シリカを配合した乳酸系樹脂ペレットの作製》
次に、作製した乳酸系樹脂にシリカ又は炭酸カルシウムを配合してペレットを形成し、下記に示す4種類のマスターバッチを作製した。
(1)マスターバッチA
作製した乳酸系樹脂に、平均粒子径が約3μmの粒状シリカ(富士シリシア化学(株)製のサイリシア730)を2%混合し、三菱重工(株)製の直径が40mmの小型同方向二軸押出機を用いて200℃でコンパウンドした後、ペレット形状にした。このペレットをマスターバッチAとした。
(2)マスターバッチBおよびマスターバッチC
作製した乳酸系樹脂に、平均粒子径が約1.4μmの粒状シリカ(富士シリシア化学(株)製のサイリシア310P)、および平均粒子径が約6μmの粒状シリカ(富士シリシア化学(株)製のサイリシア770)をそれぞれ5%混合し、三菱重工(株)製の直径が40mmの小型同方向二軸押出機を用いて200℃でコンパウンドした後、ペレット形状にした。これらのペレットをマスターバッチB及びマスターバッチCとした。
(3)マスターバッチD
作製した乳酸系樹脂に、平均粒子径が約0.3μmの軽質炭酸カルシウム(奥多摩工業(株)製のタマパールTP−222H)を5%混合し、三菱重工(株)製の直径40mmの小型同方向二軸押出機を用いて200℃でコンパウンドし、ペレット形状にした。このペレットをマスターバッチDとした。
【0043】
(実施例1)
中間層用原料として、75mmφ同方向二軸押出機のフィード口に、作製した乳酸系樹脂と、脂肪族ポリエステルであるポリブチレンサクシネート/アジペート(商品名:ビオノーレ#3003、昭和高分子(株)製)とを、質量比で80:20になるように混合して供給し、一方、表裏層用原料として、58mmφ同方向二軸押出機のフィード口に、作製した乳酸系樹脂とマスターバッチAとをシリカの配合部数が0.05部となるように調整して混合した原料を供給し、それぞれ200℃で溶融した後、それぞれ別の導管によって溶融樹脂をマルチマニホールド式の口金に導き、表面層/中間層/裏面層の3層構成で押出した後、35℃に設定したキャスティングロールに静電密着方式で接触させつつ急冷し、約250μm厚の3層構成のシートとして引き取った。但し、表面層:中間層:裏面層の厚さ比が1:6:1になるように、口金からのそれぞれの押出量を調整した。次いで、三菱重工(株)製の逐次二軸テンターに通紙して二軸延伸を行った。すなわち、温度73℃で3.0倍に縦延伸し、予熱ゾーン温度が74℃、延伸ゾーン温度が78℃で(キャストシートに比して)3.2倍に横延伸した後、140℃で5秒間熱処理を行い、幅約1500mmで膜厚約25μmの積層延伸フィルムを得た。得られた積層延伸フィルムは西村製作所(株)のスリッターを用いて、幅600mmの2丁取りにして、内径76mmの紙管に巻き上げた。
このようにして得られた積層フィルムについて上記測定及び評価を行った。その結果を表1に示す。なお、積層延伸フィルムのF2値は51.0、F2値/F1値は166%であった。
【0044】
(実施例2)
実施例1において、中間層用原料として、作製した乳酸系樹脂にビオノーレ#3003を質量比で55:45となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチBをシリカの配合部数が0.3部となるように混合したものに変更し、各層の厚み比が表面層:中間層:裏面層=1:4:1になるように適宜調整しながら押出した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表1に示す。なお、積層延伸フィルムのF2値は40.5、F2値/F1値は151%であった。
【0045】
(実施例3)
実施例1において、中間層用原料として、作製した乳酸系樹脂にビオノーレ#3003を質量比で70:30となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチBをシリカの配合部数が0.1部となるように混合したものに変更し、各層の厚み比が表面層:中間層:裏面層=1:8:1になるように適宜調整しながら押出し、縦延伸の倍率を2.8倍変更した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表1に示す。なお、積層延伸フィルムのF2値は41.9、F2値/F1値は153%であった。
【0046】
(実施例4)
実施例1において、中間層用原料として、作製した乳酸系樹脂に脂肪族ポリエステルとしてポリカプロラクトン(商品名:プラクセルH7、ダイセル化学工業(株)製)を質量比で80:20となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチAをシリカの配合部数が0.1部となるように混合したものに変更した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表1に示す。なお、積層延伸フィルムのF2値は43.4、F2値/F1値は163%であった。
【0047】
(実施例5)
実施例1において、中間層用原料として、作製した乳酸系樹脂に脂肪族ポリエステルとしてポリカプロラクトン(商品名:プラクセルH7、ダイセル化学工業(株)製)を質量比で40:60となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチBをシリカの配合部数が0.1部となるように混合したものに変更した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表1に示す。なお、積層延伸フィルムのF2値は30.3、F2値/F1値は145%であった。
【0048】
(比較例1)
実施例1において、中間層用原料として、作製した乳酸系樹脂にビオノーレ#3003を質量比で90:10となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチBをシリカの配合部数が0.1部となるように混合したものに変更した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表2に示す。なお、積層延伸フィルムのF2値は70.4、F2値/F1値は177%であった。
【0049】
(比較例2)
実施例1において、中間層用原料として、作製した乳酸系樹脂にビオノーレ#3003を質量比で30:70となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチBをシリカの配合部数が0.1部となるように混合したものに変更した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表2に示す。なお、積層延伸フィルムのF2値は26.2、F2値/F1値は141%であった。
【0050】
(実施例6)
作製した乳酸系樹脂、マスターバッチA及びビオノーレ#3003を質量比で65:5:30となるように混合し(ただし、シリカの配合部数は約0.1部)、これを75mmφ同方向二軸押出機と58mmφ同方向二軸押出機のそれぞれのフィード口に供給して温度200℃で溶融した。溶融した樹脂をそれぞれ別の導管で押出機から導き、マルチマニホールド式の口金を用いて、層厚の構成比が1:6:1となるように各押出し量を調節しながら押出した。次に、35℃に設定したキャスティングロールに静電密着方式で接触させつつ急冷し、約250μm厚の1種3層シート、すなわち実質単層構成のシートを引きとった。これを実施例1と同様にして延伸して実質単層シートの延伸フィルムを得た。
得られた延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表2に示す。なお、延伸フィルムのF2値は37.0、F2値/F1値は151%であった。
【0051】
(比較例3)
実施例1において、中間層用原料として、作製した乳酸系樹脂にビオノーレ#3003を質量比で70:30となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチDを炭酸カルシウムの配合部数が0.4部となるように混合したものに変更した以外は実施例1と同様にして、積層延伸フィルムを得た。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表2に示す。なお、積層延伸フィルムのF2値は40.3、F2値/F1値は154%であった。
【0052】
(実施例7)
実施例1において、中間層用原料として、作製した乳酸系樹脂にビオノーレ#3003を質量比で70:30となるように混合したものに変更し、表裏面層用原料として、作製した乳酸系樹脂にマスターバッチCをシリカの配合部数が0.1部となるように混合したものに変更した以外は実施例1と同様にして、積層延伸フィルムを得た。なお、積層延伸フィルムのF2値、F2値/F1値は表2に示すものであった。
得られた積層延伸フィルムについて、実施例1と同様の測定及び評価を行った。その結果を表2に示す。なお、積層延伸フィルムのF2値は52.1、F2値/F1値は168%であった。
【0053】
【表1】

Figure 2004082512
【0054】
【表2】
Figure 2004082512
【0055】
表1および表2から明らかなように、F2値が30〜55MPaの範囲内であり、F2値/F1値が170%以下である実施例1〜5の共押出し積層延伸フィルムは、袋体に成形する場合に必要な巻き取り性及び製袋機適性に優れており、かつ、製袋された袋の仕上がり状態も良好であった。しかも全光線透過率が90%以上、かつヘーズが6%以下であり、透明性及び鮮明性に優れたフィルムであることが分かった。また、実施例6の実質単層延伸フィルムは、全光線透過率は90%以上であるがヘーズが6.9であるので、実施例1〜5の積層延伸フィルムに比べると鮮明性がやや劣るものの、巻き取り性及び製袋機適性に優れ、かつ得られた袋の仕上がり状態も良好であることが分かった。実施例7の共押出し積層延伸フィルムは、全光線透過率は90%以上であるがヘーズが6.5であるので、実施例1〜5の積層延伸フィルムに比べると鮮明性がやや劣るものの、巻き取り性及び製袋機適性に優れ、得られた袋の仕上がり状態も実用可能なレベル以上であることが分かった。なお、実施例1〜7のフィルムは、生分解性に優れたものである。
一方、F2値が55MPaより大きい比較例1及びF2値が30MPaより小さい比較例2の積層延伸フィルムは、製袋機適性に劣るものであり、袋体の仕上がり状態も問題のあるものであった。なお、比較例2のフィルムは、ヘーズが5.9であり、実施例1〜5の積層延伸フィルムと比較すると、やや鮮明さに劣るものであった。また、平均粒径が0.5μmより小さいシリカを表裏層に含有する比較例3の積層延伸フィルムは、巻き取り性及び製袋機適性に劣るものであり、袋体の仕上がり状態も問題のあるものであった。
【0056】
【発明の効果】
以上説明したように、本発明の生分解性フィルムは、乳酸系樹脂を主成分とするため生分解性が確保されており、フィルムの長手方向のF2値を30〜55MPaに調整するとともに、F2値/F1値を170%以下とすることにより、従来のOPPに代替可能な特性を得ることができている。
さらに、本発明の生分解性フィルムは、中間層と表裏面層とからなる共押出し多層延伸フィルムとし、それぞれの層の組成を、中間層を乳酸系樹脂とガラス転移温度が0℃以下の脂肪族系ポリエステルとの混合物から構成するとともに、表裏層に平均粒子径0.5〜8μmの不活性粒子を含有する構成とすることにより、袋体を製造するときに必要なフィルム特性を確保している。
このように、本発明によれば、乳酸系樹脂が本来有している生分解性に加え、OPPに類似した物理特性と、優れた耐熱性、湿熱耐久性を有し、かつ可塑剤のブリードが少なく、透明で巻き取り性、製袋機適性に優れたフィルム、袋体を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biodegradable film that is naturally decomposed even if rejected in a natural environment and changes into a harmless substance, and a biodegradable bag made of the biodegradable film.
[0002]
[Prior art]
In recent years, due to an increase in environmental problems, when a plastic product is discarded in the natural environment, it is required to decompose and disappear over time, and finally to have no adverse effect on the natural environment. Conventional plastics are stable in the natural environment for a long period of time and have a low bulk density, which has led to problems such as shortening the life of waste landfills and impairing the natural landscape and the living environment of wild animals and plants. It had been.
[0003]
Therefore, biodegradable plastic materials are attracting attention today. It is known that biodegradable plastics gradually decompose and decompose in soil or water due to hydrolysis or biodegradation, and eventually become harmless decomposition products due to the action of microorganisms.
Biodegradable plastics that have begun to be put into practical use include polylactic acid, aliphatic polyester, modified PVA, cellulose ester compounds, modified starch, and blends thereof. Among these, polylactic acid is cost-effective, It is receiving great attention because of its characteristics such as raw materials.
[0004]
Lactic acid-based resins have the characteristics of high rigidity and transparency, and utilizing these characteristics, are disclosed in alternative fields of polystyrene (PS) and polyethylene terephthalate (PET), in particular, in Japanese Patent Application Laid-Open No. 7-207041. As such, it has begun to be used in the stretched film field.
A general-purpose plastic material also includes polypropylene (PP), and a biodegradable film that can substitute for PP is also required. PP is often used as a stretched film, and this stretched polypropylene film (OPP) is used for various packaging films such as food packaging and other electronic, medical, pharmaceutical, and cosmetic products, agricultural films, and industrial protection films. Widely used for adhesive tape. The OPP satisfies the characteristics required in the secondary processing step and practical use, such as flexibility, fusing seal strength, heat resistance, and wet heat durability.
However, in the case of a film made of a lactic acid-based resin, there are problems that it is too hard to replace OPP and that the strength of the fusing seal is too low. In order to solve such a problem, Japanese Patent Application Laid-Open Nos. 8-501584 and 7-177826 disclose techniques for adding a plasticizer to a lactic acid-based resin. The resulting film has poor heat resistance (thermal dimensional stability) and poor wet heat durability and is not practical. In addition, in making a fusing seal (heat seal) bag, the suitability of the fusing sealing machine was not good.
JP-A-9-272794 and JP-A-10-100353 disclose a method of mixing a lactic acid-based resin with an aliphatic polyester having a glass transition temperature of 0 ° C. or lower to make the film flexible and to make the film transparent. However, the technology disclosed in these publications is mainly implemented for a non-stretched film, and cannot be directly applied to the production of a stretched film. Further, in these publications, films having a light transmittance of 65% or more are disclosed. However, in the range where the light transmittance is less than 90%, the transparency is insufficient and the film has a high haze, so that the appearance is high. Inferior. The haze indicates the ratio of the diffuse transmittance to the total light transmittance. When the haze is high, that is, when the diffusion of light transmitted through the film is large, the sharpness is reduced, so that the haze of flowers, vegetables, etc. The freshness and freshness of perishables cannot be produced, which lowers the commercial value of the packaged contents.
[0005]
There are techniques for improving the surface sliding performance. For example, JP-A-2000-103879 and JP-A-2000-44702 improve the sliding performance of a film by mixing inactive inorganic particles and the like with a lactic acid-based resin and stretching the resultant to roughen the surface. Is disclosed. Japanese Patent Application Laid-Open No. Hei 9-157408 discloses a film obtained by mixing polylactic acid with an aliphatic polyester having a glass transition temperature of 0 ° C. or less. Here, the deformation behavior upon stretching is different from that of polylactic acid. It is mentioned that the use of an aliphatic polyester results in a film having a rough surface. However, according to the technique disclosed in Japanese Patent Application Laid-Open No. 9-157408, when the amount of the aliphatic polyester exceeds 70 parts by mass (about 41% by mass), breakage is likely to occur in the stretching / heat treatment step. Further, since the film surface is roughened, the transparency is reduced, and the haze is precisely increased, which causes a problem that the commercial value of the packaged contents is lowered.
[0006]
The flexibility of the film is important, for example, in order to form a fusing seal bag from this film, the flexibility was particularly important. That is, in the process of manufacturing the fusing seal bag, after unwinding the film, the film is folded along the triangular plate and folded in parallel with the longitudinal direction to overlap. Therefore, a normal biaxially stretched film made of a polylactic acid-based resin is too hard to elongate, and has little absorption of a dimensional difference in a fusing and sealing process, and is easily wrinkled.
[0007]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide, in addition to the biodegradability inherent in lactic acid-based resins, physical properties similar to OPP, excellent heat resistance, wet heat durability, and even better winding properties. An object of the present invention is to provide a biodegradable film having excellent suitability for bag making and a bag made of the film.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive experiments, experiments and studies to solve these problems, and as a result, have completed the present invention.
That is, the biodegradable film of the present invention is a biodegradable film containing a lactic acid-based resin as a main component, the F2 value in the longitudinal direction of the film is 30 to 55 MPa, and the F2 value / F1 value is 170%. The film is characterized by having a layer containing 0.02 to 0.5 parts by mass of inert particles having an average particle size of 0.5 to 8 μm on the front and back surfaces of the film.
Here, the biodegradable film further contains an aliphatic polyester having a glass transition temperature of 0 ° C. or less, and the mixing ratio of the lactic acid-based resin and the aliphatic polyester in the entire biodegradable film is lactic acid-based. Resin: aliphatic polyester = 50 to 85% by mass: 50 to 15% by mass.
Further, the biodegradable film is a laminate having a surface layer, an intermediate layer, and a back surface layer, wherein the surface layer and the back surface layer are each a layer mainly containing a lactic acid-based resin, and the intermediate layer Can be a layer containing a lactic acid-based resin and an aliphatic polyester.
Here, the laminate may be a co-extruded multilayer stretched film.
The biodegradable bag of the present invention is characterized in that any one of the biodegradable films described above is molded into a bag shape by fusing and sealing.
Note that a sheet is a flat product that is thin in definition according to JIS and generally has a small thickness instead of a length and a width. By the way, a film is a thin flat product whose thickness is extremely smaller than its length and width and whose maximum thickness is arbitrarily limited, and which is usually supplied in the form of a roll (JIS K 6900). ). Therefore, it can be said that a film having a particularly small thickness among sheets is a film. However, since the boundary between the sheet and the film is not clear and cannot be clearly distinguished, in the present application, even if it is referred to as a “sheet”, it is referred to as a “film”. The term “film” also includes a “sheet”.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The biodegradable film of the present invention is a biodegradable film containing a lactic acid-based resin as a main component, and has an F2 value in the longitudinal direction of the film of 30 to 55 MPa, and an F2 / F1 value of 170% or less. It is necessary to have a layer containing 0.02 to 0.5 parts by mass of inert particles having an average particle size of 0.5 to 8 μm on the front and back surfaces of the film. The biodegradable film may contain an aliphatic polyester having a glass transition temperature of 0 ° C or lower. However, the mixing ratio of the lactic acid-based resin and the aliphatic polyester in the whole biodegradable film is 50 to 85% by mass of the lactic acid-based resin and 50 to 15% by mass of the aliphatic polyester, and the total is 100% by mass. It is preferable that the mixing ratio be as follows. The film formed at such a mixing ratio can satisfy the condition that the F2 value in the longitudinal direction of the film is 30 to 55 MPa and the F2 value / F1 value is 170% or less. In addition, flexibility can be imparted by using an aliphatic polyester. Note that the F1 value and the F2 value will be described later.
Here, the biodegradable film may have a single-layer structure or a laminate of two or more layers. In the case of a single layer configuration, this layer contains the above inert particles, and in the case of a two layer configuration, each layer contains the above inert particles, and three or more layers are stacked. In the case of a body, the surface layer and the back layer each contain the above-mentioned inert particles. In the case of a laminate comprising a surface layer, an intermediate layer and a back layer, the surface layer and the back layer are layers containing a lactic acid-based resin as a main component, and the intermediate layer is a layer containing a lactic acid-based resin and an aliphatic polyester. It is preferable that However, the mixing ratio of the lactic acid-based resin and the aliphatic polyester is lactic acid-based resin: aliphatic polyester = 50 to 85% by mass: 50 to 15% by mass based on the whole biodegradable film. The intermediate layer may be a single layer or a laminate of two or more layers. In the case of a laminate, at least one layer is preferably a layer containing an aliphatic polyester.
[0010]
The lactic acid-based resin used in the present invention includes poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, and L-lactic acid and D-lactic acid whose structural units are L-lactic acid. Copolymers that are both lactic acids, ie, poly (DL-lactic acid), and mixtures thereof.
The lactic acid resin preferably has a composition of D-lactic acid: L-lactic acid = 100: 0 to 90:10 or L-lactic acid: D-lactic acid = 0: 100 to 10:90. A lactic acid-based resin having a configuration outside this range has low crystallinity and poor heat resistance. In the present invention, a plurality of lactic acid-based resins having different copolymerization ratios of L-lactic acid (L-form) and D-lactic acid (D-form) may be blended. The average value of the copolymerization ratio of L-lactic acid (L-form) and D-lactic acid (D-form) of the system resin is set to fall within the above range. It is preferable to blend an L-form or D-form homopolymer with a copolymer, because it is possible to balance the difficulty of bleeding and the development of heat resistance.
[0011]
As a polymerization method of the lactic acid-based resin, a known method such as a condensation polymerization method or a ring-opening polymerization method can be employed. For example, in the condensation polymerization method, L-lactic acid or D-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a polylactic acid-based polymer having an arbitrary composition.
In the ring-opening polymerization method (lactide method), lactide, which is a cyclic dimer of lactic acid, has an arbitrary composition and crystallinity using a suitable catalyst while using a polymerization regulator or the like as necessary. A lactic acid-based resin can be obtained. Lactide includes L-lactide which is a dimer of L-lactic acid, D-lactide which is a dimer of D-lactic acid, and DL-lactide composed of L-lactic acid and D-lactic acid. A lactic acid-based resin having an arbitrary composition and crystallinity can be obtained by mixing and polymerizing accordingly.
[0012]
Furthermore, a small amount of a copolymer component can be added as required for improving heat resistance and the like, and a non-aliphatic dicarboxylic acid such as terephthalic acid and / or a non-aliphatic diol such as an ethylene oxide adduct of bisphenol A can be added. It can also be used.
Still further, a small amount of a chain extender, for example, a diisocyanate compound, an epoxy compound, an acid anhydride or the like can be used for the purpose of increasing the molecular weight.
[0013]
The lactic acid-based resin may be a copolymer with another hydroxycarboxylic acid unit such as α-hydroxycarboxylic acid or a copolymer with an aliphatic diol and / or an aliphatic dicarboxylic acid.
Other hydroxy-carboxylic acid units include optical isomers of lactic acid (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid), glycolic acid, 3-hydroxybutyric acid, 4-hydroxy Butyric acid, 2-hydroxy n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, bifunctional aliphatic hydroxycarboxylic acids such as 2-hydroxycaproic acid and caprolactone; Lactones such as butyrolactone and valerolactone are exemplified.
Examples of the aliphatic diol copolymerized with the lactic acid-based resin include ethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecandioic acid, and the like.
[0014]
The lactic acid-based resin used in the present invention preferably has a weight average molecular weight of 50,000 to 400,000, more preferably 100,000 to 250,000. If the molecular weight is too small, practical physical properties such as mechanical properties and heat resistance are hardly exhibited, and if it is too large, the melt viscosity is too high and molding processability is poor.
[0015]
As the aliphatic polyester having a glass transition temperature of 0 ° C. or lower used in the present invention, an aliphatic polyester excluding a lactic acid-based resin is preferably exemplified. Examples of the aliphatic polyester include polyhydroxycarboxylic acids, aliphatic polyesters or aliphatic aromatic polyesters obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid or an aromatic dicarboxylic acid, and a fat obtained by ring-opening polymerization of a cyclic lactone. Aliphatic polyesters, synthetic aliphatic polyesters, aliphatic polyesters biosynthesized in cells, and the like.
[0016]
The polyhydroxycarboxylic acid used here includes 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, And homopolymers and copolymers of hydroxycarboxylic acids such as -methyl lactic acid and 2-hydroxycaproic acid.
[0017]
Examples of the aliphatic diol used for the aliphatic polyester or the aliphatic aromatic polyester include ethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol. Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecane diacid, and examples of the aromatic dicarboxylic acid include terephthalic acid and isophthalic acid. By copolymerizing an aromatic monomer component such as terephthalic acid of 50 mol% or less as a dicarboxylic acid component, heat resistance and mechanical strength can be increased. Examples of such an aliphatic polyester include Easter Bio manufactured by Eastman Chemical Company, and Ecoflex manufactured by BASF.
Aliphatic polyesters obtained by condensing these aliphatic diols and aliphatic dicarboxylic acids, and aliphatic aromatic polyesters obtained by condensing aliphatic diols, aliphatic dicarboxylic acids and aromatic dicarboxylic acids are those described above. One or more compounds are each selected from the compounds, polycondensed, and, if necessary, jumped up with an isocyanate compound or the like to obtain a desired polymer.
[0018]
Aliphatic polyesters obtained by ring-opening polymerization of cyclic lactones can be obtained by polymerizing one or more cyclic monomers such as ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone, and the like.
Examples of the synthetic aliphatic polyester include a cyclic acid anhydride and an oxirane, for example, a copolymer of succinic anhydride and ethylene oxide, propylene oxide, or the like.
[0019]
Examples of the aliphatic polyester biosynthesized in the cells include aliphatic polyesters biosynthesized by acetyl coenzyme A (acetyl CoA) in the cells such as alkaligenes eutrophus. The aliphatic polyester biosynthesized in the cells is mainly poly-β-hydroxybutyric acid (poly 3HB). To improve practical properties as plastics, hydroxyvaleric acid (HV) is copolymerized. It is industrially advantageous to use a poly (3HB-CO-3HV) copolymer. Generally, the HV copolymerization ratio is preferably from 0 to 40 mol%. Further, instead of hydroxyvaleric acid, a long-chain hydroxyalkanoate such as 3-hydroxyhexanoate, 3-hydroxyoctanoate, or 3-hydroxyoctadecanoate may be copolymerized.
[0020]
By mixing 50 to 85% by mass of a lactic acid-based resin and 50 to 15% by mass of an aliphatic polyester having a glass transition point of 0 ° C. or less as a whole biodegradable film, it is suitable as a film having characteristics similar to OPP. Properties are imparted, and the suitability for bag making described below is also improved. If the amount of the aliphatic polyester is too large, the film surface may become sticky at a high temperature and the thermal dimensional stability may not be obtained.
[0021]
By the way, when an aliphatic polyester having a glass transition temperature of 0 ° C. or less is blended with a lactic acid-based resin, the resulting film has a rough surface due to different deformation behavior at the time of stretching, and the haze increases. By laminating a front layer and a back layer mainly containing a lactic acid-based resin on both sides of the film, a film having a small haze can be obtained. This is because the surface layer and the back surface layer suppress the diffusion of transmitted light due to the surface roughness of a layer (for example, an intermediate layer) containing a lactic acid-based resin and an aliphatic polyester, and can reduce the haze.
When the total light transmittance is 90% or more, transparency is ensured for the time being. However, if the haze of the film is high, the appearance is poor. The haze indicates the ratio of the diffuse transmittance to the total light transmittance. When the haze is high, that is, when the diffusion of light transmitted through the film is high, the sharpness decreases. In particular, when used for packaging of fresh foods, freshness and freshness cannot be produced, which lowers the commercial value of the packaged contents. Therefore, when sharpness is required, the haze is preferably 6% or less, and more preferably 5% or less.
[0022]
However, in the case of a configuration having a surface layer and a back surface layer, if the surface of these layers is not rough at all, the winding property of the film is reduced, which is inconvenient in manufacturing a bag. However, in the present invention, since the front surface and the back surface contain inert particles, according to the configuration of the present invention, the winding property of the film does not decrease. The mixed inert particles appear as numerous protrusions on the film surface during the stretching and heat treatment process, and as a result, reduce the coefficient of friction of the film and appropriately include air in the gap between the film to be wound and the film, The wound film has a beautiful appearance. When the air does not contain air moderately, there is a feeling of hoisting up too much, and "grain marks" called fish eyes appear around the rolled up material. Further, in the case of a laminated structure having a surface layer and a back surface layer, since the particles are mixed only in the front and back layers, the light transmittance of the entire film is higher than in the case where the particles are mixed in all layers (single layer), Haze is also low, which is advantageous for transparency.
[0023]
The particle size of the inert particles to be mixed is in the range of 0.5 μm to 8 μm on average, and preferably in the range of 1 μm to 4 μm. Further, the number of mixed parts of the inert particles is required to be 0.02 to 0.5 part by mass, preferably 0.05 to 0.4 part by mass with respect to the weight of each layer. If the average particle size is smaller than 0.5 μm, or if the number of mixed parts is smaller than 0.02 parts by mass, the haze is small but the film slips poorly and the winding property is reduced. On the other hand, if the particle diameter is larger than 8 μm or the number of mixed parts is larger than 4 parts by mass, the winding property is improved, but the haze is increased. Therefore, by adjusting the particle size and the number of mixed parts within the above range, a film having a desired haze value and winding property can be obtained.
[0024]
As the inert particles to be used, known particles used for PET, OPP and the like can be used. Examples of such inert particles include inorganic particles such as silica, talc, kaolin, calcium carbonate, and titanium oxide, and resin-based organic particles such as acrylate particles and styrene particles. Since the latter resin-based organic particles are only usable, they are significantly inferior to naturally occurring inorganic particles from the viewpoint of affinity for the natural environment, and are not sufficiently biodegradable. It is preferable to avoid use.
[0025]
In addition to the above, each layer may include a heat stabilizer, an antioxidant, a UV absorber, a light stabilizer, a pigment, a colorant, a lubricant, a nucleating agent, an inorganic filler, and a plasticizer as long as the effects of the present invention are not impaired. And the like.
[0026]
The type and blending ratio of the aliphatic polyester, the thickness of the front and back layers and the thickness of the intermediate layer, and the like can be appropriately selected, but are preferably selected in consideration of the following bag-making properties.
That is, for example, when manufacturing a fusing seal bag, after unwinding while applying a constant load to the film, while folding the film along a triangular plate, folded in parallel to the longitudinal direction and overlapped, While being blown out, is melt-sealed to a predetermined length at a predetermined pitch. However, if the film has a "slack", the superimposed dimensions will be different, and the distortion due to the difference in dimensions will appear as wrinkles, or the seal will float, resulting in a remarkable seal strength. Inferior parts may be formed.
[0027]
“Sag” is caused by unevenness in temperature during the stretching, heat treatment or cooling process, resulting in a dimensional difference in the film, or uneven thickness of the film. Is generated, and distortion occurs in that portion. Generally, manufacturers of films used for packaging and industrial use manufacture films with care to improve the thickness accuracy and to avoid "slack". At present, slack cannot be easily eliminated due to external and external factors.
[0028]
As an index for solving such a problem that a problem at the time of bag making due to “sag” or the like is likely to occur, an F2 value of 30 to 55 MPa and an F2 value / F1 value of 170% or less are used. is there. The F1 value and the F2 value are values obtained by dividing the strength (load) when the film is elongated by 1% and 2%, respectively, by the thickness of the film. That is, when the F1 value or the F2 value is small, the film is easily stretched with a small load, and the unwinding load and the unwinding load at the time of bag making can absorb a dimensional difference due to the overlapping, and the fold portion may be damaged. There are few things to enter. Furthermore, as the F2 / F1 value is lower, even a finished bag with a slack portion that has been stretched once is less deformed by curling and the like after releasing the stress, resulting in a clean finish. The stretched film consisting of lactic acid-based resin alone has a large F2 value of 60 MPa or more and depends on the stretching conditions, and when stretched by 3 to 4%, exceeds the yield point, so it is difficult to substantially absorb "slack". It is.
If the F2 value is greater than 55 MPa, wrinkles and scratches are likely to occur, and if the F2 value is less than 30 MPa, the film will be stretched and deformed significantly, resulting in a poor finish after being formed into a bag. Further, even when the value of F2 / F1 exceeds 170%, the finished product is inferior.
Therefore, the F2 value in the longitudinal direction of the biodegradable film needs to be 30 to 55 MPa, and the F2 value / F1 value needs to be 170% or less.
[0029]
The biodegradable sheet of the present invention is preferably stretched. For the stretched film, any method can be used as long as it is a normal stretched film forming method. The film raw material may be pre-compounded using a co-rotating twin-screw extruder, a kneader, a Henschel mixer, or the like, or each raw material may be dry blended and directly charged into the extruder. The liquid component such as a plasticizer may be blended at the same time as the solid component, but may be injected separately from the solid component through a vent of an extruder using a pump or the like. As a specific example of the stretched film forming method, a roll stretching, a tenter stretching, a tubular method, an inflation method, or the like can be employed.
[0030]
As the stretching conditions, the film temperature is preferably from 50 to 100 ° C., more preferably from 60 to 90 ° C., and the stretching ratio is adjusted at least in the range of 1.5 to 5.0 in the uniaxial direction. Is preferred. If the stretching conditions are out of the range, the film may be broken or whitened, or a trouble such as draw-down may occur, and stretching may be difficult.
[0031]
Following the stretching of the film, in order to further enhance the effects of the present invention, it is desirable to perform heat treatment with a fixed width. As the heat treatment conditions, the temperature is preferably from 70 to 160 ° C., more preferably from 90 to 150 ° C., and the treatment time is preferably adjusted within a range from 2 seconds to 5 minutes. If the processing temperature is lower than the above range, it is difficult to obtain the heat treatment effect, and if the processing temperature is higher, the film tends to be drawn down. If the treatment time is shorter than 2 seconds, it is difficult to obtain the heat treatment effect, and if the treatment time is longer than 5 minutes, the heat treatment equipment becomes large and the economical efficiency is reduced.
[0032]
In the present invention, the heat shrinkage at 120 ° C. × 15 minutes is determined by the ratio of the D-form to the L-form of the lactic acid-based resin, the selection of the aliphatic polyester, and the effects of the heat treatment. Both MD) are preferably reduced to 10% or less, which can be achieved in the present invention. Within this range, good heat resistance (thermal dimensional stability) can be achieved, so that the film shrinks, undulates, curls, etc. during secondary processing such as printing and bag making, or during storage. This is practical without causing the problem described above.
[0033]
The thickness of the film is not particularly limited, but is preferably 7 to 100 μm for packaging or bag use. For example, in the case of a three-layer structure, the thickness of each of the front surface layer and the back surface layer is preferably 0.5 μm or more. If the front surface layer and the back surface layer are each 0.5 μm or more, the mixed inorganic particles and the like do not fall off.
[0034]
The lactic acid-based resin film prepared as described above has physical properties similar to OPP, and can be suitably processed into a fusing seal bag. In addition, by providing a front and back layer containing a polylactic acid-based resin as a main component, an increase in haze can be suppressed, and further, by mixing inorganic particles in the front and back layers, a good winding property is imparted to the film. can do.
[0035]
【Example】
Hereinafter, examples of the present invention will be described. However, the following examples are merely examples for suitably describing the present invention, and do not limit the present invention.
The measurement values shown in the following examples were calculated by performing measurements under the following conditions, and the evaluation was performed by the following evaluation method.
[0036]
《Measurement method and evaluation method》
(1) F1 value, F2 value and F2 value / F1 value
A test piece was cut out of the film along a longitudinal direction (MD) with a sharp blade while paying attention not to make a notch or a scratch so as to have a length of about 140 to 160 mm and a width of 3 mm. Using a Tensilon II type tensile tester manufactured by Toyo Seiki Co., Ltd., the test piece was chucked at a distance of 100 mm to a gripper of the tensile tester and pulled at a tensile speed of 5 mm / min. The load when the test piece (film) was elongated by 1% and 2% was measured, and the F1 value and the F2 value were obtained by substituting the respective values into the following equations. The F2 / F1 value was calculated from the F1 value and the F2 value. However, when the test piece was chucked to the gripper of the tensile tester, accurate elongation could not be obtained unless the test piece was vertically mounted. The measurement atmosphere temperature was 23 ± 2 ° C.
F1 = (load at 1% elongation) / (cross-sectional area of film)
F2 = (Load at 1% elongation) / (Cross-sectional area of film)
[0037]
(2) Total light transmittance and haze
Based on JIS K 7105, the total light transmittance and the diffuse transmittance were obtained. Next, haze was calculated by substituting this value into the following equation.
Haze (%) = (diffuse transmittance / total light transmittance) × 100
[0038]
(3) Rewindability
The film wound up with a winder during film formation was cut into a predetermined width, here 600 mm width, using a slitter, and the appearance of the film roll when rolled up at this width was visually observed and evaluated. . The evaluation criteria are as follows: If the film is wrinkled, and if any marks are observed on the rolled-up film roll, the product is judged to be a poor product and is indicated by the symbol "x". When wrinkles were easily formed, the film was represented by a symbol “△”. When neither wrinkles nor grain marks were observed in the film, the film was represented by a symbol “○” as a good product.
[0039]
(4) Suitability of fusing seal bag making machine
Bag making was performed using a fusing seal bag making machine HK-40V manufactured by Totani Giken Kogyo Co., Ltd. Using a film roll having a width of 600 mm, 100 side seal bags having a width of 148 mm and a length of 300 mm were produced under optimum conditions. The number of bags in which no wrinkles or curls were observed was counted and evaluated according to the following criteria.
○ 900 to 1000 bags with no wrinkles or curls were found
△ 700 to 899 bags with no wrinkles or curls were found.
× Only 699 or less bags with no wrinkles or curls were found.
[0040]
(5) Comprehensive evaluation (finishability)
The evaluation was performed according to the following evaluation criteria.
○ Good in all of haze, winding property and suitability for bag making machine
△ Low haze, but excellent in rollability and suitability for bag making machine
× Insufficient suitability for bag making machine
[0041]
《Manufacture of lactic acid resin》
15 ppm of tin octylate was added to 97 kg of L-lactide (trade name “PURASORB L”) manufactured by PURACK JAPAN and 3 kg of DL-lactide (trade name “PURASORB DL”) manufactured by the company, and a stirrer and a heating device were added. It was put into a equipped 500 L batch polymerization tank. Subsequently, the atmosphere was replaced with nitrogen, and polymerization was performed at a temperature of 185 ° C. and a stirring speed of 100 rpm for 60 minutes. The obtained melt is subjected to a twin-screw extruder of 40 mmφ and the same direction manufactured by Mitsubishi Heavy Industries, Ltd. equipped with three stages of vacuum vents, and while being degassed at a vent pressure of 4 torr, extruded into a strand at 200 ° C. while pelletizing. A pellet-shaped lactic acid-based resin was obtained. The obtained lactic acid-based resin had a weight average molecular weight of about 200,000 and an L-form content of 98.6%.
[0042]
<< Preparation of lactic acid resin pellets containing silica >>
Next, silica or calcium carbonate was blended with the prepared lactic acid-based resin to form pellets, and the following four types of master batches were prepared.
(1) Masterbatch A
The prepared lactic acid-based resin was mixed with 2% of granular silica having an average particle diameter of about 3 μm (Sylysia 730 manufactured by Fuji Silysia Chemical Ltd.), and a compact biaxial screw having a diameter of 40 mm manufactured by Mitsubishi Heavy Industries, Ltd. After compounding at 200 ° C. using an extruder, the mixture was formed into pellets. This pellet was designated as master batch A.
(2) Master batch B and master batch C
The prepared lactic acid-based resin was added to granular silica having an average particle diameter of about 1.4 μm (Sylysia 310P manufactured by Fuji Silysia Chemical Ltd.) and granular silica having an average particle diameter of about 6 μm (manufactured by Fuji Silysia Chemical Ltd.) (Silicia 770) was mixed at 5% and compounded at 200 ° C. using a small coaxial twin-screw extruder having a diameter of 40 mm manufactured by Mitsubishi Heavy Industries, Ltd., and then formed into pellets. These pellets were designated as masterbatch B and masterbatch C.
(3) Masterbatch D
The prepared lactic acid-based resin was mixed with 5% of light calcium carbonate (Tamapearl TP-222H manufactured by Okutama Kogyo Co., Ltd.) having an average particle size of about 0.3 μm, and a small 40 mm diameter manufactured by Mitsubishi Heavy Industries, Ltd. was mixed. Compounded at 200 ° C. using a directional twin screw extruder to form pellets. The pellet was used as a master batch D.
[0043]
(Example 1)
As a raw material for the intermediate layer, the prepared lactic acid-based resin and polybutylene succinate / adipate (trade name: Bionore # 3003, Showa Kogaku Co., Ltd.) ) Is supplied to the feed port of a 58 mmφ co-rotating twin screw extruder as a raw material for the front and back layers, and the prepared lactic acid-based resin and master batch A The raw materials were mixed and adjusted so that the blending amount of silica was 0.05 parts, and the raw materials were melted at 200 ° C., respectively, and then the molten resin was led to a multi-manifold type die through separate conduits, and the surface was melted. After being extruded in a three-layer structure of a layer / intermediate layer / backside layer, it is quenched while being brought into contact with a casting roll set at 35 ° C. by an electrostatic adhesion method to form a three-layer structure of about 250 μm thick. It was taken off as over door. However, the respective extrusion rates from the die were adjusted so that the thickness ratio of the surface layer: intermediate layer: backside layer was 1: 6: 1. Next, the sheet was passed through a sequential biaxial tenter manufactured by Mitsubishi Heavy Industries, Ltd. to perform biaxial stretching. That is, the film is longitudinally stretched 3.0 times at a temperature of 73 ° C., transversely stretched 3.2 times (compared to a cast sheet) at a preheating zone temperature of 74 ° C. and a stretching zone temperature of 78 ° C., and then stretched at 140 ° C. Heat treatment was performed for 5 seconds to obtain a laminated stretched film having a width of about 1500 mm and a film thickness of about 25 μm. The obtained laminated stretched film was cut into two pieces having a width of 600 mm using a slitter manufactured by Nishimura Seisakusho Co., Ltd. and wound up on a paper tube having an inner diameter of 76 mm.
The above measurement and evaluation were performed on the laminated film thus obtained. Table 1 shows the results. In addition, the F2 value of the laminated stretched film was 51.0, and the F2 value / F1 value was 166%.
[0044]
(Example 2)
In Example 1, the raw material for the intermediate layer was changed to a mixture of the prepared lactic acid-based resin and Vionore # 3003 at a mass ratio of 55:45, and the prepared lactic acid-based resin was used as the raw material for the front and back layers. Was changed so that the masterbatch B was mixed so that the mixing number of silica was 0.3 parts, and the thickness ratio of each layer was appropriately adjusted so that the surface layer: intermediate layer: backside layer = 1: 4: 1. A laminated stretched film was obtained in the same manner as in Example 1, except that the extrusion was performed while extruding.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 1 shows the results. In addition, the F2 value of the laminated stretched film was 40.5, and the F2 value / F1 value was 151%.
[0045]
(Example 3)
In Example 1, the raw material for the intermediate layer was changed to a mixture of the prepared lactic acid-based resin and Bionole # 3003 at a mass ratio of 70:30, and the prepared lactic acid-based resin was used as the raw material for the front and back layers. Was changed so that the masterbatch B was mixed so that the blending number of silica was 0.1 part, and the thickness ratio of each layer was appropriately adjusted so that the surface layer: intermediate layer: backside layer = 1: 8: 1. A laminated stretched film was obtained in the same manner as in Example 1, except that the extrusion and the longitudinal stretching magnification were changed to 2.8 times.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 1 shows the results. The F2 value of the laminated stretched film was 41.9, and the F2 / F1 value was 153%.
[0046]
(Example 4)
In Example 1, as a raw material for the intermediate layer, polycaprolactone (trade name: Praxel H7, manufactured by Daicel Chemical Industries, Ltd.) was mixed as an aliphatic polyester with the produced lactic acid-based resin so as to have a mass ratio of 80:20. In the same manner as in Example 1 except that the raw material for the front and back layers was changed to a mixture in which the prepared lactic acid-based resin was mixed with the master batch A so that the blending number of silica was 0.1 part. Thus, a laminated stretched film was obtained.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 1 shows the results. In addition, the F2 value of the laminated stretched film was 43.4, and the F2 value / F1 value was 163%.
[0047]
(Example 5)
In Example 1, as a raw material for the intermediate layer, polycaprolactone (trade name: Praxel H7, manufactured by Daicel Chemical Industries, Ltd.) was mixed as an aliphatic polyester with the prepared lactic acid-based resin so as to have a mass ratio of 40:60. In the same manner as in Example 1 except that the raw material for the front and back layers was changed to a mixture of the prepared lactic acid-based resin and the masterbatch B so that the blending number of silica was 0.1 part. Thus, a laminated stretched film was obtained.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 1 shows the results. In addition, the F2 value of the laminated stretched film was 30.3, and the F2 value / F1 value was 145%.
[0048]
(Comparative Example 1)
In Example 1, the raw material for the intermediate layer was changed to a mixture of the prepared lactic acid-based resin and Bionole # 3003 at a mass ratio of 90:10, and the raw material for the front and back layers was changed to the prepared lactic acid-based resin. A laminated stretched film was obtained in the same manner as in Example 1 except that the master batch B was changed to a mixture in which the mixing number of silica was 0.1 part.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 2 shows the results. In addition, the F2 value of the laminated stretched film was 70.4, and the F2 value / F1 value was 177%.
[0049]
(Comparative Example 2)
In Example 1, the raw material for the intermediate layer was changed to a mixture of the prepared lactic acid-based resin and Bionole # 3003 at a mass ratio of 30:70, and the prepared lactic acid-based resin was used as the raw material for the front and back layers. A laminated stretched film was obtained in the same manner as in Example 1 except that the master batch B was changed to a mixture in which the mixing number of silica was 0.1 part.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 2 shows the results. In addition, the F2 value of the laminated stretched film was 26.2, and the F2 value / F1 value was 141%.
[0050]
(Example 6)
The prepared lactic acid-based resin, master batch A, and Bionole # 3003 were mixed at a mass ratio of 65: 5: 30 (however, the blending amount of silica was about 0.1 part), and this was mixed with a 75 mmφ coaxial biaxial. It was supplied to the feed ports of the extruder and the 58 mmφ co-directional twin screw extruder, and was melted at a temperature of 200 ° C. The molten resin was guided from the extruder through separate conduits, and extruded using a multi-manifold type die while controlling the respective extrusion amounts so that the composition ratio of the layer thickness was 1: 6: 1. Next, the sheet was quenched while being brought into contact with a casting roll set at 35 ° C. by an electrostatic adhesion method, and a kind of three-layer sheet having a thickness of about 250 μm, that is, a sheet having a substantially single-layer structure was pulled. This was stretched in the same manner as in Example 1 to obtain a substantially single-layer stretched film.
The same measurement and evaluation as in Example 1 were performed on the obtained stretched film. Table 2 shows the results. The F2 value of the stretched film was 37.0, and the F2 value / F1 value was 151%.
[0051]
(Comparative Example 3)
In Example 1, the raw material for the intermediate layer was changed to a mixture of the prepared lactic acid-based resin and Bionole # 3003 at a mass ratio of 70:30, and the prepared lactic acid-based resin was used as the raw material for the front and back layers. A laminated stretched film was obtained in the same manner as in Example 1 except that the master batch D was changed to a mixture in which the mixing number of calcium carbonate was 0.4 part.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 2 shows the results. In addition, the F2 value of the laminated stretched film was 40.3, and the F2 value / F1 value was 154%.
[0052]
(Example 7)
In Example 1, the raw material for the intermediate layer was changed to a mixture of the prepared lactic acid-based resin and Bionole # 3003 at a mass ratio of 70:30, and the prepared lactic acid-based resin was used as the raw material for the front and back layers. A laminated stretched film was obtained in the same manner as in Example 1 except that the master batch C was changed to a mixture in which the mixing number of silica was 0.1 part. The F2 value and F2 / F1 value of the laminated stretched film were as shown in Table 2.
About the obtained laminated | stretched laminated film, the same measurement and evaluation as Example 1 were performed. Table 2 shows the results. The F2 value of the laminated stretched film was 52.1, and the F2 value / F1 value was 168%.
[0053]
[Table 1]
Figure 2004082512
[0054]
[Table 2]
Figure 2004082512
[0055]
As is clear from Table 1 and Table 2, the co-extruded laminated stretched films of Examples 1 to 5 in which the F2 value is in the range of 30 to 55 MPa and the F2 value / F1 value is 170% or less are formed into a bag. It was excellent in winding property and suitability for a bag making machine required for molding, and the finished state of the formed bag was also good. In addition, it was found that the film had a total light transmittance of 90% or more and a haze of 6% or less, and was excellent in transparency and sharpness. Further, the substantially single-layer stretched film of Example 6 has a total light transmittance of 90% or more, but has a haze of 6.9, so that the sharpness is slightly inferior to those of the laminated stretched films of Examples 1 to 5. However, it was found that the winding properties and suitability for the bag making machine were excellent, and the finished state of the obtained bags was also good. The co-extruded laminated stretched film of Example 7 has a total light transmittance of 90% or more, but has a haze of 6.5, so the sharpness is slightly inferior to the laminated stretched films of Examples 1 to 5, It was found that the winding properties and suitability for the bag making machine were excellent, and the finished state of the obtained bags was higher than a practical level. The films of Examples 1 to 7 have excellent biodegradability.
On the other hand, the laminated stretched films of Comparative Example 1 in which the F2 value was larger than 55 MPa and Comparative Example 2 in which the F2 value was smaller than 30 MPa were inferior in suitability for a bag making machine, and the finished state of the bag was also problematic. . In addition, the film of Comparative Example 2 had a haze of 5.9, and was slightly inferior to the laminated stretched films of Examples 1 to 5. Further, the laminated stretched film of Comparative Example 3 containing silica having an average particle size of less than 0.5 μm in the front and back layers is inferior in winding property and suitability for a bag making machine, and there is also a problem in the finished state of the bag body. Was something.
[0056]
【The invention's effect】
As described above, the biodegradable film of the present invention has a biodegradability because the lactic acid-based resin is the main component, and the F2 value in the longitudinal direction of the film is adjusted to 30 to 55 MPa. By setting the value / F1 value to 170% or less, characteristics that can be substituted for the conventional OPP can be obtained.
Further, the biodegradable film of the present invention is a co-extruded multi-layer stretched film comprising an intermediate layer and front and back layers, and the composition of each layer is determined by setting the intermediate layer to a lactic acid-based resin and a fat having a glass transition temperature of 0 ° C or lower. By forming a mixture with an aromatic polyester, and by including inactive particles having an average particle diameter of 0.5 to 8 μm in the front and back layers, it is possible to secure film characteristics required when manufacturing a bag. I have.
As described above, according to the present invention, in addition to the biodegradability inherent to lactic acid-based resins, the lactic acid-based resin has physical properties similar to OPP, excellent heat resistance and wet heat durability, and bleeding of a plasticizer. It is possible to provide a film and a bag which are transparent and excellent in winding property and suitability for a bag making machine.

Claims (5)

乳酸系樹脂を主成分とする生分解性フィルムであって、該フィルムの長手方向のF2値が30〜55MPaで、かつF2値/F1値が170%以下であり、該フィルムの表面及び裏面に平均粒子径が0.5〜8μmの不活性粒子を0.02〜0.5質量部含有する層を有することを特徴とする生分解性フィルム。A biodegradable film containing a lactic acid-based resin as a main component, wherein the F2 value in the longitudinal direction of the film is 30 to 55 MPa, the F2 value / F1 value is 170% or less, and A biodegradable film having a layer containing 0.02 to 0.5 parts by mass of inert particles having an average particle size of 0.5 to 8 μm. 前記生分解性フィルムが、ガラス転移温度が0℃以下の脂肪族系ポリエステルを更に含有し、前記生分解性フィルム全体における乳酸系樹脂と前記脂肪族系ポリエステルの配合割合が、乳酸系樹脂:脂肪族系ポリエステル=50〜85質量%:50〜15質量%であることを特徴とする請求項1記載の生分解性フィルム。The biodegradable film further contains an aliphatic polyester having a glass transition temperature of 0 ° C. or less, and the mixing ratio of the lactic acid-based resin and the aliphatic polyester in the entire biodegradable film is lactic acid-based resin: fat The biodegradable film according to claim 1, wherein the content of the group polyester is 50 to 85% by mass: 50 to 15% by mass. 前記生分解性フィルムが表面層、中間層及び裏面層を有する積層体であって、該表面層及び該裏面層はそれぞれ乳酸系樹脂を主成分とする層であり、かつ、該中間層は乳酸系樹脂と脂肪族系ポリエステルとを含む層であることを特徴とする請求項2記載の生分解性フィルム。The biodegradable film is a laminate having a surface layer, an intermediate layer, and a back layer, wherein the surface layer and the back layer are each a layer containing a lactic acid-based resin as a main component, and the intermediate layer is lactic acid. The biodegradable film according to claim 2, wherein the biodegradable film is a layer containing a base resin and an aliphatic polyester. 前記積層体が共押出し多層延伸フィルムであることを特徴とする請求項3記載の生分解性フィルム。The biodegradable film according to claim 3, wherein the laminate is a co-extruded multilayer stretched film. 請求項1から4のいずれかの生分解性フィルムを溶断シールすることにより袋状に成形してなることを特徴とする生分解性袋体。A biodegradable bag formed by fusing and sealing the biodegradable film according to claim 1 to form a bag.
JP2002246474A 2002-08-27 2002-08-27 Biodegradable film and biodegradable bag comprising the film Expired - Lifetime JP4210492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246474A JP4210492B2 (en) 2002-08-27 2002-08-27 Biodegradable film and biodegradable bag comprising the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246474A JP4210492B2 (en) 2002-08-27 2002-08-27 Biodegradable film and biodegradable bag comprising the film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007219846A Division JP2007320321A (en) 2007-08-27 2007-08-27 Biodegradable film and biodegradable bag comprised of the film

Publications (2)

Publication Number Publication Date
JP2004082512A true JP2004082512A (en) 2004-03-18
JP4210492B2 JP4210492B2 (en) 2009-01-21

Family

ID=32054364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246474A Expired - Lifetime JP4210492B2 (en) 2002-08-27 2002-08-27 Biodegradable film and biodegradable bag comprising the film

Country Status (1)

Country Link
JP (1) JP4210492B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313998A (en) * 2004-04-02 2005-11-10 Asahi Kasei Life & Living Corp Biodegradable baglike product
JP2006137157A (en) * 2004-11-15 2006-06-01 Tohcello Co Ltd Multilayered biaxially stretched film and its use
JP2006192805A (en) * 2005-01-14 2006-07-27 Tohcello Co Ltd Stretched laminated film of lactic acid-based polymer
JP2006205600A (en) * 2005-01-28 2006-08-10 Tohcello Co Ltd Laminated film comprising biodegradable aliphatic polyester
JP2006205599A (en) * 2005-01-28 2006-08-10 Tohcello Co Ltd Laminated film comprising biodegradable aliphatic polyester and its use
JP2007030350A (en) * 2005-07-27 2007-02-08 Mitsubishi Plastics Ind Ltd Polylactic acid-based laminated biaxially stretched film for pillow packaging
JP2007216541A (en) * 2006-02-17 2007-08-30 Daihachi Chemical Industry Co Ltd Polylactic acid based resin laminated film, its manufacturing method, and its easy degrading discarding method
JP2007270076A (en) * 2006-03-31 2007-10-18 Tohcello Co Ltd Polylactic acid type stretched film, stretched laminated film and its use
JP2007320321A (en) * 2007-08-27 2007-12-13 Mitsubishi Plastics Ind Ltd Biodegradable film and biodegradable bag comprised of the film
JP2009107669A (en) * 2007-10-30 2009-05-21 Unitika Ltd Packaging bag
US7951438B2 (en) 2007-12-10 2011-05-31 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
JP2014526988A (en) * 2011-08-10 2014-10-09 ランクホルスト ピューレ コンポジッツ ビー.ブイ. Multi-component tape, film or thread and method for preparing the same
US9023443B2 (en) 2009-09-25 2015-05-05 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9238324B2 (en) 2010-03-31 2016-01-19 Toray Plastics (Amercia), Inc. Biaxially oriented polylactic acid film with reduced noise level
US9314999B2 (en) 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313998A (en) * 2004-04-02 2005-11-10 Asahi Kasei Life & Living Corp Biodegradable baglike product
JP2006137157A (en) * 2004-11-15 2006-06-01 Tohcello Co Ltd Multilayered biaxially stretched film and its use
JP2006192805A (en) * 2005-01-14 2006-07-27 Tohcello Co Ltd Stretched laminated film of lactic acid-based polymer
JP2006205600A (en) * 2005-01-28 2006-08-10 Tohcello Co Ltd Laminated film comprising biodegradable aliphatic polyester
JP2006205599A (en) * 2005-01-28 2006-08-10 Tohcello Co Ltd Laminated film comprising biodegradable aliphatic polyester and its use
JP2007030350A (en) * 2005-07-27 2007-02-08 Mitsubishi Plastics Ind Ltd Polylactic acid-based laminated biaxially stretched film for pillow packaging
JP2007216541A (en) * 2006-02-17 2007-08-30 Daihachi Chemical Industry Co Ltd Polylactic acid based resin laminated film, its manufacturing method, and its easy degrading discarding method
JP2007270076A (en) * 2006-03-31 2007-10-18 Tohcello Co Ltd Polylactic acid type stretched film, stretched laminated film and its use
JP2007320321A (en) * 2007-08-27 2007-12-13 Mitsubishi Plastics Ind Ltd Biodegradable film and biodegradable bag comprised of the film
JP2009107669A (en) * 2007-10-30 2009-05-21 Unitika Ltd Packaging bag
US7951438B2 (en) 2007-12-10 2011-05-31 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9314999B2 (en) 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US9023443B2 (en) 2009-09-25 2015-05-05 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
US9238324B2 (en) 2010-03-31 2016-01-19 Toray Plastics (Amercia), Inc. Biaxially oriented polylactic acid film with reduced noise level
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
JP2014526988A (en) * 2011-08-10 2014-10-09 ランクホルスト ピューレ コンポジッツ ビー.ブイ. Multi-component tape, film or thread and method for preparing the same

Also Published As

Publication number Publication date
JP4210492B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
EP1671786B1 (en) Biodegradable layered sheet
EP1577346B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
JP4210492B2 (en) Biodegradable film and biodegradable bag comprising the film
EP1553139A1 (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
JP4405120B2 (en) Polylactic acid biaxially stretched laminated film with heat sealability
EP1408086A1 (en) Aliphatic polyester resin composition and films containing the same
WO2004007197A1 (en) Biodegradable laminate sheet and molded item from biodegradable laminate sheet
US20030180561A1 (en) Multi-layered polyester film
JP3084239B2 (en) Biodegradable laminated film
JP4452014B2 (en) Polylactic acid resin film and polylactic acid resin fusing seal bag
WO2016158736A1 (en) Biodegradable white film and manufacturing method therefor
KR100872280B1 (en) Biodegradable biaxially oriented laminate film
JP2006069146A (en) Inflation molded biodegradable flexible film
WO2002034818A1 (en) Biaxially oriented aliphatic polyester film and process for producing the same
JP2004131726A (en) Biodegradable matte film
JP5777133B2 (en) Polylactic acid resin film
JP5396688B2 (en) Polyester film
JP2007320321A (en) Biodegradable film and biodegradable bag comprised of the film
JP2004090608A (en) Laminated sheet having foldable ruled line and molded article using the same
JP4080953B2 (en) Polylactic acid-based heat-folded molded body and method for producing the same
JP3984492B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP2005219487A (en) Laminated film
JP4669890B2 (en) Method for producing thermoformed body
JP4206302B2 (en) Polylactic acid-based laminated sheet for heat bending molding
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Ref document number: 4210492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term