JP2007216541A - Polylactic acid based resin laminated film, its manufacturing method, and its easy degrading discarding method - Google Patents
Polylactic acid based resin laminated film, its manufacturing method, and its easy degrading discarding method Download PDFInfo
- Publication number
- JP2007216541A JP2007216541A JP2006040589A JP2006040589A JP2007216541A JP 2007216541 A JP2007216541 A JP 2007216541A JP 2006040589 A JP2006040589 A JP 2006040589A JP 2006040589 A JP2006040589 A JP 2006040589A JP 2007216541 A JP2007216541 A JP 2007216541A
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- layer
- laminated film
- resin
- plasticizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000747 poly(lactic acid) Polymers 0.000 title claims abstract description 133
- 239000004626 polylactic acid Substances 0.000 title claims abstract description 133
- 229920005989 resin Polymers 0.000 title claims abstract description 90
- 239000011347 resin Substances 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000000593 degrading effect Effects 0.000 title description 5
- 239000004014 plasticizer Substances 0.000 claims abstract description 126
- 239000011342 resin composition Substances 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims description 39
- -1 acetyl ricinoleic acid ester Chemical class 0.000 claims description 30
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 21
- 108090000790 Enzymes Proteins 0.000 claims description 15
- 102000004190 Enzymes Human genes 0.000 claims description 15
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 10
- 239000000194 fatty acid Substances 0.000 claims description 10
- 229930195729 fatty acid Natural products 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 7
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 6
- 229920003232 aliphatic polyester Polymers 0.000 claims description 6
- 239000000944 linseed oil Substances 0.000 claims description 6
- 235000021388 linseed oil Nutrition 0.000 claims description 6
- 244000005700 microbiome Species 0.000 claims description 6
- 238000000807 solvent casting Methods 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 4
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 4
- 239000011118 polyvinyl acetate Substances 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- 239000001361 adipic acid Substances 0.000 claims description 3
- 235000011037 adipic acid Nutrition 0.000 claims description 3
- 229960003656 ricinoleic acid Drugs 0.000 claims description 3
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000003549 soybean oil Substances 0.000 claims description 3
- 235000012424 soybean oil Nutrition 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 121
- 238000006065 biodegradation reaction Methods 0.000 description 20
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002361 compost Substances 0.000 description 6
- 239000005001 laminate film Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 235000013305 food Nutrition 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical group C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 108010067770 Endopeptidase K Proteins 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 2
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 2
- FMHKPLXYWVCLME-UHFFFAOYSA-N 4-hydroxy-valeric acid Chemical compound CC(O)CCC(O)=O FMHKPLXYWVCLME-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229930182843 D-Lactic acid Natural products 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical group C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 229940022769 d- lactic acid Drugs 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000005003 food packaging material Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000012567 medical material Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical class CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- 229940006015 4-hydroxybutyric acid Drugs 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 241000751100 Pityopus Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000003841 Raman measurement Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- REVZBRXEBPWDRA-UHFFFAOYSA-N Stearyl citrate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CC(O)(C(O)=O)CC(O)=O REVZBRXEBPWDRA-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001278 adipic acid derivatives Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920006167 biodegradable resin Polymers 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000004177 carbon cycle Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229940116396 monostearyl citrate Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、農業用フィルムのような農業又は園芸材料;コンポストバッグ;ラップフィルムなどの食品包装材料;手術糸のような医用材料;魚網のような漁業材料;ラミネート用フィルム;ラベル;容器などに利用できる生分解性のポリ乳酸系樹脂積層フィルムに関する。詳しくは、生分解の時期を自由にコントロールできるポリ乳酸系樹脂積層フィルムに関する。さらに本発明は、この積層フィルムの製造方法及び易分解化処理方法に関する。 Agricultural or horticultural materials such as agricultural films; compost bags; food packaging materials such as wrap films; medical materials such as surgical threads; fishery materials such as fish nets; laminating films; labels; The present invention relates to a biodegradable polylactic acid resin laminated film that can be used. In detail, it is related with the polylactic acid-type resin laminated film which can control the time of biodegradation freely. Furthermore, this invention relates to the manufacturing method of this laminated film, and the easy-decomposition processing method.
プラスチックは軽く、強く、しかも耐久性、成型加工性に優れることから包装材料をはじめ、弱電部品、自動車部品、建材、日用雑貨などの多岐の分野で多量に使用されている。プラスチックの大半を占めるポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニルなどの汎用プラスチックは使用後の処分方法として、焼却や埋め立てが行われている。 Plastics are light and strong, and because they are excellent in durability and moldability, they are used in large quantities in various fields such as packaging materials, light electrical parts, automobile parts, building materials, and household goods. General-purpose plastics such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, which account for the majority of plastics, are incinerated or landfilled as disposal methods after use.
これらの汎用プラスチックは化学的に安定であるため、埋め立て処分を行うと原型をとどめたまま半永久的に残留し、埋立地不足が深刻化する原因の一つとなっている。このように、不要となった大量のプラスチックのゴミをどのように処理するかが、大きな社会問題になっている。また、自然環境下に廃棄された場合には、美観を損ねたり、鳥などの生物が誤って捕食したり、さらには自然環境下の生態系を破壊して環境破壊の一因となっている。 Since these general-purpose plastics are chemically stable, when they are disposed of in landfills, they remain semi-permanently while remaining in their original form, and this is one of the causes of the shortage of landfills. In this way, how to deal with a large amount of plastic waste that has become unnecessary is a major social problem. In addition, when discarded in the natural environment, aesthetics are lost, birds and other organisms accidentally prey on, and the ecosystem in the natural environment is destroyed, contributing to environmental destruction. .
このような地球規模での環境問題に対しての関心が高まるにつれて、自然環境下で生分解して自然界の炭素サイクルに取り込まれる生分解性プラスチックの研究が盛んに行われている。 As interest in environmental problems on a global scale is increasing, research on biodegradable plastics that are biodegraded in the natural environment and incorporated into the natural carbon cycle is actively conducted.
注目されている生分解性プラスチックとしてポリ乳酸がある。ポリ乳酸は高いガラス転移温度を有する熱可塑性樹脂であり、結晶性のものは高い融点(180℃)を有する。原料となる乳酸はコンスターチ等の安価な原料の発酵から効率的に得られることが知られている。ポリ乳酸は通常、この乳酸を直接または環状2量体を経由して重合される。このようにポリ乳酸は農産物を原料とするため石油資源に依存せず、また高強度、高弾性率という物性的にも優れた点が多い。また、分解生成物は乳酸、水、二酸化炭素であり、有害物質は排出されない。 Polylactic acid is a biodegradable plastic that has attracted attention. Polylactic acid is a thermoplastic resin having a high glass transition temperature, and crystalline one has a high melting point (180 ° C.). It is known that lactic acid used as a raw material can be efficiently obtained from fermentation of an inexpensive raw material such as corn starch. Polylactic acid is usually polymerized directly or via a cyclic dimer. Thus, since polylactic acid uses agricultural products as raw materials, it does not depend on petroleum resources, and has many physical properties such as high strength and high elastic modulus. Moreover, decomposition products are lactic acid, water, and carbon dioxide, and no harmful substances are discharged.
ポリ乳酸は、微生物の豊富なコンポスト中では数週間で分解するものの、自然環境中では湿潤条件下で1年から2年で分解する。このようにポリ乳酸は自然環境中での分解速度が遅いため、成形体のように長寿命を必要とする用途には好適であるが、使用期間が短く比較的速く分解することが求められる用途には不向きである。このため、ポリ乳酸系樹脂の自然環境中での生分解性を向上させる技術の開発が種々試みられている。 Polylactic acid degrades in a few weeks in microbial-rich compost, but degrades in natural environments in 1 to 2 years under humid conditions. In this way, polylactic acid has a slow degradation rate in the natural environment, so it is suitable for applications that require a long service life, such as molded products, but applications that require a short period of use and relatively rapid degradation. Not suitable for. For this reason, various attempts have been made to develop techniques for improving the biodegradability of polylactic acid resins in the natural environment.
特許文献1には、ポリ乳酸またはこれと他のポリマーとのブレンド物を、pH7〜13、温度40〜95℃にて分解する方法が開示されている。しかし、この方法によれば、樹脂の分解に室温以上の温度が必要であるため、自然環境中で分解するのは困難である。 Patent Document 1 discloses a method of decomposing polylactic acid or a blend of this and other polymers at a pH of 7 to 13 and a temperature of 40 to 95 ° C. However, according to this method, it is difficult to decompose in a natural environment because a temperature higher than room temperature is required for the decomposition of the resin.
特許文献2及び特許文献3には、ポリ乳酸を主成分とする脂肪族ポリエステルと、アタクチック構造のポリ[(R,S)−3−ヒドロキシブタン酸]とを主成分とする脂肪族ポリエステルとを組み合わせることにより、生分解性を調節する技術が開示されている。この技術によれば、脂肪族ポリエステルの量の増大によって生分解性が促進されるが、フィルムの機械的強度が大きく低下する。特に脂肪族が連続相となる場合は、生分解性が大きく増大する一方、機械的強度が大きく低下する。 Patent Document 2 and Patent Document 3 include an aliphatic polyester mainly composed of polylactic acid and an aliphatic polyester mainly composed of poly [(R, S) -3-hydroxybutanoic acid] having an atactic structure. A technique for adjusting biodegradability by combining them is disclosed. According to this technique, biodegradability is promoted by increasing the amount of aliphatic polyester, but the mechanical strength of the film is greatly reduced. In particular, when aliphatic becomes a continuous phase, the biodegradability is greatly increased, while the mechanical strength is greatly decreased.
特許文献4には、ポリ乳酸にポリ乳酸分解活性を有する酵素を0〜35℃の温度下で接触させることにより分解する方法が開示されている。しかし、この方法は分解に長時間が必要であるため、用途が限定される。 Patent Document 4 discloses a method of degrading polylactic acid by bringing it into contact with an enzyme having polylactic acid decomposing activity at a temperature of 0 to 35 ° C. However, since this method requires a long time for decomposition, its application is limited.
特許文献5は、ポリ乳酸とポリ乳酸以外の他の成分とで材料の傾斜構造を形成した成形体は、ポリ乳酸本来の機械的強度を保ったまま生分解が促進されることを開示している。ポリ乳酸以外の他の成分としてポリエチレンオキサイドが挙げられている。しかし、材料の傾斜構造を形成するのは、コスト高になる。 Patent Document 5 discloses that a molded body in which a gradient structure of a material is formed of polylactic acid and other components other than polylactic acid is accelerated in biodegradation while maintaining the original mechanical strength of polylactic acid. Yes. Polyethylene oxide is mentioned as another component other than polylactic acid. However, forming the material gradient structure is costly.
文献1〜5の技術では、種々の方法でポリ乳酸の生分解性は促進されるが、一旦フィルム等に成形した後に生分解速度を変更することはできない。このため、生分解性が促進された樹脂ではすぐ分解するため長期使用に適さない。一方、難生分解樹脂は長期使用には耐えるが廃棄した場合の分解速度は非常に遅い。従って、使用時は分解し難く、廃棄時には忽ち分解する樹脂が望まれている。すなわち、分解までの誘導時間があり、分解し始めると迅速に分解する樹脂や、長期使用後にある引き金(トリガー)によって迅速に生分解する樹脂が望まれているが、未だ存在しない。
本発明は、分解し難く、かつ特定の引き金により迅速に生分解するポリ乳酸系樹脂組成物、その製造方法、及びその易分解化処理方法を提供することを課題とする。 This invention makes it a subject to provide the polylactic acid-type resin composition which is hard to decompose | disassemble and biodegrades rapidly with a specific trigger, its manufacturing method, and its easy-decomposition processing method.
前記課題を解決するために本発明者らは研究を重ね、以下の知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted research and obtained the following knowledge.
ポリ乳酸系樹脂と生分解性可塑剤とを含む樹脂組成物層Aと、ポリ乳酸系樹脂を含み可塑剤を含まないか、又はポリ乳酸系樹脂と非生分解性可塑剤を含む樹脂組成物層BとがB/A/B型に積層されたポリ乳酸系樹脂積層フィルムは、常温以下の環境中で使用中又は保存中は分解しない又は分解し難いが、加熱することにより層A中の生分解性可塑剤が層B中を拡散し、その結果分解が始まる。 Resin composition layer A containing a polylactic acid resin and a biodegradable plasticizer, and a resin composition containing a polylactic acid resin and no plasticizer, or a polylactic acid resin and a non-biodegradable plasticizer The polylactic acid-based resin laminated film in which the layer B is laminated in the B / A / B type is not decomposed or hardly decomposed during use or storage in an environment at room temperature or lower. The biodegradable plasticizer diffuses through layer B and as a result, decomposition begins.
本発明は、上記知見に基づき完成されたものであり、以下のポリ乳酸系樹脂積層フィルム、その製造方法、及びその易分解化処理方法を提供する。 This invention is completed based on the said knowledge, and provides the following polylactic acid-type resin laminated | multilayer film, its manufacturing method, and its easy-decomposition processing method.
項1. ポリ乳酸系樹脂と生分解性可塑剤とを含む樹脂組成物層Aと、ポリ乳酸系樹脂を含むか、又はポリ乳酸系樹脂と非生分解性可塑剤とを含む樹脂組成物層BとがB/A/B型に積層されたポリ乳酸系樹脂積層フィルム。 Item 1. A resin composition layer A containing a polylactic acid resin and a biodegradable plasticizer, and a resin composition layer B containing a polylactic acid resin or containing a polylactic acid resin and a non-biodegradable plasticizer A polylactic acid resin laminated film laminated in a B / A / B type.
項2. 層Aの厚みがフィルム全体の10〜95%である項1に記載のポリ乳酸系樹脂積層フィルム。 Item 2. Item 2. The polylactic acid resin laminated film according to Item 1, wherein the thickness of layer A is 10 to 95% of the entire film.
項3. 積層フィルムの全体厚さが1〜2000μmである項1又は2に記載のポリ乳酸系樹脂積層フィルム。 Item 3. Item 3. The polylactic acid-based resin laminate film according to Item 1 or 2, wherein the overall thickness of the laminate film is 1 to 2000 μm.
項4. 層Aにおける生分解性可塑剤の含有量がポリ乳酸系樹脂100重量部に対し10〜200重量部であり、層Bにおける非生分解性可塑剤の含有量がポリ乳酸系樹脂100重量部に対し0〜50重量部である項1〜3のいずれかに記載のポリ乳酸系樹脂積層フィルム。 Item 4. The content of the biodegradable plasticizer in the layer A is 10 to 200 parts by weight with respect to 100 parts by weight of the polylactic acid resin, and the content of the non-biodegradable plasticizer in the layer B is 100 parts by weight of the polylactic acid resin. Item 4. The polylactic acid-based resin laminated film according to any one of Items 1 to 3, which is 0 to 50 parts by weight.
項5. 生分解性可塑剤が、エポキシ化大豆油、エポキシ化亜麻仁油、エポキシ化亜麻仁油脂肪酸ブチル、アジピン酸系脂肪族ポリエステル、アセチルリシノール酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、二塩基酸と炭素数1〜20のアルコールとのエステル、炭素数1〜20のアルキル基を有するビス(アルキルジグリコール)アジペート、炭素数1〜20のアルキル基を有するベンジルアルキルジグリコールアジペート、及びポリエチレングリコールからなる群より選ばれる少なくとも1種である項1〜4のいずれかに記載のポリ乳酸系樹脂積層フィルム。 Item 5. Biodegradable plasticizers include epoxidized soybean oil, epoxidized linseed oil, epoxidized linseed oil fatty acid butyl, adipic acid aliphatic polyester, acetyl ricinoleic acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, dibasic acid and carbon A group consisting of an ester with an alcohol having 1 to 20, an bis (alkyldiglycol) adipate having an alkyl group having 1 to 20 carbon atoms, a benzylalkyl diglycol adipate having an alkyl group having 1 to 20 carbon atoms, and polyethylene glycol Item 5. The polylactic acid-based resin laminated film according to any one of Items 1 to 4, which is at least one selected from the above.
項6. 生分解性可塑剤の分子量が300〜30000である項1〜5のいずれかに記載のポリ乳酸系樹脂積層フィルム。 Item 6. Item 6. The polylactic acid resin laminated film according to any one of Items 1 to 5, wherein the biodegradable plasticizer has a molecular weight of 300 to 30,000.
項7. 非生分解性可塑剤が、クエン酸エステル系可塑剤、アセチン化合物、ポリ酢酸ビニルからなる群より選ばれる少なくとも1種である項1〜6のいずれかに記載のポリ乳酸系樹脂積層フィルム。 Item 7. Item 7. The polylactic acid-based resin laminated film according to any one of Items 1 to 6, wherein the non-biodegradable plasticizer is at least one selected from the group consisting of a citrate ester plasticizer, an acetin compound, and polyvinyl acetate.
項8. 非生分解性可塑剤の分子量が300〜30000である項1〜7のいずれかに記載のポリ乳酸系樹脂積層フィルム。 Item 8. Item 8. The polylactic acid-based resin laminated film according to any one of Items 1 to 7, wherein the non-biodegradable plasticizer has a molecular weight of 300 to 30000.
項9. ポリ乳酸系樹脂と生分解性可塑剤とを含む組成物aと、ポリ乳酸系樹脂を含むか、又はポリ乳酸系樹脂と非生分解性可塑剤とを含む組成物bとを用いて、共押出法、ドライラミネート法、又は溶剤キャスト法で組成物aからなる層Aと組成物bからなる層BとがB/A/B型に積層された積層フィルムを得る工程を含むポリ乳酸系樹脂積層フィルムの製造方法。 Item 9. Using a composition a containing a polylactic acid-based resin and a biodegradable plasticizer and a composition b containing a polylactic acid-based resin or containing a polylactic acid-based resin and a non-biodegradable plasticizer, A polylactic acid resin comprising a step of obtaining a laminated film in which a layer A composed of the composition a and a layer B composed of the composition b are laminated in a B / A / B type by an extrusion method, a dry laminating method, or a solvent casting method A method for producing a laminated film.
項10. 項1〜8のいずれかに記載のポリ乳酸系樹脂積層フィルムを60℃以上で1分間以上加熱する工程と、この積層フィルムを微生物又は酵素の存在下に置く工程とを含むポリ乳酸系樹脂積層フィルムの易分解化処理方法。 Item 10. Item 9. The polylactic acid-based resin laminate comprising the steps of heating the polylactic acid-based resin laminate film according to any one of items 1 to 8 at 60 ° C or more for 1 minute or more and placing the laminate film in the presence of microorganisms or enzymes. A method for easily decomposing a film.
本発明によれば、生分解開始時を自由にコントロールできるポリ乳酸系樹脂フィルム、その製造方法、及び易分解化処理方法が提供された。 ADVANTAGE OF THE INVENTION According to this invention, the polylactic acid-type resin film which can control the biodegradation start time freely, its manufacturing method, and the easy-decomposition processing method were provided.
詳述すれば、本発明のポリ乳酸系積層フィルムは、生分解性可塑剤を含むポリ乳酸系樹脂組成物層Aの両面に生分解性可塑剤を含まないポリ乳酸系樹脂組成物層Bが存在するため、常温下で使用中はポリ乳酸と同程度に生分解し難い。また、加熱することにより、生分解性可塑剤が層B中を拡散して積層フィルム表面にまで分布し、積層フィルムの生分解が始まる。このように、加熱が引き金となって生分解を開始させることができる。 More specifically, the polylactic acid-based laminated film of the present invention has a polylactic acid-based resin composition layer B that does not contain a biodegradable plasticizer on both sides of a polylactic acid-based resin composition layer A that contains a biodegradable plasticizer. Because it exists, it is hardly biodegradable to the same degree as polylactic acid during use at room temperature. Further, by heating, the biodegradable plasticizer diffuses in the layer B and is distributed to the surface of the laminated film, and biodegradation of the laminated film starts. Thus, biodegradation can be initiated by heating as a trigger.
このことから、本発明の積層フィルムは、特に、環境中で使用又は保存できるとともに、不要になったときに加熱するだけで環境中での分解を開始させることができる。この点で、農業用フィルムのような農業又は園芸材料、コンポストバッグ、魚網のような漁業材料等として好適に用いることができる。また、本発明の積層フィルムをラップフィルムなどの食品包装材料として用いるときは、使用後は食品とともにコンポストに入れ加熱するだけで分解させることができる。また、手術糸のような医用材料として用いるときは、保存中又は生体内で使用中は分解せず、例えば傷口が塞がった後に縫合部分を暖めることにより生体内で分解させることができる。この他、ラミネート用フィルム、ラベル、容器などのあらゆる用途に用いることができ、不要時に加熱して環境中に廃棄するだけで処分することができる。 From this, the laminated film of the present invention can be used or stored particularly in the environment, and can be decomposed in the environment only by heating when it becomes unnecessary. In this respect, it can be suitably used as agricultural or horticultural materials such as agricultural films, compost bags, fishery materials such as fish nets, and the like. Moreover, when using the laminated | multilayer film of this invention as food packaging materials, such as a wrap film, it can be decomposed | disassembled only by putting in a compost with a food and heating after use. Further, when used as a medical material such as a surgical thread, it does not decompose during storage or in use in the living body, and can be decomposed in the living body by warming the sutured portion after the wound is closed, for example. In addition, it can be used for all uses such as a laminating film, a label, and a container, and can be disposed of by simply heating it when it is unnecessary and disposing it in the environment.
以下、本発明を詳細に説明する。
(I)ポリ乳酸系樹脂積層フィルム
本発明のポリ乳酸系樹脂積層フィルムは、ポリ乳酸系樹脂と生分解性可塑剤とを含む樹脂組成物層Aと、ポリ乳酸系樹脂を含むか、又はポリ乳酸系樹脂と非生分解性可塑剤とを含む樹脂組成物層BとがB/A/B型に積層された積層フィルムである。
ポリ乳酸系樹脂
本発明において、ポリ乳酸系樹脂とは、L−乳酸残基および/またはD−乳酸残基を50重量%以上含有するホモポリマーまたはコポリマーを指す。ホモポリ乳酸としては、0〜50重量%のD−乳酸残基をもつポリL−乳酸、0〜50重量%のL−乳酸残基をもつポリD−乳酸、ポリL−乳酸とポリD−乳酸との混合物が挙げられる。本発明で使用するホモポリ乳酸は公知の方法で製造できる。ホモポリ乳酸の製造法としては、例えば、乳酸から環状2量体であるラクチドを合成し開環重合により高分子量のポリ乳酸を得る方法や、乳酸の直接脱水縮合によりポリ乳酸を得る方法が挙げられる。
Hereinafter, the present invention will be described in detail.
(I) Polylactic acid-based resin laminated film The polylactic acid-based resin laminated film of the present invention includes a resin composition layer A containing a polylactic acid-based resin and a biodegradable plasticizer, and a polylactic acid-based resin, or a polylactic acid-based resin. This is a laminated film in which a lactic acid resin and a resin composition layer B containing a non-biodegradable plasticizer are laminated in a B / A / B type.
Polylactic acid resin In the present invention, the polylactic acid resin refers to a homopolymer or copolymer containing 50% by weight or more of L-lactic acid residues and / or D-lactic acid residues. As homopolylactic acid, poly L-lactic acid having 0 to 50% by weight of D-lactic acid residue, poly D-lactic acid having 0 to 50% by weight of L-lactic acid residue, poly L-lactic acid and poly D-lactic acid And a mixture thereof. The homopolylactic acid used in the present invention can be produced by a known method. Examples of the method for producing homopolylactic acid include a method of synthesizing lactide which is a cyclic dimer from lactic acid and obtaining high molecular weight polylactic acid by ring-opening polymerization, and a method of obtaining polylactic acid by direct dehydration condensation of lactic acid. .
また、コポリマーはポリ乳酸重合時又は重合直後に、副成分を加え重合をさらに進めることにより得られる。副成分の種類は特に限定されないが、例えばグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、6−ヒドロキシカロトン酸のようなヒドロキシカルボン酸;カプロラクトン;酢酸ビニル;ポリエチレングリコール、ポリプロピレングリコールのようなポリオール;エチレンテレフタレート重合体類;エチレンビニルアルコール重合体類などが挙げられる。副成分は単独で、又は2種以上を組み合わせて使用できる。副成分はポリ乳酸の性質を損なわない範囲で使用することができる。コポリマーの形態は、ブロックコポリマー、ランダムコポリマー、交互コポリマー、グラフトコポリマーなどいずれの形態でもよい。 Further, the copolymer can be obtained by adding the subcomponent during the polylactic acid polymerization or immediately after the polymerization to further proceed the polymerization. Although the kind of subcomponent is not specifically limited, For example, glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, hydroxycarboxylic acids such as 6-hydroxycarotonic acid; caprolactone Vinyl acetate; polyols such as polyethylene glycol and polypropylene glycol; ethylene terephthalate polymers; ethylene vinyl alcohol polymers; A subcomponent can be used individually or in combination of 2 or more types. The accessory component can be used as long as the properties of polylactic acid are not impaired. The form of the copolymer may be any form such as a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer.
ポリ乳酸系樹脂の重量平均分子量は、1000〜100万程度が好ましく、5000〜50万程度がより好ましい。上記分子量範囲であれば、液状にならず、かつ十分な強度が得られる。また、上記分子量範囲であれば、低粘度で成形性に優れ、かつ可塑剤との親和性がよいためにポリ乳酸系樹脂組成物層中の可塑剤の拡散速度が十分なものになる。本発明におけるポリ乳酸の分子量は、ゲルパーミエーションクロマトグラフィーで測定して得た分子量であり、具体的には実施例の項目に記載の方法で測定した値である。 The weight average molecular weight of the polylactic acid resin is preferably about 1,000 to 100,000, and more preferably about 5,000 to 500,000. If it is the said molecular weight range, it will not become liquid and sufficient intensity | strength will be obtained. Moreover, if it is the said molecular weight range, since it is low-viscosity, it is excellent in a moldability, and affinity with a plasticizer is good, the diffusion rate of the plasticizer in a polylactic acid-type resin composition layer will become sufficient. The molecular weight of polylactic acid in the present invention is a molecular weight obtained by measurement by gel permeation chromatography, and specifically, a value measured by the method described in the item of Examples.
層Aを構成するポリ乳酸系樹脂と層Bを構成するポリ乳酸系樹脂とは同一の組成であってもよく、異なる組成であってもよい。
生分解性可塑剤
層A中には生分解性可塑剤が含まれる。生分解性可塑剤は、ポリ乳酸系樹脂に添加することによってガラス転移温度の低下や剛性の低下を導くような混合性に優れたものであればよく、特に限定されない。エーテルエステル誘導体、グリセリン誘導体、フタル酸誘導体、グリコール酸誘導体、アジピン酸誘導体、エポキシ系可塑剤などの広範囲の可塑剤から選択して使用できる。
The polylactic acid resin constituting the layer A and the polylactic acid resin constituting the layer B may have the same composition or different compositions.
The biodegradable plasticizer layer A contains a biodegradable plasticizer. The biodegradable plasticizer is not particularly limited as long as the biodegradable plasticizer has excellent mixing properties that lead to a decrease in glass transition temperature and a decrease in rigidity when added to a polylactic acid resin. A wide range of plasticizers such as ether ester derivatives, glycerin derivatives, phthalic acid derivatives, glycolic acid derivatives, adipic acid derivatives and epoxy plasticizers can be selected and used.
生分解性可塑剤の溶解性パラメータは16〜23(MJ/m3)1/2程度であることが好ましい。この範囲であれば、ポリ乳酸の溶解性パラメーターである20と近いため、可塑剤とポリ乳酸とが混ざり易く、室温下でのブリードアウトが抑制され、可塑化効率を高めることができる。溶解性パラメータは、P. Small, J. Appl. Chem.,3,71(1953)に示された方法で計算できる。 The solubility parameter of the biodegradable plasticizer is preferably about 16 to 23 (MJ / m 3 ) 1/2 . Within this range, since the solubility parameter of polylactic acid is close to 20, the plasticizer and polylactic acid are likely to be mixed, bleeding out at room temperature is suppressed, and plasticization efficiency can be increased. The solubility parameter can be calculated by the method shown in P. Small, J. Appl. Chem., 3, 71 (1953).
また、食品包装等に用いられる場合があることや、コンポスト・農地中に未分解物が一時的に残存する場合があることを考慮すると、FDAやポリオレフィン等衛生協議会などから食品衛生上問題なしと認定された可塑剤であることが好ましい。 Also, considering the fact that it may be used for food packaging, etc., and that undegraded products may temporarily remain in compost / agricultural land, there is no problem in food hygiene from the FDA, polyolefin hygiene council, etc. It is preferable that the plasticizer is certified as follows.
このような可塑剤としては、例えば、;エポキシ化大豆油;エポキシ化亜麻仁油;エポキシ化亜麻仁油脂肪酸ブチル;アジピン酸系脂肪族ポリエステル;アセチルリシノール酸エステル;ショ糖脂肪酸エステル;ソルビタン脂肪酸エステル;アジピン酸ジアルキルエステルのような二塩基酸と炭素数1〜20のアルコールとのエステル;メチルジグリコールブチルジグリコールアジペートのような、炭素数1〜20のアルキル基を有するビス(アルキルジグリコール)アジペート;ベンジルブチルジグリコールアジペート、ベンジルメチルジグリコールアジペートのような炭素数1〜20のアルキル基を有するベンジルアルキルジグリコールアジペート;ポリエチレングリコール等が挙げられる。中でも、ポリ乳酸系樹脂の生分解性を向上させ、かつB層中を拡散し易い点で、メチルジグリコールブチルジグリコールアジペートのような、炭素数1〜20のアルキル基を有するビス(アルキルジグリコール)アジペート;ベンジルブチルジグリコールアジペート、ベンジルメチルジグリコールアジペートのような炭素数1〜20のアルキル基を有するベンジルアルキルジグリコールアジペートが好ましく、その中でも特にベンジルブチルジグリコールアジペート、ベンジルメチルジグリコールアジペートのような炭素数1〜20(中でも炭素数1〜8、特に炭素数1〜4)のアルキル基を有するベンジルアルキルジグリコールアジペートがより好ましい。生分解性可塑剤は1種を単独で、又は2種以上を組み合わせて使用できる。 Examples of such plasticizers include: epoxidized soybean oil; epoxidized linseed oil; epoxidized linseed oil fatty acid butyl; adipic acid aliphatic polyester; acetyl ricinoleic acid ester; sucrose fatty acid ester; sorbitan fatty acid ester; An ester of a dibasic acid such as an acid dialkyl ester and an alcohol having 1 to 20 carbon atoms; a bis (alkyldiglycol) adipate having an alkyl group having 1 to 20 carbon atoms such as methyl diglycol butyl diglycol adipate; Examples thereof include benzylalkyl diglycol adipate having an alkyl group having 1 to 20 carbon atoms such as benzylbutyl diglycol adipate and benzylmethyl diglycol adipate; polyethylene glycol and the like. Among them, bis (alkyldialkyl) having an alkyl group having 1 to 20 carbon atoms, such as methyldiglycolbutyldiglycol adipate, improves the biodegradability of the polylactic acid resin and easily diffuses in the B layer. Glycol) adipate; benzylalkyldiglycol adipate having an alkyl group having 1 to 20 carbon atoms such as benzylbutyldiglycol adipate and benzylmethyldiglycol adipate is preferred, and among them, benzylbutyldiglycol adipate and benzylmethyldiglycol adipate are particularly preferred A benzyl alkyl diglycol adipate having an alkyl group having 1 to 20 carbon atoms (1 to 8 carbon atoms, particularly 1 to 4 carbon atoms) is more preferable. A biodegradable plasticizer can be used individually by 1 type or in combination of 2 or more types.
生分解性可塑剤の分子量は300〜30000程度が好ましく、350〜5000程度がより好ましい。生分解性可塑剤がポリエチレングリコールのようなポリマーである場合は、分子量300〜30000程度が好ましく、600〜20000程度がより好ましい。上記範囲であれば、A層中の生分解性可塑剤がB層中を拡散し易く、また可塑化効果が高い。また上記範囲であれば、A層中の生分解性可塑剤がB層中に拡散した後フィルム表面からブリードアウトしたりフィルム端面からブリードアウトし難い。本発明における可塑剤の分子量は、予測される分子量が1000程度以下の場合は分子式から算出した値であり、1000程度より大きい場合はゲルパーミエーションクロマトグラフィーで測定して得た値である。 The molecular weight of the biodegradable plasticizer is preferably about 300 to 30000, more preferably about 350 to 5000. When the biodegradable plasticizer is a polymer such as polyethylene glycol, the molecular weight is preferably about 300 to 30000, more preferably about 600 to 20000. If it is the said range, the biodegradable plasticizer in A layer will spread | diffuse easily in B layer, and the plasticization effect is high. Moreover, if it is the said range, after the biodegradable plasticizer in A layer diffuses in B layer, it is hard to bleed out from the film surface or from the film end surface. The molecular weight of the plasticizer in the present invention is a value calculated from a molecular formula when the predicted molecular weight is about 1000 or less, and a value obtained by measurement by gel permeation chromatography when the molecular weight is more than about 1000.
生分解性可塑剤の添加量は、可塑剤やポリ乳酸系樹脂の種類、必要とされる生分解性発現の誘導期間によって異なる。層A中の生分解性可塑剤の含有量は、ポリ乳酸系樹脂 100重量部に対し10〜200重量部程度が好ましく、12〜100重量部程度がより好ましく、15〜80重量部程度がさらにより好ましい。上記範囲であれば、積層フィルムにおいて十分な生分解性が得られる。また、上記範囲であれば、積層フィルムの強度が十分なものとなるとともに、フィルム表面や端面からの可塑剤のブリードアウトが生じ難い。
非生分解性可塑剤
層B中には可塑剤が含まれないか、又は非生分解性可塑剤が含まれる。非生分解性可塑剤もまた、ポリ乳酸系樹脂に添加することによってガラス転移温度の低下や剛性の低下を導くような混合性に優れたものであればよく、特に限定されない。
The amount of biodegradable plasticizer added varies depending on the type of plasticizer and polylactic acid resin and the required induction period of biodegradable expression. The content of the biodegradable plasticizer in the layer A is preferably about 10 to 200 parts by weight, more preferably about 12 to 100 parts by weight, and further about 15 to 80 parts by weight with respect to 100 parts by weight of the polylactic acid resin. More preferred. If it is the said range, sufficient biodegradability will be acquired in a laminated | multilayer film. Moreover, if it is the said range, while the intensity | strength of a laminated | multilayer film will become sufficient, it is hard to produce the bleed-out of the plasticizer from a film surface or an end surface.
The non-biodegradable plasticizer layer B contains no plasticizer or contains a non-biodegradable plasticizer. The non-biodegradable plasticizer is not particularly limited as long as it is excellent in mixing properties that lead to a decrease in glass transition temperature and a decrease in rigidity when added to a polylactic acid resin.
非生分解性可塑剤の溶解性パラメータも16〜23(MJ/m3)1/2程度であることが好ましい。また、食品包装等に用いられる場合があることや、コンポスト・農地中に未分解物が残存する場合があることを考慮すると、FDAやポリオレフィン等衛生協議会などから食品衛生上問題なしと認定された可塑剤であることが好ましい。 The solubility parameter of the non-biodegradable plasticizer is also preferably about 16 to 23 (MJ / m 3 ) 1/2 . Considering that it may be used for food packaging, etc., and that undegraded products may remain in compost / farmland, it has been recognized by the FDA and polyolefin hygiene council etc. that there is no problem in food hygiene. A plasticizer is preferred.
このような非生分解性可塑剤としては、例えば、アセチルクエン酸トリブチルのようなクエン酸エステル系可塑剤;トリアセチンのようなアセチン化合物;ポリ酢酸ビニル等が挙げられる。非生分解性可塑剤は1種を単独で、又は2種以上を組み合わせて使用できる。 Examples of such non-biodegradable plasticizers include citrate ester plasticizers such as tributyl acetylcitrate; acetin compounds such as triacetin; polyvinyl acetate and the like. A non-biodegradable plasticizer can be used individually by 1 type or in combination of 2 or more types.
非生分解性可塑剤の分子量は300〜30000程度が好ましく、400〜5000程度がより好ましい。非生分解性可塑剤がポリ酢酸ビニルのようなポリマーである場合は、分子量300〜30000程度が好ましく、600〜20000程度がより好ましい。上記分子量範囲であれば、ブリードアウトし難くその結果ポリ乳酸系樹脂の柔軟性が長期にわたり安定に保持される。また、上記分子量範囲であれば、ポリ乳酸系樹脂の柔軟性が損なわれない。 The molecular weight of the non-biodegradable plasticizer is preferably about 300 to 30000, more preferably about 400 to 5000. When the non-biodegradable plasticizer is a polymer such as polyvinyl acetate, the molecular weight is preferably about 300 to 30000, more preferably about 600 to 20000. If it is the said molecular weight range, it is hard to bleed out. As a result, the softness | flexibility of polylactic acid-type resin is stably hold | maintained over a long period of time. Moreover, if it is the said molecular weight range, the softness | flexibility of a polylactic acid-type resin will not be impaired.
非生分解性可塑剤の添加量は、可塑剤やポリ乳酸系樹脂の種類によって異なる。層B中の非生分解性可塑剤の含有量は、ポリ乳酸系樹脂100重量部に対し0〜50重量部程度が好ましく、0〜30重量部程度がより好ましく、0〜20重量部程度がさらにより好ましい。上記範囲であれば、層Bの柔軟性が十分に得られるとともに、積層フィルム表面への非生分解性可塑剤のブリードアウトやブロッキングが生じ難い。
その他の成分
本発明のフィルムには、用途と要求される特性に応じて、カルボジイミド、オキサゾリンのような安定剤;2,6−ジ−第三ブチル−4−メチルフェノール(BHT)、ブチル・ヒドロキシアニソール(BHA)のような酸化防止剤;シリカ、タルク、アルミナ、炭酸カルシウムのような有機または無機のアンチブロッキング剤;グリセリン脂肪酸エステル、クエン酸モノステアリル、アルキルスルホン酸塩のような防曇剤又は帯電防止剤;酸化チタン、カーボンブラック、各種顔料、染料のような着色剤などの種々の添加剤が含まれていてよい。
層の厚み
本発明のポリ乳酸系樹脂積層フィルムの全体厚みは特に限定されないが、1〜2000μm程度が好ましく、10〜1800μm程度がより好ましく、50〜1600μm程度がさらに好ましい。
The amount of non-biodegradable plasticizer added varies depending on the type of plasticizer and polylactic acid resin. The content of the non-biodegradable plasticizer in the layer B is preferably about 0 to 50 parts by weight, more preferably about 0 to 30 parts by weight, and about 0 to 20 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Even more preferred. If it is the said range, while the softness | flexibility of the layer B is fully acquired, the bleed-out and blocking of the non-biodegradable plasticizer to the laminated | multilayer film surface do not arise easily.
Other components The film of the present invention contains a stabilizer such as carbodiimide, oxazoline; 2,6-di-tert-butyl-4-methylphenol (BHT), butyl hydroxy, depending on the application and required properties. Antioxidants such as anisole (BHA); organic or inorganic antiblocking agents such as silica, talc, alumina, calcium carbonate; antifogging agents such as glycerin fatty acid esters, monostearyl citrate, alkyl sulfonate Antistatic agents; various additives such as colorants such as titanium oxide, carbon black, various pigments and dyes may be contained.
Layer Thickness The overall thickness of the polylactic acid-based resin laminated film of the present invention is not particularly limited, but is preferably about 1 to 2000 μm, more preferably about 10 to 1800 μm, and further preferably about 50 to 1600 μm.
フィルム全体に占める層Aの厚みは10%以上が好ましく、50%以上がより好ましく、70%以上がさらにより好ましい。層Aの厚みの上限値は通常95%程度とすればよい。この範囲であれば、層A中の生分解性可塑剤がB層中に拡散したときに積層フィルム全体が充分な生分解性を有するものとなる。また、フィルム全体に占める層Bの厚みは90%以下が好ましく、50%以下がより好ましく、30%以下がさらにより好ましい。この範囲であれば、室温下での生分解性可塑剤の積層フィルム表面へのブリードアウトが抑制され、また積層フィルムの実用上十分な機械的強度が確保される。 The thickness of layer A in the entire film is preferably 10% or more, more preferably 50% or more, and even more preferably 70% or more. The upper limit value of the thickness of the layer A is usually about 95%. Within this range, the entire laminated film has sufficient biodegradability when the biodegradable plasticizer in layer A diffuses into layer B. Further, the thickness of the layer B in the entire film is preferably 90% or less, more preferably 50% or less, and even more preferably 30% or less. If it is this range, the bleed-out to the laminated film surface of the biodegradable plasticizer at room temperature will be suppressed, and the mechanical strength sufficient practically of a laminated film will be ensured.
また、後述するドライラミネート法で積層フィルムを得る場合は、各層間に接着剤層が形成されていてもよい。接着剤層の厚さは、ドライラミネート法で通常採用される厚さであればよい。通常100 mm以下であれば、接着剤層中を生分解性可塑剤が拡散できる。 Moreover, when obtaining a laminated | multilayer film by the dry laminating method mentioned later, the adhesive bond layer may be formed between each layer. The thickness of the adhesive layer may be any thickness that is usually employed in the dry laminating method. Usually, if it is 100 mm or less, the biodegradable plasticizer can diffuse in the adhesive layer.
本発明の積層フィルムは、延伸されていてもよく、未延伸であってもよい。延伸されたものは、分子のパッキングがよく生分解性に劣る傾向にあるため、未延伸フィルムの方が好ましい。また、用途に応じて透明性又は柔軟性の低下を回避すべき場合は、層Bが延伸されたものであってもよい。
(II)ポリ乳酸系樹脂積層フィルムの製造方法
本発明のポリ乳酸系樹脂積層フィルムの製造方法は、ポリ乳酸系樹脂と生分解性可塑剤とを含む組成物aと、ポリ乳酸系樹脂を含むか、又はポリ乳酸系樹脂と非生分解性可塑剤とを含む組成物bとを用いて、共押し出し法、ドライラミネート法、又は溶剤キャスト法で組成物aからなる層Aと組成物bからなる層BとがB/A/B型に積層された積層フィルムを得る工程を含む方法である。
中でも、ドライラミネート法により得られた積層フィルムは、フレキシビリティが高く、多層化時に可塑剤が層Bへ移動せず安定性が良好である点で、好ましい。
The laminated film of the present invention may be stretched or unstretched. Since the stretched film has a good molecular packing and tends to be inferior in biodegradability, an unstretched film is preferred. Moreover, when the fall of transparency or a softness | flexibility should be avoided according to a use, the layer B may be extended | stretched.
(II) Method for Producing Polylactic Acid Resin Laminate Film The method for producing a polylactic acid resin laminate film of the present invention includes a composition a containing a polylactic acid resin and a biodegradable plasticizer, and a polylactic acid resin. Or a layer A composed of the composition a and a composition b by a coextrusion method, a dry laminating method, or a solvent casting method, using a composition b containing a polylactic acid resin and a non-biodegradable plasticizer. The layer B is a method including a step of obtaining a laminated film in which the layer B is laminated in a B / A / B type.
Among these, a laminated film obtained by a dry laminating method is preferable in that it has high flexibility, and the plasticizer does not move to the layer B during multilayering, so that the stability is good.
組成物aの成分は層Aの成分について説明した通りであり、組成物bの成分は層Bの成分について説明した通りである。可塑剤をポリ乳酸系樹脂に所定量含有させる手法は特に限定されず、予め樹脂と可塑剤とを混合しておく方法、剪断のかかる二軸のロールで両者を混練する方法、二軸の押出機中で溶融した樹脂に可塑剤を計量しつつ添加する方法などの公知の方法を採用できるが、溶融した樹脂に可塑剤を計量しつつ添加する方法が好ましい。 The components of the composition a are as described for the components of the layer A, and the components of the composition b are as described for the components of the layer B. The method of adding a predetermined amount of plasticizer to the polylactic acid-based resin is not particularly limited, a method in which the resin and the plasticizer are mixed in advance, a method in which both are kneaded with a shearing biaxial roll, and biaxial extrusion. A known method such as a method of adding a plasticizer to a molten resin in a machine can be employed, but a method of adding a plasticizer to a molten resin while measuring is preferable.
共押し出しの場合は、押し出し時に層A中の生分解性可塑剤が層B中に拡散するのを抑制するために、加工時に層Bが層Aに接触するときの温度は160℃以下で、その後6080℃まで冷却するのに要する時間は30秒間以下、特に接触時の温度は140℃以下でその後60℃まで冷却するのに要する時間は10秒間以下とすることが好ましい。 In the case of co-extrusion, in order to prevent the biodegradable plasticizer in layer A from diffusing into layer B during extrusion, the temperature when layer B contacts layer A during processing is 160 ° C. or less, Thereafter, the time required for cooling to 6080 ° C. is preferably 30 seconds or less, particularly the temperature at the time of contact is 140 ° C. or less, and the time required for subsequent cooling to 60 ° C. is preferably 10 seconds or less.
また溶剤キャスト法では、押し出し成形法(Tダイキャスト法、インフレーション法)や溶剤キャスト法で成形した層A上に組成物bを塗布することにより層A両面に層Bを形成してもよく、層B上に組成物aを塗布して層Aを形成した後、その層A上に組成物bを塗布して層Bを形成してもよい。溶剤の蒸発は室温下で行うか、加熱しても60℃より低い温度で行えばよい。 In the solvent casting method, the layer B may be formed on both surfaces of the layer A by applying the composition b on the layer A formed by the extrusion molding method (T die casting method, inflation method) or the solvent casting method. After the composition a is applied on the layer B to form the layer A, the composition B may be applied on the layer A to form the layer B. The solvent may be evaporated at room temperature or may be heated at a temperature lower than 60 ° C.
ドライラミネート法では、押し出し成形法(Tダイキャスト法、インフレーション法)や溶剤キャスト法で成形した層A、層Bを公知の接着剤で貼り合わせればよい。接着層の厚さは、ドライラミネート法で通常使用される厚さとすればいが、通常0.1 mm以下であれば、生分解性可塑剤が接着剤層中を拡散できる。 In the dry laminating method, the layer A and the layer B formed by an extrusion molding method (T die casting method, inflation method) or a solvent casting method may be bonded together with a known adhesive. The thickness of the adhesive layer may be the thickness usually used in the dry laminating method, but if it is usually 0.1 mm or less, the biodegradable plasticizer can diffuse in the adhesive layer.
また、透明性や柔軟性を確保すべき場合には、一軸方向又は二軸方向に延伸されたB層を用いてもよい。
(III)ポリ乳酸系樹脂積層フィルムの易分解化処理方法
本発明の易分解化処理方法は、上記説明した本発明のポリ乳酸系樹脂積層フィルムを60℃以上で1分間以上加熱する工程と、この積層フィルムを酵素又は微生物の存在下に置く工程とを含む方法である。
Moreover, when transparency and flexibility should be ensured, a B layer extended in a uniaxial direction or a biaxial direction may be used.
(III) Easily decomposing treatment method of polylactic acid-based resin laminated film The easy decomposing treatment method of the present invention is a step of heating the polylactic acid-based resin laminated film of the present invention described above at 60 ° C or higher for 1 minute or more, And placing the laminated film in the presence of an enzyme or a microorganism.
加熱温度、時間は、フィルムの成分や各層厚さによって異なるが、好ましくは、80℃以上で30分間以上加熱することが好ましい。 The heating temperature and time vary depending on the components of the film and the thickness of each layer, but it is preferable to heat at 80 ° C. or higher for 30 minutes or longer.
加熱手段は特に限定されず、その積層フィルムが使用される状況に応じて選択すればよい。通常は、使用後の積層フィルムを回収して、加熱炉内で加熱したり、熱ローラ対間を通過させたりすればよい。また、加熱により層A中の生分解性可塑剤の拡散を開始させた後、土、水中に放置すればよい。これにより、土や水中の微生物や微生物が分泌した酵素により積層フィルムが分解される。 A heating means is not specifically limited, What is necessary is just to select according to the condition where the laminated | multilayer film are used. Usually, the laminated film after use may be collected and heated in a heating furnace or passed between a pair of heat rollers. Further, after the diffusion of the biodegradable plasticizer in the layer A is started by heating, it may be left in soil or water. Thereby, the laminated film is decomposed by microorganisms in soil and water and enzymes secreted by the microorganisms.
また例えば、農業用フィルムであれば、使用後に黒色シートで覆い太陽熱を利用して加熱した後、そのまま放置すればよい。また、人体内に埋設される手術用糸等では、役割を果たした後は当該部分を赤外線ヒータなどで暖めることができ、それにより体内の酵素や微生物により分解される。
実施例
以下、本発明を実施例、試験例を挙げてさらに具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例等において、特に断りがない限り、%は重量%を指し、部は重量部を示す。
(1)分子量の測定
ポリ乳酸の分子量はゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。東ソー株式会社製HLC−8020を使用し、カラムは同社のKF803L×1及びKF806L×2を直列に連結して使用し、解析は同社のAS−802を使用して流速1 ml/分間の条件で行い、分子量既知のポリスチレンを標準試料に用いて重量平均分子量及び数平均分子量を測定した。
(2)用いた材料
ポリ乳酸
ユニチカ株式会社製 ECOPLA 4031DK
重量平均分子量:236,400 (ポリスチレン換算)
数平均分子量:140,800 (ポリスチレン換算)
光学純度:99%(99%L体、1%D体)
可塑剤
ベンジルブチルジグリコールアジペート:大八化学工業株式会社製 SN0212
アセチルトリブチルサイトレート(ATBC):田岡化学工業株式会社製
(3)混練法によるポリ乳酸組成物の均一ブレンドの作製
ポリ乳酸と可塑剤とを、種々の割合で熱ロール(小型熱ロールHR−3型、日東反応機社製)にて175℃で練ることによりブレンド品を得た。それを(株)神藤金属工業所製熱プレスを用い、150℃、ゲージ圧50kgf/cm2で圧縮成形することにより種々の厚さの均一ブレンドフィルムを作製した。
(4)多層フィルムの作製
層Aの両面に層Bを重ね、室温でプレスすることによって多層フィルムを作製した。このとき、層Aの端面が露出しないように、層Aよりサイズの大きい層Bを用い、層Bの縁を互いにエポキシ樹脂接着剤(商品名アラルダイト)で接着した。これは、層B表面の生分解性可塑剤濃度を正確に測定するためである。作製したフィルムの断面を図1に示す。
(5)酵素による生分解性の評価
図1のように作製した多層フィルムについて生分解試験を行った。まず、試験前の各フィルム重量を測り、50ml容の試験瓶に、下記組成のプロティナーゼK(シグマアルドリッチ社製)を含むポリ乳酸分解酵素溶液5mlとフィルムとを入れた。この試験瓶を温度27℃、湿度50%の暗室内で、毎分114回の速度で11日間水平振動した。取り出した試験後のフィルムを蒸留水で充分に洗浄し、紙(商品名:キムワイプ)で水分を拭き取り、自然乾燥した後、重量を測った。生分解性は下記の式で示される試料の重量減少率で評価した。
For example, in the case of an agricultural film, the film may be left as it is after being covered with a black sheet and heated using solar heat. In addition, in a surgical thread or the like embedded in the human body, the portion can be warmed with an infrared heater or the like after having played a role, thereby being decomposed by enzymes or microorganisms in the body.
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and test examples, but the present invention is not limited to these examples. In the following examples and the like, unless otherwise specified,% indicates% by weight, and part indicates part by weight.
(1) Measurement of molecular weight The molecular weight of polylactic acid was measured using gel permeation chromatography (GPC). Using HLC-8020 manufactured by Tosoh Corporation, the column uses KF803L × 1 and KF806L × 2 connected in series, and analysis is performed under the conditions of a flow rate of 1 ml / min using the company's AS-802. The weight average molecular weight and the number average molecular weight were measured using polystyrene having a known molecular weight as a standard sample.
(2) Material used
Polylactic acid <br/> Unita Corporation ECOPLA 4031DK
Weight average molecular weight: 236,400 (polystyrene equivalent)
Number average molecular weight: 140,800 (polystyrene conversion)
Optical purity: 99% (99% L, 1% D)
Plasticizer <br/> Benzylbutyl diglycol adipate: Daihachi Chemical Industry Co., Ltd. SN0212
Acetyl tributyl citrate (ATBC): Taoka Chemical Industries, Ltd.
(3) Preparation of uniform blend of polylactic acid composition by kneading method Polylactic acid and plasticizer are kneaded at various ratios at 175 ° C. with a heat roll (small heat roll HR-3 type, manufactured by Nitto Reactor Co., Ltd.). As a result, a blended product was obtained. Uniform blend films of various thicknesses were prepared by compression molding at 150 ° C. and a gauge pressure of 50 kgf / cm 2 using a heat press manufactured by Shindo Metal Industries, Ltd.
(4) Preparation of multilayer film Layer B was superimposed on both sides of layer A and pressed at room temperature to prepare a multilayer film. At this time, layer B larger in size than layer A was used so that the end face of layer A was not exposed, and the edges of layer B were bonded to each other with an epoxy resin adhesive (trade name Araldite). This is for accurately measuring the biodegradable plasticizer concentration on the surface of the layer B. A cross section of the produced film is shown in FIG.
(5) Evaluation of biodegradability by enzyme The biodegradation test was done about the multilayer film produced as shown in FIG. First, the weight of each film before the test was measured, and 5 ml of a polylactic acid-degrading enzyme solution containing proteinase K (manufactured by Sigma-Aldrich) having the following composition and a film were placed in a 50 ml test bottle. This test bottle was horizontally vibrated for 11 days at a speed of 114 times per minute in a dark room at a temperature of 27 ° C. and a humidity of 50%. The film after the test taken out was thoroughly washed with distilled water, wiped with a paper (trade name: Kimwipe), dried naturally, and then weighed. Biodegradability was evaluated by the weight loss rate of the sample represented by the following formula.
重量減少率(%)=〔(試験前の重量)−(試験後の重量)/(試験前の重量)〕×100
また、各フィルムについて、ポリ乳酸分解酵素溶液を用いるのに代えて、プロティナーゼKを含まない他は同じ組成の溶液を用いて同様の試験を行った。
<ポリ乳酸分解酵素溶液の組成>
0.5 M リン酸カリウム緩衝液(pH7) 5.0 ml
蒸留水 44.5 ml
2%NaN3水溶液 0.5 ml
プロティナーゼK(シグマアルドリッチ社製) 410 Units
(6)層B表面の生分解性可塑剤濃度の測定
顕微ラマン測定装置(Senturion with sure_cal; Chromex社製)を用い、試料表面の位置での小さなスポット(直径2μm、深さ2μm以内)の部分のラマンスペクトルを測定して、均一ブレンド中の生分解性可塑剤ベンジルブチルジグリコールアジペートに帰属されるピーク(1002cm-1付近)とポリ乳酸に帰属されるピーク(873cm-1付近)との強度比を求め、このピーク比の値を、組成比既知の樹脂組成物について上記ピーク比を求めることにより作成した検量線に当てはめて、層B表面の生分解性可塑剤濃度を測定した。
比較例1、2、3(単層フィルム)
ベンジルブチルジグリコールアジペートをポリ乳酸ブレンド全体に対して20%添加した組成物を用いて、単層フィルムを作製した(比較例1)。また、アセチルトリブチルサイトレートをポリ乳酸ブレンド全体に対して20%添加した組成物を用いて単層フィルムを作製した(比較例2)。さらに、可塑剤を添加しないポリ乳酸からなる単層フィルムを作製した(比較例3)。
Weight reduction rate (%) = [(weight before test) − (weight after test) / (weight before test)] × 100
Moreover, it replaced with using the polylactic acid decomposing enzyme solution about each film, and the same test was done using the solution of the same composition except not containing proteinase K.
<Composition of polylactic acid degrading enzyme solution>
0.5 M potassium phosphate buffer (pH 7) 5.0 ml
Distilled water 44.5 ml
2% NaN 3 aqueous solution 0.5 ml
Proteinase K (Sigma Aldrich) 410 Units
(6) Measurement of biodegradable plasticizer concentration on the surface of layer B Using a micro Raman measurement device (Senturion with sure_cal; manufactured by Chromex), a small spot (diameter 2 μm, depth 2 μm or less) at the sample surface strength by measuring the Raman spectrum, a peak assigned peak attributed to a biodegradable plasticizer benzyl butyldiglycol adipate in uniform blend and (1002Cm around -1) polylactic acid (873Cm around -1) of The ratio of this peak ratio was applied to a calibration curve prepared by calculating the above peak ratio for a resin composition having a known composition ratio, and the biodegradable plasticizer concentration on the surface of layer B was measured.
Comparative Examples 1, 2, 3 (single layer film)
A single layer film was prepared using a composition in which 20% of benzylbutyl diglycol adipate was added to the entire polylactic acid blend (Comparative Example 1). In addition, a single layer film was prepared using a composition in which 20% of acetyltributyl citrate was added to the whole polylactic acid blend (Comparative Example 2). Furthermore, a monolayer film made of polylactic acid without adding a plasticizer was prepared (Comparative Example 3).
これらの生分解の程度を以下の表1に示す。 The degree of biodegradation is shown in Table 1 below.
ベンジルブチルジグリコールアジペートを添加したポリ乳酸(比較例1)は分解酵素の存在下でよく分解された。一方、アセチルトリブチルサイトレートを添加したポリ乳酸(比較例2)、及び可塑剤を添加しないポリ乳酸(比較例3)は分解酵素が存在しても殆ど分解されなかった。 Polylactic acid to which benzylbutyl diglycol adipate was added (Comparative Example 1) was well degraded in the presence of a degrading enzyme. On the other hand, polylactic acid to which acetyltributyl citrate was added (Comparative Example 2) and polylactic acid to which no plasticizer was added (Comparative Example 3) were hardly decomposed even in the presence of a degrading enzyme.
従って、ベンジルブチルジグリコールアジペートは生分解性の可塑剤に分類され、アセチルトリブチルサイトレートは非生分解性可塑剤に分類される。以下の各実施例では、これらの可塑剤を用いて積層フィルムを作製した。
実施例1、2、3、4(層Bの厚みの影響)
生分解性可塑剤としてベンジルブチルジグリコールアジペートをポリ乳酸系樹脂組成物の全体に対して50%含有するポリ乳酸均一ブレンドフィルムを層Aとし、非生分解性層として可塑剤を含有しないポリ乳酸単独フィルムを層Bとした。また、層Aの厚みを1000μmとし、層Bの厚みを表2に示すとおり変えて、B/A/B層構成の多層フィルムを作製した。これを、層B表面の可塑剤濃度の急激な上昇挙動発現に最適な厚みを知るため、80℃で6時間熱処理を行った。結果を以下の表2に示す。
Therefore, benzyl butyl diglycol adipate is classified as a biodegradable plasticizer and acetyl tributyl citrate is classified as a non-biodegradable plasticizer. In each of the following examples, a laminated film was produced using these plasticizers.
Examples 1, 2, 3, 4 (influence of layer B thickness)
A polylactic acid uniform blend film containing 50% of benzylbutyl diglycol adipate as a biodegradable plasticizer with respect to the whole polylactic acid resin composition is defined as layer A, and a polylactic acid containing no plasticizer as a non-biodegradable layer The single film was layer B. Moreover, the thickness of the layer A was set to 1000 μm, and the thickness of the layer B was changed as shown in Table 2 to prepare a multilayer film having a B / A / B layer configuration. This was heat-treated at 80 ° C. for 6 hours in order to know the optimum thickness for expression of the rapid increase behavior of the plasticizer concentration on the surface of layer B. The results are shown in Table 2 below.
層Bの厚みが薄いほど生分解性可塑剤が層Bに移行する時間が短いため、層B表面の生分解性可塑剤の濃度が大きくなり易く、生分解性が増大し易い。このため、生分解速度を制御し難くなる。このことから、層Bの厚みを適切に調整することで生分解速度を制御できることが分かった。 The thinner the layer B, the shorter the time required for the biodegradable plasticizer to move to the layer B. Therefore, the concentration of the biodegradable plasticizer on the surface of the layer B tends to increase and the biodegradability tends to increase. For this reason, it becomes difficult to control the biodegradation rate. From this, it was found that the biodegradation rate can be controlled by appropriately adjusting the thickness of the layer B.
すなわち、層Bの厚みが小さいほど層B表面への生分解性可塑剤の移行が大きく、それに伴い積層フィルムの生分解速度も大きくなった。このことから、層Bの厚みを調節することで、積層フィルムの生分解速度を制御できることが分かる。
実施例5、6、7、8(熱処理時間の検討)
生分解性可塑剤としてベンジルブチルジグリコールアジペートをポリ乳酸系樹脂組成物の全体に対して50%含有するポリ乳酸均一ブレンドフィルムを層Aとし、非生分解性層として可塑剤を含有しないポリ乳酸単独フィルムを層Bとした。層Aの厚みを1000μm、層Bの厚みを90μmとし、B/A/B層構成の多層フィルムを作製した。これらについて、処理時間を表3に示すとおり変えて、80℃で熱処理を行った。
That is, the smaller the thickness of the layer B, the greater the migration of the biodegradable plasticizer to the surface of the layer B, and the greater the biodegradation rate of the laminated film. From this, it can be seen that the biodegradation rate of the laminated film can be controlled by adjusting the thickness of the layer B.
Examples 5, 6, 7, and 8 (examination of heat treatment time)
A polylactic acid uniform blend film containing 50% of benzylbutyl diglycol adipate as a biodegradable plasticizer with respect to the whole polylactic acid resin composition is defined as layer A, and a polylactic acid containing no plasticizer as a non-biodegradable layer The single film was layer B. The thickness of layer A was 1000 μm, the thickness of layer B was 90 μm, and a multilayer film having a B / A / B layer configuration was produced. About these, heat processing was performed at 80 degreeC, changing processing time as shown in Table 3.
熱処理をしない場合や熱処理時間が短い場合には、層Bの表面の生分解性可塑剤濃度が低く、またポリ乳酸分解酵素が存在しても生分解し難かった。また、熱処理時間が大きくなるほど、生分解性可塑剤が層Bに移行して積層フィルム表面の生分解性可塑剤濃度が大きくなり、それに伴い積層フィルムの生分解性が大きく向上した。このことから、熱処理時間を調整することで生分解速度を制御できることがわかった。
実施例9、10、11、12(熱処理温度の検討)
生分解性可塑剤としてベンジルブチルジグリコールアジペートをポリ乳酸系樹脂組成物の全体に対して50%含有するポリ乳酸均一ブレンドフィルムを層Aとし、非生分解性層として可塑剤を含有しないポリ乳酸単独フィルムを層Bとした。層Aの厚みを1000μm、層Bの厚みを150μmとし、B/A/B型の多層フィルムを作製した。これらを、処理温度を表4に示すとおり変えて、1時間、熱処理を行った。
When heat treatment was not performed or when the heat treatment time was short, the biodegradable plasticizer concentration on the surface of the layer B was low, and biodegradation was difficult even when polylactic acid-degrading enzyme was present. Moreover, as the heat treatment time increased, the biodegradable plasticizer moved to the layer B and the biodegradable plasticizer concentration on the surface of the laminated film increased, and the biodegradability of the laminated film was greatly improved accordingly. From this, it was found that the biodegradation rate can be controlled by adjusting the heat treatment time.
Examples 9, 10, 11, 12 (examination of heat treatment temperature)
A polylactic acid uniform blend film containing 50% of benzylbutyl diglycol adipate as a biodegradable plasticizer with respect to the whole polylactic acid resin composition is defined as layer A, and a polylactic acid containing no plasticizer as a non-biodegradable layer The single film was layer B. The thickness of the layer A was 1000 μm, the thickness of the layer B was 150 μm, and a B / A / B type multilayer film was produced. These were subjected to heat treatment for 1 hour while changing the treatment temperature as shown in Table 4.
表4より、熱処理温度が高くなるほど生分解性可塑剤の層Bへの移行速度が大きく、積層フィルム表面の生分解性可塑剤濃度が大きくなり、それに伴い積層フィルムの生分解性が大きく向上した。このことから、熱処理温度を調整することで生分解速度を制御できることが分かった。
実施例13、14、15、16(層B中の非生分解性可塑剤の有無の影響)
層Bが非生分解性可塑剤を含有しないポリ乳酸系樹脂層である場合、ポリ乳酸の剛性によって積層フィルムの柔軟性がやや低下する可能性がある。そのため、積層フィルムの柔軟性を向上させる観点からは、層B中に可塑剤が含まれることが好ましい。そこで、層B中に非生分解性可塑剤が存在する場合と存在しない場合との間で、積層フィルムの生分解性を比較した。
From Table 4, the higher the heat treatment temperature, the greater the rate of transfer of the biodegradable plasticizer to the layer B, the greater the biodegradable plasticizer concentration on the surface of the laminated film, and the greater the biodegradability of the laminated film. . From this, it was found that the biodegradation rate can be controlled by adjusting the heat treatment temperature.
Examples 13, 14, 15, 16 (effect of presence or absence of non-biodegradable plasticizer in layer B)
When the layer B is a polylactic acid resin layer that does not contain a non-biodegradable plasticizer, the flexibility of the laminated film may be slightly lowered due to the rigidity of the polylactic acid. Therefore, from the viewpoint of improving the flexibility of the laminated film, the layer B preferably contains a plasticizer. Therefore, the biodegradability of the laminated film was compared between the case where the non-biodegradable plasticizer was present in the layer B and the case where it was not present.
具体的には、生分解性可塑剤としてベンジルブチルジグリコールアジペートをポリ乳酸系樹脂組成物の全体に対して50%含有するポリ乳酸均一ブレンドフィルムを層Aとし、非生分解性可塑剤としてアセチルトリブチルサイトレートをポリ乳酸系樹脂組成物の全体に対して20%添加して作製したブレンドフィルムを層Bとして、B/A/B型の積層フィルムを得た。さらに、非生分解性可塑剤を添加しないポリ乳酸系樹脂組成物フィルムを層Bとした場合との間で生分解性を比較した。各積層フィルムの層Aの厚みは1000μmとした。また、層Bの厚みが40μmである積層フィルムと層Bの厚みが90μmである積層フィルムの2種類を作製した。これらの積層フィルムについて、表5に示すとおり温度80℃で1時間熱処理した。結果を表5に示す Specifically, a polylactic acid uniform blend film containing 50% of benzylbutyl diglycol adipate as a biodegradable plasticizer with respect to the entire polylactic acid resin composition is used as layer A, and acetyl is used as a non-biodegradable plasticizer. A blend film prepared by adding 20% of tributyl citrate to the total amount of the polylactic acid-based resin composition was used as layer B to obtain a B / A / B type laminated film. Furthermore, biodegradability was compared with the case where the polylactic acid-based resin composition film to which the non-biodegradable plasticizer was not added was used as the layer B. The thickness of layer A of each laminated film was 1000 μm. In addition, two types, a laminated film having a layer B thickness of 40 μm and a laminated film having a layer B thickness of 90 μm, were produced. These laminated films were heat-treated at a temperature of 80 ° C. for 1 hour as shown in Table 5. The results are shown in Table 5.
層B中に非生分解性可塑剤としてアセチルトリブチルサイトレートを添加した場合は、層B中に非生分解性可塑剤を添加しない場合と同程度に、層B表面に層A中の生分解性可塑剤が移行した。また、層Bが薄い方が層B表面への可塑剤の移行は大きかった。また、層B中に非生分解性可塑剤が含まれていても、酵素により積層フィルムは十分に生分解された。このことから、層B中に非中分解性可塑剤を含ませることで積層フィルムの柔軟性を向上させつつ、種々の条件を調整することで生分解速度を制御できることが分かった。
実施例17、18、19、20、21(常温下での保存安定性)
生分解性可塑剤としてベンジルブチルジグリコールアジペートをポリ乳酸系樹脂組成物の全体に対して50%含有するポリ乳酸均一ブレンドフィルムを層Aとし、非生分解性層として可塑剤を含有しないポリ乳酸系樹脂組成物フィルムを層Bとした。層Aの厚みを1000μm、層Bの厚みを120μmとし、B/A/B型の積層フィルムを作製した。これらを、23℃で表6に示す時間保存し、貯蔵安定性を調べた。結果を表6に示す。
When acetyltributyl citrate is added as a non-biodegradable plasticizer in layer B, the biodegradation in layer A on the surface of layer B is the same as when no non-biodegradable plasticizer is added in layer B. The plasticizer has moved. Further, the thinner the layer B, the greater the migration of the plasticizer to the surface of the layer B. Moreover, even if the non-biodegradable plasticizer was contained in the layer B, the laminated film was fully biodegraded by the enzyme. From this, it was found that the biodegradation rate can be controlled by adjusting various conditions while improving the flexibility of the laminated film by including a non-degradable plasticizer in the layer B.
Examples 17, 18, 19, 20, 21 (storage stability at room temperature)
A polylactic acid uniform blend film containing 50% of benzylbutyl diglycol adipate as a biodegradable plasticizer with respect to the whole polylactic acid resin composition is defined as layer A, and a polylactic acid containing no plasticizer as a non-biodegradable layer The base resin composition film was designated as layer B. The thickness of layer A was 1000 μm, the thickness of layer B was 120 μm, and a B / A / B type laminated film was produced. These were stored at 23 ° C. for the time shown in Table 6 and examined for storage stability. The results are shown in Table 6.
常温保存を行っても層Bの表面には生分解性可塑剤の析出が殆ど認められず、またポリ乳酸分解酵素が存在しても積層フィルムは殆ど生分解されなかった。これは、2664時間(111日間)経過した後も同様であった。111日間保存後の生分解の程度は、前掲の表1の可塑剤を含まないポリ乳酸系樹脂組成物(比較例3)の生分解の程度と同じであり、生分解性可塑剤を層A中に含んでいても、そのことで積層フィルムの使用又は保存中の易分解性が促進されないことが示された。このことから、一度に積層フィルムを多量に製造して保存できることが分かる。また、必要とされる生分解速度に応じて各種の条件で熱処理すれば生分解できる、ニーズに応じた積層フィルムを提供できることが分かる。 Even when stored at room temperature, almost no biodegradable plasticizer was deposited on the surface of layer B, and even when polylactic acid-degrading enzyme was present, the laminated film was hardly biodegraded. This was the same after 2664 hours (111 days). The degree of biodegradation after storage for 111 days is the same as the degree of biodegradation of the polylactic acid resin composition not containing the plasticizer shown in Table 1 (Comparative Example 3). Even if included, it was shown that this does not promote easy degradability during use or storage of the laminated film. This shows that a large amount of laminated films can be produced and stored at one time. Moreover, it turns out that the laminated | multilayer film according to the need which can be biodegraded if it heat-processes on various conditions according to the required biodegradation speed | velocity | rate can be provided.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006040589A JP5030435B2 (en) | 2006-02-17 | 2006-02-17 | POLYLACTIC ACID RESIN LAMINATED FILM, ITS MANUFACTURING METHOD, AND ITS EASY DECOMPOSITION METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006040589A JP5030435B2 (en) | 2006-02-17 | 2006-02-17 | POLYLACTIC ACID RESIN LAMINATED FILM, ITS MANUFACTURING METHOD, AND ITS EASY DECOMPOSITION METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007216541A true JP2007216541A (en) | 2007-08-30 |
JP5030435B2 JP5030435B2 (en) | 2012-09-19 |
Family
ID=38494317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006040589A Active JP5030435B2 (en) | 2006-02-17 | 2006-02-17 | POLYLACTIC ACID RESIN LAMINATED FILM, ITS MANUFACTURING METHOD, AND ITS EASY DECOMPOSITION METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5030435B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009060610A1 (en) * | 2007-11-06 | 2009-05-14 | Fujifilm Corporation | Method for in vitro evaluation of biodegradability of base material |
US7615183B2 (en) * | 2004-08-30 | 2009-11-10 | Plastic Suppliers, Inc. | Polylactic acid blown film and method of manufacturing same |
US7713601B2 (en) | 2005-11-21 | 2010-05-11 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of casting same |
US7846517B2 (en) | 2005-04-19 | 2010-12-07 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of manufacturing same |
WO2011135086A1 (en) * | 2010-04-30 | 2011-11-03 | Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg | Peelable, at least 50% biodegradable film arrangement, packaging comprising the film arrangement and method for producing the film arrangement |
JP2013513744A (en) * | 2010-03-15 | 2013-04-22 | エルジー・ハウシス・リミテッド | Floor material using PLA resin |
JP2019111765A (en) * | 2017-12-25 | 2019-07-11 | 花王株式会社 | Method for producing polylactic acid resin composition laminated sheet |
JP2019522693A (en) * | 2016-05-20 | 2019-08-15 | スリーエム イノベイティブ プロパティズ カンパニー | Oriented polylactic acid polymer film |
US11254812B2 (en) | 2014-12-22 | 2022-02-22 | 3M Innovative Properties Company | Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer |
JP7474537B1 (en) | 2023-08-23 | 2024-04-25 | 株式会社Tbm | Biodegradable laminates and molded articles |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0873722A (en) * | 1994-09-05 | 1996-03-19 | Gunze Ltd | Multilayer film made from biodegradable plastic |
JP2003191425A (en) * | 2001-10-03 | 2003-07-08 | Toray Ind Inc | Flexible polylactic acid resin stretched film and production method thereof |
JP2004082512A (en) * | 2002-08-27 | 2004-03-18 | Mitsubishi Plastics Ind Ltd | Biodegradable film and biodegradable bag formed of this film |
JP2005023091A (en) * | 2002-05-14 | 2005-01-27 | Daihachi Chemical Industry Co Ltd | Biodegradable resin composition |
JP2006035666A (en) * | 2004-07-28 | 2006-02-09 | C I Kasei Co Ltd | Multiple layer polylactic acid resin film and its manufacturing method |
-
2006
- 2006-02-17 JP JP2006040589A patent/JP5030435B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0873722A (en) * | 1994-09-05 | 1996-03-19 | Gunze Ltd | Multilayer film made from biodegradable plastic |
JP2003191425A (en) * | 2001-10-03 | 2003-07-08 | Toray Ind Inc | Flexible polylactic acid resin stretched film and production method thereof |
JP2005023091A (en) * | 2002-05-14 | 2005-01-27 | Daihachi Chemical Industry Co Ltd | Biodegradable resin composition |
JP2004082512A (en) * | 2002-08-27 | 2004-03-18 | Mitsubishi Plastics Ind Ltd | Biodegradable film and biodegradable bag formed of this film |
JP2006035666A (en) * | 2004-07-28 | 2006-02-09 | C I Kasei Co Ltd | Multiple layer polylactic acid resin film and its manufacturing method |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7615183B2 (en) * | 2004-08-30 | 2009-11-10 | Plastic Suppliers, Inc. | Polylactic acid blown film and method of manufacturing same |
US8133558B2 (en) | 2004-08-30 | 2012-03-13 | Plastics Suppliers, Inc. | Polylactic acid blown film and method of manufacturing same |
US7846517B2 (en) | 2005-04-19 | 2010-12-07 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of manufacturing same |
US8496868B2 (en) | 2005-04-19 | 2013-07-30 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of manufacturing same |
US7713601B2 (en) | 2005-11-21 | 2010-05-11 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of casting same |
US7998545B2 (en) | 2005-11-21 | 2011-08-16 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of casting same |
US8263197B2 (en) | 2005-11-21 | 2012-09-11 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of casting same |
US8551586B2 (en) | 2005-11-21 | 2013-10-08 | Plastic Suppliers, Inc. | Polylactic acid shrink films and methods of casting same |
WO2009060610A1 (en) * | 2007-11-06 | 2009-05-14 | Fujifilm Corporation | Method for in vitro evaluation of biodegradability of base material |
JP5198465B2 (en) * | 2007-11-06 | 2013-05-15 | 富士フイルム株式会社 | In vitro evaluation method for biodegradability of substrate |
US9517612B2 (en) | 2010-03-15 | 2016-12-13 | Lg Hausys, Ltd. | Floor material using PLA resin |
JP2013513744A (en) * | 2010-03-15 | 2013-04-22 | エルジー・ハウシス・リミテッド | Floor material using PLA resin |
WO2011135086A1 (en) * | 2010-04-30 | 2011-11-03 | Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg | Peelable, at least 50% biodegradable film arrangement, packaging comprising the film arrangement and method for producing the film arrangement |
US11254812B2 (en) | 2014-12-22 | 2022-02-22 | 3M Innovative Properties Company | Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer |
US11787929B2 (en) | 2014-12-22 | 2023-10-17 | 3M Innovative Properties Company | Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer |
JP2019522693A (en) * | 2016-05-20 | 2019-08-15 | スリーエム イノベイティブ プロパティズ カンパニー | Oriented polylactic acid polymer film |
US11066551B2 (en) | 2016-05-20 | 2021-07-20 | 3M Innovative Properties Company | Oriented polylactic acid polymer based film |
JP7090555B2 (en) | 2016-05-20 | 2022-06-24 | スリーエム イノベイティブ プロパティズ カンパニー | Oriented polylactic acid polymer film |
JP2019111765A (en) * | 2017-12-25 | 2019-07-11 | 花王株式会社 | Method for producing polylactic acid resin composition laminated sheet |
JP7474537B1 (en) | 2023-08-23 | 2024-04-25 | 株式会社Tbm | Biodegradable laminates and molded articles |
Also Published As
Publication number | Publication date |
---|---|
JP5030435B2 (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5030435B2 (en) | POLYLACTIC ACID RESIN LAMINATED FILM, ITS MANUFACTURING METHOD, AND ITS EASY DECOMPOSITION METHOD | |
KR100806985B1 (en) | Aliphatic polyester composition and flexible products | |
KR100529418B1 (en) | Aliphatic polyester resin composition and films containing the same | |
KR100371849B1 (en) | Aliphatic polyester composition and stretched film obtained from said composition | |
JP4122915B2 (en) | Softened polylactic acid resin stretched film and method for producing the same | |
EP1725614B1 (en) | Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate | |
KR100752976B1 (en) | Biodegradable wrap film | |
JP5053500B2 (en) | Method for slowing degradation rate of biodegradable polymers and biodegradable polymer compositions and compositions thereof | |
WO2004000939A1 (en) | Polylactic acid base polymer composition, molding thereof and film | |
JPH09151310A (en) | Polymer composition having biodegradability and shrink film | |
JPH04335060A (en) | Degradable thermoplastic polymer composition | |
KR20210024448A (en) | Addition of additives that impart biodegradability to plastic materials | |
JP5656001B2 (en) | Biodegradable multilayer container | |
JP4289841B2 (en) | Polylactic acid resin composition with controlled biodegradation rate and molded article thereof | |
JP2003231798A (en) | Lactic acid resin composition and sheet product of the same, and bag product | |
JP2005193620A (en) | Co-extruded, multilayered, biodegradable and shrinkable film | |
JP2002226691A (en) | Polyglyolic acid type resin composition | |
JP5145531B2 (en) | Polylactic acid composition and polylactic acid molded article | |
JP4163060B2 (en) | Agricultural resin composition and agricultural material | |
JP4587737B2 (en) | Polylactic acid composition | |
JP2015174979A (en) | biodegradable film | |
JP3477642B2 (en) | Molded body with controlled biodegradation period and method for producing the same | |
JP4460381B2 (en) | Polylactic acid moisture-proof coating biaxially stretched film | |
JP2005336468A (en) | Lactic acid-based flexible film | |
JP2023148766A (en) | Polylactic acid film, film for packaging food product, and film for packaging fruit and vegetable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20081002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090122 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120626 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5030435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |