JP4289841B2 - Polylactic acid resin composition with controlled biodegradation rate and molded article thereof - Google Patents

Polylactic acid resin composition with controlled biodegradation rate and molded article thereof Download PDF

Info

Publication number
JP4289841B2
JP4289841B2 JP2002234239A JP2002234239A JP4289841B2 JP 4289841 B2 JP4289841 B2 JP 4289841B2 JP 2002234239 A JP2002234239 A JP 2002234239A JP 2002234239 A JP2002234239 A JP 2002234239A JP 4289841 B2 JP4289841 B2 JP 4289841B2
Authority
JP
Japan
Prior art keywords
polylactic acid
mass
titanium dioxide
resin composition
biodegradation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002234239A
Other languages
Japanese (ja)
Other versions
JP2004075727A (en
Inventor
徳生 福田
保志 大西
秀人 辻
和信 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Prefecture
Unitika Ltd
Original Assignee
Aichi Prefecture
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Prefecture, Unitika Ltd filed Critical Aichi Prefecture
Priority to JP2002234239A priority Critical patent/JP4289841B2/en
Publication of JP2004075727A publication Critical patent/JP2004075727A/en
Application granted granted Critical
Publication of JP4289841B2 publication Critical patent/JP4289841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ポリ乳酸系重合体に二酸化チタンを添加することによる生分解速度の制御されたポリ乳酸系樹脂組成物およびその成形体に関するものである。
【0002】
【従来の技術】
近年、プラスチック廃棄物が引き起こす環境破壊問題から、酵素や微生物によって分解される生分解性プラスチックの開発が活発に行われている。そのなかで、ポリ乳酸は、ポリスチレン・ポリプロピレン等の汎用プラスチックに匹敵する機械的強度を有するので、最も将来性のある生分解性プラスチックの1つとして注目を浴びている。しかし、生分解性ではあるものの、その分解性が低いことが問題とされている。これに対し、環境中でのポリ乳酸の分解を促進するために、ポリ乳酸100部に対し無機の微粒子を1〜120部配合することが報告されている。この場合に、無機微粒子を配合したポリ乳酸フィルムは、未延伸及び延伸いずれの場合であっても、何も添加していない未延伸のポリ乳酸に比べ、生分解による質量減少量は、腐葉土、ドッグフード等からなるコンポスト中で調べたところ、最も促進されたフィルムで2.1倍程度である(特開平10−219088号公報)。
【0003】
環境中での分解を促進することも重要であるが、今後の石油の枯渇が懸念される現在、生物資源を原料とすることのできるポリマーを汎用プラスチックの代替材料として使用していくという観点からも、ポリ乳酸は必要である。その場合、ポリ乳酸には使用中の耐久性が要求される。元来ポリ乳酸の生分解性は低いが、屋外で若しくは高湿の雰囲気下で汎用プラスチックのように使用する場合、耐久性のある方、つまり加水分解性の低い方が都合がよい。水中、特にアルカリ溶液中での加水分解性と、微生物による生分解性には相関性があることが知られているので、耐久性を必要とする場合は、生分解性の低い方が都合がよい。汎用プラスチックの代替材料として生分解プラスチックを利用していく場合には、使用する目的に応じて生分解速度を自由に制御することが必要である。
【0004】
ポリ乳酸は結晶化度が低いほど生分解性が高くなることが知られているが、結晶化度0%の非晶質ポリ乳酸でも、他の生分解性プラスチックに比べ、土壌及び海水中での生分解性が低いことが問題とされている。また結晶化度を高くすると、生分解性の低いポリ乳酸が得られるが、弾性率が非常に高くなり、結晶化度の低いポリ乳酸と大きく物性が異なってしまう。
【0005】
【発明が解決しようとする課題】
本発明の目的は、引張強度・弾性率等の機械的物性を大きく変化させることなく、生分解速度を促進制御できるポリ乳酸系樹脂組成物およびその成形体を提供することにある。生分解速度の促進に関しては、従来(特開平10−219088号公報)よりも促進の程度を高くすることを課題とする。
【0006】
【課題を解決するための手段】
様々な無機微粒子とのポリ乳酸複合体を調製して、その生分解性及び機械的物性について検討した結果、たとえば、ポリ乳酸に、粒径がサブミクロンオーダーで且つ表面処理されていないアナターゼ型二酸化チタンを添加すると、引張強度等機械的物性を変化させることなく生分解速度を大幅に促進できることが明らかとなった。
【0007】
本発明の要旨は、次の通りである。
(1)ポリ乳酸系重合体100質量部に、粒径が0.005〜1μmでかつ表面が無機物処理されている親水性のルチル型二酸化チタンを、5〜40質量部配合したことを特徴とする生分解速度の制御されたポリ乳酸系樹脂組成物。
【0008】
(2)上記(1)において、生分解速度がポリ乳酸単独の1.4倍以上であり、引張強度がポリ乳酸単独の0.65倍以上であることを特徴とする生分解速度の制御されたポリ乳酸系樹脂組成物。
【0009】
(3)ポリ乳酸系重合体100質量部に、粒径が0.05〜1μmでかつ表面処理されていないアナターゼ型二酸化チタンを20〜40質量部配合し、生分解速度がポリ乳酸単独の2.4倍以上であり、引張強度がポリ乳酸単独の0.8倍以上であることを特徴とする生分解速度の制御されたポリ乳酸系樹脂組成物。
【0010】
(4)上記(1)から(3)までのいずれかのポリ乳酸系樹脂組成物にて形成されていることを特徴とする生分解速度の制御されたポリ乳酸系樹脂成形体。
本発明によれば、ポリ乳酸系重合体に二酸化チタンを配合し、その配合するときの二酸化チタンの種類により、引張強度・弾性率等機械的物性を変化させることなく、生分解速度を促進制御可能な方法を提供することができる。
【0011】
【発明の実施の形態】
本発明に使用されるポリ乳酸系重合体は、構成単位がL乳酸および/またはD乳酸である単独重合体、またはその他の生分解性樹脂との共重合体および/または混合物である。ポリ乳酸系重合体におけるL乳酸および/またはD乳酸単位の含有量は、機械的強度や耐熱性の観点から、80モル%以上が好ましく、90モル%以上がさらに好ましい。
【0012】
本発明に用いられるポリ乳酸系重合体には、ポリ乳酸の耐熱性や機械的特性を大幅に損ねることのない範囲で、必要に応じて上述のようにその他の生分解性樹脂成分を共重合ないしは混合することもできる。その他の生分解性樹脂としては、ポリ(エチレンサクシネート)、ポリ(ブチレンサクシネート)、ポリ(ブチレンサクシネートcoブチレンアジペート)等に代表されるジオールとジカルボン酸からなる脂肪族ポリエステルや、ポリ(グリコール酸)、ポリ(3ヒドロキシ酪酸)、ポリ(3ヒドロキシ吉草酸)、ポリ(6ヒドロキシカプロン酸)等のポリヒドロキシカルボン酸や、ポリ(εカプロラクトン)やポリ(δバレロラクトン)に代表されるポリ(ωヒドロキシアルカノエート)や、さらに芳香族成分を含んでいても生分解性を示すポリ(ブチレンサクシネートcoブチレンテレフタレート)やポリ(ブチレンアジペートcoブチレンテレフタレート)の他、ポリエステルアミド、ポリエステルカーボネート、ポリケトン、澱粉等の多糖類等が挙げられる。
【0013】
これらの重合体の数平均分子量としては、50,000〜200,000の範囲が好ましく、この範囲を下回ると実用物性がほとんど発現されないという問題を生じる。またこの範囲を上回る場合は、溶融粘度が高くなりすぎて成形加工性が悪くなる。なお、機械的物性を低下させないためには、ポリ乳酸系重合体中の残存モノマーや触媒が少ない方が好ましい。
【0014】
ポリ乳酸系重合体に配合される生分解速度を促進するための二酸化チタンとしては、粒径がサブミクロンオーダーで、表面処理されていないアナターゼ型二酸化チタンまたは表面が無機物処理されている親水性のルチル型二酸化チタンが用いられる
【0015】
上記無機物処理としては、アルミナ、シリカ、ジルコニア等の金属酸化物処理が好ましく、本発明においてはいずれの処理を行ってもよいが、中でもアルミナ処理が汎用的であり好適である。
【0016】
生分解性を促進するためには、ポリ乳酸系重合体に配合する表面処理されていないアナターゼ型二酸化チタンの粒径は0.05〜1μmであることが好ましく、より好ましくは0.1〜0.5μmである。また表面が無機物処理されている親水性のルチル型二酸化チタンの粒径は0.005〜1μmであることが好ましく、より好ましくは0.01〜0.5μmである。粒径が上記範囲を下回ると、表面積の増大に伴い光触媒活性が顕著となり、ブレンドしたときにポリ乳酸系重合体の著しい分解すなわち機械的物性の著しい低下をまねく。また粒径が上記範囲を上回ると、ポリ乳酸系重合体との界面積があまり大きくならず添加効果が小さくなる。
【0017】
ポリ乳酸系重合体に配合するルチル型二酸化チタンの比率は、ポリ乳酸系重合体100質量部に対して二酸化チタン5〜40質量部、好ましくは10〜40質量部である。二酸化チタンの量が5質量部より少ないと、生分解性の変化がほとんど認められず、また40質量部より多いと、組成物がもろくなり引張強度等の機械的物性が低下し実用性を失う。生分解性を促進するための好ましい形態として、ポリ乳酸系重合体100質量部に対して、表面処理されていないアナターゼ型二酸化チタンを20〜40質量部配合したものを挙げることができる。
【0018】
上記の配合に際し、本発明の効果を阻害しない範囲で、可塑剤、滑剤、離型剤、難燃剤、帯電防止剤、紫外線吸収剤、酸化防止剤、光安定剤、顔料、充填剤等を添加することもできる。
【0019】
本発明におけるポリ乳酸系重合体と二酸化チタンとのブレンドは、2軸熱ロール、バンバリーミキサー、二軸押出機等で行うことができる。ただし溶融中におけるポリ乳酸系重合体の加水分解を防止するため、予め原料を充分に乾燥しておくことが必要である。
【0020】
2軸熱ロールでブレンドする時の温度は、140〜170℃が好ましい。これより低い温度での混練は、非常に強力な剪断力を必要とするため練りにくく、またこれより高い温度での混練は、充分な剪断力が得られないため、二酸化チタン粒子の二次凝集をほどくことができない。二軸押出機でブレンドする時の温度は170〜220℃が好ましい。これより低い温度での混練は負荷が高すぎるため困難であり、これより高い温度での混練ではポリ乳酸系重合体の熱分解が顕著になる。
【0021】
またブレンドに要する時間として、上記の温度で3〜10分が好ましい。これより短い時間だと、ポリ乳酸マトリックス中での二酸化チタンの分散が不十分であり、またこれより長い時間だとポリ乳酸系重合体の熱分解が顕著になって機械的物性の低下をまねく。
【0022】
熱ロール等でのブレンドは、原料を十分に乾燥しても、多少なりとも熱分解が生じるので、これに代えて、溶剤に両者を混合後、超音波処理のみで酸化チタンをポリ乳酸マトリックス中に分散させてもよい。超音波処理後は、溶剤を速やかに蒸発させ、得られた固形物を熱プレスによりフィルムとすることができる。
【0023】
本発明において、上記ポリ乳酸系樹脂組成物から、押出成形、真空及び/または圧空成形、射出成形、ブロー成形等の方法によって、ポリ乳酸系樹脂成形体を得ることができる。たとえば、農業用や食品包装用のフィルムまたはシート、各種カードや鉄道の切符、園芸用ポット、カップやトレー等の食品用容器、ブリスターパック容器、各種流動体用容器、各種射出成形体、繊維、不織布、およびラミネート加工品等の複合材料を得ることができる。
【0024】
本発明において、配合する二酸化チタンの種類によりポリ乳酸系樹脂組成物の生分解速度を制御できる理由としては、表面処理されていない二酸化チタンや表面が無機物処理されている親水性の二酸化チタンを用いた場合は親水性付与によって加水分解が促進されることが影響しているものと推察される。
【0025】
【発明の効果】
本発明のポリ乳酸系樹脂組成物は、生分解速度が促進されたことを利用して、各種フィルムやシート、各種容器、各種射出成形体、繊維や不織布、各種複合材料等に適用することができる。生分解性が促進されるため、廃棄の点で環境への負荷が少なく、ゴミの減量化や肥料としての再利用が可能となる。
【0026】
【実施例】
次に、本発明を実施例によって具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。なお下記の実施例および比較例に示す試験は、以下に示す方法により行った。
【0027】
(1)生分解試験: 樹脂組成物からフィルムを形成し、このフィルムから試験用サンプルを1cm×1cmの大きさに切出し、質量を計った(試験前質量)。このサンプルを、トリチラキウムアルバム由来プロテイナーゼK 1mgを含有する50mMトリス塩酸バッファー(pH8.6) 5ミリリットル中に浸し、37℃で一定時間インキュベートした。インキュベート後、フィルムを取り出し、蒸留水で慎重に洗浄し次いで乾燥した後、質量を測定した(試験後質量)。質量減少量は、次の式により算出した。
【0028】
質量減少量(μg/mm)=[試験前質量−試験後質量](μg)/[生分解前のフィルムの全表面積](mm
質量減少速度(μg/mm・h)は、酵素との反応開始後0〜3時間での質量減少量を単位時間(hour)当たりに算出しなおしたものとした。
【0029】
(2)引張試験: 樹脂組成物からフィルムを形成し、このフィルムについて、島津製作所社製オートグラフDSC−5000を用い、23℃、湿度50%、引張速度5mm/min、チャック間距離30mmという条件下で測定を行い、破断時の引張強度および引張弾性率を評価した。
【0030】
(二酸化チタン)
まず、表1に示す表面処理が施された微粒状の市販の二酸化チタンを準備した。この表1において、「TTO 55A」などの記号は商品名であって、最後の欄の「KA 10C」はチタン工業社製、その他は石原産業社製であった。これらの二酸化チタンの結晶型、粒径、表面処理、表面性質は、表1に記載のとおりであった。
【0031】
【表1】

Figure 0004289841
【0032】
(実施例1)
ポリ乳酸(カーギル・ダウ社製 6200D、数平均分子量=84,000、D体含有量=1.1モル%)100質量部、二酸化チタン(石原産業社製TTO 55A)20質量部各々をジクロロメタン溶液中に溶解若しくは懸濁し、混合後、超音波処理しキャスティングした。その後、2軸熱ロールで150℃、5分間混練後、熱プレスにより200℃で溶融し、次いで急冷することにより、厚さ200μmの非晶質ポリ乳酸複合フィルムを得た。得られたフィルムの生分解試験、引張試験の結果は、表2のとおりであった。
【0033】
【表2】
Figure 0004289841
【0034】
(参考例)
参考例として、二酸化チタンは添加せずに、そのほかは実施例1と同様にして、フィルムを得た。得られたフィルムの生分解試験、引張試験の結果は、表2のとおりであった。なお、表2には、参考例のフィルムに対する実施例1のフィルムの質量減少速度の比率と引張強度の比率も合わせて示した。
実施例2、3
実施例1に比べ、二酸化チタンの種類と添加量とを変えた。そのほかは実施例1と同様にして、フィルムを得た。得られたフィルムの生分解試験、引張試験の結果および参考例に対する比率は、表2のとおりであった。
(比較例1)
実施例1のものと同じポリ乳酸(カーギル・ダウ社製6200D)100質量部に対して添加する二酸化チタンTTO 55Aの割合を2質量部とした。そのほかは実施例1と同様にしてフィルムを得た。得られたフィルムの生分解試験、引張試験の結果は、表3のとおりであった。表3には、表2と同様に参考例についての生分解試験、引張試験の結果を示すとともに、参考例のフィルムに対する比較例1のフィルムの質量減少速度の比率と引張強度の比率も合わせて示した。
【0035】
【表3】
Figure 0004289841
【0036】
(比較例2)
実施例1のものと同じポリ乳酸(カーギル・ダウ社製6200D)100質量部に対して添加する二酸化チタンTTO 55Aの割合を50質量部とした。そのほかは実施例1と同様にしてフィルムを得た。得られたフィルムの生分解試験、引張試験の結果および参考例に対する比率は、表3のとおりであった。
比較例3、4
比較例1のものと同じポリ乳酸(カーギル・ダウ社製6200D)100質量部に対して添加する二酸化チタンの種類をKA 10Cとした。その添加量は、表3に記載の通りとした。そのほかは比較例1と同様にしてフィルムを得た。得られたフィルムの生分解試験、引張試験の結果および参考例に対する比率は、表3のとおりであった。
比較例5
実施例1に比べ、二酸化チタンの種類をMC−90に変えた。このMC−90は、アナターゼ型の二酸化チタンであったが、その粒径は、本発明にもとづく範囲の下限である0.05μmよりも下回って、0.018μmしかなかった。このため、熱プレス成形時にポリマーが分解してしまい、生分解試験および引張試験を行うことができず、物性を測定することができなかった。
【0037】
以上から明らかなように、本発明の実施例のフィルムは、所要の引張強度を保ったうえで、生分解速度を促進制御することが可能であった。
これに対し、比較例のものでは、ポリ乳酸100質量部に対しルチル型二酸化チタンの添加量が50質量部であると引張強度の著しい低下をまねき、またルチル型二酸化チタンの添加量が2質量部である場合とアナターゼ型二酸化チタンの添加量が2質量部および10質量部である場合は質量減少速度の変化が少なくなってしまった。また、二酸化チタンの粒径が小さすぎるとポリマーが分解して機械的物性が著しく低下してしまった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polylactic acid resin composition having a controlled biodegradation rate by adding titanium dioxide to a polylactic acid polymer, and a molded product thereof.
[0002]
[Prior art]
In recent years, biodegradable plastics that can be decomposed by enzymes and microorganisms have been actively developed due to environmental damage caused by plastic waste. Among them, polylactic acid has attracted attention as one of the most promising biodegradable plastics because it has mechanical strength comparable to general-purpose plastics such as polystyrene and polypropylene. However, although it is biodegradable, its low degradability is a problem. On the other hand, in order to promote degradation of polylactic acid in the environment, it has been reported that 1 to 120 parts of inorganic fine particles are blended with 100 parts of polylactic acid. In this case, the polylactic acid film in which the inorganic fine particles are blended, in any case of unstretched and stretched, compared to unstretched polylactic acid to which nothing is added, the mass loss due to biodegradation is humus, When examined in compost made of dog food or the like, it is about 2.1 times the most accelerated film (Japanese Patent Laid-Open No. 10-219088).
[0003]
It is also important to promote degradation in the environment, but from the viewpoint of using polymers that can be made from biological resources as an alternative material for general-purpose plastics at the present when there is concern about the depletion of petroleum in the future. However, polylactic acid is necessary. In that case, the polylactic acid is required to have durability during use. Originally, the biodegradability of polylactic acid is low, but when used like a general-purpose plastic outdoors or in a high-humidity atmosphere, it is advantageous to have durability, that is, lower hydrolyzability. It is known that there is a correlation between hydrolyzability in water, especially in alkaline solution, and biodegradability by microorganisms, so when durability is required, lower biodegradability is more convenient. Good. When biodegradable plastics are used as an alternative material for general-purpose plastics, it is necessary to freely control the biodegradation rate according to the purpose of use .
[0004]
Polylactic acid is known to be more biodegradable as the degree of crystallinity is lower. However, amorphous polylactic acid with a crystallinity of 0% is also more effective in soil and seawater than other biodegradable plastics. The biodegradability is low. Further, when the degree of crystallinity is increased, polylactic acid with low biodegradability can be obtained, but the elastic modulus becomes very high and the physical properties are greatly different from those of polylactic acid with low crystallinity.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a polylactic acid-based resin composition capable of promoting and controlling the biodegradation rate without greatly changing mechanical properties such as tensile strength and elastic modulus, and a molded product thereof. Regarding the promotion of the biodegradation rate, it is an object to make the degree of promotion higher than the conventional one (Japanese Patent Laid-Open No. 10-219088).
[0006]
[Means for Solving the Problems]
As a result of preparing polylactic acid composites with various inorganic fine particles and examining their biodegradability and mechanical properties, for example, polylactic acid has an anatase type dioxide having a particle size of submicron order and not surface-treated. It was revealed that the addition of titanium can greatly accelerate the biodegradation rate without changing mechanical properties such as tensile strength .
[0007]
The gist of the present invention is as follows.
(1) 5 to 40 parts by mass of hydrophilic rutile titanium dioxide having a particle size of 0.005 to 1 μm and a surface treated with an inorganic substance is blended with 100 parts by mass of a polylactic acid-based polymer. A polylactic acid resin composition having a controlled biodegradation rate.
[0008]
(2) In (1), the biodegradation rate is 1.4 times or more that of polylactic acid alone, and the tensile strength is 0.65 times or more that of polylactic acid alone. Polylactic acid resin composition.
[0009]
(3) 20 to 40 parts by mass of anatase-type titanium dioxide having a particle size of 0.05 to 1 μm and not surface-treated is added to 100 parts by mass of a polylactic acid polymer, and the biodegradation rate is 2 of polylactic acid alone. A polylactic acid-based resin composition with a controlled biodegradation rate, which is 4 times or more and has a tensile strength of 0.8 times or more that of polylactic acid alone.
[0010]
(4) A polylactic acid resin molded article with a controlled biodegradation rate, characterized in that it is formed of any of the polylactic acid resin compositions (1) to (3 ) above.
According to the present invention, titanium dioxide is blended into a polylactic acid polymer, and the biodegradation rate is accelerated and controlled without changing mechanical properties such as tensile strength and elastic modulus depending on the type of titanium dioxide when blended. Possible methods can be provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The polylactic acid polymer used in the present invention is a homopolymer whose structural unit is L lactic acid and / or D lactic acid, or a copolymer and / or mixture with other biodegradable resins. From the viewpoint of mechanical strength and heat resistance, the content of L lactic acid and / or D lactic acid unit in the polylactic acid-based polymer is preferably 80 mol% or more, and more preferably 90 mol% or more.
[0012]
The polylactic acid polymer used in the present invention is copolymerized with other biodegradable resin components as necessary as long as the heat resistance and mechanical properties of polylactic acid are not significantly impaired. Or they can be mixed. Other biodegradable resins include aliphatic polyesters composed of diols and dicarboxylic acids, such as poly (ethylene succinate), poly (butylene succinate), poly (butylene succinate co-butylene adipate), and poly ( Glycolic acid), poly (3-hydroxybutyric acid), poly (3-hydroxyvaleric acid), poly (6-hydroxycaproic acid) and other polyhydroxycarboxylic acids, poly (εcaprolactone) and poly (δ valerolactone) In addition to poly (ω-hydroxyalkanoate), poly (butylene succinate cobutylene terephthalate) and poly (butylene adipate cobutylene terephthalate), which exhibit biodegradability even if it contains an aromatic component, polyester amide, polyester carbonate, Polyketone, starch, etc. Sugars, and the like.
[0013]
The number average molecular weight of these polymers is preferably in the range of 50,000 to 200,000. When the number average molecular weight is below this range, there is a problem that practical properties are hardly expressed. On the other hand, if it exceeds this range, the melt viscosity becomes too high and the molding processability deteriorates. In order not to lower the mechanical properties, it is preferable that there are few residual monomers and catalysts in the polylactic acid polymer.
[0014]
Titanium dioxide for promoting the biodegradation rate blended in the polylactic acid polymer is an anatase type titanium dioxide having a particle size of submicron order and not surface-treated , or a hydrophilic surface treated with an inorganic substance. Rutile titanium dioxide is used .
[0015]
As the inorganic treatment, a metal oxide treatment such as alumina, silica, zirconia or the like is preferable. In the present invention, any treatment may be performed, but among these, the alumina treatment is versatile and suitable.
[0016]
In order to promote biodegradability, it is preferable that the particle size of the non-surface-treated anatase-type titanium dioxide blended with the polylactic acid polymer is 0.05 to 1 μm, more preferably 0.1 to 0. .5 μm. The particle size of hydrophilic rutile-type titanium dioxide whose surface is treated with an inorganic substance is preferably 0.005 to 1 μm, more preferably 0.01 to 0.5 μm. When the particle size is less than the above range, the photocatalytic activity becomes remarkable as the surface area increases, and when blended, the polylactic acid polymer is significantly decomposed, that is, the mechanical properties are significantly lowered. On the other hand, when the particle size exceeds the above range, the interfacial area with the polylactic acid polymer is not so large and the effect of addition becomes small.
[0017]
The ratio of the rutile titanium dioxide formulated into the polylactic acid-based polymer, titanium dioxide 5-40 parts by mass relative to the polylactic acid polymer 100 parts by weight, preferably from 10 to 40 parts by weight. When the amount of titanium dioxide is less than 5 parts by mass, almost no change in biodegradability is observed, and when it is more than 40 parts by mass, the composition becomes brittle and mechanical properties such as tensile strength are reduced, thus losing practicality. . As a preferable form for promoting biodegradability, there can be mentioned 20 to 40 parts by mass of anatase-type titanium dioxide that is not surface-treated with respect to 100 parts by mass of a polylactic acid polymer.
[0018]
Addition of plasticizer, lubricant, mold release agent, flame retardant, antistatic agent, ultraviolet absorber, antioxidant, light stabilizer, pigment, filler, etc., as long as the effects of the present invention are not impaired. You can also
[0019]
The blend of the polylactic acid polymer and titanium dioxide in the present invention can be carried out with a biaxial heat roll, a Banbury mixer, a twin screw extruder or the like. However, in order to prevent hydrolysis of the polylactic acid polymer during melting, it is necessary to sufficiently dry the raw material in advance.
[0020]
140-170 degreeC is preferable for the temperature at the time of blending with a biaxial heat roll. Kneading at a lower temperature is difficult to knead because it requires a very strong shearing force, and kneading at a higher temperature does not provide sufficient shearing force. I can't unwind. The temperature when blending with a twin screw extruder is preferably 170 to 220 ° C. Kneading at a lower temperature is difficult because the load is too high, and thermal kneading of the polylactic acid polymer becomes noticeable when kneading at a higher temperature.
[0021]
The time required for blending is preferably 3 to 10 minutes at the above temperature. If the time is shorter than this, the dispersion of titanium dioxide in the polylactic acid matrix is insufficient, and if the time is longer than this time, the thermal degradation of the polylactic acid-based polymer becomes remarkable, leading to a decrease in mechanical properties. .
[0022]
When blending with a hot roll, etc., even if the raw material is sufficiently dried, some thermal decomposition occurs. Instead, after mixing both in a solvent, the titanium oxide is mixed into the polylactic acid matrix only by ultrasonic treatment. You may make it disperse | distribute to. After the ultrasonic treatment, the solvent can be quickly evaporated, and the obtained solid can be formed into a film by hot pressing.
[0023]
In the present invention, a polylactic acid resin molded product can be obtained from the polylactic acid resin composition by a method such as extrusion molding, vacuum and / or pressure molding, injection molding, blow molding and the like. For example, films and sheets for agriculture and food packaging, various cards and railroad tickets, horticultural pots, food containers such as cups and trays, blister pack containers, various fluid containers, various injection molded articles, fibers, Composite materials such as nonwoven fabrics and laminated products can be obtained.
[0024]
In the present invention, the reason why the biodegradation rate of the polylactic acid resin composition can be controlled by the type of titanium dioxide to be blended is that titanium dioxide that has not been surface-treated or hydrophilic titanium dioxide whose surface has been treated with an inorganic substance is used. In such a case, it is inferred that hydrolysis is promoted by imparting hydrophilicity.
[0025]
【The invention's effect】
The polylactic acid-based resin composition of the present invention can be applied to various films and sheets, various containers, various injection-molded articles, fibers and non-woven fabrics, various composite materials, etc. by utilizing the fact that the biodegradation rate is accelerated. it can. For biodegradability is accelerated, the load on the environment is small, it is possible to reuse the Reduction and fertilizer garbage in terms of disposal.
[0026]
【Example】
Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited only to the following examples. The tests shown in the following examples and comparative examples were performed by the following methods.
[0027]
(1) Biodegradation test: A film was formed from the resin composition, a test sample was cut into a size of 1 cm × 1 cm from this film, and the mass was measured (mass before test). This sample was immersed in 5 ml of 50 mM Tris-HCl buffer (pH 8.6) containing 1 mg of proteinase K derived from Trityrakium album and incubated at 37 ° C. for a certain period of time. After incubation, the film was taken out, carefully washed with distilled water and dried, and then the mass was measured (mass after test). The amount of mass reduction was calculated by the following formula.
[0028]
Weight loss (μg / mm 2 ) = [Mass before test−Mass after test] (μg) / [Total surface area of film before biodegradation] (mm 2 )
The mass reduction rate (μg / mm 2 · h) was obtained by recalculating the mass reduction amount in 0 to 3 hours after the start of the reaction with the enzyme per unit time (hour).
[0029]
(2) Tensile test: A film was formed from the resin composition, and this film was subjected to conditions of 23 ° C., humidity 50%, tensile speed 5 mm / min, and chuck-to-chuck distance 30 mm using Shimadzu Autograph DSC-5000. Measurements were made below to evaluate the tensile strength and tensile modulus at break.
[0030]
(titanium dioxide)
First, a commercially available fine titanium dioxide having a surface treatment shown in Table 1 was prepared. In Table 1, symbols such as “TTO 55A” are trade names, and “KA 10C” in the last column is manufactured by Titanium Industry Co., Ltd., and others are manufactured by Ishihara Sangyo Co., Ltd. The crystal type, particle size, surface treatment, and surface properties of these titanium dioxides are as shown in Table 1 .
[0031]
[Table 1]
Figure 0004289841
[0032]
Example 1
Polylactic acid (Cargill Dow 6200D, number average molecular weight = 84,000, D-form content = 1.1 mol%) 100 parts by mass, titanium dioxide (Ishihara Sangyo TTO 55A) 20 parts by mass each in dichloromethane solution It was dissolved or suspended in the solution, mixed and then sonicated and cast. Thereafter, the mixture was kneaded at 150 ° C. for 5 minutes with a biaxial heat roll, melted at 200 ° C. by hot pressing, and then rapidly cooled to obtain an amorphous polylactic acid composite film having a thickness of 200 μm. Table 2 shows the results of the biodegradation test and the tensile test of the obtained film.
[0033]
[Table 2]
Figure 0004289841
[0034]
(Reference example)
As a reference example, a film was obtained in the same manner as in Example 1 except that titanium dioxide was not added. Table 2 shows the results of the biodegradation test and the tensile test of the obtained film. Table 2 also shows the ratio of the mass reduction rate of the film of Example 1 to the film of the reference example and the ratio of the tensile strength.
( Examples 2 and 3 )
Compared with Example 1, the kind and addition amount of titanium dioxide were changed. Otherwise in the same manner as in Example 1, a film was obtained. The results of the biodegradation test and tensile test of the obtained film and the ratio to the reference example are shown in Table 2.
(Comparative Example 1)
The proportion of titanium dioxide TTO 55A added to 100 parts by mass of the same polylactic acid (Cargill Dow 6200D) as in Example 1 was 2 parts by mass. Otherwise, a film was obtained in the same manner as in Example 1. Table 3 shows the results of the biodegradation test and the tensile test of the obtained film. Table 3 shows the results of the biodegradation test and the tensile test for the reference example in the same manner as in Table 2, and also shows the ratio of the rate of mass reduction and the ratio of the tensile strength of the film of Comparative Example 1 to the film of the reference example. Indicated.
[0035]
[Table 3]
Figure 0004289841
[0036]
(Comparative Example 2)
The proportion of titanium dioxide TTO 55A added to 100 parts by mass of the same polylactic acid (Cargill Dow 6200D) as in Example 1 was 50 parts by mass. Otherwise, a film was obtained in the same manner as in Example 1. The results of the biodegradation test and tensile test of the obtained film and the ratio to the reference example are shown in Table 3.
( Comparative Examples 3 and 4 )
The type of titanium dioxide added to 100 parts by mass of the same polylactic acid (6200D manufactured by Cargill Dow) as that of Comparative Example 1 was KA 10C. The amount added was as shown in Table 3. Otherwise, a film was obtained in the same manner as in Comparative Example 1. The results of the biodegradation test and tensile test of the obtained film and the ratio to the reference example are shown in Table 3.
( Comparative Example 5 )
Compared to Example 1, the type of titanium dioxide was changed to MC-90. This MC-90 was anatase type titanium dioxide, but its particle size was only 0.018 μm, which was lower than 0.05 μm which is the lower limit of the range based on the present invention. For this reason, the polymer was decomposed during the hot press molding, the biodegradation test and the tensile test could not be performed, and the physical properties could not be measured.
[0037]
As is clear from the above, the films of the examples of the present invention were able to promote and control the biodegradation rate while maintaining the required tensile strength.
On the other hand, in the comparative example, when the addition amount of rutile titanium dioxide is 50 parts by mass with respect to 100 parts by mass of polylactic acid, the tensile strength is remarkably lowered, and the addition amount of rutile titanium dioxide is 2 masses. When the amount of the anatase-type titanium dioxide is 2 parts by mass and 10 parts by mass, the change in the mass reduction rate is reduced. On the other hand, if the particle size of titanium dioxide was too small, the polymer was decomposed and the mechanical properties were remarkably lowered.

Claims (4)

ポリ乳酸系重合体100質量部に、粒径が0.005〜1μmでかつ表面が無機物処理されている親水性のルチル型二酸化チタンを、5〜40質量部配合したことを特徴とする生分解速度の制御されたポリ乳酸系樹脂組成物。  Biodegradation characterized by blending 5 to 40 parts by mass of hydrophilic rutile titanium dioxide having a particle size of 0.005 to 1 μm and a surface treated with an inorganic substance in 100 parts by mass of a polylactic acid polymer A polylactic acid resin composition with controlled speed. 生分解速度がポリ乳酸単独の1.4倍以上であり、引張強度がポリ乳酸単独の0.65倍以上であることを特徴とする請求項1記載の生分解速度の制御されたポリ乳酸系樹脂組成物。  The biodegradation rate-controlled polylactic acid system according to claim 1, wherein the biodegradation rate is 1.4 times or more that of polylactic acid alone and the tensile strength is 0.65 times or more that of polylactic acid alone. Resin composition. ポリ乳酸系重合体100質量部に、粒径が0.05〜1μmでかつ表面処理されていないアナターゼ型二酸化チタンを20〜40質量部配合し、生分解速度がポリ乳酸単独の2.4倍以上であり、引張強度がポリ乳酸単独の0.8倍以上であることを特徴とする生分解速度の制御されたポリ乳酸系樹脂組成物。  20 to 40 parts by mass of anatase-type titanium dioxide having a particle size of 0.05 to 1 μm and not surface-treated is added to 100 parts by mass of a polylactic acid polymer, and the biodegradation rate is 2.4 times that of polylactic acid alone. A polylactic acid-based resin composition having a controlled biodegradation rate, characterized in that the tensile strength is 0.8 times or more that of polylactic acid alone. 請求項1から3までのいずれか1項記載のポリ乳酸系樹脂組成物にて形成されていることを特徴とする生分解速度の制御されたポリ乳酸系樹脂成形体。  A polylactic acid-based resin molded article having a controlled biodegradation rate, characterized in that it is formed of the polylactic acid-based resin composition according to any one of claims 1 to 3.
JP2002234239A 2002-08-12 2002-08-12 Polylactic acid resin composition with controlled biodegradation rate and molded article thereof Expired - Fee Related JP4289841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234239A JP4289841B2 (en) 2002-08-12 2002-08-12 Polylactic acid resin composition with controlled biodegradation rate and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234239A JP4289841B2 (en) 2002-08-12 2002-08-12 Polylactic acid resin composition with controlled biodegradation rate and molded article thereof

Publications (2)

Publication Number Publication Date
JP2004075727A JP2004075727A (en) 2004-03-11
JP4289841B2 true JP4289841B2 (en) 2009-07-01

Family

ID=32019101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234239A Expired - Fee Related JP4289841B2 (en) 2002-08-12 2002-08-12 Polylactic acid resin composition with controlled biodegradation rate and molded article thereof

Country Status (1)

Country Link
JP (1) JP4289841B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176278B2 (en) * 2006-02-24 2013-04-03 東洋インキScホールディングス株式会社 Colored resin composition
WO2008038350A1 (en) * 2006-09-27 2008-04-03 Fujitsu Limited Resin composition, pulverized matter and method of discarding resin composition
JP2009144075A (en) * 2007-12-14 2009-07-02 Fuji Xerox Co Ltd Resin composition and resin molded article
BR112012007743A2 (en) * 2009-10-08 2016-08-23 Sanofi Aventis Deutschland drug delivery device with biodegradable plastic components
JP6557378B2 (en) * 2018-05-01 2019-08-07 信越ポリマー株式会社 Containment box and carton
JP6715287B2 (en) * 2018-05-01 2020-07-01 信越ポリマー株式会社 Storage box and carton
CN115093683B (en) * 2022-06-08 2023-05-02 青岛普诺恩生物科技有限公司 Modified degradation material with controllable degradation rate and preparation method thereof

Also Published As

Publication number Publication date
JP2004075727A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4842501B2 (en) Three-component mixture of biodegradable polyesters and products obtained therefrom
US8389614B2 (en) Biodegradable nanopolymer compositions and biodegradable articles made thereof
US5883199A (en) Polyactic acid-based blends
US6191203B1 (en) Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
Briassoulis et al. Alternative optimization routes for improving the performance of poly (3-hydroxybutyrate)(PHB) based plastics
JP6803347B2 (en) A method for producing a biodegradable polyester resin composition and a biodegradable polyester resin molded product.
EP1553139A1 (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
WO2004000939A1 (en) Polylactic acid base polymer composition, molding thereof and film
HUT64576A (en) Thermoplastic materials to be produced from lactides and method for it's production, method for producing of degradable polyolefinic - compound, compound for replacing polystyrene, method for producing of degradable, thermoplastic compound
AU2004316879A1 (en) Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate
EP1325079B1 (en) Plastic products comprising biodegradable polyester blend compositions
WO2002028444A2 (en) Absorbent articles comprising biodegradable polyester blend compositions
JP2009097012A (en) Polyester resin composition, molding body obtained from resin composition thereof, and fiber obtained from resin composition thereof
JP4289841B2 (en) Polylactic acid resin composition with controlled biodegradation rate and molded article thereof
JP2001323056A (en) Aliphatic polyester resin and molded article
JP2004143203A (en) Injection molded product
JP5067825B2 (en) Molded article made of polylactic acid polymer and plasticizer for polylactic acid
JP5233335B2 (en) Resin composition and molded article and film comprising the resin composition
JP2005126701A (en) Molded product made from polylactic acid-based polymer composition
JP7218650B2 (en) Polyester resin composition and molded article
EP1360237B1 (en) Biodegradable polyester blend compositions and methods of making the same
JP2009126905A (en) Biodegradable polyester resin composition and molded article comprising the same
JP2011116954A (en) Polylactic acid resin composition and molded body
JP2008094882A (en) Method for preserving biodegradable resin
JP7106936B2 (en) Molded body, sheet and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees