JP2004079980A - ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス - Google Patents

ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス Download PDF

Info

Publication number
JP2004079980A
JP2004079980A JP2002270781A JP2002270781A JP2004079980A JP 2004079980 A JP2004079980 A JP 2004079980A JP 2002270781 A JP2002270781 A JP 2002270781A JP 2002270781 A JP2002270781 A JP 2002270781A JP 2004079980 A JP2004079980 A JP 2004079980A
Authority
JP
Japan
Prior art keywords
diamond
power device
voltage
frequency power
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002270781A
Other languages
English (en)
Inventor
Takeshi Okano
岡野 健
Yoko Yokoyama
横山 陽子
Ichitaro Saito
斎藤 市太郎
Rumi Horiuchi
堀内 るみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002270781A priority Critical patent/JP2004079980A/ja
Publication of JP2004079980A publication Critical patent/JP2004079980A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】ダイヤモンドを材料として用いた、高耐圧・高耐熱・高周波用パワーデバイスを提供する。
【解決手段】天然・高圧・高温合成法・気相成長法・燃焼炎法など製法によらず、ダイヤモンドをパワーデバイスの材料として用いることを特徴とする。ダイヤモンドは、大きなバンドギャップ、高い絶縁破壊電圧、大きな熱伝導率、低い誘電率、高いキャリアの移動度、大きな原子間の結合力など、パワーデバイスとして優れた特性を備えており、高圧・高温・高周波や、過酷な環境下においても、安定した動作が可能となる。

Description

【0001】
【発明の属する技術分野】本発明は、高電圧・高温・高周波用のパワーデバイスに関する。さらに、このようなデバイスの材料と構造に関する。
【0002】
【従来の技術】従来、パワーデバイスに用いる半導体材料として主にシリコンが採用されてきた。近年、研究が盛んに行われているガリウム砒素やシリコンカーバイドなどの化合物半導体もパワーデバイスの材料として用いられている。
【0003】
【発明が解決しようとする課題】しかしながら、シリコンの半導体としての物性値から上述の従来技術により作成されるパワーデバイスは、その性能がほぼ限界にきており、デバイス構造等を工夫しても、これ以上の高電圧・高温・高周波用のパワーデバイスが開発される見込みは少ないとされている。
【0004】さらに、現在研究が進められているガリウム砒素は絶縁破壊電圧が低く、高耐圧・高耐熱に不向きであり、シリコンカーバイドは高周波用パワーデバイスには不向きであるなど、高耐圧・高耐熱・高周波用という条件を同時に満たすことは困難であるといわれてきた。
【0005】本発明では、これらの条件を同時に満たす材料としてダイヤモンドを用いた高電圧・高温・高周波用のパワーデバイスを提供することを課題とする。
【0006】
【課題を解決するための手段】以上の課題を解決するために、請求項1の発明は、パワーデバイスの材料として天然・高圧・高温合成法・気相成長法・燃焼炎法など製法によらずダイヤモンドを用いることを特徴とした技術を開示するものである。
【0007】一般的には、ダイヤモンドは電気抵抗の高い絶縁体として知られているが、以下のように素晴らしい数々の特徴を有するため、パワーデバイスとしても非常に優れた特性を示すことが期待される。
【0008】(1)バンドギャップは5.47eVあり、現在知られている材料では最も大きいものの一つである。この特徴は高温動作の可能性を示唆する。
【0009】(2)絶縁破壊電圧が高く、薄い半導体層でも高電圧に耐えうる。
【0010】(3)熱伝導率がシリコンの数十倍と大きく、放熱が容易である。高電圧用の電子素子では電流の二乗に比例したジュール熱が発生するが、放熱することにより高温下でも安定した動作が可能となる。
【0011】(4)誘電率が低く、キャリアの移動度は高いことから、高速デバイスとして用いることが可能となる。
【0012】(5)原子間の結合力が大きく、放射線下などの過酷な環境においても安定した動作が期待される。
【0013】シリコン・ガリウム砒素・シリコンカーバイドと、ダイヤモンドの物性値とを表1にまとめた。
【表1】
Figure 2004079980
【0014】請求項2の発明は、請求項1に記載したパワーデバイスの材料として、絶縁体ダイヤモンド・真性半導体ダイヤモンド・n型半導体ダイヤモンド・p型半導体ダイヤモンドを用いることを特徴とするものである。
【0015】半導体材料がどれだけ高耐圧・高耐熱・高周波用パワーデバイスとして、有効な性質をもっているのかを表す指標として、いくつかの”figure of merit”という指標が用いられることが多い。シリコンを1とした時の代表的な”figure of merit”の値を表2に示す。
【表2】
Figure 2004079980
【0016】各”figure of merit”は、以下の式で表される。
【0017】
【数1】JFM=(E×ν
【0018】
【数2】KFM=k(ν/ε)0.5
【0019】
【数3】BFM=εμE
【0020】ここで、JFM(Johnson’s figure of merit)は、物質が高周波数動作、高電力動作にどれだけ適しているかという指標。KFM(Keyes’s figure of merit)は、温度変化に対する高速動作の適性、BFM(Baliga’s figure of merit)は一般的なパワーデバイスに対する適性の指標である。
【0021】いずれの”figure of merit”についても、ダイヤモンドは既存の半導体と比べ、より高耐圧・高耐熱・高周波用パワーデバイスに適していることが示されている。
【0022】請求項3の発明は、高濃度の不純物を含有したダイヤモンドを用いることを特徴とする高耐圧・高耐熱・高周波用パワーデバイスの開発を開示するものである。一般にダイヤモンドでは、バンドギャップ中に形成される不純物準位が深いことに起因して、デバイスの動作に必要なキャリア濃度を得ることが困難である。本発明は、高濃度の不純物を添加したダイヤモンドを用い、これに高電圧を印加することでエネルギーバンドを曲げ、キャリア濃度を稼ぐことを特徴とする。
【0023】請求項4の発明は、請求項1〜3に記載したダイヤモンドの表面にオーミックあるいはショットキー電極を設け、これらの電極に電圧を印加し、その電圧によりデバイスがスイッチング動作することを特徴とする請求項1〜3に記載した高耐圧・高耐熱・高周波用のパワーデバイスの開発を開示するものである。
【0024】請求項5の発明は、請求項1〜3に記載したダイヤモンドのうち、少なくとも二つ以上を組み合わせることを特徴とし、請求項4に記載のスイッチング動作を特徴とする高耐圧・高耐熱・高周波用パワーデバイスの開発を開示するものである。
【0025】
【発明の実施の形態】「実施形態1」 天然・高圧・高温合成法・気相成長法・燃焼炎法など製法によらずダイヤモンドに意図的に不純物を添加することなく真性のまま、もしくは意図的に不純物を添加し半導体化したものを用いる。
【0026】半導体化したダイヤモンドとしては、真性半導体ダイヤモンド・n型半導体ダイヤモンド・p型半導体ダイヤモンドが利用可能である。
【0027】これらの半導体ダイヤモンドに含有される不純物の種類としては、N,B,P,S,Li,Naなどが利用可能である。
【0028】また、デバイス化に必要となる電極の種類としてTi,Nb,Ta,Mo,V,Zr,W,Al,Cu,Pt,Auなどが利用可能であり、電極を設ける手段としては、熱フィラメント蒸着法、スパッタ蒸着法、電子銃を用いた蒸着法、導電性の物質が含有されたペーストを塗布して用いる方法、導電性の物質をテープ状にして貼り付ける方法などが利用可能である。
【0029】「実施形態2」 一般的に、ダイヤモンドバルク内キャリア濃度は非常に低く、そのままでは高耐圧・高耐熱・高周波用パワーデバイス用の半導体として利用することは困難である。そこで、ここではIb型単結晶高圧合成ダイヤモンドを用いて、図1に示すような構造を持つデバイスを考案する。
【0030】以下に、そのダイヤモンドを用いたパワーデバイスの構造及び動作原理を記す。
【0031】ここでは動作原理を分かりやすく説明するため、また計算の簡単のために円盤状のダイヤモンドを用いて説明を行うが、デバイス構造が必ずしも円盤状である必要はない。
【0032】円盤状ダイヤモンドの側面はショットキー電極1で覆われており、ショットキー障壁のために電極付近ではダイヤモンド中のポテンシャルは、バルクの中心に向かって低くなっている。
【0033】ショットキー電極1付近では、金属の仕事関数と、ダイヤモンドの仕事関数とが異なるため、金属とダイヤモンドのフェルミ準位に差が生じるが、金属とダイヤモンドのフェルミ順位を一致させるように、金属との接触面付近ではダイヤモンド中のドナから電子が励起される。この励起された電子は、金属のフェルミ準位とダイヤモンドのフェルミ順位とが一致するまで金属へ移動する。金属とダイヤモンドのフェルミ順位が一致すると、見かけ上の電子の移動は止まる。
【0034】別の電極2,3をダイヤモンド基板の上下に設けることでダイヤモンド中のポテンシャル分布は図2のようになることが予測され、キャリアがバルク中心に集まり、高いキャリア濃度を得ることが可能である。
【0035】電極3をグランドに接地し、電極2にグランドに対して正の電圧を印加する。
【0036】電極2,3間に高電圧を印加してもダイヤモンドの抵抗が非常に高いため、殆ど電流は流れない。
【0037】次に、ショットキー電極1にグランドに対して負の電圧を印加する。逆バイアス時の空乏層幅は以下の式に示すように、印加電圧の増加とともに広がる。
【0038】
【数4】
Figure 2004079980
V=印加電圧[V]
W=空乏層幅[cm]
εS=誘電率[F/cm]
q=電子素量[C]
ND=ドナ濃度[cm−3
Vbi=BuilT in potenT ial[V]
【0039】空乏層幅が広がると、バルク中心での電気力線は電界をかけていないときよりも密になる。
【0040】さらに逆バイアスにより広がった空乏層内では部分的にドナ準位がフェルミ準位より高エネルギー側に位置するため、これらのドナ準位から電子が伝導帯へ励起される。
【0041】励起された電子のうち一部は、空乏層内の電界によりバルクの内側に向かって移動し、バルクの中心部のキャリア(電子)濃度が高くなる。
【0042】このときのポテンシャルの概念図を図3に示す。
【0043】このようにして、中心部まで移動してきた電子は、電極2,3間に印加されている高電圧により、高電位側である電極2へ流れる。
【0044】電極2,3が接続していることから、電極2に入った電子の数だけ電極3からダイヤモンドのバルクに電子が注入されることになる。したがって、電極2,3方向に電流が継続的に流れることになる。
【0045】一方、側面のショットキー電極1にグランドに対して正の電圧を印加した場合には、上式より明らかなように、空乏層幅は狭くなり、デバイス内の電子は側面にひきつけられることになるので、このときのバルク中心部のキャリア濃度はバイアスをかけていないときよりも低くなる。したがって、上下の電極間には電流は全く流れない。
【0046】「実施形態2の効果」 このデバイスは、バルクダイヤモンドを利用するため、高温動作が可能である。
【0047】また、ダイヤモンドの絶縁破壊電圧が非常に高いため、電極B,C間に高電圧を印加しても、デバイス動作に全く支障はない。
【0048】さらに、メジャーキャリアである電子のみが電流に寄与するユニポーラデバイスであり、ダイヤモンドの誘電率が低いこと、電子の移動度が非常に大きいことを考えれば、側面のショットキー電極1に印加するバイアスの変化に呼応して、高周波スイッチングが可能となる。
【0049】さらに、このショットキー電極1に印加する低電圧のオン・オフにより、大電力を制御できるため、消費エネルギーも少ない。
【0050】また、ダイヤモンドバルクの持つ高抵抗に起因し、暗電流(リークカレント)がゼロに近いというダイオードにとって理想的な特性も持つ。
【0051】この実施形態を用いれば、パワーデバイスの材料としてダイヤモンドを用い、ショットキー電極1をゲート電極として用いる全く新しいデバイス構造により、高耐圧・高耐熱・高周波用のパワーデバイスの開発が実現可能となる。
【0052】「実施形態3」 実施形態2のダイヤモンドとして、ホウ素などを添加し、p型半導体の性質を有するダイヤモンドを用いる。基本的な動作等は同じであるので、省略するが、メジャーキャリアが正孔となるのため、印加電圧、電流の向き等が実施形態2の場合と逆になる。
【0053】「実施形態4」 実施形態2のダイヤモンドとして、単結晶ダイヤモンドの基板の側面に高濃度に窒素添加された気相成長ダイヤモンド層を10−9〜10−4m程度設け、その気相成長ダイヤモンド層にショットキー電極を設けたデバイスを考案する。
【0054】基板は高圧合成により作製された単結晶ダイヤモンド(Ib type,面方位は(100))を用いる。
【0055】面8,9全体には、尿素を不純物源として気相成長法により、高濃度窒素添加ダイヤモンド膜を形成する。
【0056】面8,9の中心には電極4,5が設けられており、面10,11には電極6,7が設けられている。電極6,7はショットキー電極、電極4,5はオーミック電極とする。電極5の電位をグランドに接地し、電極4にはグランドである電極5に対して正の高電圧が印加できるようにし、電極4,5間に流れる電流を計測する。また、電極6,7は等電位でグランドに対して正または負の電圧を印加できる。
【0057】(1)単結晶ダイヤモンドの特性
高圧合成により作製される単結晶ダイヤモンド(Ib type)は不純物として窒素を 1016−1018cm−3程度含み、不純物である窒素はダイヤモンドの伝導帯下端より1.7eVもしくは4.0eVという不純物準位を形成することが知られている。図4(a),(b)にn型のシリコン及びダイヤモンドのバンド図をそれぞれ示す。図4(a)から明らかなように、シリコンの不純物準位は0.045eVであるため、室温においてもドナからの電子の励起が十分に起こる。一方、ダイヤモンドの場合には、図4(b)に示すように、不純物準位が非常に深いため,室温ではドナからの電子の励起はほとんど起こらず、デバイスの動作に十分なキャリア濃度を得ることは困難である。
【0058】ダイヤモンドのバンドギャップは5.5eV程度と非常に大きいため、価電子帯から伝導体に励起される電子は、ドナ準位から伝導帯に励起される電子と比較すると無視できる程少ない。
窒素含有ダイヤモンドのドナ準位を1.7eVとして算出したキャリア濃度を以下に示す。
【0059】
【数5】
Figure 2004079980
【0060】(2)高濃度窒素添加ダイヤモンドの特性
(1)に記述したように、単結晶ダイヤモンドのみでは、デバイスに必要なキャリア濃度を得ることは困難であった。そこで、高濃度の窒素が添加されたダイヤモンドを用いることで、より高いキャリア濃度を得ることが可能となる。
【0061】尿素を不純物源としてCVD法により成長させたダイヤモンドは,不純物濃度を1021cm−3まで上げることができる。
【0062】ドナから伝導体に励起する電子の数は、上述の式で表されるように不純物濃度に応じて増えるので、不純物として窒素を1021cm−3程度含む高濃度窒素添加ダイヤモンドを用いれば、より高いキャリア濃度を得ることができる。
【0063】空乏層幅は、以下の計算式で求められる。
【0064】
【数6】
Figure 2004079980
【0065】この式を用いると、室温で不純物濃度を1021cm−3とした時の空乏層幅は10−7〜10−6mとなる。
【0066】このことから,空乏層が形成されるのは,(2)で設けた高濃度窒素添加ダイヤモンド薄膜内であることがわかる。
【0067】空乏層内では部分的に、窒素が形成するドナ準位がフェルミ準位を超えるため、フェルミ準位を超えたドナ準位からは電子の励起が可能となり、このうち一部は金属へ移動するが、空乏層内の電界のため励起された電子の大部分はダイヤモンドバルク方向へ移動する。
【0068】つまり、かなりの数の電子がショットキー電極付近からバルク中心部付近に集まってくることになり、ダイヤモンドバルクの中心部分でキャリア濃度が高くなる。
【0069】「実施形態4の効果」  これまでは、ダイヤモンドを用いたパワーデバイスは、十分なキャリア濃度が得られないため実現は困難であるとされてきた。
【0070】しかし、1021cm−3もの不純物を含む高濃度窒素添加ダヤモンド層を用いることで、側面のショットキー電極付近でのドナ濃度が実施形態1で開示したデバイス構造と比較し、さらに高くなるため、より多くのキャリアが励起されることになる。さらに、ショットキー電極への電圧印加によるダイヤモンド内部のポテンシャルの変化を効果的に用いることで、高いキャリア濃度を得ることが可能となる。
【0071】また、デバイスの中心部には、結晶欠陥の少ない単結晶ダイヤモンドを用いることになるため、キャリアの移動度が著しく低下しない。
【0072】これらに起因し、側面のショットキー電極に印加する電圧のオン・オフにより、電極4,5の間にはより大きな電流変化が現れる。
【0073】すなわちこの構造では、よりS/N比の高いスイッチングが可能となる。
【0074】この全く新しいデバイス構造では、高濃度不純物を含むダイヤモンドは単結晶ダイヤモンドの上に数ナノメートル程度成長させるだけでよく、CVD法により厚いダイヤモンド層を作製しなくて済むため、実現が容易である。
【0075】以上のように、高濃度窒素添加気相成長ダイヤモンド層を、単結晶ダイヤモンドの基板の側面に設け、その気相成長ダイヤモンド層にショットキー電極を設けることで、ダイヤモンドを用いたパワーデバイスの実現が可能となる。
【0076】「実施形態5」 実施形態4の気相成長ダイヤモンド層として、高濃度にホウ素を添加したp型半導体ダイヤモンドを用いる。基本的な動作等は実施形態4と同じであるので省略するが、メジャーキャリアが正孔となるため、印加電圧、電流の向き等は実施形態4の場合と逆になる。
【0077】
【実施例】デバイスの構造図を図5に示す。
【0078】実際にはデバイスは、
『1』 高圧合成ダイヤモンドの前処理
『2』 高濃度窒素添加ダイヤモンドの気相成長
『3』 電極の設置
の手順で作製された。
【0079】以下に『1』,『2』,『3』にそれぞれについての詳細な手順を記す。
【0080】『1』高圧合成ダイヤモンドの前処理
以下に、(1)デバイス作製に用いる高圧合成ダイヤモンド基板の種類と(2)高圧合成ダイヤモンドの洗浄方法を記す。
【0081】(1)デバイス作製に用いる高圧合成ダイヤモンドの種類
高圧合成で作製された直方体のIb型単結晶ダイヤモンド(2.0×2.0×0.4mm)で、面方位は(100)のものを用いてデバイスを作製する。
【0082】(2)高圧合成ダイヤモンドの洗浄方法
Ib型高圧合成単結晶ダイヤモンドの表面の汚れを取り除くため、洗浄を以下のように行う。100℃に熱した逆王水(塩酸:硝酸=1:3)にIb型単結晶ダイヤモンド基板を入れ、10分程度煮沸する。取り出したダイヤモンド基板を純水ですすいだ後、乾燥させ、100℃に熱した硫硝酸(硫酸:硝酸=1:1)で10分程度煮沸する。ダイヤモンド基板を純水ですすいだ後に乾燥させ、アセトンで10分間超音波洗浄する。さらに、純水ですすぎ乾燥させ、エタノールで10分間超音波洗浄する。最後に再び、取り出した基板を純水ですすいだ後、乾燥させる。
【0083】『2』高濃度窒素添加ダイヤモンドの気相成長
『1』で準備した単結晶ダイヤモンドの面10,11(図6参照)に、高濃度窒素添加ダイヤモンドを気相成長させることにより、高濃度窒素添加ダイヤモンド層を形成する。
【0084】以下に(1)気相成長法に用いる反応溶液の作製方法、(2)気相成長法によるホモエピタキシャルダイヤモンドの成長方法を記す。
【0085】(1)気相成長に用いる反応溶液の作製方法
気相成長ダイヤモンドに窒素を添加するため、本発明では尿素を不純物源として用いた。尿素は気相成長ダイヤモンドの原料であるアセトンに溶解しないため、メタノールに溶かしてから溶解させる。メスシリンダーを用いてメタノールを
2ml取り出し、ビーカーに移す。尿素(
【化1】NH2CO)を0.5g量り、メタノールが入ったビーカーに投入する。これらを尿素が十分にメタノールに溶解するまで超音波洗浄器にかけて攪拌する。アセトンをメスシリンダーで量り別の容器に移す。先に得られた尿素飽和メタノールをピペットを用いてアセトンが入った容器に移す。この際のアセトンと尿素飽和メタノールの混合比により、ダイヤモンドに添加する不純物である窒素の量を意図的に制御することができる。この場合は、アセトンで尿素飽和メタノールを体積比で10倍になるように希釈する。この結果得られた不純物濃度は1021cm−3である。
【0086】(2)気相成長によるホモエピタキシャルダイヤモンドの成長方法『1』で準備したIb型単結晶ダイヤモンドの面10を上にして、高圧合成ダイヤモンドを気相成長装置のサンプル台にセットする。(1)で作製した反応溶液を試験管に移し、気相成長装置セットする。リーク弁を閉じて反応容器の排気をする。反応溶液を熱で気化させた反応ガスを流量0.6sccmで導入する。また、グラファイト除去のために水素を流量100sccmで導入する。排気系のバルブを全て閉め、100Torrまで反応ガスをためる。反応容器とフィラメント用電源投入端子をそれぞれ、水冷、空冷する。
測定圧力が100Torrに達したら、フィラメントに電圧を印加し、フィラメント温度を2300℃,基板温度を850℃とする。30分成長させたら、反応ガスの供給を止める。フィラメントへの電圧の印加を停止した後に水素ガスの供給を停止する。残留ガスを排気し終えたら,反応溶液を大気圧までリークし、チャンバーを開けてサンプルを取り出す。高圧合成ダイヤモンドの面11が上になるようにサンプル台にセットし直し、同様の手順で面2にも高濃度窒素添加ダイヤモンドをエピタキシャル成長させる。
【0087】『3』電極の設置
『2』で高濃度窒素添加気相成長ダイヤモンドをホモエピタキシャル成長させた高圧合成ダイヤモンドにスパッタリング法を用いて電極を形成する。電極は面8,9,10,11にそれぞれ一箇所ずつ、電極4,5,6,7の計4つ設ける。電極4,5にはチタンを採用する。まずはチタンをスパッタリング法により成膜し、チタンの酸化を防ぐために真空を保ったままさらにその上から金を成膜させる。電極6,7には金を採用し、成膜には電極4,5と同様にスパッタリング法を用いる。電極成膜のためのマスキングの方法とスパッタリング法による電極形成の手順を以下に示す。
【0088】以下、(1),(2),(3),(4)にそれぞれ電極6,7,4,5の形成方法を記す。
【0089】(1)電極6の形成
『2』高濃度窒素添加気相成長ダイヤモンドを添加した高圧合成ダイヤモンドのうち、側面8,9,12,13の全体を図7に示すようにカプトンテープで覆い、マスクする。ピンセットを用いてカプトンテープで図8のようにダイヤモンド基板をスライドガラスにマウントする。
この時、マスクをしなかった面のうちの一方(面10)が上を向くようにする。高圧合成ダイヤモンドのついたスライドガラスをスパッタリング蒸着装置の中に設置する。シャッターを閉じた状態でターゲットを金にする。真空度を10−7Torrとし,アルゴンガスの流量を50.0sccmで保ちながら装置に送り込む。4.0×10−2Torrまで圧力が上がったら、電源を入れ電力を40Wまで上げる。放電を開始し、反射率が0になるようにマッチングボックスで調節する。シャッターを閉じじたまま10分間仮放電を行い、不純物を飛ばす。アルゴンガスの流量を10sccmまで下げ排気系をコントロールし、圧力を1.5×10−3Torrまで下げる。シャッターを開け、10分間スパッタリング法で成膜させる。10分経過後、シャッターを閉じて電源を落とし、アルゴンガスの供給を止める。成膜終了後、排気系のバルブを閉め、ターボポンプを切り、窒素でリークして大気圧に戻し、サンプルマウンタを取り出す。
【0090】(2)電極7の形成
高圧合成ダイヤモンドの面8,9,12,13はカプトンテープでマスキングしたまま、面11が上に向くようにサンプルをスライドガラスの上に再びマウントし、スパッタリング成膜装置のサンプル台にセットする。電極6を設けたのと同じ手順を用いて面11に金をスパッタリング法で成膜する。成膜終了後、(1)と同様の手順で装置内を大気圧に戻し、サンプルマウンタを取り出す。
【0091】(3)電極4の形成
スパッタリング成膜装置から取り出したサンプルのマウントされたスライドガラスから高圧合成ダイヤモンドを取り外す。さらに、ダイヤモンドからカプトンテープを全て取り除く。高圧合成ダイヤモンドの面8が上になるようにして、スライドガラス上に高圧合成ダイヤモンドを置く。図9のように、高圧合成ダイヤモンドの中心部を除きカプトンテープでマスクし、且つスライドガラスと高圧合成ダイヤモンドを固定する。このとき既に、高圧合成ダイヤモンドの、側面10,11には、電極6,7がつけてあるため、電極が剥がれないようにエッジの部分は図10のように、余裕を持たせてカプトンテープを貼り付けるように注意する必要がある。高圧合成ダイヤモンドのついたスライドガラスをスパッタリング蒸着装置の中に設置する。シャッターを閉じた状態でターゲットをチタンにする。真空度を10−7Torrとし、アルゴンガスの流量を50.0sccmで保ちながら装置に送り込む。4.0×10−2Torrまで圧力を上がったら、電源をオンにして電力を100Wまで上げる。放電を開始し、反射率が0になるようにマッチングボックスで調節する。シャッターを閉じたまま10分間仮放電を行い、不純物を飛ばす。アルゴンガスの流量を10sccmまで下げ排気系をコントロールし圧力を3.0×10−3Torrまで下げる。シャッターを開け、30分間スパッタリング法で成膜させる。
30分経過後、シャッターを閉じて電源を落とし、アルゴンガスの供給を止める。次に金を成膜するため、装置内の真空度を保ったままターゲットを金に換える。(1),(2)で電極6,7として金を成膜したのと同様の条件、手順を用いて金を成膜する。成膜終了後、排気系のバルブを閉め、ターボポンプを切り、窒素でリークして大気圧に戻し、サンプルマウンタを取り出す。
【0092】(4)電極5の形成
高圧合成ダイヤモンドの面8に電極4を成膜した後、カプトンテープを剥がすことで、マスクをしていた部分の金属を取り除く。面9が上面にくるように裏返し、電極5をスライドガラス上にマウントしたときと同じ手順を用いてカプトンテープでマスキングする。電極4を設けたときと同様の条件、手順を用いて、マスキングした高圧合成ダイヤモンドの面9にスパッタリング法でチタン,金を順に成膜させる。チタンと金の成膜終了後、カプトンテープを剥がすことで、マスクをしていた部分のチタンと金を取り除く。
【発明の効果】
【0093】このデバイスはダイヤモンドのバルクを使っているため、熱に強く、高温動作が可能である。
【0094】また、ダイヤモンドは非常に絶縁破壊電圧が高いため、電極4,5間に高電圧をかけても、デバイス動作に支障はない。
【0095】さらに、メジャーキャリアである電子のみが電流に寄与するユニポーラデバイスであり、電子のダイヤモンドの誘電率が低く、電子の移動度が非常に大きいので、ショットキー電極6,7に印加するバイアスの変化に呼応して、高周波スイッチングも可能である。
【0096】つまり、ダイヤモンドを用いたことで、既存のシリコン・ガリウム砒素・シリコンカーバイド等を用いたパワーデバイスでは不可能であった、より高い温度領域でも動作でき、より高い電圧印加が可能であり、より高いスイッチング動作が可能なデバイスの作製が可能となる。
【0097】一方これまでは、ダイヤモンドを用いたパワーデバイスは、十分なキャリア濃度が得られないため実現は困難であるとされてきた。
【0098】しかし、1021cm−3もの不純物を含む高濃度窒素添加ダヤモンド層と、ショットキー電極への電圧印加によるダイヤモンド内部のポテンシャルの変化を効果的に用いることで、高いキャリア濃度を得ることに成功し、ダイヤモンドを用いたパワーデバイスの実現を可能にした。
【0099】また、この全く新しいデバイス構造では、高濃度不純物を含むダイヤモンドは単結晶ダイヤモンドの上に数ナノメートル程度成長させるだけでよく、CVD法により厚いダイヤモンド層を作製しなくて済むため、実現が容易である。
【0100】それ以外にも、デバイスの中心部に比較的欠陥の少ない単結晶ダイヤモンドを用いることは、キャリアの移動が妨げられないという利点もある。
【0101】さらに、ショットキー電極6,7に印加する比較的小さな電圧のオン・オフにより、電極4,5間の大電力を制御できるようなスイッチング素子として使うことも可能である。
【0102】また,暗電流(リークカレント)がゼロに近いというダイオードにとって非常に理想的な特性も持つ。
【図面の簡単な説明】
【図1】円盤状ダイヤモンドデバイスを表す説明図である。
【図2】ダイヤモンド基板の上下に電極を設けた場合のポテンシャルを表す説明図である。
【図3】ダイヤモンド基板の上下に電極を設け、さらにその電極間に電圧を印加した場合のポテンシャルを表す説明図である。
【図4】(a)シリコンおよび、(b)ダイヤモンドのエネルギーバンド図である。
【図5】ダイヤモンド基板を用いた製作例の説明図である。
【図6】デバイスに用いるダイヤモンド基板の斜視図である。
【図7】ダイヤモンド基板をカプトンテープでマスキングした様子をあらわす斜視図である。
【図8】カプトンテープでマスキングしたダイヤモンド基板をスライドガラスにマスキングテープで固定した様子をあらわす正面図である。
【図9】カプトンテープでダイヤモンド基板をスライドガラスに固定した様子をあらわす斜視図である。
【図10】カプトンテープでダイヤモンド基板をゆったりとスライドガラスに固定した様子をあらわす正面図である。
【符号の説明】
1:ショットキー電極
2:オーミック電極
3:オーミック電極
4:Ti,Auの順に成膜した電極
5:Ti,Auの順に成膜した電極
6:Auを成膜した電極
7:Auを成膜した電極
8:面8
9:面9
10:面10
11:面11
12:面12
13:面13
14:カプトンテープ
15:カプトンテープ
16:カプトンテープ
17:ダイヤモンド基板
18:スライドガラス
19:カプトンテープ
20:ダイヤモンド基板
21:スライドガラス

Claims (5)

  1. 天然・高圧・高温合成法・気相成長法・燃焼炎法など製法によらずダイヤモンドを材料として用いることを特徴とする高耐圧・高耐熱・高周波用パワーデバイス。
  2. 絶縁体ダイヤモンド・真性半導体ダイヤモンド・n型半導体ダイヤモンド・p型半導体ダイヤモンドを用いることを特徴とする高耐圧・高耐熱・高周波用パワーデバイス。
  3. 高濃度の不純物を含有したダイヤモンドを用いることを特徴とする高耐圧・高耐熱・高周波用パワーデバイス。
  4. 請求項1〜3に記載したダイヤモンドの表面にオーミックあるいはショットキー電極を設け、これらの電極に電圧を印加し、その電圧によりデバイスがスイッチング動作することを特徴とする請求項1〜3に記載した高耐圧・高耐熱・高周波用パワーデバイス。
  5. 請求項1〜3に記載したダイヤモンドのうち少なくとも二つ以上を組み合わせることを特徴とし、請求項4に記載のスイッチング動作を特徴とする高耐圧・高耐熱・高周波用パワーデバイス。
JP2002270781A 2002-08-13 2002-08-13 ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス Pending JP2004079980A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270781A JP2004079980A (ja) 2002-08-13 2002-08-13 ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270781A JP2004079980A (ja) 2002-08-13 2002-08-13 ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス

Publications (1)

Publication Number Publication Date
JP2004079980A true JP2004079980A (ja) 2004-03-11

Family

ID=32024855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270781A Pending JP2004079980A (ja) 2002-08-13 2002-08-13 ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス

Country Status (1)

Country Link
JP (1) JP2004079980A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095975A (ja) * 2005-09-29 2007-04-12 National Institute Of Advanced Industrial & Technology ダイヤモンドパワー半導体デバイス及びその製造方法
JP7033824B1 (ja) 2021-06-28 2022-03-11 株式会社ディスコ 単結晶ダイヤモンドの製造方法および単結晶ダイヤモンド

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095975A (ja) * 2005-09-29 2007-04-12 National Institute Of Advanced Industrial & Technology ダイヤモンドパワー半導体デバイス及びその製造方法
JP7033824B1 (ja) 2021-06-28 2022-03-11 株式会社ディスコ 単結晶ダイヤモンドの製造方法および単結晶ダイヤモンド
WO2023276443A1 (ja) * 2021-06-28 2023-01-05 株式会社ディスコ 単結晶ダイヤモンドの製造方法および単結晶ダイヤモンド
JP2023004667A (ja) * 2021-06-28 2023-01-17 株式会社ディスコ 単結晶ダイヤモンドの製造方法および単結晶ダイヤモンド
TWI797028B (zh) * 2021-06-28 2023-03-21 日商迪思科股份有限公司 單晶鑽石之製造方法及單晶鑽石

Similar Documents

Publication Publication Date Title
Jiang et al. High‐performance organic single‐crystal transistors and digital inverters of an anthracene derivative
US7507650B2 (en) Process for producing Schottky junction type semiconductor device
JP3369638B2 (ja) 縦型ダイヤモンド電界効果トランジスタ
Wahab et al. A 3 kV Schottky barrier diode in 4H-SiC
EP0543392A2 (en) Diamond semiconductor device and method of producing the same
CN106449894B (zh) 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
JPH03133176A (ja) 炭化珪素半導体装置およびその製造方法
Grot et al. Electrical properties of selectively grown homoepitaxial diamond films
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN103117298A (zh) 一种碳化硅的欧姆电极结构及其制备方法
CN109638071A (zh) 一种基于Si衬底氮化镓HEMT低电阻欧姆接触的结构及其制作方法
CN103077963A (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
US20030126742A1 (en) Method of fabrication of ZnO nanowires
US5155559A (en) High temperature refractory silicide rectifying contact
CN109686667A (zh) 一种SiC基MOS器件及其制备方法和应用
Guliants et al. A 0.5-μm-thick polycrystalline silicon Schottky diode with rectification ratio of 10 6
JP2004079980A (ja) ダイヤモンドを用いた高耐圧・高耐熱・高周波用パワーデバイス
CN203026510U (zh) 一种欧姆接触电极及包含该欧姆接触电极的半导体元件
JP2593898B2 (ja) 半導体素子
CN109659363A (zh) 一种氮化镓hemt结构低欧姆接触结构的制备方法
Hastas et al. Electrical characterization of nanocrystalline carbon–silicon heterojunctions
Hassan et al. Characteristics of low-temperature-grown GaN films on Si (111)
CN113838817A (zh) 一种金刚石基氮化镓异质结二极管器件的制备方法
US5212401A (en) High temperature rectifying contact
JP4241094B2 (ja) フラーレンデバイスの製造方法、およびフラーレンデバイス