JP2004074293A - Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition - Google Patents

Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition Download PDF

Info

Publication number
JP2004074293A
JP2004074293A JP2002233371A JP2002233371A JP2004074293A JP 2004074293 A JP2004074293 A JP 2004074293A JP 2002233371 A JP2002233371 A JP 2002233371A JP 2002233371 A JP2002233371 A JP 2002233371A JP 2004074293 A JP2004074293 A JP 2004074293A
Authority
JP
Japan
Prior art keywords
nitrogen
carbon
cemented carbide
highest
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233371A
Other languages
Japanese (ja)
Other versions
JP3900519B2 (en
Inventor
Akira Osada
長田 晃
Tetsuhiko Honma
本間 哲彦
Makoto Nishida
西田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002233371A priority Critical patent/JP3900519B2/en
Publication of JP2004074293A publication Critical patent/JP2004074293A/en
Application granted granted Critical
Publication of JP3900519B2 publication Critical patent/JP3900519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting conditions. <P>SOLUTION: This surface coated cemented carbide cutting tool is so formed that the hard coated layer composed of a complex carbonitride layer of Zr and Ti of 1-15μm in the whole average layer thickness is vapor-deposited on the surface of a cemented carbide base. The hard coated layer is so constituted that a Zr and carbon maximum containing point and a Ti and nitrogen maximum containing point are alternately and repeatedly present at a prescribed interval along the layer thickness direction. The hard coated layer has a component concentration distribution structure wherein the content of the Zr and Ti and the content of the carbon and nitrogen are continuously changed between the both points, the Zr and carbon maximum containing point satisfies Zr/(Zr+Ti):0.80-0.98 in an atom ratio and carbon/(carbon + nitrogen): 0.80-0.98, the Ti and nitrogen maximum containing point satisfies Ti/(Ti+Zr):0.80∼0.98 in the atom ratio and nitrogen/(nitrogen + carbon): 0.80-0.98, and the interval between the adjoining both points is 0.01-0.2μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高硬度と高強度を兼ね備え、したがって各種の鋼や鋳鉄などの切削加工を、特に高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、原子比で、
Zr/(Zr+Ti):0.40〜0.60、
炭素/(炭素+窒素):0.40〜0.60、
を満足するZrとTiの複合炭窒化物[以下、(Zr,Ti)CNで示す]層からなる硬質被覆層を1〜15μmの平均層厚で蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、
反応ガス組成(容量%で):ZrCl:0.05〜5%、TiCl:0.1〜6%、CHCN:0.6〜5%、N:0.5〜40%、H:残り、
反応雰囲気温度:900〜1050℃、
反応雰囲気圧力:5〜50kPa、
の条件で(Zr,Ti)CNからなる硬質被覆層を形成することにより製造されることも知られている(例えば特許文献2参照)。
【0005】
【特許文献1】
特開昭62−56564号公報
【特許文献2】
特開2001−11632号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向を深め、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、硬質被覆層の強度および硬さ不足が原因で、硬質被覆層の摩耗進行が一段と促進し、かつチッピングも発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図1,2に示される化学蒸着図装置を用いて形成された従来被覆超硬工具を構成する(Zr,Ti)CN層は、厚さ全体に亘って実質的に均一な組成を有し、したがって均質な硬さと強度を有するが、(Zr,Ti)CN層を形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記(Zr,Ti)CN層からなる硬質被覆層に層厚方向にそってZrおよび炭素の最高含有点とTiおよび窒素の最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Zrおよび炭素の最高含有点並びにTiおよび窒素の最高含有点に対応した反応ガス組成、並びに前記両点間のZrと炭素およびTiと窒素の連続変化に対応した反応ガス組成、さらに前記両点間の間隔および硬質被覆層の全体層厚を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのHガス、CHガス、Nガス、およびHClガスの流量、さらにZrClガスおよびTiClガスの流量をそれぞれの原料流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Zrおよび炭素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zrおよび炭素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Zrおよび炭素の最高含有点へZrと炭素およびTiと窒素の含有量が連続的に変化する成分濃度分布構造をもつた(Zr,Ti)CN層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Zr,Ti)CN層において、
上記Zrおよび炭素の最高含有点におけるZrとTiおよび炭素と窒素の相互含有割合を示すZr/(Zr+Ti)および炭素/(炭素+窒素)を、それぞれ原子比で、
Zr/(Zr+Ti):0.80〜0.98、
炭素/(炭素+窒素):0.80〜0.98、
上記Tiおよび窒素の最高含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)を、それぞれ原子比で、
Ti/(Ti+Zr):0.80〜0.98、
窒素/(窒素+炭素):0.80〜0.98、
とし、かつ隣り合う上記Zrおよび炭素の最高含有点と上記Tiおよび窒素の最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Zrおよび炭素の最高含有点部分では、Zrおよび炭素が主体を占め、これら両成分の作用によってきわめて高い硬さを示し、一方上記Tiおよび窒素の最高含有点部分では、Tiおよび窒素が主体を占め、これら両成分の作用によって高い強度を示すようになり、かつこれらZrおよび炭素の最高含有点と上記Tiおよび窒素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性として高硬度と高強度を具備するようになり、したがって、硬質被覆層がかかる構成の(Zr,Ti)CN層からなる被覆超硬工具は、各種の鋼や鋳鉄などの切削加工を、特に高い機械的衝撃を伴う高速重切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Zr,Ti)CN層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、Zrおよび炭素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zrおよび炭素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Zrおよび炭素の最高含有点へZrとTiおよび炭素と窒素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Zrおよび炭素の最高含有点におけるZrとTiおよび炭素と窒素の相互含有割合を示すZr/(Zr+Ti)および炭素/(炭素+窒素)が、それぞれ原子比で、
Zr/(Zr+Ti):0.80〜0.98、
炭素/(炭素+窒素):0.80〜0.98、
上記Tiおよび窒素の最高含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ原子比で、
Ti/(Ti+Zr):0.80〜0.98、
窒素/(窒素+炭素):0.80〜0.98、
を満足し、かつ隣り合う上記Zrおよび炭素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.2μmである、
高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Zrおよび炭素の最高含有点
上記の通り硬質被覆層である(Zr,Ti)CN層の厚さ方向に沿ってZrおよび炭素成分の相対的に高い部分を繰り返し形成して層自体の硬さを向上させ、同じくTiよび窒素成分の相対的に高い部分を繰り返し形成して層自体の強度を向上させるものであり、したがってZrおよび炭素の最高含有点では硬さが著しく向上したもになるので、すぐれた耐摩耗性を発揮するようになるが、この場合ZrとTiおよび炭素と窒素の相互含有割合を示すZr/(Zr+Ti)および炭素/(炭素+窒素)がいずれも原子比で(以下、同じ)0.98を越えると、実質的にZrと炭素で構成されることになることから、強度低下は避けられず、高強度を有するTiと窒素の最高含有点が隣接して存在しても、高い機械的衝撃を伴なう高速重切削ではチッピングが発生し易くなり、一方同値が0.80未満になると硬さが急激に低下し、層自体の摩耗が促進するようになることから、Zr/(Zr+Ti)および炭素/(炭素+窒素)の値をいずれも0.80〜0.98と定めた。
【0011】
(b)Tiおよび窒素の最高含有点
上記の通りZrおよび炭素の最高含有点は相対的にすぐれた硬さを有するが、反面相対的に強度が不十分であるため、このZrおよび炭素の最高含有点の強度不足を補う目的で、高強度を有するTiおよび窒素の最高含有点を厚さ方向に交互に介在させるものである。しかし、TiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ0.98を越えると、実質的にTiと窒素で構成されるようになることから、Tiおよび窒素の最高含有点に所定の硬さを確保することができず、これが摩耗促進の原因となり、一方同値がいずれも0.80未満になると、急激な強度低下が起り、この結果チッピングが発生し易くなることから、Ti/(Ti+Zr)および窒素/(窒素+炭素)の値をいずれも0.80〜0.98と定めた。
【0012】
(c)Zrおよび炭素の最高含有点とTiおよび窒素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高硬度と高強度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちZrおよび炭素の最高含有点であれば強度不足、Tiおよび窒素の最高含有点であれば硬さ不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0013】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、平均粒径:6.5μmを有する粗粒WC粉末、同3.5μmを有する中粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.0μmの(Ti,W)CN(質量比で、TiC/TiN/WC=24/20/56)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、ボールミルで72時間混合し、減圧乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を、表面部にCo富化層を形成するものについては13.3Pa、そして全体に亘って均一組織を有するものについては6.7Paの真空中、温度:1430℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.08のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。なお、超硬基体A−1、A−3、A−4、A−6、A−7、およびA−9の表面部にCo富化層の形成が見られた。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの炭素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.10のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0016】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl:4.2%、N:30%、H:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で20分間保持して前記超硬基体表面に、下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績にデータにしたがって、表3に示されるZrおよび炭素の最高含有点の目標Zr/(Zr+Ti)および炭素/(炭素+窒素)、さらにTiおよび窒素の最高含有点の目標Ti/(Ti+Zr)および窒素/(窒素+炭素)に対応する反応ガス組成、前記Zrおよび炭素の最高含有点とTiおよび窒素の最高含有点間のZrとTiおよび炭素と窒素の含有量の連続変化に対応する反応ガス組成、さらに表4,6に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるHガス、Nガス、CHガス、TiClガス、およびZrClガス(この場合、前記TiClガスは図示の通り流量制御されたHガスをキャリアガスとしてTiClガス気化器に送り、ここで液体から気化されたTiClと共に原料ガス流量自動制御装置に送られ、また前記ZrClガスは、ZrCl発生器で金属Zrと流量制御されたHClガスを反応させることにより形成される)を、それぞれのガス流量を自動制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標Zr/(Zr+Ti)および炭素/(炭素+窒素)のZrおよび炭素の最高含有点と、目標Ti/(Ti+Zr)および窒素/(窒素+炭素)のTiおよび窒素の最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Zrおよび炭素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Zrおよび炭素の最高含有点へZrとTiおよび炭素と窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、上記の超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、上記したTiN層形成条件と同じ条件で下地密着層として0.3μmの平均層厚を有するTiN層を形成し、ついで反応雰囲気温度を1020℃に加熱した後、それぞれ表6,7に示される目標Zr/(Zr+Ti)および目標炭素/(炭素+窒素)に対応した組成の反応ガスを反応ガス吹き出し管から導入し、反応雰囲気圧力を7kPaに一定とした条件で、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表6,7に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Zr,Ti)CN層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM415の丸棒、
切削速度:350m/min.、
切り込み:5.0mm、
送り:0.30mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min.、
切り込み:1.0mm、
送り:0.45mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:6.0mm、
送り:0.30mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表4〜7に示した。
【0019】
【表1】

Figure 2004074293
【0020】
【表2】
Figure 2004074293
【0021】
【表3】
Figure 2004074293
【0022】
【表4】
Figure 2004074293
【0023】
【表5】
Figure 2004074293
【0024】
【表6】
Figure 2004074293
【0025】
【表7】
Figure 2004074293
【0026】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってZr、Ti、炭素、および窒素の含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるZr/(Zr+Ti)および炭素/(炭素+窒素)値、さらにTi/(Ti+Zr)および窒素/(窒素+炭素)値を算出したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Zrおよび炭素の最高含有点と、Tiおよび窒素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつZrおよび炭素の最高含有点からTiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点からZrおよび炭素の最高含有点へZrとTiおよび炭素と窒素の含有量が連続的に変化する成分濃度分布構造を有することが確認され、また、硬質被覆層の全体平均層厚も目標全体層厚と実質的に同じ値を示した。一方前記従来被覆超硬チップ1〜16の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標全体層厚と実質的に同じ全体平均層厚を示すことが確認された。
【0027】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的にすぐれた高硬度を有するZrおよび炭素の最高含有点と相対的に高強度を有するTiおよび窒素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Zrおよび炭素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Zrおよび炭素の最高含有点へZrとTiおよび炭素と窒素の含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない従来被覆超硬チップ1〜16においては、特に高い機械的衝撃を伴う高速重切削条件では強度不足が原因でチッピングが発生し、硬さ不足と相俟って、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐摩耗性と耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する硬質被覆層を形成するのに用いられている化学蒸着装置を例示する概略縦断面図である。
【図2】化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆超硬工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムの概略チャート図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having both high hardness and high strength, and therefore, can cut various kinds of steel and cast iron at a high speed, especially under heavy cutting conditions such as high cutting and high feed with high mechanical impact. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter, referred to as a coated cemented carbide tool) in which a hard coating layer exhibits excellent wear resistance without occurrence of chipping (minute chipping) when performed.
[0002]
[Prior art]
In general, coated carbide tools are used for throw-away inserts, drilling, etc., which are removably attached to the tip of a cutting tool for turning or planing of various materials such as steel and cast iron. There are solid type end mills used for drilling and miniature drills, as well as for face milling, grooving, shoulder processing, etc., and the cutting is performed in the same manner as the solid type end mill by detachably attaching the throw-away tip. A throw-away end mill tool and the like are known.
[0003]
Further, as a coated cemented carbide tool, a substrate made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter, referred to as TiCN) -based cermet (hereinafter, collectively referred to as a cemented carbide substrate) ) On the surface, in atomic ratio,
Zr / (Zr + Ti): 0.40 to 0.60,
Carbon / (carbon + nitrogen): 0.40 to 0.60,
A coated carbide tool formed by depositing a hard coating layer composed of a composite carbonitride of Zr and Ti [hereinafter, referred to as (Zr, Ti) CN] with an average thickness of 1 to 15 μm, It is also known that when used in continuous cutting or intermittent cutting of various types of steel or cast iron, excellent cutting performance is exhibited (for example, see Patent Document 1).
[0004]
Further, as shown in the schematic vertical sectional view of FIG. 1, for example, the above coated carbide tool is provided with a reaction gas blowing pipe made of stainless steel at the center thereof, and the reaction gas blowing pipe is provided with a reaction gas blowing pipe shown in FIG. Graphite carbide substrate support pallets exemplified in a schematic perspective view in a) and a schematic plan view in b) are skewered, stacked and fitted, and heated by a heater via a stainless steel cover. Using a chemical vapor deposition apparatus having a structure as shown in the figure, the cemented carbide substrate is mounted on the chemical vapor deposition apparatus in a state where it is placed as shown in a number of reaction gas passage holes formed on the bottom surface of the cemented carbide support pallet. Enter
Reaction gas composition (by volume%): ZrCl 4: 0.05~5% , TiCl 4: 0.1~6%, CH 3 CN: 0.6~5%, N 2: 0.5~40%, H 2 : remaining,
Reaction atmosphere temperature: 900 to 1050 ° C,
Reaction atmosphere pressure: 5 to 50 kPa,
It is also known to manufacture by forming a hard coating layer made of (Zr, Ti) CN under the following conditions (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-62-56564 [Patent Document 2]
JP 2001-11632 A [0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there is a strong demand for labor-saving and energy-saving cutting, as well as low cost. There is a tendency to strongly demand cutting under heavy cutting conditions such as high feed, but in the above-mentioned conventional coated carbide tools, there is no problem if this is used under normal cutting conditions, but especially cutting When processing is performed at high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact, wear of the hard coating layer further increases due to insufficient strength and hardness of the hard coating layer. At the present, the use life is shortened in a relatively short time since the acceleration is promoted and the chipping easily occurs.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated cemented carbide tool in order to develop a coated cemented carbide tool in which the hard coating layer exhibits excellent wear resistance particularly under high-speed heavy cutting conditions. Focusing on the hard coating layer that constitutes
(A) The (Zr, Ti) CN layer constituting the conventional coated carbide tool formed using the chemical vapor deposition apparatus shown in FIGS. 1 and 2 is substantially uniform throughout its thickness. Although it has a composition, and thus has a uniform hardness and strength, in forming the (Zr, Ti) CN layer, for example, the reaction gas composition automatic control system shown in FIG. In the flow rate central control device, the highest content points of Zr and carbon and the highest content points of Ti and nitrogen are alternately arranged at predetermined intervals along the thickness direction of the hard coating layer composed of the (Zr, Ti) CN layer. For the purpose of repeated formation, a reaction gas composition corresponding to the maximum content point of Zr and carbon and the maximum content point of Ti and nitrogen, and a reaction gas corresponding to a continuous change of Zr and carbon and Ti and nitrogen between the two points. Formed, further wherein the entire layer thickness of the spacing and the hard coating layer between the two points, and inputs based on historical data, according to a control signal from the reaction gas composition and flow rates central controller, H from the raw material gas cylinder While controlling the flow rates of the 2 gas, the CH 4 gas, the N 2 gas, and the HCl gas, and the flow rates of the ZrCl 4 gas and the TiCl 4 gas with the respective raw material flow rate automatic controllers, the reaction gas blowing pipe of the chemical vapor deposition apparatus was used. When introduced, the highest content point of Zr and carbon and the highest content point of Ti and nitrogen are alternately and repeatedly present at predetermined intervals along the layer thickness direction, and the highest content point of Zr and carbon And the highest content of nitrogen, from the highest content of Ti and nitrogen to the highest content of Zr and carbon, containing Zr and carbon and Ti and nitrogen A hard coating layer composed of a (Zr, Ti) CN layer having a component concentration distribution structure in which the amount continuously changes is formed.
[0008]
(B) In the (Zr, Ti) CN layer having the concentration distribution structure of the continuously changing component of the above (a)
Zr / (Zr + Ti) and carbon / (carbon + nitrogen) indicating the mutual content ratio of Zr and Ti and carbon and nitrogen at the highest Zr and carbon content points are represented by the following atomic ratios:
Zr / (Zr + Ti): 0.80 to 0.98,
Carbon / (carbon + nitrogen): 0.80 to 0.98,
Ti / (Ti + Zr) and Nitrogen / (Nitrogen + Carbon), which indicate the mutual content of Ti and Zr and Nitrogen and Carbon at the highest Ti and Nitrogen content points, are represented by atomic ratios, respectively.
Ti / (Ti + Zr): 0.80 to 0.98,
Nitrogen / (nitrogen + carbon): 0.80 to 0.98,
And, when the interval in the thickness direction between the adjacent highest content points of Zr and carbon and the highest content points of Ti and nitrogen is 0.01 to 0.2 μm,
In the highest Zr and carbon content, Zr and carbon occupy the main component, and the two components exhibit extremely high hardness due to the action of both components. On the other hand, in the highest Ti and nitrogen content, the main component is Ti and nitrogen. Occupied by the action of these two components, high strength was exhibited, and the interval between the highest content point of Zr and carbon and the highest content point of Ti and nitrogen was extremely small. Therefore, the coated carbide tool composed of the (Zr, Ti) CN layer having such a structure that the hard coating layer is formed can be used for cutting various kinds of steel and cast iron, and particularly for high mechanical impact. Even when the cutting is performed under high-speed heavy cutting conditions, the hard coating layer exhibits excellent wear resistance without chipping.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the results of the above-mentioned research, and comprises depositing a hard coating layer composed of a (Zr, Ti) CN layer on the surface of a super-hard substrate with a total average layer thickness of 1 to 15 μm. Coated carbide tools,
In the hard coating layer, the highest content points of Zr and carbon and the highest content points of Ti and nitrogen are alternately and repeatedly provided at predetermined intervals along the layer thickness direction, and the highest content points of Zr and carbon are present. Has a component concentration distribution structure in which the contents of Zr, Ti, carbon and nitrogen continuously change from the highest content point of Ti and nitrogen, and the highest content point of Ti and nitrogen to the highest content point of Zr and carbon. And
Further, Zr / (Zr + Ti) and carbon / (carbon + nitrogen) indicating the mutual content ratio of Zr and Ti and carbon and nitrogen at the highest Zr and carbon content points are represented by atomic ratios, respectively.
Zr / (Zr + Ti): 0.80 to 0.98,
Carbon / (carbon + nitrogen): 0.80 to 0.98,
Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content of Ti and Zr and nitrogen and carbon at the above-mentioned maximum content points of Ti and nitrogen are represented by atomic ratios, respectively.
Ti / (Ti + Zr): 0.80 to 0.98,
Nitrogen / (nitrogen + carbon): 0.80 to 0.98,
And the interval between the adjacent highest content points of Zr and carbon and the highest content points of Ti and nitrogen is 0.01 to 0.2 μm,
The present invention is characterized by a coated carbide tool in which a hard coating layer exhibits excellent wear resistance under high-speed heavy cutting conditions.
[0010]
Next, the reason why the configuration of the hard coating layer constituting the coated carbide tool of the present invention is limited as described above will be described.
(A) Maximum content of Zr and carbon As described above, a relatively high portion of Zr and carbon components is repeatedly formed along the thickness direction of the (Zr, Ti) CN layer, which is a hard coating layer, to form the layer itself. The hardness is improved, and the relatively high portions of Ti and nitrogen components are also repeatedly formed to improve the strength of the layer itself. Therefore, the hardness is significantly improved at the maximum content of Zr and carbon. In this case, Zr / (Zr + Ti) and carbon / (carbon + nitrogen), which indicate the mutual content of Zr and Ti, and carbon and nitrogen, both have an atomic ratio. When it exceeds 0.98, the strength is substantially reduced to Zr and carbon. Therefore, a decrease in strength is inevitable. High even if present In high-speed heavy cutting accompanied by mechanical impact, chipping is liable to occur. On the other hand, when the value is less than 0.80, the hardness decreases rapidly and wear of the layer itself is accelerated. The values of (Zr + Ti) and carbon / (carbon + nitrogen) were both set to 0.80 to 0.98.
[0011]
(B) Maximum content of Ti and nitrogen As described above, the maximum content of Zr and carbon has relatively excellent hardness, but the strength is relatively insufficient. In order to compensate for the insufficient strength of the content points, the highest content points of Ti and nitrogen having high strength are alternately interposed in the thickness direction. However, when Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon), which indicate the mutual content ratio of Ti and Zr and nitrogen and carbon, respectively exceed 0.98, they become substantially composed of Ti and nitrogen. Therefore, it is not possible to secure a predetermined hardness at the highest content points of Ti and nitrogen, which causes abrasion promotion, while when the same value is less than 0.80, a sharp decrease in strength occurs, As a result, chipping is likely to occur. Therefore, the values of Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) were both set to 0.80 to 0.98.
[0012]
(C) Spacing between the highest content point of Zr and carbon and the highest content point of Ti and nitrogen If the spacing is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, the layer It is not possible to ensure the desired high hardness and high strength, and if the interval exceeds 0.2 μm, the disadvantages of each point, that is, if the maximum content of Zr and carbon, insufficient strength, Ti In the case of the highest nitrogen content, insufficient hardness appears locally in the layer, which causes chipping to occur easily and promotes abrasion progress. 0.20.2 μm.
[0013]
(D) Overall average layer thickness of the hard coating layer If the layer thickness is less than 1 μm, the desired wear resistance cannot be secured, while if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cemented carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, coarse WC powder having an average particle size of 6.5 μm, medium WC powder having an average particle size of 3.5 μm, fine WC powder having an average particle size of 0.8 μm, TaC powder having an average particle size of 1.3 μm, and 1.2 μm NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.0 μm (Ti, W) CN (TiC / TiN / WC = 24/20/56 by mass ratio) ) Powder and Co powder of 1.8 μm were prepared, and each of these raw material powders was blended to the composition shown in Table 1, mixed with a ball mill for 72 hours, dried under reduced pressure, and then compacted at a pressure of 100 MPa. The green compact is pressed in a vacuum of 13.3 Pa for those forming a Co-enriched layer on the surface and 6.7 Pa for those having a uniform structure over the entire surface at a temperature of 1430. At 1 ° C for 1 hour After sintering, after sintering, the cutting edge portion was subjected to a honing process of R: 0.08 to form cemented carbide substrates A1 to A10 made of a WC-based cemented carbide having a tip shape of ISO standard CNMG160612. Note that formation of a Co-enriched layer was observed on the surface portions of the carbide substrates A-1, A-3, A-4, A-6, A-7, and A-9.
[0015]
Further, as raw material powder, TiCN (TiC / TiN = 50/50 by weight) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle diameter of 0.5 to 2 μm , Co powder, and Ni powder were prepared, and these raw material powders were blended in the composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was sintered in a carbon atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.10 to obtain an ISO standard CNMG160612. Carbide bases B1 to B6 made of TiCN-based cermet having the chip shape described above were formed.
[0016]
Next, each of the above-mentioned super-hard substrates A1 to A10 and B1 to B6 is subjected to ultrasonic cleaning in acetone, dried, and then placed in a chemical vapor deposition apparatus shown in FIG. It was loaded while being placed in the positioning holes of the substrate supporting pallet. First, when the inside of the apparatus was heated to 900 ° C. with a heater, TiCl 4 : 4.2%, N 2 : 30%, and H 2 : remainder. A reaction gas having a composition is introduced through a reaction gas blow-out tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 20 minutes. After forming a thick titanium nitride (TiN) layer and then heating the atmosphere in the apparatus to 1020 ° C. with a heater, the reaction gas composition of the reaction gas composition automatic control system shown in FIG. According to the data in the past performance, the target Zr / (Zr + Ti) and carbon / (carbon + nitrogen) of the maximum content of Zr and carbon shown in Table 3 and the maximum content of Ti and nitrogen Reaction gas composition corresponding to the target Ti / (Ti + Zr) and Nitrogen / (Nitrogen + Carbon) of the points, Zr and Ti and carbon and nitrogen contents between the highest Zr and carbon content points and the highest Ti and nitrogen content points The reaction gas composition corresponding to the continuous change of the amount, the target interval between the two points and the target total layer thickness of the hard coating layer shown in Tables 4 and 6 are input, and the reaction gas composition and the flow rate from the central controller are controlled. through the raw material gas flow automatic control of the control valve built to operate in accordance with the signal, H 2 gas as a source gas, N 2 gas, CH 4 gas, TiCl 4 gas , And ZrCl 4 gas (in this case, the TiCl 4 gas is sent to the TiCl 4 gas vaporizer as flow controlled H 2 gas shown as a carrier gas, the raw material gas flow rate automatic with TiCl 4 which has been vaporized from where the liquid The ZrCl 4 gas is sent to a controller, and the ZrCl 4 gas is formed by reacting the metal Zr with a flow-controlled HCl gas in a ZrCl 4 generator. (The reaction atmosphere pressure in the apparatus is always kept at 7 kPa) through the reaction gas blow-out pipe of the chemical vapor deposition apparatus of (1). And the maximum content of Zr and carbon in the target Zr / (Zr + Ti) and carbon / (carbon + nitrogen), and the target Ti / (Ti + Zr) and nitrogen / (nitrogen + And the highest content points of Ti and nitrogen are alternately present at the same target intervals as shown in Tables 3 and 4, and the highest content points of Ti and nitrogen and the highest content point of Ti and nitrogen are determined from the highest content points of Zr and carbon. And a component concentration distribution structure in which the contents of Zr, Ti and carbon and nitrogen continuously change from the highest content point of nitrogen to the highest content point of Zr and carbon, respectively, and are also shown in Tables 3 and 4. By depositing a hard coating layer having the target overall layer thickness, the surface coated cemented carbide throw-away tips (hereinafter, referred to as the coated cemented carbide tips of the present invention) 1 to 16 as the coated cemented carbide tools of the present invention, respectively. Manufactured.
[0017]
For the purpose of comparison, the above-mentioned super-hard substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone, dried, and then loaded into a normal chemical vapor deposition apparatus also shown in FIGS. Then, a TiN layer having an average layer thickness of 0.3 μm was formed as a base adhesion layer under the same conditions as the above-described TiN layer formation conditions, and then the reaction atmosphere temperature was heated to 1020 ° C., and shown in Tables 6 and 7, respectively. A reaction gas having a composition corresponding to the target Zr / (Zr + Ti) and the target carbon / (carbon + nitrogen) to be introduced is introduced from a reaction gas blow-out tube, and under the condition that the reaction atmosphere pressure is kept constant at 7 kPa, the cemented carbide substrates A1 to A (Zr, Ti) CN layer having a target composition and a target layer thickness shown in Tables 6 and 7 and having substantially no composition change along the layer thickness direction is formed on each surface of A10 and B1 to B6. Become By depositing the quality coating layer, conventional coating conventional surface-coated cemented carbide indexable as cemented carbide (hereinafter, conventional coating called carbide inserts) were 1-16 were prepared, respectively.
[0018]
Next, with respect to the above-mentioned coated carbide tips 1 to 16 of the present invention and conventional coated carbide tips 1 to 16, in a state where they were screwed to the tip of a tool steel tool with a fixing jig,
Work material: JIS SCM415 round bar,
Cutting speed: 350 m / min. ,
Cut: 5.0 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-cut cutting test of alloy steel under the conditions
Work material: JIS S25C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 380 m / min. ,
Cut: 1.0 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 10 minutes,
Intermittent high-speed high-feed cutting test of carbon steel under the conditions of
Work material: Round bar with four vertical grooves at equal intervals in the length direction of JIS / FC300
Cutting speed: 400 m / min. ,
Cut: 6.0 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 10 minutes,
A dry intermittent high-speed, high-cut cutting test was performed on cast iron under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. The measurement results are shown in Tables 4 to 7.
[0019]
[Table 1]
Figure 2004074293
[0020]
[Table 2]
Figure 2004074293
[0021]
[Table 3]
Figure 2004074293
[0022]
[Table 4]
Figure 2004074293
[0023]
[Table 5]
Figure 2004074293
[0024]
[Table 6]
Figure 2004074293
[0025]
[Table 7]
Figure 2004074293
[0026]
For the hard coating layers constituting the coated carbide tips 1 to 16 of the present invention and the conventional coated carbide tips 1 to 16 obtained as described above, the contents of Zr, Ti, carbon, and nitrogen along the thickness direction were Auger. The measurement was performed using a spectrophotometer, and the Zr / (Zr + Ti) and carbon / (carbon + nitrogen) values at each measurement point, and further the Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) values at each measurement point were calculated. However, in the hard coating layers of the coated carbide tips 1 to 16 of the present invention, the highest content points of Zr and carbon and the highest content points of Ti and nitrogen are alternately repeated at substantially the same composition and interval as the target values, respectively. From the highest Zr and carbon content to the highest Ti and nitrogen content, from the highest Ti and nitrogen content to the highest Zr and carbon content It is confirmed that the content of nitrogen has a continuously changing component concentration distribution structure, also showing the overall mean layer thickness even entire target layer thickness substantially the same value of the hard layer. On the other hand, in the hard coating layers of the conventional coated carbide tips 1 to 16, no composition change is observed along the thickness direction, and the composition is substantially the same as the target composition and the overall average layer is substantially the same as the target total layer thickness. It was confirmed that the film showed a thickness.
[0027]
【The invention's effect】
From the results shown in Tables 3 to 7, the hard coating layer has, in the layer thickness direction, the highest content points of Zr and carbon having relatively excellent high hardness and the highest content points of Ti and nitrogen having relatively high strength. Are present alternately at predetermined intervals, and from the highest content point of Zr and carbon to the highest content point of Ti and nitrogen, and from the highest content point of Ti and nitrogen to the highest content point of Zr and carbon. The coated carbide tips 1 to 16 of the present invention having a component concentration distribution structure in which the contents of Zr and Ti and the contents of carbon and nitrogen change continuously, all of which can cut various steels and cast irons at high speed, and The hard coating layer exhibits excellent wear and chipping resistance even under heavy cutting conditions such as high cutting and high feed with high mechanical impact, whereas the hard coating layer has a large thickness. Along the direction In conventional coated carbide tips 1 to 16 having substantially no composition change, chipping occurs due to lack of strength, especially in high-speed heavy cutting conditions accompanied by high mechanical impact, and this is combined with insufficient hardness. It is clear that the service life can be reached in an extremely short time.
As described above, the coated cemented carbide tool of the present invention can be used not only for cutting under normal conditions, but also for cutting various kinds of steel and cast iron, etc., at high speed, and with high cutting with high mechanical impact. Even when performed under heavy cutting conditions such as high feed and high cutting, it exhibits excellent wear resistance and chipping resistance, and exhibits excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily cope with cost reduction and further cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view illustrating a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool.
FIGS. 2A and 2B show a super hard substrate supporting pallet as a structural member of the chemical vapor deposition apparatus, wherein FIG. 2A is a schematic perspective view and FIG. 2B is a schematic plan view.
FIG. 3 is a schematic chart of a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated carbide tool of the present invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、ZrとTiの複合炭窒化物層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層が、層厚方向にそって、Zrおよび炭素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zrおよび炭素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Zrおよび炭素の最高含有点へZrとTiおよび炭素と窒素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Zrおよび炭素の最高含有点におけるZrとTiおよび炭素と窒素の相互含有割合を示すZr/(Zr+Ti)および炭素/(炭素+窒素)が、それぞれ原子比で、
Zr/(Zr+Ti):0.80〜0.98、
炭素/(炭素+窒素):0.80〜0.98、
上記Tiおよび窒素の最高含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ原子比で、
Ti/(Ti+Zr):0.80〜0.98、
窒素/(窒素+炭素):0.80〜0.98、
を満足し、かつ隣り合う上記Zrおよび炭素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
A surface-coated cemented carbide obtained by depositing a hard coating layer composed of a Zr and Ti composite carbonitride layer on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate with an overall average thickness of 1 to 15 μm. In cutting tools made of alloy,
In the hard coating layer, the highest content points of Zr and carbon and the highest content points of Ti and nitrogen are alternately and repeatedly provided at predetermined intervals along the layer thickness direction, and the highest content points of Zr and carbon are present. Has a component concentration distribution structure in which the contents of Zr, Ti, carbon and nitrogen continuously change from the highest content point of Ti and nitrogen, and the highest content point of Ti and nitrogen to the highest content point of Zr and carbon. And
Further, Zr / (Zr + Ti) and carbon / (carbon + nitrogen) indicating the mutual content ratio of Zr and Ti and carbon and nitrogen at the highest Zr and carbon content points are represented by atomic ratios, respectively.
Zr / (Zr + Ti): 0.80 to 0.98,
Carbon / (carbon + nitrogen): 0.80 to 0.98,
Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content of Ti and Zr and nitrogen and carbon at the above-mentioned maximum content points of Ti and nitrogen are represented by atomic ratios, respectively.
Ti / (Ti + Zr): 0.80 to 0.98,
Nitrogen / (nitrogen + carbon): 0.80 to 0.98,
And the interval between the adjacent highest content points of Zr and carbon and the highest content points of Ti and nitrogen is 0.01 to 0.2 μm,
Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent wear resistance under high speed heavy cutting conditions.
JP2002233371A 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. Expired - Fee Related JP3900519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233371A JP3900519B2 (en) 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233371A JP3900519B2 (en) 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Publications (2)

Publication Number Publication Date
JP2004074293A true JP2004074293A (en) 2004-03-11
JP3900519B2 JP3900519B2 (en) 2007-04-04

Family

ID=32018512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233371A Expired - Fee Related JP3900519B2 (en) 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Country Status (1)

Country Link
JP (1) JP3900519B2 (en)

Also Published As

Publication number Publication date
JP3900519B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP4224782B2 (en) Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2004154878A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting excellent wear resistance under high speed heavy cutting condition
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3948019B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP2004237425A (en) Cutting tool made of surface coated cemented carbide coated with hard coating layer having excellent wear resistance at high cutting speed
JP2004202588A (en) Surface-covered cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance under high speed cutting condition
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2004130494A (en) Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition
JP2004090095A (en) Cutting tool made of surface coated cemented carbide for exhibiting high chipping and wear resistance with hard coating layer in high-speed heavy cutting condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees