JP2004071990A - 荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法 - Google Patents

荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法 Download PDF

Info

Publication number
JP2004071990A
JP2004071990A JP2002232072A JP2002232072A JP2004071990A JP 2004071990 A JP2004071990 A JP 2004071990A JP 2002232072 A JP2002232072 A JP 2002232072A JP 2002232072 A JP2002232072 A JP 2002232072A JP 2004071990 A JP2004071990 A JP 2004071990A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
relative angle
pattern
knife edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232072A
Other languages
English (en)
Inventor
Akio Yamada
山田 章夫
Masataka Fujimoto
藤本 正敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2002232072A priority Critical patent/JP2004071990A/ja
Publication of JP2004071990A publication Critical patent/JP2004071990A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【課題】少なくとも一つの直線の辺を有する形状の荷電粒子ビームのシャープネス及びビームサイズを高精度に測定する荷電粒子ビーム露光装置を提供する。
【解決手段】少なくとも一つの直線の辺を有する形状の荷電粒子ビーム300でウェハ64を露光する荷電粒子ビーム露光装置100は、荷電粒子ビーム300の一部を遮るナイフエッジ202と、荷電粒子ビーム300の進行方向に対してナイフエッジ202の下方に設けられ、直接照射された荷電粒子ビーム30の電流を検出する電流検出部204と、荷電粒子ビーム300の進行方向に対してナイフエッジ202と略同一の高さに設けられ、荷電粒子ビーム300の直線の辺とナイフエッジ202との相対角の調整に用いられる調整パターン400とを備える。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法に関する。特に本発明は、荷電粒子ビームでウェハにパターンを露光する荷電粒子ビーム露光装置に関する。
【0002】
【従来の技術】
電子ビーム露光装置を用いて、ウェハにパターンを精度良く露光するには、ウェハに照射される電子ビームの状態、例えばシャープネス及びビームサイズを高精度に測定し、管理することが重要である。
従来、ビームの断面が円形であるポイントビームのシャープネス及びビームサイズを測定する手段として、ナイフエッジ測定手段が用いられる。ナイフエッジ測定手段は、ビームの一部を遮るナイフエッジと、ビームの進行方向に対してナイフエッジの下方に設けられ、直接照射された電子ビームの電流を検出する電流検出器とを備え、ポイントビームをナイフエッジに対してほぼ垂直方向に走査したときの、電流検出器が検出する電流値の変化に基づいて、シャープネス及びビームサイズを算出する。
【0003】
一方、可変矩形露光装置やブロック露光装置等で用いられる、直線の辺を有する形状の電子ビームのシャープネス及びビームサイズをナイフエッジ測定手段で測定する場合においては、ナイフエッジに対する電子ビームの直線の辺を平行にした状態で、電子ビームをナイフエッジに対して走査しなければ、シャープネス及びビームサイズを正確に測定できない。
【0004】
【発明が解決しようとする課題】
しかしながら、従来、ナイフエッジに対する電子ビームの直線の辺の相対角を測定して調整する手段がなく、その結果、直線の辺を有する形状の電子ビームのシャープネス及びビームサイズを高精度に測定し、管理することが困難であった。
【0005】
そこで本発明は、上記の課題を解決することのできる荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
【0006】
【課題を解決するための手段】
即ち、本発明の第1の形態によると、少なくとも一つの直線の辺を有する形状の荷電粒子ビームでウェハを露光する荷電粒子ビーム露光装置は、荷電粒子ビームの一部を遮るナイフエッジと、荷電粒子ビームの進行方向に対してナイフエッジの下方に設けられ、直接照射された荷電粒子ビームの電流を検出する電流検出部と、荷電粒子ビームの進行方向に対してナイフエッジと略同一の高さに設けられ、荷電粒子ビームの直線の辺とナイフエッジとの相対角である第1の相対角の調整に用いられる調整パターンとを備える。
【0007】
荷電粒子ビーム露光装置が、直線の辺に調整パターンを横切らせるような走査方向に、荷電粒子ビームを走査した場合において、調整パターンが反射する反射荷電粒子の量の、荷電粒子ビームの走査距離に対する変化に基づいて、走査方向に対する直線の辺の相対角である第2の相対角を判断し、第2の相対角に基づいて、第1の相対角を略平行に調整する調整部を更に備えてもよい。
【0008】
調整パターンは、円形パターンを有し、調整部は、直線の辺が円形パターンを横切るように荷電粒子ビームを走査した場合に、円形パターンが反射する反射荷電粒子の量の走査距離に対する変化に基づいて、第2の相対角を判断してもよい。
【0009】
調整パターンは、円形パターンに対する相対位置が既知である第1のラインパターンを更に有し、調整部は、荷電粒子ビームが第1のラインパターンを通過するように走査させることにより、第1のラインパターンの位置を検出し、検出した第1のラインパターンの位置に基づいて円形パターンの位置を判断してもよい。
【0010】
第1のラインパターンと円形パターンとの距離が既知であり、調整部は、第1のラインパターンとほぼ垂直に通過するように荷電粒子ビームを走査させることにより、第1のラインパターンの位置を検出してもよい。
【0011】
調整パターンは、第1のラインパターンに対してほぼ垂直に設けられた第2のラインパターンを更に有し、調整部は、荷電粒子ビームが第2のラインパターンを通過する様に走査させることにより、第2のラインパターンの位置を更に検出し、検出した第2のラインパターンの位置に更に基づいて、円形パターンの位置を判断してもよい。
【0012】
調整パターンは、ほぼ等間隔で略平行に設けられた複数の第1のラインパターンと、ほぼ等間隔で略平行に設けられた複数の第2のラインパターンとを更に有し、円形パターンは、複数の第1のラインパターンと複数の第2のラインパターンとが構成する格子のほぼ中心に配置されてもよい。
【0013】
調整パターンは、荷電粒子ビームの進行方向に対して円形パターンと略同一の高さに設けられたラインパターンを更に有し、調整部は、ラインパターンに焦点を合わせることにより、円形パターンに焦点を合わせてもよい。
【0014】
調整部は、荷電粒子ビームの一部がナイフエッジで遮られる状態で、ナイフエッジに沿った走査方向に荷電粒子ビームを走査させたときの、荷電粒子ビームの走査距離に対する荷電粒子ビームの電流の変化に基づいて、走査方向に対するナイフエッジの相対角である第3の相対角を判断し、第3の相対角に更に基づいて、第1の相対角を略平行に調整してもよい。
【0015】
ナイフエッジのエッジ部分及び調整パターンは、荷電粒子ビームの進行方向に対するナイフエッジの上面に設けられてもよい。ナイフエッジは、ウェハにおける荷電粒子ビームの走査方向と略平行に設けられてもよい。
【0016】
荷電粒子ビームを偏向させる偏向器を更に備え、ナイフエッジのエッジ部分と調整パターンとの距離は、偏向器が荷電粒子ビームを偏向できる距離より小さくてもよい。
【0017】
本発明の第2の形態によれば、荷電粒子ビームの一部を遮るナイフエッジと、荷電粒子ビームの進行方向に対してナイフエッジの下方に設けられ、直接照射された荷電粒子ビームの電流を検出する電流検出部と、荷電粒子ビームの進行方向に対してナイフエッジと略同一の高さに設けられ、少なくとも一つの直線の辺を有する形状の荷電粒子ビームの直線の辺とナイフエッジとの相対角である第1の相対角の調整に用いられる調整パターンとを備える荷電粒子ビーム露光装置において、荷電粒子ビームのシャープネスを測定する方法は、荷電粒子ビームの直線の辺が、調整パターンを横切るような走査方向に、荷電粒子ビームを走査する段階と、調整パターンが反射する反射荷電粒子の量の、荷電粒子ビームの走査距離に対する変化に基づいて、走査方向に対する直線の辺の相対角である第2の相対角を判断する第1判断段階と、第2の相対角に基づいて、第1の相対角を略平行に調整する調整段階と、第1の相対角が略平行に調整された状態において、直線の辺がナイフエッジの端部を通過すべく荷電粒子ビームを走査したときの、電流検出部が検出する電流の変化に基づいて、荷電粒子ビームのシャープネスを測定する測定段階とを備える。
【0018】
荷電粒子ビームの一部がナイフエッジで遮られる位置で、ナイフエッジに沿った走査方向に、荷電粒子ビームを走査し、電流検出部が検出する荷電粒子ビームの電流の、荷電粒子ビームの走査距離に対する変化に基づいて、走査方向に対するナイフエッジの相対角である第3の相対角を判断する第2判断段階を更に備え、調整段階は、第2の相対角及び第3の相対角に基づいて、第1の相対角を略平行に調整してもよい。
【0019】
第1判断段階は、荷電粒子ビームの走査距離に対する反射荷電粒子の量の変化が最小となる走査方向に基づいて、第2の相対角を判断し、第2判断段階は、荷電粒子ビームの電流の、荷電粒子ビームの走査距離に対する変化が最小となる荷電粒子ビームの走査方向に基づいて、第3の相対角を判断してもよい。
【0020】
本発明の第3の形態によれば、荷電粒子ビームの一部を遮るナイフエッジと、荷電粒子ビームの進行方向に対してナイフエッジの下方に設けられ、直接照射された荷電粒子ビームの電流を検出する電流検出部と、荷電粒子ビームの進行方向に対してナイフエッジと略同一の高さに設けられ、少なくとも一つの直線の辺を有する形状の荷電粒子ビームの直線の辺とナイフエッジとの相対角である第1の相対角の調整に用いられる調整パターンとを備える荷電粒子ビーム露光装置を用いて、ウェハにパターンを露光し、半導体素子を製造する半導体素子製造方法は、荷電粒子ビームの直線の辺が、調整パターンを横切るような走査方向に、荷電粒子ビームを走査する段階と、調整パターンが反射する反射荷電粒子の量の、荷電粒子ビームの走査距離に対する変化に基づいて、走査方向に対する直線の辺の相対角である第2の相対角を判断する第1判断段階と、第2の相対角に基づいて、第1の相対角を略平行に調整する調整段階と、第1の相対角が略平行に調整された状態において直線の辺がナイフエッジの端部を通過すべく荷電粒子ビームを走査したときの、電流検出部が検出する電流の変化に基づいて荷電粒子ビームのシャープネスを測定する測定段階と、測定したシャープネスに基づいて荷電粒子ビームのシャープネスを補正する補正段階と、シャープネスが補正された荷電粒子ビームでウェハを露光する段階とを備える。
【0021】
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。
【0022】
【発明の実施の形態】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態はクレームにかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0023】
図1は、本発明の一実施形態に係る電子ビーム露光装置100の構成図である。電子ビーム露光装置100は、本発明の荷電粒子ビーム露光装置の一例である。また、本発明の荷電粒子ビーム露光装置は、イオンビームによりウェハを露光するイオンビーム露光装置であってもよい。
【0024】
電子ビーム露光装置100は、本発明の荷電粒子ビームの一例である電子ビームにより、ウェハ64に所定の露光処理を施すための露光部150と、露光部150の各構成の動作を制御する制御系140とを備える。
【0025】
露光部150は、筐体10内部に、所定の電子ビームを照射する電子ビーム照射系110と、電子ビーム照射系110から照射された電子ビームを偏向するとともに、マスク30近傍における電子ビームの結像位置を調整するマスク用投影系112と、電子ビームのウェハ64近傍における結像位置を調整する焦点調整レンズ系114と、マスク30を通過した電子ビームをウェハステージ62に載置されたウェハ64の所定の領域に偏向するとともに、ウェハ64に照射されるパターンの像の向き及びサイズを調整するウェハ用投影系116とを含む電子光学系を備える。
【0026】
また、露光部150は、ウェハ64に露光すべきパターンがそれぞれ形成された複数のブロックを有するマスク30を載置するマスクステージ72と、マスクステージ72を駆動するマスクステージ駆動部68と、パターンを露光すべきウェハ64を載置するウェハステージ62と、ウェハステージ62を駆動するウェハステージ駆動部70とを含むステージ系を備える。さらに、露光部150は、電子光学系の調整のために、ウェハステージ62側から飛散する電子を検出して、検出した電子量に相当する電気信号を出力する反射電子検出部60と、ウェハ64とほぼ同一の高さに設けられ、電子ビームのシャープネス及びビームサイズの算出に用いられる信号を出力するナイフエッジ検出部200とを有する。
【0027】
電子ビーム照射系110は、電子銃12による電子ビームの焦点位置を定める第1電子レンズ14と、電子ビームを通過させる矩形形状の開口(スリット)が形成された第1スリット部16とを有する。電子銃12は、安定した電子ビームを発生するのに所定の時間がかかるので、露光処理期間において常に電子ビームを発生してもよい。スリットは、マスク30に形成された所定のパターンを含むブロックの形状に合わせて形成されるのが好ましい。図1において、電子ビーム照射系110から照射された電子ビームが、電子光学系により偏向されない場合の電子ビームの光軸を、一点鎖線Aで表現する。
【0028】
マスク用投影系112は、電子ビームを偏向するマスク用偏向系としての第1偏向器22及び第2偏向器26と、電子ビームの焦点を調整するマスク用焦点系としての第2電子レンズ20とを有する。第1偏向器22及び第2偏向器26は、電子ビームをマスク30上の所定の領域に照射する偏向を行う。例えば、所定の領域は、ウェハ64に転写するパターンを有するブロックであってよい。電子ビームがパターンを通過することにより、電子ビームの断面形状は、ブロックに形成されたパターンと同一の形状になる。第2電子レンズ20は、第1スリット部16の開口の像を、マスクステージ72上に載置されるマスク30上に結像させる機能を有する。
【0029】
焦点調整レンズ系114は、第3電子レンズ28と、第4電子レンズ32とを有する。第3電子レンズ28及び第4電子レンズ32は、電子ビームのウェハ64に対する焦点を合わせる。ウェハ用投影系116は、第5電子レンズ40と、第6電子レンズ46と、第7電子レンズ50と、第8電子レンズ52と、第3偏向器34と、第4偏向器38と、主偏向器56と、副偏向器58と、ブランキング電極36と、ラウンドアパーチャ部48とを有する。
【0030】
電子ビームの向きは、電界や磁界の影響を受けて回転してしまう。そこで、第5電子レンズ40は、電子ビームがウェハ64上に所望の向きで照射されるように、電子ビームの回転を調整する。第6電子レンズ46及び第7電子レンズ50は、マスク30に形成されたパターンに対する、ウェハ64に照射されるパターン像の縮小率を調整する。第8電子レンズ52は、対物レンズとして機能する。第3偏向器34は、電子ビームの進行方向に対するマスク30の下流において、電子ビームを光軸Aの方向に偏向する。第4偏向器38は、電子ビームを光軸Aに略平行になるように偏向する。主偏向器56及び副偏向器58は、ウェハ64上の所定の領域に電子ビームが照射されるように、電子ビームを偏向する。本実施形態では、主偏向器56は、1ショットの電子ビームで照射可能な領域(ショット領域)を複数含むサブフィールド間で電子ビームを偏向するために用いられ、副偏向器58は、サブフィールドにおけるショット領域間の偏向のために用いられる。
【0031】
ラウンドアパーチャ部48は、円形の開口(ラウンドアパーチャ)を有する。ラウンドアパーチャ部48は、ラウンドアパーチャの内側に照射された電子ビームを通過させ、ラウンドアパーチャの外側に照射された電子ビームを遮蔽する。ブランキング電極36は、電子ビームをラウンドアパーチャの外側に当たるように偏向する。従って、ブランキング電極36は、電子ビームを偏向することにより、ラウンドアパーチャ部48から下流に電子ビームが進行することを防ぐことができる。
【0032】
ナイフエッジ検出部200は、照射される電子ビームの電流を検出し、電流の強さを示す電流値を出力する。
【0033】
制御系140は、統括制御部130及び個別制御部120を備える。総括制御部130は、本発明の調整部の一例である。個別制御部120は、偏向制御部82と、マスクステージ制御部84と、ブランキング電極制御部86と、電子レンズ制御部88と、反射電子処理部90と、ウェハステージ制御部92と、ビーム電流処理部94とを有する。統括制御部130は、例えばワークステーションであって、個別制御部120に含まれる各制御部を統括制御する。偏向制御部82は、偏向量を示す偏向データを、第1偏向器22、第2偏向器26、第3偏向器34、第4偏向器38、主偏向器56、及び副偏向器58に供給し、第1偏向器22、第2偏向器26、第3偏向器34、第4偏向器38、主偏向器56、及び副偏向器58の偏向量を制御する。マスクステージ制御部84は、マスクステージ駆動部68を制御して、マスクステージ72を移動させる。
【0034】
ブランキング電極制御部86は、ウェハ64に転写するパターンを変更するとき、又はパターンを露光するウェハ64の領域を変更するときに、ブランキング電極36を制御して、ラウンドアパーチャ部48から下流に電子ビームが進行しないように電子ビームを偏向する。これにより、電子ビームがウェハ64に照射されることを防ぐ。電子レンズ制御部88は、第1電子レンズ14、第2電子レンズ20、第3電子レンズ28、第4電子レンズ32、第5電子レンズ40、第6電子レンズ46、第7電子レンズ50、第8電子レンズ52に供給する電力を制御する。反射電子処理部90は、反射電子検出部60により検出された電気信号に基づいて、検出された反射電子の量を示すデジタルデータを出力する。ウェハステージ制御部92は、ウェハステージ駆動部70を制御してウェハステージ62を所定の位置に移動させる。
【0035】
ビーム電流処理部94は、ナイフエッジ検出部200から入力される電流値の変化に基づいて、電子ビームのシャープネス及びビームサイズを算出する。
【0036】
本実施形態に係る電子ビーム露光装置100の動作について説明する。マスクステージ72上では、所定のパターンが形成された複数のブロックを有するマスク30が載置され、所定の位置に固定されている。ウェハステージ62上には、露光処理が施されるウェハ64が載置されている。また、電子銃12は、露光処理期間において常に電子ビームを照射するので、露光の開始前において、第1スリット部16の開口を通過した電子ビームがウェハ64に照射されないように、ブランキング電極制御部86がブランキング電極36を制御する。
【0037】
電子ビーム露光装置100は、ウェハ64を露光する前に、電子ビームのシャープネス及びビームサイズを計測し、計測した値が基準値以内でない場合には電子ビームを補正する。そのために、まず、電子ビームの向きを測定し、シャープネス及びビームサイズの計測のために必要な方向に、電子ビームの向きを調整する。
【0038】
具体的には、まず、ウェハステージ制御部92は、ウェハステージ駆動部70によりウェハステージ62を移動させて、ナイフエッジ検出部200が光軸A近傍に位置するようにする。マスクステージ制御部84は、マスクステージ駆動部68によりマスクステージ72を移動させて、シャープネス及びビームサイズの計測に用いるパターン形状が形成されたブロックが光軸A近傍に位置するようにする。そして、ブランキング電極制御部86は、電子ビームの偏向を停止して、ナイフエッジ検出部200に電子ビームが照射されるようにする。
【0039】
偏向制御部82は、副偏向器58を制御して、ナイフエッジ検出部200に対する複数の方向に、電子ビームを走査する。ナイフエッジ検出部200は、電子ビームの進行方向に対するその上部において、電子ビームの走査位置によって決まる量の反射電子を放出する。反射電子検出部60は、ナイフエッジ検出部200からの反射電子を検出して、検出した反射電子の量を示す電流値を反射電子処理部90に出力する。反射電子処理部90は、反射電子検出部60からの入力に基づいて、電子ビームの走査方向及び走査距離に応じた反射電子の量の変化を算出して、統括制御部130に出力する。
【0040】
また、ナイフエッジ検出部200は、電子ビームの進行方向に対するその下方において、直接入射した電子ビームを検出し、検出した電子ビームの電流を示す電流値をビーム電流処理部94に出力する。ビーム電流処理部94は、ナイフエッジ検出部200からの入力に基づいて、電子ビームの走査方向及び走査距離に応じた電子ビームの電流の変化を算出し、統括制御部130に出力する。統括制御部130は、反射電子処理部90及びビーム電流処理部94からの入力に基づいて、電子ビームの向きを、シャープネス及びビームサイズを精度良く測定するために必要な方向に向ける。この際、電子レンズ制御部88により第5電子レンズ40を調節することにより、電子ビームの向きを調節する。
【0041】
統括制御部130は、偏向制御部82によりパターン像の向きが調節された電子ビームを、ナイフエッジ検出部200上で走査し、ナイフエッジ検出部200が検出する電子ビームの電流の、走査距離に応じた変化をビーム電流処理部94から取得する。そして、統括制御部130は、ナイフエッジ検出部200が検出した電子ビームの電流の、走査距離に応じた変化に基づいて、電子ビームのシャープネス及びビームサイズを算出する。
【0042】
統括制御部130は、算出したシャープネス及びビームサイズが予め定められた基準値以内でない場合には、電子レンズ制御部88により、ウェハ用投影系116を調節して、シャープネス及びビームサイズを基準値に合わせる。具体的には、電子レンズ制御部88は、第3電子レンズ28及び第4電子レンズ32を制御する制御信号の出力を調節して、電子ビームのシャープネスを基準値に合わせる。また、第6電子レンズ46及び第7電子レンズ50を制御する制御信号の出力を調節して、電子ビームのサイズを基準値に合わせる。以上の動作で、電子レンズ制御部88の出力が調整され、電子ビームのシャープネス及びビームサイズが最適化される。
【0043】
続いて、電子ビーム露光装置100は、ウェハ64の露光準備を行なう。先ず、ウェハステージ制御部92は、ウェハステージ駆動部70によりウェハステージ62を移動させて、ウェハ64の露光されるべき領域が光軸A近傍に位置するようにする。マスクステージ制御部84は、マスクステージ駆動部68によりマスクステージ72を移動させて、ウェハに露光すべきパターンが形成されたブロックが、光軸A近傍に位置するようにする。マスク用投影系112において、電子レンズ20及び偏向器(22、26)は、ウェハ64に転写すべきパターンが形成されたブロックに電子ビームを照射するように調整される。焦点調整レンズ系114において、電子レンズ(28、32)は、ウェハ64に電子ビームの焦点が合うように調整される。また、ウェハ用投影系116において、電子レンズ(40、46、50、52)及び偏向器(34、38、56、58)は、電子ビームがウェハ64の所望の領域にパターン像を転写するように調整される。
【0044】
以上の動作で、マスク用投影系112、焦点調整レンズ系114、及びウェハ用投影系116の調整が完了すると、ブランキング電極制御部86は、ブランキング電極36による電子ビームの偏向を停止する。これにより、以下に示すように、電子ビームはマスク30を透過してウェハ64に照射される。電子銃12が電子ビームを発生し、第1電子レンズ14が電子ビームの焦点位置を調整し、第1スリット部16が電子ビームを矩形に成形する。そして、第1偏向器22が第1スリット部16で矩形に成形された電子ビームを、ウェハ64に転写すべきパターンが形成されたマスク30の領域に照射するように偏向する。そして、第2偏向器26は、電子ビームを、光軸Aと略平行になるように偏向する。また、第2電子レンズ20は、電子ビームの焦点を調節して、第1スリット部16で成形された矩形の形状がマスク30上の所定の領域に結像するように制御される。
【0045】
そして、マスク30に形成されたパターンを通過した電子ビームは、第3偏向器34により光軸Aに近づく方向に偏向され、第4偏向器38により、光軸Aと略平行になるように偏向される。また、第3電子レンズ28及び第4電子レンズ32は、マスク30で成形されたパターン像がウェハ64の表面に結像するように調整される。第5電子レンズ40は、パターン像の向きがウェハ64において所望の向きとなるように調整される。第6電子レンズ46及び第7電子レンズ50は、パターン像の縮小率が所望の値となるように調整される。主偏向器56及び副偏向器58は、電子ビームをウェハ64上の所定のショット領域に照射するように偏向する。本実施形態では、主偏向器56が、ショット領域を複数含むサブフィールド間で電子ビームを偏向し、副偏向器58が、サブフィールドにおけるショット領域間で電子ビームを偏向する。所定のショット領域に偏向された電子ビームは、電子レンズ52によって調整されて、ウェハ64に照射される。これによって、ウェハ64上の所望のショット領域に、マスク30に形成されたパターンの像が転写される。
【0046】
所定の露光時間が経過した後、ブランキング電極制御部86は、電子ビームがマスク30およびウェハ64に照射されないように、ブランキング電極36に電子ビームを偏向させる。そして、次のショット領域に、マスク30に形成された所望のパターンを露光するために、偏向制御部82、マスクステージ制御部84、電子レンズ制御部88、及びウェハステージ制御部92を制御して、マスク用投影系112、焦点調整レンズ系114、ウェハ用投影系116、マスクステージ駆動部68、及びウェハステージ駆動部70を調整する。具体的な動作は、上述の各構成の動作と同様なので省略する。電子ビーム露光装置100は、以上の露光処理を、繰り返し実行することによって、所望の回路パターンを、ウェハ64に露光する。
【0047】
本実施形態に係る電子ビーム露光装置100によれば、電子ビームのシャープネス及びビームサイズを精度良く測定、及び調整することができる。そして、シャープネス及びビームサイズの精度が高い電子ビームで、ウェハ64にパターンを露光するので、所望のパターンを精度良くウェハに露光することができる。
【0048】
なお、本実施形態に係る電子ビーム露光装置100は、可変矩形ビームにより、ウェハにパターンを露光する可変矩形露光装置であってもよい。また、複数の電子ビームにより、ウェハにパターンを露光するマルチビーム露光装置であってもよい。
【0049】
図2は、ナイフエッジ検出部200の構成を示す。ナイフエッジ検出部200は、少なくとも一つの直線の辺を有する形状の電子ビームの一部を遮るナイフエッジ202と、電子ビーム300の進行方向に対してナイフエッジ202の下方に設けられ、直接照射された電子ビーム300の電流を検出する電流検出部204と、電子ビーム300の進行方向に対してナイフエッジ202と略同一の高さに設けられ、電子ビーム300の直線の辺とナイフエッジ202との相対角の調整に用いられる調整パターン400と、散乱した電子の電流検出部204への入射を制限するアパーチャ208とを備える。ナイフエッジ202の上面は、ウェハ64の上面とほぼ同じ高さに設けられる。ナイフエッジ202のエッジの鋭さは、測定すべき電子ビームのシャープネスよりも鋭い。電流検出部204は、入射した電子ビームの電流に応じた電流を出力するファラデーカップ205と、ファラデーカップ205が出力する電流を測定する電流計206とを有する。ナイフエッジ202のエッジ部分と調整パターン400とは、いずれも、電子ビーム300の進行方向に対してナイフエッジ202の上面側に設けられている。なお、調整パターン400は、露光部150内のナイフエッジ202の上面以外の部分に設けられても良い。例えば、ウェハステージ62上のナイフエッジ202と対向する位置に設けられても良い。
【0050】
電子ビーム露光装置100は、以下の様に動作し、走査方向と電子ビーム300の直線の辺との相対角を判断する。まず、電子レンズ制御部88は、電子ビーム300の焦点を調整パターン400に合わせる。そして、偏向制御部82は、ナイフエッジ202の上面に設けられた調整パターン400を複数の方向に走査する。調整パターン400は、電子ビームが重なった面積に応じて電子ビームの電子を反射する。従って、調整パターン400は、走査方向及び走査距離に応じた量の反射電子を反射する。調整パターン400が反射した反射電子は、反射電子検出部60により検出される。
【0051】
次に、電子ビーム露光装置100は、以下の様に動作し、走査方向とナイフエッジ202との相対角を判断する。まず、偏向制御部82は、ナイフエッジ202のエッジ部分に沿った複数の方向に電子ビーム300を走査させる。ファラデーカップ205は、電子ビーム300の、ナイフエッジ202に遮られずに直接照射される部分の電流を検出する。電流計206は、ファラデーカップ205が検出した電流値をビーム電流処理部94に出力する。ファラデーカップ205及び電流計206を含む電流検出部204は、走査方向及び走査距離に応じた強さの電流値を出力する。
【0052】
ナイフエッジ202のエッジ部分と調整パターン400とは、いずれも、電子ビーム300の進行方向に対するナイフエッジ202の上面に設けられているので、調整パターン400を走査する場合に、調整パターン400に合焦させた電子ビーム300が、ナイフエッジ202のエッジ部分にも合焦する。これにより、走査方向と電子ビーム300の直線の辺との相対角を判断する場合と、走査方向とナイフエッジ202との相対角を判断する場合との間に、電子ビーム300の回転方向のずれが生じない。したがって、統括制御部130は、電子ビーム300とナイフエッジ202との相対角を高精度に判断することができる。また、ナイフエッジ202は、ウェハ64とほぼ同等の高さに設けられているので、ウェハ64の高さにおける電子ビーム300のシャープネス及びビームサイズを測定することができる。
【0053】
図3は、電子ビーム露光装置100が調整する、電子ビーム300の直線の辺と、ナイフエッジ202との相対角を示す。電子ビーム露光装置100は、図に示す相対角をほぼ0°に状態で、ナイフエッジ202のエッジ部分を通過するように電子ビーム300を走査するので、電子ビームの回転に起因する誤差成分を低減して、電子ビーム300の測定すべきシャープネス成分及びビームサイズを精度良く検出することができる。
【0054】
図4は、電子ビーム300のシャープネス及びビームサイズを測定する場合に、電流検出部204が検出する電流値の波形と、電流値の変化を示す微分波形を示す。電子ビーム300のシャープネスは、微分波形の立ち上がりの急峻さ、すなわち、微分波形がほぼ0からほぼピークに達するまでの走査距離に相当する。例えば、本実施例においては、微分波形において、ピークの10%から90%の間に相当する走査距離をシャープネスとする。また、微分波形の立ち上がりと立ち下がりがピークの50%に達する走査距離の差をビームサイズとする。本実施形態に係る電子ビーム露光装置100は、電子ビーム300とナイフエッジ202とをほぼ平行にそろえて、シャープネス及びビームサイズを精度良く測定する。
【0055】
図5は、統括制御部130が、走査方向にと電子ビーム300の直線の辺との相対角を判断する為に、調整パターンに対して電子ビーム300を走査する例を示す。本実施形態に係る調整パターンは、円形パターン402を有する。電子ビーム300は、例えば、二辺が円形パターン402の直径とほぼ同等の長さを有し、他の二辺が円形パターン402の直径よりも長い矩形の形状である。円形パターン402の直径及び電子ビーム300の短手の長さは、例えば約0.15μmであり、電子ビーム300の長手の長さは、例えば約4μmである。そして、電子ビーム300は、まず、直線の辺である長手の辺が、ナイフエッジ202のエッジ部分とおおよそ平行になるように調節されている。
【0056】
本実施例においては、電子ビーム300の長手の辺が実際に向いている方向を判断するために、円形パターン402に対して、電子ビーム300を以下の手順で走査する。まず、後述の方法により円形パターン402の位置を判断し、焦点を合わせる。そして、直線である長手の辺が円形パターン402を横切るような走査方向に、電子ビーム300を走査する。具体的には、図における電子ビーム300と円形パターン402との関係のように、電子ビーム300の長手の辺の中心付近が、円形パターン402の中心を通過する複数の走査方向に電子ビーム300を走査する。複数の走査方向は、例えば、ナイフエッジ202のエッジ部分とおおよそ平行であり、複数の走査方向の中心となる走査方向D1を中心として、例えば0.5ミリラジアンから数ミリラジアンのピッチで角度を変化させた走査方向D2、D3、D4、及びD5である。走査方向の数は、測定に要求される精度に応じて任意に設定する。
【0057】
電子ビームの長手の辺の向きが、走査方向と平行でない場合、電子ビーム300が円形パターン402に重なる面積は、電子ビーム300の走査距離に応じて変化する。例えば、図における電子ビーム300をD1の方向に走査する場合、電子ビーム300aが円形パターン402に重なる面積は、走査距離によって変化しない。一方、電子ビーム300をD2〜D5のいずれかの方向に走査する場合、電子ビーム300が円形パターン402に重なる面積は、走査距離に応じて変化する。更に、走査距離に応じた、電子ビーム300と円形パターン402との重なる面積の変化は、走査方向によって異なる。そして、円形パターン402は、電子ビーム300と重なる面積に応じた量の電子を反射する。
【0058】
つまり、電子ビーム300を複数の走査方向に走査した場合において、走査距離に対する反射電子の量の変化が最も小さい走査方向が、電子ビーム300の長手の向きに最も近い方向であると判断できる。したがって、統括制御部130は、電子ビーム300の長手の辺が円形パターン402を横切るような走査方向に電子ビーム300を走査した場合において、円形パターン402が反射する反射電子の量の、電子ビーム300の走査距離に対する変化に基づいて、走査方向D1と直線の辺との相対角を判断する。
【0059】
本実施例において、円形パターン402は、電子ビーム300と重なる面積がパターンの向きに依存しない。つまり、円形パターン402の向きが、反射電子の量の走査距離に対する変化に影響を与えることがない。したがって、電子ビーム露光装置100は、調整パターン400として、円形パターン402を用いることにより、走査方向D1と直線の辺との相対角をより精度良く判断できる。
【0060】
図6は、図5における電子ビーム300aをD1からD5の方向に走査した場合における、反射電子検出部60が検出する電流値の波形の例を示す。本実施例において、D1、D2、D3、D4、及びD5の方向に走査した場合の波形はそれぞれd1、d2、d3、d4、及びd5である。統括制御部130は、電子ビーム300の走査距離に対する反射電子の量の変化が最小となる走査方向に基づいて、走査方向と電子ビーム300の直線の辺との相対角を判断する。例えば、本実施例において、走査方向D1と電子ビーム300aの直線の辺との相対角はほぼ0°である。このように、電子ビーム露光装置100は、反射電子の電流値の波形に基づいて、走査方向と電子ビーム300の直線の辺との相対角を容易に判断することができる。
【0061】
図7は、ナイフエッジ202の上面に設けられた調整パターン400の他の例を示す。調整パターン400は、ナイフエッジ202のエッジ部近傍に、円形パターン402に対する相対位置が既知であるラインパターン404aを更に有する。統括制御部130は、電子ビーム300がラインパターン404aを通過するように電子ビーム300を走査させることにより、ラインパターン404aの位置を検出し、検出したラインパターン404aの位置に基づいて円形パターン402の位置を判断する。
【0062】
具体的には、ラインパターン404aと円形パターン402との距離は既知である。そして、統括制御部130は、電子ビーム300がラインパターン404aをほぼ垂直に通過するように電子ビーム300を走査させることにより、ラインパターン404aの位置を検出する。調整パターン400は、ラインパターン404aに対してほぼ垂直に設けられたラインパターン404dを更に有し、統括制御部130は、電子ビーム300がラインパターン404dを通過する様に走査させることにより、ラインパターン404dの位置を更に検出し、検出したラインパターン404dの位置に更に基づいて、円形パターン402の位置を判断する。ラインパターン404は、電子ビーム300の走査方向と垂直な方向において、電子ビーム300よりも十分に大きいので、統括制御部130は、ラインパターン404の位置をより確実に検出して、円形パターン402の位置を効率よく判断することができる。
【0063】
調整パターン400は、ラインパターン404aに対してほぼ等間隔で略平行に設けられた複数のラインパターン404b、404cと、ラインパターン404dに対してほぼ等間隔で略平行に設けられた複数のラインパターン404e、404fとを更に有し、円形パターン402は、当該複数のラインパターン404a、404b、404c、404d、404e、及び404fが構成する格子のほぼ中心に配置されていてもよい。ラインパターン404のピッチは、例えば30μmである。エッジ部分からラインパターン404eまでの距離は、例えば40μm〜50μmである。調整パターン400をこのように構成すれば、ラインパターン404及び円形パターン402の位置を検出する場合に、電子ビーム300を走査する距離を短くすることができるので、効率よく円形パターン402の位置を判断することができる。
【0064】
統括制御部130は、電子ビーム300の進行方向に対して円形パターン402と略同一の高さに設けられたラインパターン404に焦点を合わせることにより、円形パターン402に焦点を合わせる。これにより、電子ビーム300の焦点を合わせる場合にビーム軸のずれが発生しても、電子ビーム300がパターンから外れる可能性が低減されるので、電子ビーム300の焦点を効率よく円形パターン402に合わせることができる。
【0065】
図8は、統括制御部130が、ナイフエッジ202のエッジ部分で電子ビーム302を走査させる例を示す。本実施例における電子ビーム302は、例えば、一辺が0.2μm程度の、電子ビーム300よりサイズが小さい矩形ビームである。統括制御部130は、まず、ナイフエッジ202のエッジ部分と略垂直な方向に電子ビーム302を走査し、図2で説明した電流検出部204が検出する電流値の変化に基づいて、エッジ部分の位置を判断する。そして、電子ビーム302の一部がナイフエッジ202で遮られる位置で、ナイフエッジ202に沿った走査方向に電子ビーム302を走査させる。
【0066】
このとき、統括制御部130は、電流検出部204が検出する電子ビーム302の電流の、走査距離に対する変化に基づいて、走査方向に対するナイフエッジ202の角度を判断する。例えば、電子ビーム302を、0.5ミリラジアンから数ミリラジアンの等ピッチで設定されたF1、F2、F3、F4、及びF5の走査方向に走査したときに、電流検出部204が検出する電流値の変化が最も少ない走査方向を、ナイフエッジ202の方向に最も近い方向として判断する。これにより、統括制御部130は、走査方向とナイフエッジ202との相対角を高精度にしかも容易に判断することができる。走査方向の数及びピッチは、測定に要求される精度に応じて任意に設定する。例えば、図のF3からF5の範囲を等ピッチで7通りの走査方向に分割すれば、走査方向に対するナイフエッジ202の方向の検出精度を向上することができる。
【0067】
図9は、図8における電子ビーム302をF1からF5の方向に走査したときに図2の電流検出部204が検出する電流値の波形の例を示す。F1、F2、F3、F4、及びF5の方向に走査した場合の波形はそれぞれf1、f2、f3、f4、及びf5である。統括制御部130は、電子ビーム302の走査距離に対する、電流検出部204の電流値の変化が最小となる走査方向に基づいて、走査方向とナイフエッジ202との相対角を判断する。例えば、本実施例において、電流値の変化が最小である波形f1に対応する方向F1がナイフエッジ202の方向に最も近いと判断する。このように、統括制御部130は、電流検出部204の電流値の波形に基づいて、走査方向とナイフエッジ202との相対角を容易に判断することができる。
【0068】
図10は、電子ビーム露光装置100が、ナイフエッジ検出部200を用いて、直線の辺を有する電子ビームのシャープネス及びビームサイズを測定する場合の一連の動作を示すフローチャートである。まず、電子ビームを図7のラインパターンに対して走査して(S100)、ラインパターンの位置を検出する。次に、電子ビーム300の位置をラインパターンに合わせて、電子ビーム300の焦点をラインパターンに合わせる(S102)。これにより、電子ビーム300の焦点が円形パターンに合う。次に、ステップ100で検出したラインパターンの位置に基づいて、円形パターンの位置を判断し(S104)、円形パターンに対する電子ビームの位置を合わせる(S106)。次に、電子ビームの直線の辺が円形パターンを横切る走査方向に電子ビームを走査する(S108)。S108において、反射電子処理部90が検出する、走査距離に対する反射電子の量の変化に基づいて、走査方向と電子ビームの直線の辺との相対角を判断する(S110)。ステップ110における、走査方向と電子ビームの直線の辺との相対角の精度として、例えば0.5ミリラジアン程度を得る。
【0069】
次に、電子ビーム302の一部をナイフエッジ202上にかけ、エッジ部分に沿った複数の方向に走査する(S112)。S112において、電流検出部204が検出する電流値の変化に基づいて、走査方向とナイフエッジ202との相対角を判断する(S114)。ステップ114における、走査方向とナイフエッジ202との相対角の精度として、例えば0.5ミリラジアン程度を得る。
【0070】
次に、ステップ110で判断した、走査方向と電子ビーム300の直線の辺との相対角と、ステップ114で判断した、走査方向とナイフエッジ202との相対角とに基づいて、電子ビーム300の直線の辺とナイフエッジ202との相対角を判断する(S116)。次に、ステップ116で判断した、電子ビーム300の直線の辺とナイフエッジ202との相対角に基づいて、電子レンズ制御部88により第5電子レンズ40を調整して、電子ビーム300の直線の辺をナイフエッジ202に対して略平行にする(S118)。上記一連の動作により、電子ビーム300の直線の辺とナイフエッジ202との相対角は、例えば1ミリラジアン以内となる。
【0071】
続いて、電子ビーム300のシャープネス及びビームサイズを測定する。先ず、ナイフエッジ202のエッジ方向に対して垂直方向に、電子ビーム300を走査する(S120)。このとき、電子ビーム300を例えば2nm走査する毎に、エッジに一部が遮られた電子ビーム300の電流を測定する。測定は、SN比の高い高精度モードで行なうことが望ましい。次に、電流検出部204が出力する電流値の変化を示す微分波形を生成し、微分波形に基づいて、電子ビーム300のシャープネス及びビームサイズを測定する(S122)。以上で本フローは終了する。なお、本実施例において、ステップ118で調整された電子ビーム300の直線の辺とナイフエッジ202との相対角が1ミリラジアン程度である場合、ステップ122で得られる電子ビーム300のシャープネスの誤差は4nm程度である。
【0072】
以上の一連の動作によれば、ナイフエッジ202と略同じ高さに設けられた調整パターンを用いて、電子ビームの直線の辺とナイフエッジとの角度をほぼ平行に調整するので、電子ビームのシャープネス及びビームサイズを高精度に測定することができる。
【0073】
図11は、本実施形態に係る電子ビーム露光装置100で露光したウェハ64から半導体素子を製造する半導体製造工程のフローチャートである。S10で、本フローチャートが開始する。フォトレジスト塗布工程は、ウェハ64の上面に、フォトレジストを塗布する(S12)。それから、フォトレジストが塗布されたウェハ64が、ウェハステージ62に載置される。露光工程では、ウェハ64を露光する前に、図10のステップ100〜122で電子ビームのシャープネス及びビームサイズを高精度に測定し、測定結果に基づいて、ビームのシャープネス及びビームサイズを補正する。そして、シャープネス及びビームサイズが補正された電子ビームによりウェハ64を露光する(S14)。
【0074】
次に、現像工程は、露光されたウェハ64を、現像液に浸して現像し、余分なレジストを除去する。そして、エッチング工程は、ウェハ64上のフォトレジストが除去された領域に存在するシリコン基板、絶縁膜あるいは導電膜を、プラズマを用いた異方性エッチングによりエッチングする(S18)。そして、イオン注入工程は、トランジスタやダイオードなどの半導体素子を形成するために、ウェハ64に、ホウ素や砒素などの不純物を注入する(S20)。そして、熱処理工程は、ウェハ64に熱処理を施し、注入された不純物の活性化を行う(S22)。そして、洗浄工程は、ウェハ64上の有機汚染物や金属汚染物を取り除くために、薬液によりウェハ64を洗浄する(S24)。そして、成膜工程は、導電膜や絶縁膜の成膜を行い、配線層および配線間の絶縁層を形成する(S26)。フォトレジスト塗布工程(S12)〜成膜工程(S26)を組み合わせ、繰り返し行うことによって、ウェハ64に素子分離領域、素子領域および配線層を有する半導体素子を製造することが可能となる。そして、組み立て工程は、所要の回路が形成されたウェハ64を切り出し、チップの組み立てを行う(S28)。そして、S30で半導体素子製造フローが終了する。
【0075】
以上の製造フローによれば、シャープネス及びビームサイズが補正された電子ビームでウェハ64にパターンを露光するので、所望のパターンが高精度に形成された半導体素子を製造することができる。
【0076】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更または改良を加えることができる。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0077】
【発明の効果】
上記説明から明らかなように、本発明によれば、少なくとも一つの直線の辺を有する形状の荷電粒子ビームのシャープネス及びビームサイズを高精度に測定する荷電粒子ビーム露光装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電子ビーム露光装置100の構成図である。
【図2】ナイフエッジ検出部200の構成を示す図である。
【図3】電子ビーム300の直線の辺と、ナイフエッジ202との相対角を示す図である。
【図4】電流検出部204が検出する電流値の波形と、その変化を示す微分波形の例を示す図である。
【図5】調整パターンに対して電子ビーム300を走査する例を示す図である。
【図6】反射電子検出部60が検出する電流値の波形の例を示す図である。
【図7】調整パターン400の他の例を示す図である。
【図8】ナイフエッジ202のエッジ部分で電子ビーム300を走査する例を示す図である。
【図9】電流検出部204が検出する電流値の波形の例を示す図である。
【図10】電子ビームのシャープネス及びビームサイズを測定する場合の一連の動作を示すフローチャートである。
【図11】ウェハ64から半導体素子を製造する半導体製造工程のフローチャートである。
【符号の説明】
10・・・筐体、12・・・電子銃、14・・・第1電子レンズ、16・・・第1スリット部、20・・・第2電子レンズ、22・・・第1偏向器、26・・・第2偏向器、28・・・第3電子レンズ、30・・・マスク、32・・・第4電子レンズ、34・・・第4偏向器、36・・・ブランキング電極、38・・・第4偏向器、40・・・第5電子レンズ、46・・・第6電子レンズ、48・・・ラウンドアパーチャ、50・・・第7電子レンズ、52・・・第8電子レンズ、56・・・主偏向器、58・・・副偏向器、60・・・反射電子検出部、62・・・ウェハステージ、64・・・ウェハ、68・・・マスクステージ駆動部、70・・・ウェハステージ駆動部、72・・・マスクステージ、82・・・偏向制御部、84・・・マスクステージ制御部、86・・・ブランキング電極制御部、88・・・電子レンズ制御部、90・・・反射電子処理部、92・・・ウェハステージ制御部、94・・・ビーム電流処理部、100・・・電子ビーム露光装置、110・・・電子ビーム照射系、112・・・マスク用投影系、114・・・焦点調整レンズ系、116・・・ウェハ用投影系、120・・・個別制御部、130・・・統括制御部、140・・・制御系、150・・・露光部、200・・・ナイフエッジ検出部、202・・・ナイフエッジ、204・・・電流検出部、205・・・ファラデーカップ、206・・・電流計、208・・・アパーチャ、300・・・電子ビーム、400・・・調整パターン、402・・・円形パターン、404・・・ラインパターン

Claims (16)

  1. 少なくとも一つの直線の辺を有する形状の荷電粒子ビームでウェハを露光する荷電粒子ビーム露光装置であって、
    前記荷電粒子ビームの一部を遮るナイフエッジと、
    前記荷電粒子ビームの進行方向に対して前記ナイフエッジの下方に設けられ、直接照射された前記荷電粒子ビームの電流を検出する電流検出部と、
    前記荷電粒子ビームの進行方向に対して前記ナイフエッジと略同一の高さに設けられ、前記荷電粒子ビームの前記直線の辺と前記ナイフエッジとの相対角である第1の相対角の調整に用いられる調整パターンと
    を備えることを特徴とする荷電粒子ビーム露光装置。
  2. 前記荷電粒子ビーム露光装置が、前記直線の辺に前記調整パターンを横切らせるような走査方向に、前記荷電粒子ビームを走査した場合において、前記調整パターンが反射する反射荷電粒子の量の、前記荷電粒子ビームの走査距離に対する変化に基づいて、前記走査方向に対する前記直線の辺の相対角である第2の相対角を判断し、前記第2の相対角に基づいて、前記第1の相対角を略平行に調整する調整部を更に備えることを特徴とする請求項1に記載の荷電粒子ビーム露光装置。
  3. 前記調整パターンは、円形パターンを有し、
    前記調整部は、前記直線の辺が前記円形パターンを横切るように前記荷電粒子ビームを走査した場合に、前記円形パターンが反射する反射荷電粒子の量の走査距離に対する変化に基づいて、前記第2の相対角を判断することを特徴とする請求項2に記載の荷電粒子ビーム露光装置。
  4. 前記調整パターンは、
    円形パターンに対する相対位置が既知である第1のラインパターンを更に有し、
    調整部は、荷電粒子ビームが前記第1のラインパターンを通過するように走査させることにより、前記第1のラインパターンの位置を検出し、検出した第1のラインパターンの位置に基づいて前記円形パターンの位置を判断することを特徴とする請求項3に記載の荷電粒子ビーム露光装置。
  5. 前記第1のラインパターンと前記円形パターンとの距離が既知であり、
    前記調整部は、前記第1のラインパターンとほぼ垂直に通過するように前記荷電粒子ビームを走査させることにより、前記第1のラインパターンの位置を検出することを特徴とする請求項4に記載の荷電粒子ビーム露光装置。
  6. 前記調整パターンは、前記第1のラインパターンに対してほぼ垂直に設けられた第2のラインパターンを更に有し、
    前記調整部は、前記荷電粒子ビームが前記第2のラインパターンを通過する様に走査させることにより、前記第2のラインパターンの位置を更に検出し、検出した第2のラインパターンの位置に更に基づいて、前記円形パターンの位置を判断することを特徴とする請求項4に記載の荷電粒子ビーム露光装置。
  7. 前記調整パターンは、
    ほぼ等間隔で略平行に設けられた複数の前記第1のラインパターンと、
    ほぼ等間隔で略平行に設けられた複数の前記第2のラインパターンとを更に有し、
    前記円形パターンは、複数の前記第1のラインパターンと複数の前記第2のラインパターンとが構成する格子のほぼ中心に配置されていることを特長とすることを特徴とする請求項6に記載の荷電粒子ビーム露光装置。
  8. 前記調整パターンは、
    前記荷電粒子ビームの進行方向に対して前記円形パターンと略同一の高さに設けられたラインパターンを更に有し、
    前記調整部は、前記ラインパターンに焦点を合わせることにより、前記円形パターンに焦点を合わせることを特徴とする請求項3に記載の荷電粒子ビーム露光装置。
  9. 前記調整部は、前記荷電粒子ビームの一部が前記ナイフエッジで遮られる状態で、前記ナイフエッジに沿った走査方向に前記荷電粒子ビームを走査させたときの、前記荷電粒子ビームの走査距離に対する前記荷電粒子ビームの電流の変化に基づいて、前記走査方向に対する前記ナイフエッジの相対角である第3の相対角を判断し、前記第3の相対角に更に基づいて、前記第1の相対角を略平行に調整することを特徴とする請求項2に記載の荷電粒子ビーム露光装置。
  10. 前記ナイフエッジのエッジ部分及び前記調整パターンは、前記荷電粒子ビームの進行方向に対する前記ナイフエッジの上面に設けられていることを特徴とする請求項1に記載の荷電粒子ビーム露光装置。
  11. 前記ナイフエッジは、前記ウェハにおける前記荷電粒子ビームの走査方向と略平行に設けられていることを特徴とする請求項1に記載の荷電粒子ビーム露光装置。
  12. 前記荷電粒子ビームを偏向させる偏向器を更に備え、
    前記ナイフエッジのエッジ部分と前記調整パターンとの距離は、前記偏向器が前記荷電粒子ビームを偏向できる距離よりも小さいことを特徴とする請求項1に記載の荷電粒子ビーム露光装置。
  13. 荷電粒子ビームの一部を遮るナイフエッジと、
    前記荷電粒子ビームの進行方向に対して前記ナイフエッジの下方に設けられ、直接照射された前記荷電粒子ビームの電流を検出する電流検出部と、
    前記荷電粒子ビームの進行方向に対して前記ナイフエッジと略同一の高さに設けられ、少なくとも一つの直線の辺を有する形状の荷電粒子ビームの前記直線の辺と前記ナイフエッジとの相対角である第1の相対角の調整に用いられる調整パターンと
    を備える荷電粒子ビーム露光装置において、前記荷電粒子ビームのシャープネスを測定する方法であって、
    前記荷電粒子ビームの前記直線の辺が、前記調整パターンを横切るような走査方向に、前記荷電粒子ビームを走査する段階と、
    前記調整パターンが反射する反射荷電粒子の量の、前記荷電粒子ビームの走査距離に対する変化に基づいて、前記走査方向に対する前記直線の辺の相対角である第2の相対角を判断する第1判断段階と、
    前記第2の相対角に基づいて、前記第1の相対角を略平行に調整する調整段階と、
    前記第1の相対角が略平行に調整された状態において、前記直線の辺が前記ナイフエッジの端部を通過すべく前記荷電粒子ビームを走査したときの、前記電流検出部が検出する前記電流の変化に基づいて、前記荷電粒子ビームのシャープネスを測定する測定段階と
    を備えることを特長とする、シャープネスの測定方法。
  14. 前記荷電粒子ビームの一部が前記ナイフエッジで遮られる位置で、前記ナイフエッジに沿った走査方向に、前記荷電粒子ビームを走査し、前記電流検出部が検出する前記荷電粒子ビームの電流の、前記荷電粒子ビームの走査距離に対する変化に基づいて、前記走査方向に対する前記ナイフエッジの相対角である第3の相対角を判断する第2判断段階を更に備え、
    前記調整段階は、
    前記第2の相対角及び前記第3の相対角に基づいて、前記第1の相対角を略平行に調整することを特徴とする請求項13に記載のシャープネスの測定方法。
  15. 前記第1判断段階は、前記荷電粒子ビームの走査距離に対する前記反射荷電粒子の量の変化が最小となる前記走査方向に基づいて、前記第2の相対角を判断し、
    第2判断段階は、前記荷電粒子ビームの電流の、前記荷電粒子ビームの走査距離に対する変化が最小となる荷電粒子ビームの走査方向に基づいて、前記第3の相対角を判断することを特長とする請求項13に記載のシャープネスの測定方法。
  16. 荷電粒子ビームの一部を遮るナイフエッジと、
    前記荷電粒子ビームの進行方向に対して前記ナイフエッジの下方に設けられ、直接照射された前記荷電粒子ビームの電流を検出する電流検出部と、
    前記荷電粒子ビームの進行方向に対して前記ナイフエッジと略同一の高さに設けられ、少なくとも一つの直線の辺を有する形状の荷電粒子ビームの前記直線の辺と前記ナイフエッジとの相対角である第1の相対角の調整に用いられる調整パターンと
    を備える荷電粒子ビーム露光装置を用いてウェハにパターンを露光して、半導体素子を製造する半導体素子製造方法であって、
    前記荷電粒子ビームの前記直線の辺が、前記調整パターンを横切るような走査方向に、前記荷電粒子ビームを走査する段階と、
    前記調整パターンが反射する反射荷電粒子の量の、前記荷電粒子ビームの走査距離に対する変化に基づいて、前記走査方向に対する前記直線の辺の相対角である第2の相対角を判断する第1判断段階と、
    前記第2の相対角に基づいて、前記第1の相対角を略平行に調整する調整段階と、
    前記第1の相対角が略平行に調整された状態において、前記直線の辺が前記ナイフエッジの端部を通過すべく前記荷電粒子ビームを走査したときの、前記電流検出部が検出する前記電流の変化に基づいて、前記荷電粒子ビームのシャープネスを測定する測定段階と
    測定した前記シャープネスに基づいて、前記荷電粒子ビームのシャープネスを補正する補正段階と
    シャープネスが補正された前記荷電粒子ビームでウェハを露光する段階と
    を備えることを特長とする半導体素子製造方法。
JP2002232072A 2002-08-08 2002-08-08 荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法 Pending JP2004071990A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232072A JP2004071990A (ja) 2002-08-08 2002-08-08 荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232072A JP2004071990A (ja) 2002-08-08 2002-08-08 荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法

Publications (1)

Publication Number Publication Date
JP2004071990A true JP2004071990A (ja) 2004-03-04

Family

ID=32017639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232072A Pending JP2004071990A (ja) 2002-08-08 2002-08-08 荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法

Country Status (1)

Country Link
JP (1) JP2004071990A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178231A (ja) * 2015-03-20 2016-10-06 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビームのビーム分解能測定方法
JP2018078250A (ja) * 2016-11-11 2018-05-17 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178231A (ja) * 2015-03-20 2016-10-06 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビームのビーム分解能測定方法
JP2018078250A (ja) * 2016-11-11 2018-05-17 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置

Similar Documents

Publication Publication Date Title
JP4327497B2 (ja) 電子ビーム露光装置、電子ビーム露光方法、半導体素子製造方法、マスク、及びマスク製造方法
JPH10214779A (ja) 電子ビーム露光方法及び該方法を用いたデバイス製造方法
JP2018082120A (ja) マルチ荷電粒子ビーム描画装置
JP4368411B2 (ja) 電子ビーム露光装置
JP2006186125A (ja) 荷電粒子線露光装置およびその露光方法
US6703630B2 (en) Exposure method, electron beam exposure apparatus and fabrication method of electronic device
JP2006210455A (ja) 荷電粒子線露光装置及び該装置を用いたデバイス製造方法
US6881968B2 (en) Electron beam exposure apparatus, electron beam exposure method, semiconductor device manufacturing method, and electron beam shape measuring method
JP2004311472A (ja) 電子線描画装置
US20010052573A1 (en) Target mark member, method for manufacturing, and electron beam exposure apparatus thereof
JP2004071990A (ja) 荷電粒子ビーム露光装置、荷電粒子ビームのシャープネス測定方法、及び半導体素子製造方法
JP4141785B2 (ja) パターン幅測長装置、パターン幅測長方法、及び電子ビーム露光装置
JP4511707B2 (ja) 電子ビーム露光装置、露光方法、及び半導体素子製造方法
TWI230838B (en) Electron beam exposure device and method and manufacturing method of semiconductor elements
JP4729201B2 (ja) 電子ビーム補正方法
JP4616517B2 (ja) 電子ビーム露光方法、電子ビーム露光装置、及び半導体素子製造方法
JP4558238B2 (ja) 電子ビーム露光装置、電子ビーム露光方法、及び半導体素子製造方法
JPH11224642A (ja) 電子ビーム露光装置および電子ビーム露光方法
JP2005032958A (ja) 荷電粒子線装置の照明条件調整方法、及び露光方法
JP2001319853A (ja) 電子ビームドリフト診断方法、電子ビーム露光装置
JP4554749B2 (ja) 電子ビーム露光装置及び半導体素子製造方法
JP2001319859A (ja) 電子ビーム露光装置、電子ビーム露光方法、素子製造方法、及びマスク
JP2007019193A (ja) 荷電粒子線装置、レンズパワー調整方法、及びデバイス製造方法
JP2003323858A (ja) 電子ビーム処理装置及び電子ビーム形状測定方法
JP2008078583A (ja) 描画システム、描画方法、及び帯電検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120