JP2004071888A - Circuit substrate for semiconductor device and semiconductor device - Google Patents

Circuit substrate for semiconductor device and semiconductor device Download PDF

Info

Publication number
JP2004071888A
JP2004071888A JP2002230246A JP2002230246A JP2004071888A JP 2004071888 A JP2004071888 A JP 2004071888A JP 2002230246 A JP2002230246 A JP 2002230246A JP 2002230246 A JP2002230246 A JP 2002230246A JP 2004071888 A JP2004071888 A JP 2004071888A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor element
circuit pattern
insulating substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002230246A
Other languages
Japanese (ja)
Inventor
Junichi Nagaseko
長迫 順一
Yoji Kawachi
河内 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002230246A priority Critical patent/JP2004071888A/en
Publication of JP2004071888A publication Critical patent/JP2004071888A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83051Forming additional members, e.g. dam structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]

Abstract

<P>PROBLEM TO BE SOLVED: To position a semiconductor element even under a high-temperature condition, reduce a size of an insulating substrate and suppress costs even in the case of mounting the semiconductor element of a different size. <P>SOLUTION: A circuit substrate 10 for a semiconductor device has a circuit pattern 2 composed of a conductive material on an insulating substrate 1, a region 3 where the semiconductor element is disposed, and a groove part 4 encircling the region. Further, a semiconductor device 20 comprises the insulating substrate 1 having the circuit pattern 2 composed of the conductive material, and a semiconductor element 6 disposed on the circuit pattern of the insulating substrate, and also has a region where the semiconductor element is disposed, and a groove part encircling the region. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁基板の上に形成された回路パターン上に半導体素子を配置した半導体装置に関する。
【0002】
【従来の技術】
半導体装置(パワーモジュール)は、絶縁基板に銅薄膜等の導電性材料からなる回路パターンが形成された回路基板と、該回路基板の回路パターンの上に配置された半導体素子(半導体チップ)とから構成されている。この回路基板50に半導体素子を所定位置に配置する方法にはおよそ2通りある。第1の方法は、配置する半導体素子の大きさに合わせた形状の回路パターンを形成しておく方法である。第2の方法は、回路基板上に半導体素子の配置位置に合わせた形状にレジストを形成しておき、該レジストに沿って半導体素子を配置する方法である。まず、第1の方法について説明する。この場合には、図4に示すように、回路基板50には、絶縁基板51の上に半導体素子を配置する領域53に合わせた形状を有するエッチング部54が形成された回路パターンを備えている。
【0003】
次に、第2の方法について説明する。図5に示すように、回路パターン52に半導体素子56a、56b、56c、56dをはんだ付けする場合には、回路パターン52上にレジスト55a、55bを形成して位置決めを行っている。さらに、この凸状のレジスト55a、55bによってはんだ流れの防止を行っている。
【0004】
【発明が解決しようとする課題】
しかし、上記第1の方法の場合には、上記エッチング部54を形成するために、配置する半導体素子のサイズに合わせて回路パターン52をエッチングする必要がある。そのため、異なるサイズの半導体素子を配置する場合には、チップサイズに対応する異なる形状のエッチング部54を回路パターン52に形成する必要があり、コスト高となっていた。
【0005】
また、上記第2の方法の場合には、高温条件下ではレジストが剥がれる場合があり、温度条件によっては半導体素子の位置決めのためにレジストを使用できない。
【0006】
さらに、隣接してはんだ付けする半導体素子の間ではんだがくっついてしまわないように、位置決め用のレジスト55aの幅を大きくする必要がある。例えば、図5の左側の半導体素子56a、56bを配置するためのレジスト55aに比べて、右側の半導体素子56c、56dをより近接させて配置するためにレジスト55bを狭くしている。この場合、はんだ58c、58dがレジスト55bの上部で互いに付着してしまう場合がある。これを避けるためには、レジスト55を一定以上の幅とする必要があるので、絶縁基板が大きくなっていた。このため近年の装置の小型化を実現することが困難となっていた。
【0007】
そこで、本発明の目的は、半導体装置を作製するにあたって、高温条件下でも半導体素子を位置決めでき、絶縁基板のサイズを小さくできると共に、異なるサイズの半導体素子を搭載する場合にもコストを抑制することである。
【0008】
【課題を解決するための手段】
本発明に係る半導体装置用回路基板は、絶縁基板の上に導電性材料からなる回路パターンを有する半導体装置用回路基板であって、
半導体素子を配置する領域と、前記領域を囲む溝部とを有することを特徴とする。
【0009】
本発明に係る半導体装置は、導電性材料からなる回路パターンを有する絶縁基板と、
前記絶縁基板の回路パターンの上に配置された半導体素子と
を備え、
前記半導体素子を配置する領域と、前記領域を囲む溝部とを有することを特徴とする。
【0010】
また、本発明に係る半導体装置は、前記半導体装置であって、前記溝部はレーザ光照射で形成されたことを特徴とする。
【0011】
【発明の実施の形態】
本発明の実施の形態に係る半導体装置用回路基板及び半導体装置について添付図面を用いて説明する。なお、図では実質的に同一の部材には同一の符号を付している。
【0012】
実施の形態1.
本発明の実施の形態1に係る半導体装置用回路基板について図1を用いて説明する。図1は、この半導体装置用回路基板の平面図である。この半導体装置用回路基板は、絶縁基板1の上に導電性材料からなる所定形状の回路パターン2を有する。この回路パターン2は、例えば、銅薄膜、ニッケルメッキ薄膜等を用いることができる。また、半導体素子を配置する領域3と、それを囲む溝部4を有する。この半導体素子を配置する領域3とは、半導体素子の底部をはんだ付けする部分である。また、この溝部4は、幅50μm以上であって、深さ5μm〜パターン厚み以下の凹部からなる。この半導体装置用回路基板では、配置しようとする半導体素子のサイズの領域3と、それを囲む溝部4を有するので、素子のサイズによらず回路パターンの形状を標準化できる。そこで、異なるサイズの半導体素子を用いる場合にも絶縁基板1に同一の回路パターン2を有し、回路パターンに素子のサイズに合わせた溝部4を設けた半導体装置用回路基板を用いることができる。これによって、コストを減らすことができる。
【0013】
なお、本発明は、上記実施の形態に記載の、絶縁基板の上の回路パターンに半導体素子を配置する場合に限られない。例えば、絶縁基板の回路パターンにブロックをはんだ付けする場合、電極端子をはんだ付けする場合、ブロックに半導体素子をはんだ付けする場合などにも同様に適用できる。この場合にもブロック、半導体素子又は電極端子等を囲む溝部を設けることによってはんだ流れを防止できる。
【0014】
この半導体装置用回路基板は、以下の手順で作製される。
(a)絶縁基板1を用意する。
(b)絶縁基板1の一方の面に、銅薄膜からなる所定形状の回路パターン2を形成する。この回路パターン2は、例えば、レジストを形成し、所定形状に露光後、残存させたレジストをマスクにしてエッチングを施して得ることができる。
(c)絶縁基板1の回路パターン2において、半導体素子を配置する領域3を囲むようにレーザ光を一筆書き照射して、溝部4を形成する。この溝部4は、幅50μm以上であって、深さ5μm〜パターン厚み以下の凹部からなる。なお、エッチング又はプレス加工によって溝部4を形成してもよい。この場合、エッチングではコスト的に高価になり、プレス加工では絶縁基板が割れる場合などが考えられるので、レーザ加工が好ましい。レーザ加工を用いることにより生産性、コスト面で有効である。さらに、レーザ加工において、レーザ光を一筆書き照射することにより生産性を向上させることができる。
以上の手順によって半導体装置用回路基板10を得ることができる。
【0015】
実施の形態2.
本発明の実施の形態2に係る半導体装置20について図1から図3を用いて説明する。図2は、この半導体装置20の断面図である。図3は、異なる間隔で半導体素子を半導体装置用回路基板に配置した場合の半導体装置の側断面図である。この半導体装置20は、図1に示す半導体装置用回路基板10に半導体素子6を配置している。即ち、回路パターン2を有する絶縁基板1と、該回路パターン2の溝部4に囲まれた領域3内にはんだ8によって配置された半導体素子6とを備える。この半導体装置20では、図1に示すように、回路パターン2に半導体素子6を配置する領域3と、それを囲む溝部4を有している。回路パターン2に溝部4を設けているので、高温条件下でも半導体素子6をはんだ付けする場合に位置決めを確実に行うことができる。また、はんだ流れを溝部4で防止することができる。さらに、隣接する半導体素子6をはんだ付けする場合、図3に示すように、凹状の溝部4を設けたことによって、はんだ8の表面張力に起因して隣接する素子のはんだと付着しにくい。例えば、図3の左側の半導体素子6a、6bの配置間隔に比べて、右側の半導体素子6c、6dを配置する間隔を狭くした場合にも、隣接する半導体素子6c、6dの間ではんだ8c、8dはそれぞれ付着することなく保持できるので、回路基板の大きさを小さくすることができる。
【0016】
なお、絶縁基板に回路パターンを有する回路基板に関するいくつかの先行技術が知られている。特開平4−103150号公報には、セラミックス基板上に融着させた金属板の表面に凹凸を形成したIC実装用基板が記載されている。この場合、ICをはんだ付けする箇所をエッチングで全体として凹ませており、機械的な損傷を受けやすくなる。また過大なコストを必要とする。特開平4−192340号公報には、絶縁基板に固着させた銅パターンに形成された複数の溝を有する半導体回路用基板が記載されている。この溝は、はんだの巣を閉じ込めるために半導体素子をはんだ付けする面にわたって広く設けられており、素子の位置決めには有効ではない。さらに、特開平8−31848号公報には、支持板表面の金属層にレーザ光照射で酸化金属層を形成し、半導体素体をろう付けする半導体装置の製造方法が記載されている。しかし、この場合に形成される酸化金属膜は溝ではなく逆に凸状に盛り上げられており、レジストの場合と同様の問題を有する。
【0017】
この半導体装置は、以下の手順で作製される。
(a)絶縁基板1を用意する。
(b)絶縁基板1の一方の面に、銅薄膜からなる所定形状の回路パターン2を形成する。この回路パターン2は、例えば、レジストを形成し、所定形状に露光後、残存させたレジストをマスクにしてエッチングを施して得ることができる。
(c)絶縁基板1の回路パターン2において、半導体素子を配置する領域3を囲むようにレーザ光を一筆書き照射して、溝部4を形成する。この溝部は、幅50μm以上であって、深さ5μm〜パターン厚み以下の凹部からなる。
(d)半導体素子6を絶縁基板1上の回路パターン2部分に設けられた上記溝部4に囲まれた領域3に対応させて位置合わせを行って、はんだ付けする。
以上の手順によって半導体装置を得ることができる。
【0018】
【発明の効果】
本発明に係る半導体装置用回路基板によれば、回路パターンの上に半導体素子の大きさに合わせて溝部を形成するので、半導体素子の大きさによらず回路パターンそのものの形状を統一化でき、標準化した回路パターンを用いることができる。これによって、異なるサイズの半導体素子を用いる場合にも同一の回路パターンを有する回路基板を用いることができるので、コストを減らすことができる。
【0019】
本発明に係る半導体装置によれば、回路パターンに溝部を設けているので、高温条件下でも半導体素子をはんだ付けする場合に位置決めを確実に行うことができる。また、はんだ流れを溝部で防止することができる。さらに、隣接する半導体素子をはんだ付けする場合、従来の凸状のレジストに比べて凹状の溝部でははんだの表面張力で隣接する素子のはんだと付着しにくく、絶縁基板の大きさを小さくすることができる。
【0020】
また、本発明に係る半導体装置によれば、溝部をレーザ加工により形成している。これによって絶縁基板の割れの発生を抑制でき、コストを抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る半導体装置用回路基板の平面図である。
【図2】本発明の実施の形態2に係る半導体装置の断面図である。
【図3】本発明の実施の形態2に係る半導体装置において、半導体素子の配置間隔を変化させた例を示す側面図である。
【図4】従来の半導体装置用回路基板の平面図である。
【図5】従来の半導体装置用回路基板に位置決め用のレジストを用いて半導体素子を配置した例を示す側面図である。
【符号の説明】
1 絶縁基板、2 回路パターン、3 半導体素子配置領域、4、4a、4b 溝部、6、6a、6b、6c、6d 半導体素子、8、8a、8b、8c、8dはんだ、10 半導体装置用回路基板、20 半導体装置、50 半導体装置用回路基板、51 絶縁基板、52 回路パターン、53 半導体素子配置領域、54 エッチング部、55a、55b レジスト、56a、56b、56c、56d 半道体素子、58a、58b、58c、58d はんだ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device having a semiconductor element arranged on a circuit pattern formed on an insulating substrate.
[0002]
[Prior art]
A semiconductor device (power module) includes a circuit board in which a circuit pattern made of a conductive material such as a copper thin film is formed on an insulating substrate, and a semiconductor element (semiconductor chip) arranged on the circuit pattern of the circuit board. It is configured. There are approximately two methods for arranging semiconductor elements at predetermined positions on the circuit board 50. The first method is to form a circuit pattern having a shape corresponding to the size of a semiconductor element to be arranged. The second method is a method in which a resist is formed on a circuit board in a shape corresponding to the arrangement position of a semiconductor element, and the semiconductor element is arranged along the resist. First, the first method will be described. In this case, as shown in FIG. 4, the circuit board 50 is provided with a circuit pattern in which an etching portion 54 having a shape corresponding to a region 53 where a semiconductor element is arranged is formed on an insulating substrate 51. .
[0003]
Next, the second method will be described. As shown in FIG. 5, when the semiconductor elements 56a, 56b, 56c and 56d are soldered to the circuit pattern 52, resists 55a and 55b are formed on the circuit pattern 52 for positioning. Further, the solder resist is prevented by the convex resists 55a and 55b.
[0004]
[Problems to be solved by the invention]
However, in the case of the first method, in order to form the etching portion 54, it is necessary to etch the circuit pattern 52 according to the size of the semiconductor element to be arranged. Therefore, when arranging semiconductor elements of different sizes, it is necessary to form etched portions 54 of different shapes corresponding to the chip size on the circuit pattern 52, which has been costly.
[0005]
Further, in the case of the second method, the resist may be peeled off under high temperature conditions, and the resist cannot be used for positioning the semiconductor element depending on the temperature conditions.
[0006]
Further, it is necessary to increase the width of the positioning resist 55a so that the solder does not stick between the semiconductor elements to be soldered adjacently. For example, the resist 55b is narrower in order to dispose the right semiconductor elements 56c and 56d closer to each other than in the resist 55a for disposing the left semiconductor elements 56a and 56b in FIG. In this case, the solders 58c and 58d may adhere to each other above the resist 55b. In order to avoid this, the width of the resist 55 needs to be at least a certain width, so that the insulating substrate is large. For this reason, it has been difficult to reduce the size of the device in recent years.
[0007]
Therefore, an object of the present invention is to provide a semiconductor device which can position a semiconductor element even under a high temperature condition, can reduce the size of an insulating substrate, and suppress cost even when a semiconductor element of a different size is mounted. It is.
[0008]
[Means for Solving the Problems]
The circuit board for a semiconductor device according to the present invention is a circuit board for a semiconductor device having a circuit pattern made of a conductive material on an insulating substrate,
The semiconductor device has a region where a semiconductor element is arranged and a groove surrounding the region.
[0009]
A semiconductor device according to the present invention, an insulating substrate having a circuit pattern made of a conductive material,
A semiconductor element arranged on the circuit pattern of the insulating substrate,
The semiconductor device includes a region where the semiconductor element is arranged and a groove surrounding the region.
[0010]
Further, the semiconductor device according to the present invention is the semiconductor device, wherein the groove is formed by laser light irradiation.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
A circuit board for a semiconductor device and a semiconductor device according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.
[0012]
Embodiment 1 FIG.
First Embodiment A circuit board for a semiconductor device according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a plan view of the semiconductor device circuit board. The circuit board for a semiconductor device has a circuit pattern 2 of a predetermined shape made of a conductive material on an insulating substrate 1. As the circuit pattern 2, for example, a copper thin film, a nickel plating thin film, or the like can be used. Further, it has a region 3 in which a semiconductor element is arranged and a trench 4 surrounding the region 3. The region 3 where the semiconductor element is arranged is a part where the bottom of the semiconductor element is soldered. The groove 4 is formed of a concave portion having a width of 50 μm or more and a depth of 5 μm to a pattern thickness or less. Since the semiconductor device circuit board has the region 3 of the size of the semiconductor element to be arranged and the groove 4 surrounding the area, the shape of the circuit pattern can be standardized regardless of the element size. Therefore, even when semiconductor elements of different sizes are used, it is possible to use a circuit board for a semiconductor device having the same circuit pattern 2 on the insulating substrate 1 and providing the groove 4 in the circuit pattern according to the element size. This can reduce costs.
[0013]
Note that the present invention is not limited to the case where a semiconductor element is arranged in a circuit pattern over an insulating substrate described in the above embodiment. For example, the present invention can be similarly applied to a case where a block is soldered to a circuit pattern of an insulating substrate, a case where an electrode terminal is soldered, a case where a semiconductor element is soldered to a block, and the like. Also in this case, the flow of the solder can be prevented by providing a groove surrounding the block, the semiconductor element, the electrode terminal, and the like.
[0014]
This circuit board for a semiconductor device is manufactured by the following procedure.
(A) An insulating substrate 1 is prepared.
(B) A circuit pattern 2 of a predetermined shape made of a copper thin film is formed on one surface of the insulating substrate 1. The circuit pattern 2 can be obtained, for example, by forming a resist, exposing the resist to a predetermined shape, and performing etching using the remaining resist as a mask.
(C) In the circuit pattern 2 of the insulating substrate 1, a groove 4 is formed by irradiating a single stroke of laser light so as to surround the region 3 where the semiconductor element is arranged. The groove 4 is formed of a concave portion having a width of 50 μm or more and a depth of 5 μm to the pattern thickness. The groove 4 may be formed by etching or pressing. In this case, laser processing is preferable because etching is expensive in terms of cost, and pressing processing may break the insulating substrate. The use of laser processing is effective in terms of productivity and cost. Further, in laser processing, productivity can be improved by irradiating a single stroke of a laser beam.
The semiconductor device circuit board 10 can be obtained by the above procedure.
[0015]
Embodiment 2 FIG.
Second Embodiment A semiconductor device 20 according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a sectional view of the semiconductor device 20. FIG. 3 is a side sectional view of the semiconductor device when semiconductor elements are arranged on a circuit board for a semiconductor device at different intervals. In this semiconductor device 20, a semiconductor element 6 is arranged on a semiconductor device circuit board 10 shown in FIG. That is, an insulating substrate 1 having a circuit pattern 2 and a semiconductor element 6 arranged by solder 8 in a region 3 surrounded by a groove 4 of the circuit pattern 2 are provided. As shown in FIG. 1, the semiconductor device 20 has a region 3 where the semiconductor element 6 is arranged in the circuit pattern 2 and a groove 4 surrounding the region 3. Since the groove 4 is provided in the circuit pattern 2, positioning can be reliably performed when the semiconductor element 6 is soldered even under a high temperature condition. Further, the flow of the solder can be prevented by the groove 4. Further, when soldering the adjacent semiconductor elements 6, as shown in FIG. 3, the provision of the concave grooves 4 makes it difficult for the adjacent semiconductor elements 6 to adhere to the solder of the adjacent elements due to the surface tension of the solder 8. For example, when the spacing between the right semiconductor elements 6c and 6d is narrower than the spacing between the left semiconductor elements 6a and 6b in FIG. 3, the solder 8c between the adjacent semiconductor elements 6c and 6d can be used. 8d can be held without adhering to each other, so that the size of the circuit board can be reduced.
[0016]
Some prior arts related to a circuit board having a circuit pattern on an insulating substrate are known. Japanese Patent Application Laid-Open No. 4-103150 describes an IC mounting substrate in which irregularities are formed on the surface of a metal plate fused to a ceramic substrate. In this case, the portion where the IC is to be soldered is entirely recessed by etching, so that the IC is easily damaged. It also requires excessive costs. Japanese Patent Application Laid-Open No. 4-192340 describes a semiconductor circuit substrate having a plurality of grooves formed in a copper pattern fixed to an insulating substrate. This groove is provided widely over the surface on which the semiconductor element is soldered in order to confine the solder nest, and is not effective in positioning the element. Further, Japanese Patent Application Laid-Open No. 8-31848 describes a method for manufacturing a semiconductor device in which a metal oxide layer is formed on a metal layer on a surface of a support plate by laser light irradiation and a semiconductor element is brazed. However, the metal oxide film formed in this case is raised not in a groove but in a convex shape, and has the same problem as in the case of a resist.
[0017]
This semiconductor device is manufactured by the following procedure.
(A) An insulating substrate 1 is prepared.
(B) A circuit pattern 2 of a predetermined shape made of a copper thin film is formed on one surface of the insulating substrate 1. The circuit pattern 2 can be obtained, for example, by forming a resist, exposing the resist to a predetermined shape, and performing etching using the remaining resist as a mask.
(C) In the circuit pattern 2 of the insulating substrate 1, a groove 4 is formed by irradiating a single stroke of laser light so as to surround the region 3 where the semiconductor element is arranged. The groove is formed of a concave portion having a width of 50 μm or more and a depth of 5 μm to a pattern thickness or less.
(D) The semiconductor element 6 is aligned and soldered so as to correspond to the area 3 surrounded by the groove 4 provided in the circuit pattern 2 on the insulating substrate 1.
A semiconductor device can be obtained by the above procedure.
[0018]
【The invention's effect】
According to the circuit board for a semiconductor device of the present invention, since the groove is formed on the circuit pattern according to the size of the semiconductor element, the shape of the circuit pattern itself can be unified regardless of the size of the semiconductor element, Standardized circuit patterns can be used. Thus, even when semiconductor elements of different sizes are used, a circuit board having the same circuit pattern can be used, so that cost can be reduced.
[0019]
According to the semiconductor device of the present invention, since the groove is provided in the circuit pattern, the positioning can be reliably performed when the semiconductor element is soldered even under a high temperature condition. Also, the flow of solder can be prevented by the groove. Furthermore, when soldering adjacent semiconductor elements, compared to the conventional convex resist, the concave grooves are less likely to adhere to the solder of the adjacent elements due to the surface tension of the solder, so that the size of the insulating substrate can be reduced. it can.
[0020]
According to the semiconductor device of the present invention, the groove is formed by laser processing. Thereby, the occurrence of cracks in the insulating substrate can be suppressed, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a circuit board for a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a semiconductor device according to a second embodiment of the present invention;
FIG. 3 is a side view showing an example in which an arrangement interval of semiconductor elements is changed in a semiconductor device according to a second embodiment of the present invention.
FIG. 4 is a plan view of a conventional circuit board for a semiconductor device.
FIG. 5 is a side view showing an example in which semiconductor elements are arranged on a conventional circuit board for a semiconductor device using a resist for positioning.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating substrate, 2 Circuit pattern, 3 Semiconductor element arrangement area, 4 4a, 4b Groove, 6, 6a, 6b, 6c, 6d Semiconductor element, 8, 8a, 8b, 8c, 8d solder, 10 Circuit board for semiconductor device , 20 semiconductor device, 50 semiconductor device circuit board, 51 insulating substrate, 52 circuit pattern, 53 semiconductor element arrangement region, 54 etching portion, 55a, 55b resist, 56a, 56b, 56c, 56d semi-semiconductor element, 58a, 58b , 58c, 58d Solder

Claims (3)

絶縁基板の上に導電性材料からなる回路パターンを有する半導体装置用回路基板であって、
半導体素子を配置する領域と、前記領域を囲む溝部を有することを特徴とする半導体装置用回路基板。
A circuit board for a semiconductor device having a circuit pattern made of a conductive material on an insulating substrate,
A circuit board for a semiconductor device, comprising: a region in which a semiconductor element is arranged; and a groove surrounding the region.
導電性材料からなる回路パターンを有する絶縁基板と、
前記絶縁基板の回路パターンの上に配置された半導体素子と
を備え、
前記半導体素子を配置する領域と、前記領域を囲む溝部とを有することを特徴とする半導体装置。
An insulating substrate having a circuit pattern made of a conductive material,
A semiconductor element arranged on the circuit pattern of the insulating substrate,
A semiconductor device comprising: a region in which the semiconductor element is arranged; and a groove surrounding the region.
前記溝部は、レーザ光照射で形成されたことを特徴とする請求項2に記載の半導体装置。The semiconductor device according to claim 2, wherein the groove is formed by laser light irradiation.
JP2002230246A 2002-08-07 2002-08-07 Circuit substrate for semiconductor device and semiconductor device Pending JP2004071888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230246A JP2004071888A (en) 2002-08-07 2002-08-07 Circuit substrate for semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230246A JP2004071888A (en) 2002-08-07 2002-08-07 Circuit substrate for semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004071888A true JP2004071888A (en) 2004-03-04

Family

ID=32016385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230246A Pending JP2004071888A (en) 2002-08-07 2002-08-07 Circuit substrate for semiconductor device and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004071888A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669938A2 (en) 2012-05-28 2013-12-04 Hitachi Ltd. Semiconductor device with an oxide solder flow prevention area on a substrate and corresponding manufacturing method
WO2014065124A1 (en) * 2012-10-25 2014-05-01 シャープ株式会社 Semiconductor device, and electronic device
JP2014216459A (en) * 2013-04-25 2014-11-17 三菱電機株式会社 Semiconductor device
JP2017005187A (en) * 2015-06-15 2017-01-05 株式会社東芝 Manufacturing method for semiconductor device and semiconductor device
JP2018078135A (en) * 2016-11-07 2018-05-17 スタンレー電気株式会社 Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669938A2 (en) 2012-05-28 2013-12-04 Hitachi Ltd. Semiconductor device with an oxide solder flow prevention area on a substrate and corresponding manufacturing method
US9076774B2 (en) 2012-05-28 2015-07-07 Hitachi Power Semiconductor Device, Ltd. Semiconductor device and a method of manufacturing same
WO2014065124A1 (en) * 2012-10-25 2014-05-01 シャープ株式会社 Semiconductor device, and electronic device
JP2014216459A (en) * 2013-04-25 2014-11-17 三菱電機株式会社 Semiconductor device
JP2017005187A (en) * 2015-06-15 2017-01-05 株式会社東芝 Manufacturing method for semiconductor device and semiconductor device
US10128153B2 (en) 2015-06-15 2018-11-13 Kabushiki Kaisha Toshiba Method of fabricating a semiconductor device and the semiconductor device
JP2018078135A (en) * 2016-11-07 2018-05-17 スタンレー電気株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7294532B2 (en) Method for manufacturing semiconductor device
US20120115263A1 (en) Chip-type led and method of manufacturing the same
JP5232185B2 (en) Manufacturing method of semiconductor device
KR101939864B1 (en) Carrier device, electrical device having a carrier device and method for producing same
JP2005101268A5 (en)
KR100381111B1 (en) Semiconductor device using a BGA package and method of producing the same
JP2004040008A (en) Semiconductor device
JPH0513820A (en) Semiconductor device
JP2002368282A (en) Method of transferring element and method of arranging element using the same, and method of manufacturing image display
JP2004071888A (en) Circuit substrate for semiconductor device and semiconductor device
US8456023B2 (en) Semiconductor wafer processing
JP4871694B2 (en) Light emitting diode package
JP2004207276A (en) Circuit device and its manufacturing method
JP4667666B2 (en) Chip array module
JPH02177342A (en) Tape for mounting integrated circuit
KR101317952B1 (en) Manufacturing method of led module including chip on board dam using transfer mold and led module thereby
KR100934678B1 (en) Circuit boards and manufacturing method thereof
JP2006261551A (en) Semiconductor module and its manufacturing method
JP2020050548A (en) Metal-ceramic bonded substrate, and method of producing the same
KR101910587B1 (en) Substrate and unit substrate for optical device
JP2007149714A (en) Substrate, forming method thereof, and semiconductor device
TW200803646A (en) Method of fabricating printed circuit board for mounting light emitting diode chip and light emitting diode package having the circuit board
JP2000340732A (en) Lead frame for semiconductor device and semiconductor device using the same
JP2007158156A (en) Semiconductor module
JP3245378B2 (en) Surface mount type semiconductor device