JP2004069837A - 陰極線管における信号抽出回路および方法 - Google Patents
陰極線管における信号抽出回路および方法 Download PDFInfo
- Publication number
- JP2004069837A JP2004069837A JP2002226226A JP2002226226A JP2004069837A JP 2004069837 A JP2004069837 A JP 2004069837A JP 2002226226 A JP2002226226 A JP 2002226226A JP 2002226226 A JP2002226226 A JP 2002226226A JP 2004069837 A JP2004069837 A JP 2004069837A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- index
- ray tube
- differentiating circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Transforming Electric Information Into Light Information (AREA)
Abstract
【課題】簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号から、所望の信号成分を精度良く抽出することができるようにする。
【解決手段】インデックス検出信号Sindとリファレンス信号Srefとを微分回路60によって微分波形にした後、差動アンプ部62によって差分を取り、インデックス情報信号Sinfを検出する。その後、波形整形してインデックス情報信号Sinfの微分波形をデジタル処理可能なパルス状の信号に復元する。微分回路60によって信号抽出の前段階において、不要信号成分(Hパルス成分等)を減衰させているので、不要信号成分の影響を軽減でき、インデックス検出信号Sindとリファレンス信号Srefとの振幅・位相を調整するための調整回路が不要となる。また、信号抽出部61の回路のダイナミックレンジを小さくできる。
【選択図】 図7
【解決手段】インデックス検出信号Sindとリファレンス信号Srefとを微分回路60によって微分波形にした後、差動アンプ部62によって差分を取り、インデックス情報信号Sinfを検出する。その後、波形整形してインデックス情報信号Sinfの微分波形をデジタル処理可能なパルス状の信号に復元する。微分回路60によって信号抽出の前段階において、不要信号成分(Hパルス成分等)を減衰させているので、不要信号成分の影響を軽減でき、インデックス検出信号Sindとリファレンス信号Srefとの振幅・位相を調整するための調整回路が不要となる。また、信号抽出部61の回路のダイナミックレンジを小さくできる。
【選択図】 図7
Description
【0001】
【発明の属する技術分野】
本発明は、電子ビームの軌道を検出するための検出手段を有する陰極線管に用いられる信号抽出回路および方法に関する。
【0002】
【従来の技術】
従来より、テレビジョン受像機や各種のモニタ装置などには、陰極線管(CRT;Cathode Ray Tube)が広く使用されている。陰極線管は、電子銃を備えており、その電子銃から入力信号に対応して電子ビームが放出される。この電子ビームが、パネル側に形成されている蛍光面に対して照射され、走査されることにより、画面が形成される。
【0003】
陰極線管は、単一の電子銃を備えた構成が一般的であるが、近年では、複数の電子銃を備えた構成のものが開発されている。以下、複数の電子銃を用いる方式を“複電子銃方式”、単一の電子銃を用いる方式を“単電子銃方式”と呼ぶ。複電子銃方式の陰極線管(複電子銃陰極線管)は、複数の電子銃により画面を構成するため、1つの電子銃のみを用いた場合に比べて、高輝度化(電子ビーム電流密度の向上)、全体の奥行きの短縮化、および電子ビームのスポット特性改善等の利点がある。
【0004】
複電子銃陰極線管では、画面領域を複数に分割すると共に、その分割された複数の画面領域(以下、「分割画面」ともいう。)を互いに繋ぎ合わせることにより、全体として1つの画面を形成する。電子銃は、通常、画面の分割数に対応した数だけ設けられる。各分割画面は、それぞれ、対応する電子銃から放出された電子ビームによって走査される。複電子銃方式の陰極線管における画面構成としては、単に各分割画面の端部を線状に繋ぎ合わせることにより1つの画面を得るようにしたものと、隣接する分割画面同士を部分的に重複(オーバ・ラップ)させて1つの画面を得るようにしたものとがある。
【0005】
ところで、従来より陰極線管は、その使用条件によって画像の表示状態がさまざまに変化することが知られている。例えば、電子ビームは、地磁気によりローレンツ力を受けているが、地磁気の方向は陰極線管を利用する環境により異なるため、その電子ビームの受けるローレンツ力が変化する。このため、環境によりビーム軌道が変化し、画像の歪み(画歪み)や、色ずれ等の変化が生じる。特に、複電子銃陰極線管においては、繋ぎ合わせ部分が目立たないように各分割画面が適正に繋ぎ合わされている必要があるが、画歪みや色ずれ等は、この繋ぎ合わせの精度にも悪影響を及ぼすので、好ましくない。
【0006】
そこで、本願出願人は、先に、特許第3068115号公報および特許第3057230号公報等において、電子ビームの走査位置に応じて電気的な検出信号を出力し、その検出信号を画像の表示状態の補正に利用する技術を提案している。この技術では、管内における電子ビームの過走査領域に、インデックス電極と呼ばれる電極を設け、電子ビームの入射に応じてインデックス電極から電気的な信号(インデックス検出信号)を出力する。以下、このインデックス電極を用いた信号検出方法を「電気インデックス法」という。
【0007】
【発明が解決しようとする課題】
しかしながら、電気インデックス法により取り出される電気(電圧)信号(インデックス検出信号)は、本来必要とされる電子ビームの軌跡に関連する情報(インデックス情報)のみならず、アノード電圧に含まれているさまざまな不要信号成分を含んだ形で取り出される。不要信号成分としては、例えば、高圧発生回路や水平偏向回路によるHパルス(水平周期パルス)がある。
【0008】
インデックス情報を精度良く取り出すための方法としては、フィルタなどの回路を利用して余分な波形成分を除去する方法が考えられる。しかしながら、フィルタ回路を利用して精度良く信号を抽出するためには、非常に複雑な回路が必要とされるという問題がある。また、回路によりインデックス情報の波形形状が変化してしまうという問題もある。
【0009】
そこで、本願出願人は、先に、特願2000−278758号(特開2002−093349号)において、インデックス検出信号と同様の手法によってアノード電圧から電気的な信号(リファレンス信号)を取り出し、そのリファレンス信号とインデックス検出信号との差分を取ることにより、インデックス情報を抽出する方法を提案している。
【0010】
この方法によってインデックス情報を精度良く抽出するためには、インデックス検出信号とリファレンス信号とのそれぞれに含まれる不要信号の波形(振幅および位相)が、一致している必要がある。これを改善する方法としては、それぞれの不要信号の振幅と位相とを調整するための専用の調整回路を設けることが考えられる。しかしながら、必要なインデックス情報信号の値が100mV程度であるのに対し、高圧発生回路や水平偏向回路によるHパルスの値は、例えば10Vでありその影響が大きい。このため、実際には、調整回路を用いた方法では、高精度な回路を用いた正確な調整が必要になるなど、精度良くインデックス情報を抽出することが困難である。
【0011】
本発明はかかる問題点に鑑みてなされたもので、その目的は、簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号から、所望の信号成分を精度良く抽出することができるようにした陰極線管における信号抽出回路および方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明による陰極線管における信号抽出回路および方法は、管内の過走査領域に設けられ、電子ビームの入射に応じて電気的な検出信号を出力する検出手段と、外囲器の一部を利用して形成され、検出信号を管外に出力するための第1の信号出力用キャパシタと、外囲器の一部を利用して形成され、アノード電圧に応じたリファレンス信号を管外に出力するための第2の信号出力用キャパシタとを備えた陰極線管に適用されるものである。
【0013】
本発明による陰極線管における信号抽出回路は、第1の信号出力用キャパシタを含んで構成され、検出信号に含まれる不要な信号成分を減衰させる第1の微分回路と、第2の信号出力用キャパシタを含んで構成され、リファレンス信号に含まれる不要な信号成分を減衰させる第2の微分回路と、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分を抽出する信号抽出手段とを備えたものである。
【0014】
本発明による陰極線管における信号抽出方法は、第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、検出信号に含まれる不要な信号成分を減衰させると共に、第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、リファレンス信号に含まれる不要な信号成分を減衰させ、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分を抽出するようにしたものである。
【0015】
本発明による陰極線管における信号抽出回路および方法では、第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、検出信号に含まれる不要な信号成分が減衰させられると共に、第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、リファレンス信号に含まれる不要な信号成分が減衰させられる。そして、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分が抽出される。信号抽出の前段階において不要な信号成分を減衰しているので、次段において、所望の信号成分を抽出するときに、その抽出精度が向上する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0017】
図1(A),(B)に示したように、本実施の形態に係る陰極線管(複電子銃陰極線管)は、内側に蛍光面11Aが形成されたパネル部10と、このパネル部10に一体化されたファンネル部20とを備えている。ファンネル部20の後端部の左右にはそれぞれ電子銃31L,31Rを内蔵した2つのネック部30L,30Rが形成されている。パネル部10、ファンネル部20およびネック部30L,30Rよりなる全体形状部分は「外囲器」とも呼ばれる。パネル部10の表面は、蛍光面11Aの発光により画像が表示される画像表示面(管面)11Bとなっている。
【0018】
この陰極線管の内部には、蛍光面11Aに対向するように配置された金属製の薄板よりなる色選別機構(color selection mechanism)12が配置されている。色選別機構12は、その外周がフレーム13によって支持されている。
【0019】
ファンネル部20には、アノード電圧(高電圧)HVを供給するための図示しないアノード端子(アノードボタン)が設けられている。ファンネル部20から各ネック部30L,30Rにかけての外周部分には、偏向ヨーク21L,21Rと、コンバーゼンスヨーク32L,32Rとが取り付けられている。偏向ヨーク21L,21Rは、電子銃31L,31Rから放出された各電子ビーム5L,5Rを偏向走査するためのものである。コンバーゼンスヨーク32L,32Rは、各電子銃31L,31Rから放出された各色用の電子ビームのコンバーゼンス(集中)を行うためのものである。
【0020】
ネック部30L,30Rからパネル部10の蛍光面11Aに至る内周面は、導電性の内部導電膜22によって覆われている。内部導電膜22は、アノード端子に電気的に接続され、アノード電圧HVに保たれている。ファンネル部20の外周面は、導電性の外部導電膜23によって覆われている。
【0021】
電子銃31L,31Rは、図示しないが、それぞれカソード(熱陰極)を有している。カラー陰極線管の場合、それぞれ、R,G,Bの各色に対応した3本のカソードを有している。電子銃31L,31Rから放出された電子ビーム5L,5Rは、色選別機構12を通過して蛍光面11Aの対応する色の蛍光体に照射される。
【0022】
ここで、図1(B)および図2を参照して、この複電子銃陰極線管の画面構成および電子ビームの走査方式の具体例を説明する。この複電子銃陰極線管では、左側に配置された電子銃31Lからの電子ビーム5Lによって、画面の約左半分が描画されると共に、右側に配置された電子銃31Rからの電子ビーム5Rによって、画面の約右半分が描画される。そして、左右の電子ビーム5L,5Rによって形成された各分割画面6L,6Rの端部を、部分的に重ねて繋ぎ合わせることにより、全体として単一の画面SAを形成して画像表示が行われる。画面SAの中央部分は、左右の分割画面6L,6Rがオーバ・ラップする領域OLとなる。オーバ・ラップ領域OLにおける蛍光面11Aは、各電子ビーム5L,5Rに共有される(共通して走査される)ことになる。
【0023】
なお、この複電子銃陰極線管において、過走査領域とは、電子ビーム5L,5Rの各々の走査領域において、有効画面を形成する電子ビーム5L,5Rの各々の走査領域の外側の領域のことをいう。図1においては、領域SW1が、電子ビーム5Rについての水平方向の有効画面領域であり、領域SW2が、電子ビーム5Lについての水平方向の有効画面領域である。
【0024】
図2(A),(B)に示した走査方式は、いわゆるライン走査(主走査)を画面上の上下方向(縦方向)に行い、いわゆるフィールド(またはフレーム)走査を水平方向(横方向)に行うようにしたものである。この走査方式は、ライン走査を縦方向に行っているので、以下では、“縦走査方式”と呼ぶ。なお、図2(A),(B)に示した走査例において、ライン走査を、画面の下から上(−Y方向)に向けて行うことも可能である。
【0025】
図2(C)に示した走査方式は、一般的な陰極線管と同様に、ライン走査を水平方向に行い、フィールド(またはフレーム)走査を上下方向に行うようにしたものである。この例では、図2(B)に示した走査方式に対して、電子ビーム5L,5Rによるそれぞれのライン走査およびフィールド走査をちょうど逆転させた形となっている。
【0026】
この複電子銃陰極線管の管内において、隣接する左右の分割画面6L,6Rの繋ぎ目側(画面全体のほぼ中央部分)における電子ビーム5L,5Rの過走査(オーバ・スキャン)領域OSには、図1(A)の紙面に垂直な方向に細長い、長方形の平板状のインデックス電極70が、蛍光面11Aに対向する位置に設けられている。インデックス電極70は、管内において、重複領域OLに対応する位置に設けられているともいえる。インデックス電極70は、電子ビーム5L,5Rのそれぞれについて、インデックス検出信号Sindを出力する。
【0027】
この複電子銃陰極線管の管内において、さらに、インデックス電極70と蛍光面11Aとの間には、ビームシールド27が配置されている。ビームシールド27は、過走査領域OSを過走査した電子ビーム5L,5Rが蛍光面11Aに到達して不用意に発光しないように、電子ビーム5L,5Rを遮蔽する機能を有している。このビームシールド27は、断面が例えばV字形状で、インデックス電極70と同様、図1(A)の紙面に垂直な方向に細長い形状となっている。このビームシールド27は、その両端部が、例えばフレーム13に取り付けられている。
【0028】
インデックス電極70は、電子ビーム5L,5Rの軌道を検出するためのものであり、電子ビーム5L,5Rの入射に応じて電気的な検出信号を出力する機能を有している。インデックス電極70は、金属などの導電性の物質からなるものであり、例えば、フレーム13を基台にして図示しない絶縁物を介して架設されている。
【0029】
このインデックス電極70において、過走査した電子ビーム5L,5Rが入射すると、インデックス電極70における電位が、通常より電圧降下する。本陰極線管においては、この電圧降下した信号が、インデックス検出信号Sindとしてインデックス信号出力用キャパシタCindを経由して管外に導かれ、主として画像状態の補正に利用されるようになっている。
【0030】
インデックス電極70には、インデックス抵抗R2の一端が電気的に接続されている。インデックス抵抗R2の他端は、アノード電圧HVが保たれている部分(例えばフレーム13)に電気的に接続されている。インデックス電極70には、インデックス抵抗R2を介してアノード電圧HVが供給される。また、インデックス電極70は、インデックス信号出力用キャパシタCindの管内側の電極にリード線26を介して電気的に接続されている。
【0031】
図2(C)の走査方式の場合には、インデックス電極70として、例えば図4に示した構造のものを用いることができる。すなわち、長手方向に例えば逆三角形状の切り欠き孔71を等間隔に複数設けた構造のものを用いることができる。このような切り欠き孔71が設けられていることにより、図4に示したように、走査位置の異なる電子ビームB1,B2によって走査されると、インデックス電極70からは、切り欠き孔71の形状に応じたパルス信号が出力される。このパルス信号を解析することにより、そのビーム軌道を直接的に検出することが可能となる。
【0032】
一方、例えば図2(A),(B)の縦走査方式の場合には、例えば図5に示したような構造のインデックス電極70Aを用いることができる。このインデックス電極70Aには、電極を部分的に切り欠いて形成された複数のスリットが設けられている。図の例では、2種類のスリット131,132が、交互に複数配置されている。第1のスリット(垂直スリット)131は、例えば水平方向(電子ビーム5の走査方向に直交する方向)に長い長方形状となっている。第2のスリット(斜めスリット)132も略長方形状であり、第1のスリット131に対して斜めに配置されている。このインデックス電極70Aにおいても、走査位置の異なる電子ビームB1,B2によって走査されると、インデックス電極70から、スリット131,132が設けられている位置およびその形状に応じたパルス信号が出力される。このパルス信号を解析することにより、そのビーム軌道を直接的に検出することが可能となる。
【0033】
図3は、インデックス電極70の周辺部の構造を示している。インデックス電極70には、インデックス抵抗R2の一端が電気的に接続されている。インデックス抵抗R2の他端は、アノード電圧HVが保たれている部分に電気的に接続されている。図3では、インデックス抵抗R2の他端が内部導電膜22に接続されているが、実際には、例えばフレーム13に接続されている。従って、インデックス電極70には、インデックス抵抗R2を介してアノード電圧HVが供給される。また、インデックス電極70は、インデックス信号出力用キャパシタCindの内部電極42にリード線26を介して電気的に接続されている。
【0034】
インデックス信号出力用キャパシタCindは、インデックス電極70によって発生した電気的なインデックス検出信号Sindを管外に出力するためのものである。このインデックス信号出力用キャパシタCindは、管外側に設けられた外部電極41と、管内側に設けられた内部電極42と、誘電体部43とを有している。誘電体部43は、ファンネル部20などの誘電性を有する構成部分20Aの一部を利用したものである。外部電極41と内部電極42は、誘電体部43を介して互いに対向配置されている。外部電極41は、インデックス検出信号Sindを出力するための出力端子に電気的に接続されている。
【0035】
この複電子銃陰極線管には、また、リファレンス信号出力用キャパシタCrefが設けられている。このリファレンス信号出力用キャパシタCrefは、リファレンス信号Srefを管外に出力するためのものである。リファレンス信号Srefは、インデックス検出信号Sindから、必要とされるインデックス情報信号Sinfを抽出するために用いられる信号である。
【0036】
リファレンス信号出力用キャパシタCrefは、実質的にインデックス信号出力用キャパシタCindと同一の構造となっている。すなわち、リファレンス信号出力用キャパシタCrefは、インデックス信号出力用キャパシタCindと同様に、管外側に設けられた外部電極44と、管内側に設けられた内部電極45と、誘電体部46とを有している。外部電極44と内部電極45は、誘電体部46を介して互いに対向配置されている。外部電極44は、リファレンス信号Srefを出力するための出力端子に電気的に接続されている。内部電極45は、リード線28を介して、アノード電圧HVが保たれている部分(例えばフレーム13)に電気的に接続されている。これにより、内部電極45には、リード線28を介してアノード電圧HVが供給され、リファレンス信号出力用キャパシタCrefからは、アノード電圧HVに応じたリファレンス信号Srefが出力される。
【0037】
図6は、この陰極線管における画像の表示状態を制御するための信号処理回路を示している。この信号処理回路は、演算部50と、インデックス情報抽出回路51と、映像信号処理部53L,53Rと、偏向制御部54L,54Rとを備えている。演算部50は、マイクロ・コンピュータなどにより構成され、補正量演算部52を有している。
【0038】
インデックス情報抽出回路51は、インデックス検出信号Sindとリファレンス信号Srefとに基づいて、電子ビーム軌道に関するインデックス情報信号Sinfを抽出し、それを補正量演算部52に出力するようになっている。補正量演算部52は、インデックス情報信号Sinfを解析し、電子ビーム軌道を求め、それに基づいて、画歪み補正など、映像表示を適正化するための補正データを算出するようになっている。補正データは、映像信号処理部53L,53Rおよび偏向制御部54L,54Rに出力される。
【0039】
映像信号処理部53L,53Rは、補正量演算部52からの補正データに基づいて、映像信号を補正し、その補正後の信号に基づいて電子銃31L,31Rを駆動するようになっている。偏向制御部54L,54Rは、同期信号および補正量演算部52からの補正データに基づいて、偏向ヨーク21L,21Rおよびコンバーゼンスヨーク32L,32Rを制御し、電子ビーム5L,5Rの走査制御を行うようになっている。
【0040】
なお、インデックス電極70を用いた電子ビーム軌道の検出手法、ならびにインデックス情報信号Sinfを用いた映像表示の適正化の手法などについては、本願出願人による特許第3068115号公報および特許第3057230号公報等に、より具体的に記載されている。
【0041】
図7は、インデックス情報抽出回路51の概略構成であり、図9は、その具体的な回路構成例を示している。インデックス情報抽出回路51は、図7に示したように、微分回路60と、信号抽出部61とを有している。信号抽出部61は、例えば、差動アンプ部62と、切替回路63と、コンパレータ部64と、反転出力ドライバ部65とを含んで構成されている。
【0042】
微分回路60は、ハイパスフィルタとしての機能を有しており、インデックス検出信号Sindとリファレンス信号Srefとに含まれる不要信号成分(Hパルス成分やノイズ成分など)を減衰させるようになっている。
【0043】
この微分回路60は、図9に示したように、例えば、インデックス信号出力用キャパシタCindおよびリファレンス信号出力用キャパシタCrefと、抵抗R11,R12とを含んで構成されている。微分回路60において、インデックス信号出力用キャパシタCindと抵抗R11とにより、インデックス検出信号Sind用の第1のハイパスフィルタが構成され、リファレンス信号出力用キャパシタCrefと抵抗R12とにより、リファレンス信号Sref用の第2のハイパスフィルタが構成されている。抵抗R11,R12の抵抗値は、小さめ(例えば10kΩ〜数10kΩ)であることが望ましい。
【0044】
この微分回路60において、インデックス検出信号Sindおよびリファレンス信号Srefの取り出しには、例えば図8に示したような2芯シールド線80を用いることができる。この場合、2芯シールド線80の第1の入力線81とインデックス信号出力用キャパシタCindの外部電極41とを接続する。また、第2の入力線82とリファレンス信号出力用キャパシタCrefの外部電極44とを接続する。インデックス検出信号Sindおよびリファレンス信号Srefは、それぞれ、出力線83,85から出力される。
【0045】
なお、2芯シールド線80は、できるだけ短い(100mmから150mm程度)ほうが良い。インデックス検出信号Sindに含まれるインデックス情報信号Sinfは、例えば数百mVと微弱であるため、シールド線で減衰すると、後段の回路での信号抽出が困難になる。また、シールド部84は、回路側のGND(接地端子)にのみ接続したほうが信号が安定する。
【0046】
信号抽出部61は、微分回路60の第1のハイパスフィルタから出力されたインデックス検出信号Sindと、第2のハイパスフィルタから出力されたリファレンス信号Srefとに基づいて、インデックス検出信号Sindに含まれる所望の信号成分であるインデックス情報信号Sinfを抽出する機能を有している。
【0047】
差動アンプ部62は、微分回路60から出力されたインデックス検出信号Sindとリファレンス信号Srefとの差分を取って不要信号成分を除去するためのものである。この差動アンプ部62は、図9に示したように、例えばインスツルメンテーションアンプの構成となっており、抵抗R13〜R21およびアンプAMP1〜AMP3を含んで構成される。
【0048】
切替回路63は、差動アンプ部62からの出力信号に残っている不要信号成分を、さらに除去するためのものであり、Hパルスのタイミングで出力信号に残っているHパルス成分Shを0Vレベルの信号に挿げ替えるようになっている。この切替回路63は、図9に示したように、例えば、キャパシタC1、抵抗R22,R23、およびスイッチSW1を含んでいる。スイッチSW1は、例えばアナログスイッチIC等で構成することができる。スイッチSW1は、Hパルスのタイミング信号に基づいて、信号の挿げ替えを行う。タイミング信号としては、例えばHパルスに同期した切替回路用制御信号、例えば水平AFC(Automatic Frequency Control)用のHパルスを分割した信号などを使用することができる。
【0049】
コンパレータ部64は、微分回路60によって微分波形となった信号を波形整形し、インデックス情報信号Sinfのパルス幅を復元する機能を有している。コンパレータ部64は、例えば、基準レベルにヒステリシスを持たせたシュミット回路で構成することができる。例えば、図9に示したように、コンパレータ91と抵抗R24,25とを含むシュミット回路で構成することができる。
【0050】
反転出力ドライバ部65は、図9に示したように、例えば、反転ドライバ92と抵抗R26とを含んで構成されている。インデックス情報信号Sinfは、最終的にこの反転出力ドライバ部65を介して出力される。
【0051】
なお、本実施の形態において、インデックス電極70が、本発明における「検出手段」の一具体例に対応し、インデックス信号出力用キャパシタCindが、本発明における「第1の信号出力用キャパシタ」の一具体例に対応し、また、リファレンス信号出力用キャパシタCrefが、本発明における「第2の信号出力用キャパシタ」の一具体例に対応する。また、インデックス信号出力用キャパシタCindおよび抵抗R11が、本発明における「第1の微分回路」の一具体例に対応し、リファレンス信号出力用キャパシタCrefおよび抵抗R12が、本発明における「第2の微分回路」の一具体例に対応する。また、信号抽出部61が、本発明における「信号抽出手段」の一具体例に対応する。
【0052】
次に、以上のような構成の陰極線管およびその信号処理回路の動作について説明する。
【0053】
この陰極線管では、各電子銃31L,31Rから放出された電子ビーム5L,5Rが、偏向ヨーク21L,21Rの電磁的な作用により偏向走査され、各分割画面6L,6Rを形成する。このとき、左側の電子ビーム5Lによって、画面の約左半分が描画され、分割画面6Lが形成されると共に、右側の電子ビーム5Rによって、画面の約右半分が描画され、分割画面6Rが形成される。このように形成された左右の分割画面6L,6Rの端部がオーバ・ラップ領域OLにおいて、部分的に重なるように繋ぎ合わされることにより、全体として単一の画面SAが形成される。
【0054】
電子ビーム5L,5Rが、それぞれ過走査領域OSを走査し、インデックス電極70に入射すると、それに応じてインデックス検出信号Sindが、インデックス信号出力用キャパシタCindを経由して管外に出力される。
【0055】
管外に出力されたインデックス検出信号Sindは、図6に示したように、リファレンス信号Srefと共に、インデックス情報抽出回路51に入力される。インデックス情報抽出回路51は、入力された信号に基づいてインデックス情報信号Sinfを抽出し、それを補正量演算部52に出力する。補正量演算部52は、インデックス情報信号Sinfを解析し、電子ビーム軌道を求め、それに基づいて、画歪み補正など、映像表示を適正化するための補正データを算出する。補正量演算部52は、その補正データを映像信号処理部53L,53Rおよび偏向制御部54L,54Rに出力する。
【0056】
映像信号処理部53L,53Rは、補正量演算部52からの補正データに基づいて、映像信号を補正し、その補正後の信号に基づいて電子銃31L,31Rを駆動する。映像信号を補正することにより、画歪みなどの適正化のほか、左右の分割画面の繋ぎ目部分における輝度分布の適正化を行うことができる。偏向制御部54L,54Rは、同期信号および補正量演算部52からの補正データに基づいて、偏向ヨーク21L,21Rおよびコンバーゼンスヨーク32L,32Rを制御し、電子ビーム5L,5Rの走査制御を行う。これにより、電子ビーム5L,5Rの走査位置の補正が行われ、画歪みなどが補正される。これにより、左右の分割画面6L,6Rが、位置的にも輝度的にも適正に繋ぎ合わされて表示される。
【0057】
次に、インデックス情報抽出回路51による信号抽出動作を説明する。
【0058】
図15は、インデックス信号出力用キャパシタCindおよびリファレンス信号出力用キャパシタCrefから出力されたインデックス検出信号Sindおよびリファレンス信号Srefの波形を示している。また、図16は、インデックス検出信号Sindとリファレンス信号Srefとの差分を取ることにより得られる理想的なインデックス情報信号Sinfの波形を示している。
【0059】
図15から分かるように、インデックス検出信号Sindには、インデックス情報信号Sinf以外に、Hパルス成分Shやノイズ成分などの不要信号が含まれていて、このままでは電子ビーム軌道を解析するための信号としては使用できない。特に、インデックス情報信号Sinfの振幅が0.1V程度(図16)であるのに対し、Hパルス成分Shの振幅は約10V(図15)もあり、影響が大きい。このように、抽出しようとするインデックス情報信号Sinfに対して、不要なHパルス成分Shが100倍程度大きい場合、差動アンプを用いて単純に、インデックス検出信号Sindとリファレンス信号Srefとの差分を取ったとしても、図16に示したような理想的なインデックス情報信号Sinfを抽出することは難しい。
【0060】
Hパルス成分Shは、リファレンス信号Srefを用いてインデックス検出信号Sindから同相除去したい不要な波形であるが、陰極線管内でリファレンス信号Srefとインデックス検出信号Sindとの位相および振幅を合わせることにも限界があり、完全には同相除去されない。このため、実際には、図17に示したように、Hパルス成分Shが残ってしまい、その後の波形整形が難しくなる。そのため、差動アンプの前段もしくは差動アンプ内に位相および振幅の調整回路を設けるなど、高精度な調整回路と正確な調整が必要になる場合がある。また、不要なHパルス成分Shのために広い入力ダイナミックレンジの回路が必要となり、コストもかかる。なお、図17において、細い実線で示した波形部分全体がHパルス成分Shにより影響を受けている部分であり、太い実線で示した線状の波形部分がインデックス情報信号Sinfに相当する。
【0061】
そこで、図16に示したような理想的な波形のインデックス情報信号Sinfを取り出すことも、ひとつの理想的な方法ではあるが、最終的にはインデックス情報を損なわずに、図14に示したような、デジタル信号を得ることを考える。すなわち、最終的に、電子ビーム軌道を解析するためのデジタル処理が可能な程度の、デジタル信号を得ることができれば良い。このため、本実施の形態では、インデックス情報信号Sinfを一旦、図12に示したような微分波形として取り出し、最後に、図14に示したような波形に復元するという手法を採用する。
【0062】
図7および図9には、この手法を実現するための回路構成例が示されている。この手法の特徴は、陰極線管からの検出信号を微分回路60で受けることにより、Hパルス成分Shの影響を小さくできることにある。微分回路60によって、Hパルス成分Shも微分されるため、入力される振幅も下がり、回路のダイナミックレンジも小さくてすむ。また、振幅が下がることで、図17に示したほどにはHパルス成分Shが残らないので、調整回路の必要なしに、微分された波形ではあるが、インデックス情報信号Sinfを取り出すことができる。その後、波形整形を行うときに、インデックス情報信号Sinfのパルス幅を復元し、図14に示したようなデジタル処理が可能なインデックス情報信号Sinfを得ることができる。
【0063】
このインデックス情報抽出回路51では、例えば図8に示したような2芯シールド線80を用いて、インデックス信号出力用キャパシタCindの外部電極41とリファレンス信号出力用キャパシタCrefの外部電極44とから、それぞれ、図15に示したような波形のインデックス検出信号Sindおよびリファレンス信号Srefが取り出される。
【0064】
微分回路60では、インデックス検出信号Sindとリファレンス信号Srefとに含まれるHパルス成分Shなどの不要信号成分を減衰させる。より具体的には、陰極線管に形成された信号出力容量(インデックス信号出力用キャパシタCindおよびリファレンス信号出力用キャパシタCref)を利用して、各信号を、10kΩから数10kΩ程度の低抵抗R11,R12(図9)で受けることで、インデックス情報信号Sinfの抽出に邪魔なHパルス成分Shを減衰させる。ここでHパルス成分Shを減衰させることで、次段の差動アンプ部62でのHパルス成分Shに近い位置に存在するインデックス情報信号Sinfの取り出しを可能にし、また、差動アンプ部62のダイナミックレンジを小さくできる。微分回路60を経ることで、インデックス検出信号Sindに含まれるインデックス情報信号Sinfも若干影響を受け、微分された波形となる。
【0065】
図10は、微分回路60から出力される各信号の波形を示している。図に示したように、この時点で、Hパルス成分Shの振幅が、元の信号(図15)の1/3程度になる。このように微分された信号が次段の差動アンプ部62に入力される。
【0066】
差動アンプ部62では、微分されたインデックス検出信号Sindとリファレンス信号Srefとの差分を取ってインデックス情報信号Sinfを検出する。このとき差動アンプ部62として、図9に示したようなインスツルメンテーションアンプを用いると、容易にインデックス情報信号Sinfを検出できる。
【0067】
図11は、差動アンプ部62からの出力信号の波形を示している。この時点ではまだ、Hパルス成分Shが完全には除去できていない。このHパルス成分Shが残っている部分は、インデックス情報信号Sinfが存在しないところなので、次段の切替回路63において、その部分だけ、アナログスイッチIC等で、Hパルスのタイミングで0Vレベルの信号に挿げ替えを行う。
【0068】
図12は、切替回路63によって信号の挿げ替えが行われた後の信号における、インデックス情報信号Sinf部分のみを拡大して示している。このように、インデックス情報信号Sinfのみを精度良く抽出できる。ただし、この時点ではインデックス情報信号Sinfは、微分波形になっている。そこで、次段のコンパレータ部64において、微分波形となった信号を波形整形し、インデックス情報信号Sinfのパルス幅を復元する。このとき、パルス幅を精度良く復元するために、コンパレータ91(図9)に最適なヒステリシス持たせて、波形整形を行う。
【0069】
図13は、コンパレータ部64(コンパレータ91)に入力される微分波形のインデックス情報信号Sinfと、そのパルス幅を復元するために用いる基準電圧の信号波形とを示している。コンパレータ部64として、基準電圧のレベルにヒステリシスを持たせたシュミット回路を用いることで、元のパルス波形にほぼ等価なパルス幅を持ったインデックス情報信号Sinfを復元することができる。
【0070】
このように復元されたインデックス情報信号Sinfを、反転出力ドライバ部65を介して、演算部50(図6)に出力する。復元されたインデックス情報信号Sinfは、場合によって反転もしくは、そのままの極性で出力する。最終的には、図14に示したようなインデックス情報信号Sinfのみを含んだデジタル信号が出力される。
【0071】
以上説明したように、本実施の形態によれば、インデックス検出信号Sindとリファレンス信号Srefとを微分回路60によって微分波形にした後で、差分を取ってインデックス情報信号Sinfを抽出し、その後、波形整形してインデックス情報信号Sinfの微分波形をデジタル処理可能なパルス状の信号に復元するようにしたので、簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号(インデックス検出信号Sind)から、所望の信号成分(インデックス情報信号Sinf)を精度良く抽出することができる。特に、微分回路60によって信号抽出の前段階において、不要信号成分(Hパルス成分Sh等)を減衰させているので、不要信号成分の影響を軽減でき、インデックス検出信号Sindとリファレンス信号Srefとの振幅・位相を調整するための調整回路が不要となる。また、次段において、所望の信号成分を抽出するときに、その抽出精度が向上する。また、振幅の大きいHパルス成分Shが小さくなることで、信号抽出部61の回路のダイナミックレンジを小さくできる。
【0072】
なお、本発明は、上記実施の形態に限定されず種々の変形実施が可能である。例えば、本発明は、3つ以上の電子銃を備え、1つの画面を3つ以上の走査画面を合成して形成するようにしたものにも適用可能である。また、本発明は、複電子銃方式に限らず、単電子銃方式の陰極線管にも適用可能である。
【0073】
【発明の効果】
以上説明したように、請求項1ないし4のいずれか1項に記載の陰極線管における信号抽出回路、または請求項5記載の陰極線管における信号抽出方法によれば、第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、検出信号に含まれる不要な信号成分を減衰させると共に、第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、リファレンス信号に含まれる不要な信号成分を減衰させ、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分を抽出するようにしたので、簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号から、所望の信号成分を精度良く抽出することができる。
【0074】
特に、請求項3記載の陰極線管における信号抽出回路によれば、第1の微分回路および第2の微分回路を、それぞれ、抵抗値の小さい抵抗素子を含んで構成するようにしたので、不要な信号成分の振幅を小さくでき、信号抽出手段の入力ダイナミックレンジを小さくできる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る信号抽出回路および方法が適用される複電子銃方式の陰極線管の構成例を示す図であり、(B)は、画面構成を示す正面図、(A)は、(B)におけるIA−IA線断面図である。
【図2】複電子銃方式の陰極線管における電子ビームの走査方式および画面構成の例を示す説明図である。
【図3】インデックス検出信号の取り出し部分の構成を示す断面図である。
【図4】インデックス電極の構成例を示す図である。
【図5】インデックス電極の他の構成例を示す図である。
【図6】図1に示した陰極線管における信号処理回路の構成例を示すブロック図である。
【図7】本発明の一実施の形態に係る信号抽出回路としてのインデックス情報抽出回路の概略構成を示すブロック図である。
【図8】各信号出力用キャパシタからの信号を取り出すための信号線の構造例を示す図である。
【図9】インデックス情報抽出回路の具体的な構成例を示す回路図である。
【図10】図9に示したインデックス情報抽出回路における差動アンプ部に入力される、インデックス検出信号とリファレンス信号とを示す波形図である。
【図11】図9に示したインデックス情報抽出回路における差動アンプ部からの出力信号を示す波形図である。
【図12】図9に示したインデックス情報抽出回路における切替回路からの出力信号を示す波形図である。
【図13】図9に示したインデックス情報抽出回路におけるコンパレータ部に入力される信号を示す波形図である。
【図14】図9に示したインデックス情報抽出回路によって最終的に出力されるインデックス情報信号の波形図である。
【図15】図1に示した陰極線管から出力された直後のインデックス検出信号およびリファレンス信号の波形図である。
【図16】理想的に抽出されたインデックス情報信号の波形図である。
【図17】インデックス検出信号に含まれるHパルス成分を示す波形図である。
【符号の説明】
Cind…インデックス信号出力用キャパシタ、Cref…リファレンス信号出力用キャパシタ、Sh…Hパルス成分、Sind…インデックス検出信号、Sinf…インデックス情報信号、Sref…リファレンス信号、5L,5R…電子ビーム、6L,6R…分割画面、50…演算部、51…インデックス情報抽出回路、52…補正量演算部、53L,53R…映像信号処理部、54L,54R…偏向制御部、60…微分回路、61…信号抽出部、62…差動アンプ部、63…切替回路、64…コンパレータ部、65…反転出力ドライバ部、70,70A…インデックス電極、80…2芯シールド線。
【発明の属する技術分野】
本発明は、電子ビームの軌道を検出するための検出手段を有する陰極線管に用いられる信号抽出回路および方法に関する。
【0002】
【従来の技術】
従来より、テレビジョン受像機や各種のモニタ装置などには、陰極線管(CRT;Cathode Ray Tube)が広く使用されている。陰極線管は、電子銃を備えており、その電子銃から入力信号に対応して電子ビームが放出される。この電子ビームが、パネル側に形成されている蛍光面に対して照射され、走査されることにより、画面が形成される。
【0003】
陰極線管は、単一の電子銃を備えた構成が一般的であるが、近年では、複数の電子銃を備えた構成のものが開発されている。以下、複数の電子銃を用いる方式を“複電子銃方式”、単一の電子銃を用いる方式を“単電子銃方式”と呼ぶ。複電子銃方式の陰極線管(複電子銃陰極線管)は、複数の電子銃により画面を構成するため、1つの電子銃のみを用いた場合に比べて、高輝度化(電子ビーム電流密度の向上)、全体の奥行きの短縮化、および電子ビームのスポット特性改善等の利点がある。
【0004】
複電子銃陰極線管では、画面領域を複数に分割すると共に、その分割された複数の画面領域(以下、「分割画面」ともいう。)を互いに繋ぎ合わせることにより、全体として1つの画面を形成する。電子銃は、通常、画面の分割数に対応した数だけ設けられる。各分割画面は、それぞれ、対応する電子銃から放出された電子ビームによって走査される。複電子銃方式の陰極線管における画面構成としては、単に各分割画面の端部を線状に繋ぎ合わせることにより1つの画面を得るようにしたものと、隣接する分割画面同士を部分的に重複(オーバ・ラップ)させて1つの画面を得るようにしたものとがある。
【0005】
ところで、従来より陰極線管は、その使用条件によって画像の表示状態がさまざまに変化することが知られている。例えば、電子ビームは、地磁気によりローレンツ力を受けているが、地磁気の方向は陰極線管を利用する環境により異なるため、その電子ビームの受けるローレンツ力が変化する。このため、環境によりビーム軌道が変化し、画像の歪み(画歪み)や、色ずれ等の変化が生じる。特に、複電子銃陰極線管においては、繋ぎ合わせ部分が目立たないように各分割画面が適正に繋ぎ合わされている必要があるが、画歪みや色ずれ等は、この繋ぎ合わせの精度にも悪影響を及ぼすので、好ましくない。
【0006】
そこで、本願出願人は、先に、特許第3068115号公報および特許第3057230号公報等において、電子ビームの走査位置に応じて電気的な検出信号を出力し、その検出信号を画像の表示状態の補正に利用する技術を提案している。この技術では、管内における電子ビームの過走査領域に、インデックス電極と呼ばれる電極を設け、電子ビームの入射に応じてインデックス電極から電気的な信号(インデックス検出信号)を出力する。以下、このインデックス電極を用いた信号検出方法を「電気インデックス法」という。
【0007】
【発明が解決しようとする課題】
しかしながら、電気インデックス法により取り出される電気(電圧)信号(インデックス検出信号)は、本来必要とされる電子ビームの軌跡に関連する情報(インデックス情報)のみならず、アノード電圧に含まれているさまざまな不要信号成分を含んだ形で取り出される。不要信号成分としては、例えば、高圧発生回路や水平偏向回路によるHパルス(水平周期パルス)がある。
【0008】
インデックス情報を精度良く取り出すための方法としては、フィルタなどの回路を利用して余分な波形成分を除去する方法が考えられる。しかしながら、フィルタ回路を利用して精度良く信号を抽出するためには、非常に複雑な回路が必要とされるという問題がある。また、回路によりインデックス情報の波形形状が変化してしまうという問題もある。
【0009】
そこで、本願出願人は、先に、特願2000−278758号(特開2002−093349号)において、インデックス検出信号と同様の手法によってアノード電圧から電気的な信号(リファレンス信号)を取り出し、そのリファレンス信号とインデックス検出信号との差分を取ることにより、インデックス情報を抽出する方法を提案している。
【0010】
この方法によってインデックス情報を精度良く抽出するためには、インデックス検出信号とリファレンス信号とのそれぞれに含まれる不要信号の波形(振幅および位相)が、一致している必要がある。これを改善する方法としては、それぞれの不要信号の振幅と位相とを調整するための専用の調整回路を設けることが考えられる。しかしながら、必要なインデックス情報信号の値が100mV程度であるのに対し、高圧発生回路や水平偏向回路によるHパルスの値は、例えば10Vでありその影響が大きい。このため、実際には、調整回路を用いた方法では、高精度な回路を用いた正確な調整が必要になるなど、精度良くインデックス情報を抽出することが困難である。
【0011】
本発明はかかる問題点に鑑みてなされたもので、その目的は、簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号から、所望の信号成分を精度良く抽出することができるようにした陰極線管における信号抽出回路および方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明による陰極線管における信号抽出回路および方法は、管内の過走査領域に設けられ、電子ビームの入射に応じて電気的な検出信号を出力する検出手段と、外囲器の一部を利用して形成され、検出信号を管外に出力するための第1の信号出力用キャパシタと、外囲器の一部を利用して形成され、アノード電圧に応じたリファレンス信号を管外に出力するための第2の信号出力用キャパシタとを備えた陰極線管に適用されるものである。
【0013】
本発明による陰極線管における信号抽出回路は、第1の信号出力用キャパシタを含んで構成され、検出信号に含まれる不要な信号成分を減衰させる第1の微分回路と、第2の信号出力用キャパシタを含んで構成され、リファレンス信号に含まれる不要な信号成分を減衰させる第2の微分回路と、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分を抽出する信号抽出手段とを備えたものである。
【0014】
本発明による陰極線管における信号抽出方法は、第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、検出信号に含まれる不要な信号成分を減衰させると共に、第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、リファレンス信号に含まれる不要な信号成分を減衰させ、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分を抽出するようにしたものである。
【0015】
本発明による陰極線管における信号抽出回路および方法では、第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、検出信号に含まれる不要な信号成分が減衰させられると共に、第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、リファレンス信号に含まれる不要な信号成分が減衰させられる。そして、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分が抽出される。信号抽出の前段階において不要な信号成分を減衰しているので、次段において、所望の信号成分を抽出するときに、その抽出精度が向上する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0017】
図1(A),(B)に示したように、本実施の形態に係る陰極線管(複電子銃陰極線管)は、内側に蛍光面11Aが形成されたパネル部10と、このパネル部10に一体化されたファンネル部20とを備えている。ファンネル部20の後端部の左右にはそれぞれ電子銃31L,31Rを内蔵した2つのネック部30L,30Rが形成されている。パネル部10、ファンネル部20およびネック部30L,30Rよりなる全体形状部分は「外囲器」とも呼ばれる。パネル部10の表面は、蛍光面11Aの発光により画像が表示される画像表示面(管面)11Bとなっている。
【0018】
この陰極線管の内部には、蛍光面11Aに対向するように配置された金属製の薄板よりなる色選別機構(color selection mechanism)12が配置されている。色選別機構12は、その外周がフレーム13によって支持されている。
【0019】
ファンネル部20には、アノード電圧(高電圧)HVを供給するための図示しないアノード端子(アノードボタン)が設けられている。ファンネル部20から各ネック部30L,30Rにかけての外周部分には、偏向ヨーク21L,21Rと、コンバーゼンスヨーク32L,32Rとが取り付けられている。偏向ヨーク21L,21Rは、電子銃31L,31Rから放出された各電子ビーム5L,5Rを偏向走査するためのものである。コンバーゼンスヨーク32L,32Rは、各電子銃31L,31Rから放出された各色用の電子ビームのコンバーゼンス(集中)を行うためのものである。
【0020】
ネック部30L,30Rからパネル部10の蛍光面11Aに至る内周面は、導電性の内部導電膜22によって覆われている。内部導電膜22は、アノード端子に電気的に接続され、アノード電圧HVに保たれている。ファンネル部20の外周面は、導電性の外部導電膜23によって覆われている。
【0021】
電子銃31L,31Rは、図示しないが、それぞれカソード(熱陰極)を有している。カラー陰極線管の場合、それぞれ、R,G,Bの各色に対応した3本のカソードを有している。電子銃31L,31Rから放出された電子ビーム5L,5Rは、色選別機構12を通過して蛍光面11Aの対応する色の蛍光体に照射される。
【0022】
ここで、図1(B)および図2を参照して、この複電子銃陰極線管の画面構成および電子ビームの走査方式の具体例を説明する。この複電子銃陰極線管では、左側に配置された電子銃31Lからの電子ビーム5Lによって、画面の約左半分が描画されると共に、右側に配置された電子銃31Rからの電子ビーム5Rによって、画面の約右半分が描画される。そして、左右の電子ビーム5L,5Rによって形成された各分割画面6L,6Rの端部を、部分的に重ねて繋ぎ合わせることにより、全体として単一の画面SAを形成して画像表示が行われる。画面SAの中央部分は、左右の分割画面6L,6Rがオーバ・ラップする領域OLとなる。オーバ・ラップ領域OLにおける蛍光面11Aは、各電子ビーム5L,5Rに共有される(共通して走査される)ことになる。
【0023】
なお、この複電子銃陰極線管において、過走査領域とは、電子ビーム5L,5Rの各々の走査領域において、有効画面を形成する電子ビーム5L,5Rの各々の走査領域の外側の領域のことをいう。図1においては、領域SW1が、電子ビーム5Rについての水平方向の有効画面領域であり、領域SW2が、電子ビーム5Lについての水平方向の有効画面領域である。
【0024】
図2(A),(B)に示した走査方式は、いわゆるライン走査(主走査)を画面上の上下方向(縦方向)に行い、いわゆるフィールド(またはフレーム)走査を水平方向(横方向)に行うようにしたものである。この走査方式は、ライン走査を縦方向に行っているので、以下では、“縦走査方式”と呼ぶ。なお、図2(A),(B)に示した走査例において、ライン走査を、画面の下から上(−Y方向)に向けて行うことも可能である。
【0025】
図2(C)に示した走査方式は、一般的な陰極線管と同様に、ライン走査を水平方向に行い、フィールド(またはフレーム)走査を上下方向に行うようにしたものである。この例では、図2(B)に示した走査方式に対して、電子ビーム5L,5Rによるそれぞれのライン走査およびフィールド走査をちょうど逆転させた形となっている。
【0026】
この複電子銃陰極線管の管内において、隣接する左右の分割画面6L,6Rの繋ぎ目側(画面全体のほぼ中央部分)における電子ビーム5L,5Rの過走査(オーバ・スキャン)領域OSには、図1(A)の紙面に垂直な方向に細長い、長方形の平板状のインデックス電極70が、蛍光面11Aに対向する位置に設けられている。インデックス電極70は、管内において、重複領域OLに対応する位置に設けられているともいえる。インデックス電極70は、電子ビーム5L,5Rのそれぞれについて、インデックス検出信号Sindを出力する。
【0027】
この複電子銃陰極線管の管内において、さらに、インデックス電極70と蛍光面11Aとの間には、ビームシールド27が配置されている。ビームシールド27は、過走査領域OSを過走査した電子ビーム5L,5Rが蛍光面11Aに到達して不用意に発光しないように、電子ビーム5L,5Rを遮蔽する機能を有している。このビームシールド27は、断面が例えばV字形状で、インデックス電極70と同様、図1(A)の紙面に垂直な方向に細長い形状となっている。このビームシールド27は、その両端部が、例えばフレーム13に取り付けられている。
【0028】
インデックス電極70は、電子ビーム5L,5Rの軌道を検出するためのものであり、電子ビーム5L,5Rの入射に応じて電気的な検出信号を出力する機能を有している。インデックス電極70は、金属などの導電性の物質からなるものであり、例えば、フレーム13を基台にして図示しない絶縁物を介して架設されている。
【0029】
このインデックス電極70において、過走査した電子ビーム5L,5Rが入射すると、インデックス電極70における電位が、通常より電圧降下する。本陰極線管においては、この電圧降下した信号が、インデックス検出信号Sindとしてインデックス信号出力用キャパシタCindを経由して管外に導かれ、主として画像状態の補正に利用されるようになっている。
【0030】
インデックス電極70には、インデックス抵抗R2の一端が電気的に接続されている。インデックス抵抗R2の他端は、アノード電圧HVが保たれている部分(例えばフレーム13)に電気的に接続されている。インデックス電極70には、インデックス抵抗R2を介してアノード電圧HVが供給される。また、インデックス電極70は、インデックス信号出力用キャパシタCindの管内側の電極にリード線26を介して電気的に接続されている。
【0031】
図2(C)の走査方式の場合には、インデックス電極70として、例えば図4に示した構造のものを用いることができる。すなわち、長手方向に例えば逆三角形状の切り欠き孔71を等間隔に複数設けた構造のものを用いることができる。このような切り欠き孔71が設けられていることにより、図4に示したように、走査位置の異なる電子ビームB1,B2によって走査されると、インデックス電極70からは、切り欠き孔71の形状に応じたパルス信号が出力される。このパルス信号を解析することにより、そのビーム軌道を直接的に検出することが可能となる。
【0032】
一方、例えば図2(A),(B)の縦走査方式の場合には、例えば図5に示したような構造のインデックス電極70Aを用いることができる。このインデックス電極70Aには、電極を部分的に切り欠いて形成された複数のスリットが設けられている。図の例では、2種類のスリット131,132が、交互に複数配置されている。第1のスリット(垂直スリット)131は、例えば水平方向(電子ビーム5の走査方向に直交する方向)に長い長方形状となっている。第2のスリット(斜めスリット)132も略長方形状であり、第1のスリット131に対して斜めに配置されている。このインデックス電極70Aにおいても、走査位置の異なる電子ビームB1,B2によって走査されると、インデックス電極70から、スリット131,132が設けられている位置およびその形状に応じたパルス信号が出力される。このパルス信号を解析することにより、そのビーム軌道を直接的に検出することが可能となる。
【0033】
図3は、インデックス電極70の周辺部の構造を示している。インデックス電極70には、インデックス抵抗R2の一端が電気的に接続されている。インデックス抵抗R2の他端は、アノード電圧HVが保たれている部分に電気的に接続されている。図3では、インデックス抵抗R2の他端が内部導電膜22に接続されているが、実際には、例えばフレーム13に接続されている。従って、インデックス電極70には、インデックス抵抗R2を介してアノード電圧HVが供給される。また、インデックス電極70は、インデックス信号出力用キャパシタCindの内部電極42にリード線26を介して電気的に接続されている。
【0034】
インデックス信号出力用キャパシタCindは、インデックス電極70によって発生した電気的なインデックス検出信号Sindを管外に出力するためのものである。このインデックス信号出力用キャパシタCindは、管外側に設けられた外部電極41と、管内側に設けられた内部電極42と、誘電体部43とを有している。誘電体部43は、ファンネル部20などの誘電性を有する構成部分20Aの一部を利用したものである。外部電極41と内部電極42は、誘電体部43を介して互いに対向配置されている。外部電極41は、インデックス検出信号Sindを出力するための出力端子に電気的に接続されている。
【0035】
この複電子銃陰極線管には、また、リファレンス信号出力用キャパシタCrefが設けられている。このリファレンス信号出力用キャパシタCrefは、リファレンス信号Srefを管外に出力するためのものである。リファレンス信号Srefは、インデックス検出信号Sindから、必要とされるインデックス情報信号Sinfを抽出するために用いられる信号である。
【0036】
リファレンス信号出力用キャパシタCrefは、実質的にインデックス信号出力用キャパシタCindと同一の構造となっている。すなわち、リファレンス信号出力用キャパシタCrefは、インデックス信号出力用キャパシタCindと同様に、管外側に設けられた外部電極44と、管内側に設けられた内部電極45と、誘電体部46とを有している。外部電極44と内部電極45は、誘電体部46を介して互いに対向配置されている。外部電極44は、リファレンス信号Srefを出力するための出力端子に電気的に接続されている。内部電極45は、リード線28を介して、アノード電圧HVが保たれている部分(例えばフレーム13)に電気的に接続されている。これにより、内部電極45には、リード線28を介してアノード電圧HVが供給され、リファレンス信号出力用キャパシタCrefからは、アノード電圧HVに応じたリファレンス信号Srefが出力される。
【0037】
図6は、この陰極線管における画像の表示状態を制御するための信号処理回路を示している。この信号処理回路は、演算部50と、インデックス情報抽出回路51と、映像信号処理部53L,53Rと、偏向制御部54L,54Rとを備えている。演算部50は、マイクロ・コンピュータなどにより構成され、補正量演算部52を有している。
【0038】
インデックス情報抽出回路51は、インデックス検出信号Sindとリファレンス信号Srefとに基づいて、電子ビーム軌道に関するインデックス情報信号Sinfを抽出し、それを補正量演算部52に出力するようになっている。補正量演算部52は、インデックス情報信号Sinfを解析し、電子ビーム軌道を求め、それに基づいて、画歪み補正など、映像表示を適正化するための補正データを算出するようになっている。補正データは、映像信号処理部53L,53Rおよび偏向制御部54L,54Rに出力される。
【0039】
映像信号処理部53L,53Rは、補正量演算部52からの補正データに基づいて、映像信号を補正し、その補正後の信号に基づいて電子銃31L,31Rを駆動するようになっている。偏向制御部54L,54Rは、同期信号および補正量演算部52からの補正データに基づいて、偏向ヨーク21L,21Rおよびコンバーゼンスヨーク32L,32Rを制御し、電子ビーム5L,5Rの走査制御を行うようになっている。
【0040】
なお、インデックス電極70を用いた電子ビーム軌道の検出手法、ならびにインデックス情報信号Sinfを用いた映像表示の適正化の手法などについては、本願出願人による特許第3068115号公報および特許第3057230号公報等に、より具体的に記載されている。
【0041】
図7は、インデックス情報抽出回路51の概略構成であり、図9は、その具体的な回路構成例を示している。インデックス情報抽出回路51は、図7に示したように、微分回路60と、信号抽出部61とを有している。信号抽出部61は、例えば、差動アンプ部62と、切替回路63と、コンパレータ部64と、反転出力ドライバ部65とを含んで構成されている。
【0042】
微分回路60は、ハイパスフィルタとしての機能を有しており、インデックス検出信号Sindとリファレンス信号Srefとに含まれる不要信号成分(Hパルス成分やノイズ成分など)を減衰させるようになっている。
【0043】
この微分回路60は、図9に示したように、例えば、インデックス信号出力用キャパシタCindおよびリファレンス信号出力用キャパシタCrefと、抵抗R11,R12とを含んで構成されている。微分回路60において、インデックス信号出力用キャパシタCindと抵抗R11とにより、インデックス検出信号Sind用の第1のハイパスフィルタが構成され、リファレンス信号出力用キャパシタCrefと抵抗R12とにより、リファレンス信号Sref用の第2のハイパスフィルタが構成されている。抵抗R11,R12の抵抗値は、小さめ(例えば10kΩ〜数10kΩ)であることが望ましい。
【0044】
この微分回路60において、インデックス検出信号Sindおよびリファレンス信号Srefの取り出しには、例えば図8に示したような2芯シールド線80を用いることができる。この場合、2芯シールド線80の第1の入力線81とインデックス信号出力用キャパシタCindの外部電極41とを接続する。また、第2の入力線82とリファレンス信号出力用キャパシタCrefの外部電極44とを接続する。インデックス検出信号Sindおよびリファレンス信号Srefは、それぞれ、出力線83,85から出力される。
【0045】
なお、2芯シールド線80は、できるだけ短い(100mmから150mm程度)ほうが良い。インデックス検出信号Sindに含まれるインデックス情報信号Sinfは、例えば数百mVと微弱であるため、シールド線で減衰すると、後段の回路での信号抽出が困難になる。また、シールド部84は、回路側のGND(接地端子)にのみ接続したほうが信号が安定する。
【0046】
信号抽出部61は、微分回路60の第1のハイパスフィルタから出力されたインデックス検出信号Sindと、第2のハイパスフィルタから出力されたリファレンス信号Srefとに基づいて、インデックス検出信号Sindに含まれる所望の信号成分であるインデックス情報信号Sinfを抽出する機能を有している。
【0047】
差動アンプ部62は、微分回路60から出力されたインデックス検出信号Sindとリファレンス信号Srefとの差分を取って不要信号成分を除去するためのものである。この差動アンプ部62は、図9に示したように、例えばインスツルメンテーションアンプの構成となっており、抵抗R13〜R21およびアンプAMP1〜AMP3を含んで構成される。
【0048】
切替回路63は、差動アンプ部62からの出力信号に残っている不要信号成分を、さらに除去するためのものであり、Hパルスのタイミングで出力信号に残っているHパルス成分Shを0Vレベルの信号に挿げ替えるようになっている。この切替回路63は、図9に示したように、例えば、キャパシタC1、抵抗R22,R23、およびスイッチSW1を含んでいる。スイッチSW1は、例えばアナログスイッチIC等で構成することができる。スイッチSW1は、Hパルスのタイミング信号に基づいて、信号の挿げ替えを行う。タイミング信号としては、例えばHパルスに同期した切替回路用制御信号、例えば水平AFC(Automatic Frequency Control)用のHパルスを分割した信号などを使用することができる。
【0049】
コンパレータ部64は、微分回路60によって微分波形となった信号を波形整形し、インデックス情報信号Sinfのパルス幅を復元する機能を有している。コンパレータ部64は、例えば、基準レベルにヒステリシスを持たせたシュミット回路で構成することができる。例えば、図9に示したように、コンパレータ91と抵抗R24,25とを含むシュミット回路で構成することができる。
【0050】
反転出力ドライバ部65は、図9に示したように、例えば、反転ドライバ92と抵抗R26とを含んで構成されている。インデックス情報信号Sinfは、最終的にこの反転出力ドライバ部65を介して出力される。
【0051】
なお、本実施の形態において、インデックス電極70が、本発明における「検出手段」の一具体例に対応し、インデックス信号出力用キャパシタCindが、本発明における「第1の信号出力用キャパシタ」の一具体例に対応し、また、リファレンス信号出力用キャパシタCrefが、本発明における「第2の信号出力用キャパシタ」の一具体例に対応する。また、インデックス信号出力用キャパシタCindおよび抵抗R11が、本発明における「第1の微分回路」の一具体例に対応し、リファレンス信号出力用キャパシタCrefおよび抵抗R12が、本発明における「第2の微分回路」の一具体例に対応する。また、信号抽出部61が、本発明における「信号抽出手段」の一具体例に対応する。
【0052】
次に、以上のような構成の陰極線管およびその信号処理回路の動作について説明する。
【0053】
この陰極線管では、各電子銃31L,31Rから放出された電子ビーム5L,5Rが、偏向ヨーク21L,21Rの電磁的な作用により偏向走査され、各分割画面6L,6Rを形成する。このとき、左側の電子ビーム5Lによって、画面の約左半分が描画され、分割画面6Lが形成されると共に、右側の電子ビーム5Rによって、画面の約右半分が描画され、分割画面6Rが形成される。このように形成された左右の分割画面6L,6Rの端部がオーバ・ラップ領域OLにおいて、部分的に重なるように繋ぎ合わされることにより、全体として単一の画面SAが形成される。
【0054】
電子ビーム5L,5Rが、それぞれ過走査領域OSを走査し、インデックス電極70に入射すると、それに応じてインデックス検出信号Sindが、インデックス信号出力用キャパシタCindを経由して管外に出力される。
【0055】
管外に出力されたインデックス検出信号Sindは、図6に示したように、リファレンス信号Srefと共に、インデックス情報抽出回路51に入力される。インデックス情報抽出回路51は、入力された信号に基づいてインデックス情報信号Sinfを抽出し、それを補正量演算部52に出力する。補正量演算部52は、インデックス情報信号Sinfを解析し、電子ビーム軌道を求め、それに基づいて、画歪み補正など、映像表示を適正化するための補正データを算出する。補正量演算部52は、その補正データを映像信号処理部53L,53Rおよび偏向制御部54L,54Rに出力する。
【0056】
映像信号処理部53L,53Rは、補正量演算部52からの補正データに基づいて、映像信号を補正し、その補正後の信号に基づいて電子銃31L,31Rを駆動する。映像信号を補正することにより、画歪みなどの適正化のほか、左右の分割画面の繋ぎ目部分における輝度分布の適正化を行うことができる。偏向制御部54L,54Rは、同期信号および補正量演算部52からの補正データに基づいて、偏向ヨーク21L,21Rおよびコンバーゼンスヨーク32L,32Rを制御し、電子ビーム5L,5Rの走査制御を行う。これにより、電子ビーム5L,5Rの走査位置の補正が行われ、画歪みなどが補正される。これにより、左右の分割画面6L,6Rが、位置的にも輝度的にも適正に繋ぎ合わされて表示される。
【0057】
次に、インデックス情報抽出回路51による信号抽出動作を説明する。
【0058】
図15は、インデックス信号出力用キャパシタCindおよびリファレンス信号出力用キャパシタCrefから出力されたインデックス検出信号Sindおよびリファレンス信号Srefの波形を示している。また、図16は、インデックス検出信号Sindとリファレンス信号Srefとの差分を取ることにより得られる理想的なインデックス情報信号Sinfの波形を示している。
【0059】
図15から分かるように、インデックス検出信号Sindには、インデックス情報信号Sinf以外に、Hパルス成分Shやノイズ成分などの不要信号が含まれていて、このままでは電子ビーム軌道を解析するための信号としては使用できない。特に、インデックス情報信号Sinfの振幅が0.1V程度(図16)であるのに対し、Hパルス成分Shの振幅は約10V(図15)もあり、影響が大きい。このように、抽出しようとするインデックス情報信号Sinfに対して、不要なHパルス成分Shが100倍程度大きい場合、差動アンプを用いて単純に、インデックス検出信号Sindとリファレンス信号Srefとの差分を取ったとしても、図16に示したような理想的なインデックス情報信号Sinfを抽出することは難しい。
【0060】
Hパルス成分Shは、リファレンス信号Srefを用いてインデックス検出信号Sindから同相除去したい不要な波形であるが、陰極線管内でリファレンス信号Srefとインデックス検出信号Sindとの位相および振幅を合わせることにも限界があり、完全には同相除去されない。このため、実際には、図17に示したように、Hパルス成分Shが残ってしまい、その後の波形整形が難しくなる。そのため、差動アンプの前段もしくは差動アンプ内に位相および振幅の調整回路を設けるなど、高精度な調整回路と正確な調整が必要になる場合がある。また、不要なHパルス成分Shのために広い入力ダイナミックレンジの回路が必要となり、コストもかかる。なお、図17において、細い実線で示した波形部分全体がHパルス成分Shにより影響を受けている部分であり、太い実線で示した線状の波形部分がインデックス情報信号Sinfに相当する。
【0061】
そこで、図16に示したような理想的な波形のインデックス情報信号Sinfを取り出すことも、ひとつの理想的な方法ではあるが、最終的にはインデックス情報を損なわずに、図14に示したような、デジタル信号を得ることを考える。すなわち、最終的に、電子ビーム軌道を解析するためのデジタル処理が可能な程度の、デジタル信号を得ることができれば良い。このため、本実施の形態では、インデックス情報信号Sinfを一旦、図12に示したような微分波形として取り出し、最後に、図14に示したような波形に復元するという手法を採用する。
【0062】
図7および図9には、この手法を実現するための回路構成例が示されている。この手法の特徴は、陰極線管からの検出信号を微分回路60で受けることにより、Hパルス成分Shの影響を小さくできることにある。微分回路60によって、Hパルス成分Shも微分されるため、入力される振幅も下がり、回路のダイナミックレンジも小さくてすむ。また、振幅が下がることで、図17に示したほどにはHパルス成分Shが残らないので、調整回路の必要なしに、微分された波形ではあるが、インデックス情報信号Sinfを取り出すことができる。その後、波形整形を行うときに、インデックス情報信号Sinfのパルス幅を復元し、図14に示したようなデジタル処理が可能なインデックス情報信号Sinfを得ることができる。
【0063】
このインデックス情報抽出回路51では、例えば図8に示したような2芯シールド線80を用いて、インデックス信号出力用キャパシタCindの外部電極41とリファレンス信号出力用キャパシタCrefの外部電極44とから、それぞれ、図15に示したような波形のインデックス検出信号Sindおよびリファレンス信号Srefが取り出される。
【0064】
微分回路60では、インデックス検出信号Sindとリファレンス信号Srefとに含まれるHパルス成分Shなどの不要信号成分を減衰させる。より具体的には、陰極線管に形成された信号出力容量(インデックス信号出力用キャパシタCindおよびリファレンス信号出力用キャパシタCref)を利用して、各信号を、10kΩから数10kΩ程度の低抵抗R11,R12(図9)で受けることで、インデックス情報信号Sinfの抽出に邪魔なHパルス成分Shを減衰させる。ここでHパルス成分Shを減衰させることで、次段の差動アンプ部62でのHパルス成分Shに近い位置に存在するインデックス情報信号Sinfの取り出しを可能にし、また、差動アンプ部62のダイナミックレンジを小さくできる。微分回路60を経ることで、インデックス検出信号Sindに含まれるインデックス情報信号Sinfも若干影響を受け、微分された波形となる。
【0065】
図10は、微分回路60から出力される各信号の波形を示している。図に示したように、この時点で、Hパルス成分Shの振幅が、元の信号(図15)の1/3程度になる。このように微分された信号が次段の差動アンプ部62に入力される。
【0066】
差動アンプ部62では、微分されたインデックス検出信号Sindとリファレンス信号Srefとの差分を取ってインデックス情報信号Sinfを検出する。このとき差動アンプ部62として、図9に示したようなインスツルメンテーションアンプを用いると、容易にインデックス情報信号Sinfを検出できる。
【0067】
図11は、差動アンプ部62からの出力信号の波形を示している。この時点ではまだ、Hパルス成分Shが完全には除去できていない。このHパルス成分Shが残っている部分は、インデックス情報信号Sinfが存在しないところなので、次段の切替回路63において、その部分だけ、アナログスイッチIC等で、Hパルスのタイミングで0Vレベルの信号に挿げ替えを行う。
【0068】
図12は、切替回路63によって信号の挿げ替えが行われた後の信号における、インデックス情報信号Sinf部分のみを拡大して示している。このように、インデックス情報信号Sinfのみを精度良く抽出できる。ただし、この時点ではインデックス情報信号Sinfは、微分波形になっている。そこで、次段のコンパレータ部64において、微分波形となった信号を波形整形し、インデックス情報信号Sinfのパルス幅を復元する。このとき、パルス幅を精度良く復元するために、コンパレータ91(図9)に最適なヒステリシス持たせて、波形整形を行う。
【0069】
図13は、コンパレータ部64(コンパレータ91)に入力される微分波形のインデックス情報信号Sinfと、そのパルス幅を復元するために用いる基準電圧の信号波形とを示している。コンパレータ部64として、基準電圧のレベルにヒステリシスを持たせたシュミット回路を用いることで、元のパルス波形にほぼ等価なパルス幅を持ったインデックス情報信号Sinfを復元することができる。
【0070】
このように復元されたインデックス情報信号Sinfを、反転出力ドライバ部65を介して、演算部50(図6)に出力する。復元されたインデックス情報信号Sinfは、場合によって反転もしくは、そのままの極性で出力する。最終的には、図14に示したようなインデックス情報信号Sinfのみを含んだデジタル信号が出力される。
【0071】
以上説明したように、本実施の形態によれば、インデックス検出信号Sindとリファレンス信号Srefとを微分回路60によって微分波形にした後で、差分を取ってインデックス情報信号Sinfを抽出し、その後、波形整形してインデックス情報信号Sinfの微分波形をデジタル処理可能なパルス状の信号に復元するようにしたので、簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号(インデックス検出信号Sind)から、所望の信号成分(インデックス情報信号Sinf)を精度良く抽出することができる。特に、微分回路60によって信号抽出の前段階において、不要信号成分(Hパルス成分Sh等)を減衰させているので、不要信号成分の影響を軽減でき、インデックス検出信号Sindとリファレンス信号Srefとの振幅・位相を調整するための調整回路が不要となる。また、次段において、所望の信号成分を抽出するときに、その抽出精度が向上する。また、振幅の大きいHパルス成分Shが小さくなることで、信号抽出部61の回路のダイナミックレンジを小さくできる。
【0072】
なお、本発明は、上記実施の形態に限定されず種々の変形実施が可能である。例えば、本発明は、3つ以上の電子銃を備え、1つの画面を3つ以上の走査画面を合成して形成するようにしたものにも適用可能である。また、本発明は、複電子銃方式に限らず、単電子銃方式の陰極線管にも適用可能である。
【0073】
【発明の効果】
以上説明したように、請求項1ないし4のいずれか1項に記載の陰極線管における信号抽出回路、または請求項5記載の陰極線管における信号抽出方法によれば、第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、検出信号に含まれる不要な信号成分を減衰させると共に、第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、リファレンス信号に含まれる不要な信号成分を減衰させ、第1の微分回路から出力された信号と第2の微分回路から出力された信号とに基づいて、検出信号に含まれる所望の信号成分を抽出するようにしたので、簡単な回路構成でありながら、不要信号成分の影響を軽減でき、電気インデックス法によって出力された検出信号から、所望の信号成分を精度良く抽出することができる。
【0074】
特に、請求項3記載の陰極線管における信号抽出回路によれば、第1の微分回路および第2の微分回路を、それぞれ、抵抗値の小さい抵抗素子を含んで構成するようにしたので、不要な信号成分の振幅を小さくでき、信号抽出手段の入力ダイナミックレンジを小さくできる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る信号抽出回路および方法が適用される複電子銃方式の陰極線管の構成例を示す図であり、(B)は、画面構成を示す正面図、(A)は、(B)におけるIA−IA線断面図である。
【図2】複電子銃方式の陰極線管における電子ビームの走査方式および画面構成の例を示す説明図である。
【図3】インデックス検出信号の取り出し部分の構成を示す断面図である。
【図4】インデックス電極の構成例を示す図である。
【図5】インデックス電極の他の構成例を示す図である。
【図6】図1に示した陰極線管における信号処理回路の構成例を示すブロック図である。
【図7】本発明の一実施の形態に係る信号抽出回路としてのインデックス情報抽出回路の概略構成を示すブロック図である。
【図8】各信号出力用キャパシタからの信号を取り出すための信号線の構造例を示す図である。
【図9】インデックス情報抽出回路の具体的な構成例を示す回路図である。
【図10】図9に示したインデックス情報抽出回路における差動アンプ部に入力される、インデックス検出信号とリファレンス信号とを示す波形図である。
【図11】図9に示したインデックス情報抽出回路における差動アンプ部からの出力信号を示す波形図である。
【図12】図9に示したインデックス情報抽出回路における切替回路からの出力信号を示す波形図である。
【図13】図9に示したインデックス情報抽出回路におけるコンパレータ部に入力される信号を示す波形図である。
【図14】図9に示したインデックス情報抽出回路によって最終的に出力されるインデックス情報信号の波形図である。
【図15】図1に示した陰極線管から出力された直後のインデックス検出信号およびリファレンス信号の波形図である。
【図16】理想的に抽出されたインデックス情報信号の波形図である。
【図17】インデックス検出信号に含まれるHパルス成分を示す波形図である。
【符号の説明】
Cind…インデックス信号出力用キャパシタ、Cref…リファレンス信号出力用キャパシタ、Sh…Hパルス成分、Sind…インデックス検出信号、Sinf…インデックス情報信号、Sref…リファレンス信号、5L,5R…電子ビーム、6L,6R…分割画面、50…演算部、51…インデックス情報抽出回路、52…補正量演算部、53L,53R…映像信号処理部、54L,54R…偏向制御部、60…微分回路、61…信号抽出部、62…差動アンプ部、63…切替回路、64…コンパレータ部、65…反転出力ドライバ部、70,70A…インデックス電極、80…2芯シールド線。
Claims (5)
- 管内の過走査領域に設けられ、電子ビームの入射に応じて電気的な検出信号を出力する検出手段と、外囲器の一部を利用して形成され、前記検出信号を管外に出力するための第1の信号出力用キャパシタと、外囲器の一部を利用して形成され、前記アノード電圧に応じたリファレンス信号を管外に出力するための第2の信号出力用キャパシタとを備えた陰極線管、に用いられる信号抽出回路であって、
前記第1の信号出力用キャパシタを含んで構成され、前記検出信号に含まれる不要な信号成分を減衰させる第1の微分回路と、
前記第2の信号出力用キャパシタを含んで構成され、前記リファレンス信号に含まれる不要な信号成分を減衰させる第2の微分回路と、
前記第1の微分回路から出力された信号と前記第2の微分回路から出力された信号とに基づいて、前記検出信号に含まれる所望の信号成分を抽出する信号抽出手段と
を備えたことを特徴とする陰極線管における信号抽出回路。 - 前記第1の微分回路および前記第2の微分回路は、陰極線管における水平周期パルスによる不要信号成分を減衰させる
ことを特徴とする請求項1記載の陰極線管における信号抽出回路。 - 前記第1の微分回路および前記第2の微分回路は、それぞれ、抵抗値が10kΩ〜数10kΩの抵抗素子を含んで構成されている
ことを特徴とする請求項1記載の陰極線管における信号抽出回路。 - 前記陰極線管は、電子銃を複数備え、これら複数の電子銃から放出された電子ビームによって複数の分割画面を形成すると共に、それら複数の分割画面を互いに繋ぎ合わせることにより全体として単一の画面を形成するように構成され、
前記検出手段は、前記各分割画面の繋ぎ目部分に対応する位置に設けられ、前記各分割画面を形成するそれぞれの電子ビームの有効画面外における軌道を検出するために設けられている
ことを特徴とする請求項1記載の陰極線管における信号抽出回路。 - 管内の過走査領域に設けられ、電子ビームの入射に応じて電気的な検出信号を出力する検出手段と、外囲器の一部を利用して形成され、前記検出信号を管外に出力するための第1の信号出力用キャパシタと、外囲器の一部を利用して形成され、前記アノード電圧に応じたリファレンス信号を管外に出力するための第2の信号出力用キャパシタとを備えた陰極線管、に用いられる信号抽出方法であって、
前記第1の信号出力用キャパシタを含んで構成された第1の微分回路によって、前記検出信号に含まれる不要な信号成分を減衰させると共に、
前記第2の信号出力用キャパシタを含んで構成された第2の微分回路によって、前記リファレンス信号に含まれる不要な信号成分を減衰させ、
前記第1の微分回路から出力された信号と前記第2の微分回路から出力された信号とに基づいて、前記検出信号に含まれる所望の信号成分を抽出する
ようにしたことを特徴とする陰極線管における信号抽出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002226226A JP2004069837A (ja) | 2002-08-02 | 2002-08-02 | 陰極線管における信号抽出回路および方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002226226A JP2004069837A (ja) | 2002-08-02 | 2002-08-02 | 陰極線管における信号抽出回路および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004069837A true JP2004069837A (ja) | 2004-03-04 |
Family
ID=32013640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002226226A Pending JP2004069837A (ja) | 2002-08-02 | 2002-08-02 | 陰極線管における信号抽出回路および方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004069837A (ja) |
-
2002
- 2002-08-02 JP JP2002226226A patent/JP2004069837A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6386337A (ja) | 陰極線管 | |
KR20010041119A (ko) | 인덱스 유형의 음극선관 | |
JP2000188068A (ja) | カラー陰極線管 | |
US4896082A (en) | Raster distortion correction circuit | |
US6304034B1 (en) | Cathode ray tube and image correcting method | |
JP2004069837A (ja) | 陰極線管における信号抽出回路および方法 | |
US6337546B1 (en) | Method of mounting electrode for outputting signal generated in cathode ray tube, signal outputting method in cathode ray tube, and cathode ray tube | |
US6034742A (en) | Adaptive sharpness enhancement for a multi-frequency scanning monitor | |
JP3417394B2 (ja) | 陰極線管および陰極線管における信号検出方法 | |
JP2004022236A (ja) | 陰極線管 | |
JP2002093347A (ja) | 陰極線管および陰極線管における信号検出方法 | |
JP2004055376A (ja) | 陰極線管およびその偏向制御回路 | |
JP2001258041A (ja) | 電子ビーム位置検出装置及び陰極線管 | |
JP2003045359A (ja) | 陰極線管 | |
KR930000956Y1 (ko) | 정전편향형 음극선관 | |
JPH10172464A (ja) | 陰極線管 | |
JP2004516518A (ja) | インデックス型陰極線管 | |
JP2004032473A (ja) | 画像補正装置および方法 | |
JPH07118280B2 (ja) | 陰極線管 | |
JPS60124341A (ja) | 薄型受像管 | |
JPH0965382A (ja) | Crt検査装置 | |
JPH04198982A (ja) | Crtディスプレイ装置 | |
JP2000011916A (ja) | カラー陰極線管用電子銃 | |
JPH06121178A (ja) | 陰極線管制御装置 | |
JP2000032485A (ja) | 画像表示装置 |