JP2004069337A - 磁気センサ、側面開放型temセル、およびこれらを利用した装置 - Google Patents

磁気センサ、側面開放型temセル、およびこれらを利用した装置 Download PDF

Info

Publication number
JP2004069337A
JP2004069337A JP2002225436A JP2002225436A JP2004069337A JP 2004069337 A JP2004069337 A JP 2004069337A JP 2002225436 A JP2002225436 A JP 2002225436A JP 2002225436 A JP2002225436 A JP 2002225436A JP 2004069337 A JP2004069337 A JP 2004069337A
Authority
JP
Japan
Prior art keywords
frequency
ground
magnetic
line
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002225436A
Other languages
English (en)
Other versions
JP4219634B2 (ja
Inventor
Yasunori Miyazawa
宮澤 安範
Katsuji Uenishi
上西 克二
Masahiro Yamaguchi
山口 正洋
Kenichi Arai
荒井 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOWA DENSHI KK
Original Assignee
RYOWA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOWA DENSHI KK filed Critical RYOWA DENSHI KK
Priority to JP2002225436A priority Critical patent/JP4219634B2/ja
Priority to US10/355,092 priority patent/US6856131B2/en
Publication of JP2004069337A publication Critical patent/JP2004069337A/ja
Application granted granted Critical
Publication of JP4219634B2 publication Critical patent/JP4219634B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】高周波磁界強度に対して超高周波まで滑らから応答を示す磁気センサを得る。
【解決手段】トリプレート型のストリップ線路構造を有するシールディドループコイル型の磁気センサ10において、第1層11と第5層15のそれぞれに形成された1ターンのループ状のグランド線路22、28を並列接続したインダクタンスをLとし、ギャップ18a、18bを間にして対向する1ターンのループ状のグランド線路端側電極の間で高周波的に形成される合成容量をCとするとき、積(L×C)が2.5×10−20以下とされ、かつ1ターンのループ状のグランド線路22、24の最外周長が50[mm]以下とされている。
【選択図】図3

Description

【0001】
【発明の属する技術分野】
この発明は、高周波磁界強度に対して低周波から超高周波帯域まで滑らかな応答を示す磁界検出コイルとしての磁気センサ、およびたとえば空間的に均一な高周波電磁界を発生する装置に適用して好適な側面開放型TEM(Transverse Electro−Magnetic)セル、並びにこれらを応用した透磁率測定装置等に関する。
【0002】
【従来の技術】
最近の急激なIT(Information Technology)技術の進展に伴い、そのインフラストラクチャーを支える情報・通信機器においては高速化が加速し、多くの機器がGHz帯までの信号を処理する能力を持つものになってきている。これらの機器の高速性を実現するためには、機器の内部ではIC(Integrated Circuit)を初めとして多数の高周波デバイスが不可欠となっている。
【0003】
高周波デバイスの中でも磁気材料に絞って見たときには、GHz帯で所望の周波数特性を示す軟磁性薄膜への要求が高くなっている。例えば、RF(Radio Frequency)集積化インダクタ等のように、小さな磁界で大きな磁化変化を示し、かつ、低損失のものが望まれる一方、電磁雑音対策用としての電波吸収体では高損失な虚数部の値が大きな透磁率を持つ磁気材料が求められている。
【0004】
いずれにせよ、これら高周波磁気材料の開発には、材料評価の基準となる高周波帯域での複素透磁率を正しく測定できる装置が必須である。2〜3GHz程度まで複素透磁率を測定可能なダブレット構造の空洞で終端を短絡した定在波型透磁率測定装置と、該装置のキーデバイスである磁気センサ(トリプレート型のストリップ線路構造を有するシールディドループコイル型の磁気センサ)が、この出願の発明者の一部により発明され、既に特許第3085651号として成立している。
【0005】
さらに、最近では、ブロードバンド・インターネットの要請に適う5GHz帯の無線LAN(Local Area Network)の規格が確定され、それに対応したチップセットや製品の発表が急増している。一方、光通信技術分野では、10GHz光通信モジュールが安価な汎用市場にシフトする動きが強まり、また10GBE(Giga−Byte Ethernet (登録商標))の規格化の動きも最終局面に至っている。
【0006】
これら基本周波数が5GHzを超える信号を扱う機器が爆発的に拡大する傾向にあり、これに呼応して、10GHz以上まで高周波特性が延びた超高周波磁気材料の開発も活発化している。これに伴い、精度良くかつ容易に扱える透磁率測定装置に対しても、10GHz程度まで測定可能な周波数の拡大の要求が緊急の課題となってきている。
【0007】
当然、それらの機器使用時に当っては超高周波帯域でのEMC(Elector−Magnetic Compatibility)も重要な問題であり、EMCの定量計測実現のためには高周波磁界を精度良く測定できる高感度磁気センサに対する要求も高まってきている。また、磁気センサの周波数応答特性を正確に測定したり、磁気材料の透磁率を測定するためには、デバイスや試料に10GHz程度までの帯域に渡って既知で空間的に均一な高周波電磁界を印加するための電磁界発生装置が必要となってきている。
【0008】
従来、磁気センサの高周波化を妨げてきた最大の問題は、シールディドループコイル型の磁気センサが高周波的に優れていることは認められながらも、その電気的モデル化が確立されておらず、その周波数応答特性の振舞いがどう成っていれば正しいかも判らず、かつ、磁気センサの何が周波数特性の限界を規定しているかも明らかにされていなかったことにある。
【0009】
即ち、従来は、シールディドループコイル型の磁気センサの物理的解析が不明のまま、セミリジッド同軸ケーブルから加工された磁気センサのモデルをベースに、プリント基板の加工技術や多層セラミック基板の加工技術を適用した磁気センサが発明されてきた。
【0010】
従来、実用に供された例を調べてみると、矩形センサの長辺が10mm程度のデバイスについては1GHz程度、これにトライアンドエラーの工夫を施すか、デバイス形状を数mm以下に小さくすることによって、3GHz程度までの高周波化が図られている。
【0011】
しかし、シールディドループコイル型の磁気センサとしての動作の物理的原理が解明されないまま、経験的な手法で高性能化をこれ以上進めることは、至って困難な状況となっていた。
【0012】
高周波化を妨げるもう一つの要素は、高周波で空間的に強度が一定で磁界の向きが平行な高周波磁界の発生手段が得られていないことである。上述したダブレット構造の空洞で終端を短絡した定在波型透磁率測定装置では、空洞内に定在波が立ち、2〜3GHz程度が限界である。また、ダブレット構造では、同軸構造伝送線路を伝搬してきたTEM波と、空洞を伝搬する電磁界モードとしての擬似TEM波ではモードが大きく異なる。このため、コネクタ接続部で大きなモード変換損失が生じて、RF信号源から得られる高周波電力を有効に高周波磁界に変換して使うことは難しい。
【0013】
また、この損失の問題を避け、かつ均一な高周波電磁界を発生する手段として、TEMセルが実用に供されている。しかし、TEMセルでは最高使用周波数が1GHz程度に制限されることに加えてTEMセル空洞の外側全面は、構造的にグランド導体の金属で覆われており、空洞内に測定試料を着脱するには大きな困難を伴うもので透磁率測定装置への適用は難しい状況にあった。
【0014】
【発明が解決しようとする課題】
この発明は、上述した種々の課題を考慮してなされたものであって、以下に列挙する課題を解決する磁気センサを提供することを目的とする。
【0015】
第1に、磁気センサの物理的限界に迫り、従来技術に比べて数倍以上の高周波化を可能とする。
【0016】
第2に、周波数に対する感度が高く、定量的な周波数応答特性を示す。
【0017】
第3に、厳密に電界信号成分の混入を抑え、磁気信号だけを検出できる。
【0018】
第4に、低コスト、歩留が高く、かつ、製造し易い。
【0019】
第5に、結果として、透磁率測定の誤差を小さくして高精度化と高周波化を図る。
【0020】
また、この発明は、以下に列挙する課題を解決する側面開放型TEMセル(高周波空洞)と透磁率測定装置を提供することを目的とする。
【0021】
第1に、外部から空洞内部に容易に接近でき、かつ、ある程度の空間的ボリュームの範囲では、周波数に依らず均一な(一定値の平行な)高周波磁界が発生できる構造(側面開放型TEMセル空洞)を実現する。
【0022】
第2に、インピーダンス整合が良く、伝送ロスが小さく、周波数依存性の少ない広帯域側面開放型TEMセル空洞(理想的なTEM波に近い電磁界が発生でき、種々の計測用高周波標準電磁界源として活用できる)を提供する。
【0023】
第3に、負荷が固定的なときに、負荷により生じるインピーダンスのずれを補償する構造的変形を施したもの、または空洞内部にインピーダンス補償部材を具備した空洞を提供する。
【0024】
第4に、透磁率測定装置における高周波化の技術的必須条件の、均一高周波磁界発生の現実化を図る。
【0025】
【課題を解決するための手段】
この発明の磁気センサは、第1、第3、第5層の3層の導体層と、前記第1および第3導体層との間および前記第3及び第5導体層の間に配される第2、第4層の2層の誘電体層を備え、トリプレート型のストリップ線路構造を有するシールディドループコイル型の磁気センサにおいて、周上の同一位置にギャップを有する1ターンのループ状のグランド線路が前記第1層と前記第5層に対向して形成され、前記各グランド線路の中央から外方に延びる出力リード用のグランド線路が形成され、前記第3層に形成され、一端側がビアを介して前記第1層と第5層のループ状のグランド線路の前記ギャップ端の近くに接続され、前記一端側が前記ギャップ部を延び、さらに前記ループ状のグランド線路の対向面の間を延びて略半ターンのループ状の信号線路とされ、前記信号線路の他端側が、前記外方に延びる前記出力リード用の前記グランド線路の対向面の間を延び、出力リード用の信号線路とされるトリプレート型のストリップ線路構造を有し、前記第1層と第5層のそれぞれに形成された前記1ターンのループ状のグランド線路を並列接続したインダクタンスをLとし、前記ギャップを間にして対向する前記1ターンのループ状のグランド線路端側電極の間で高周波的に形成される合成容量をCとするとき、前記インダクタンスLと前記合成容量Cとの積LCが2.5×10−20以下とされ、かつ前記1ターンのループ状のグランド線路の最外周長が50[mm]以下とされていることを特徴とする(請求項1記載の発明)。
【0026】
前記1ターンのループ状のグランド線路は、長方形、5角形以上の多角形、円形あるいは楕円形等に形成され、前記ギャップの形成位置は、前記1ターンのループ状のグランド線路の中央から外方に延びる出力リード用グランド線路が形成された半周側の反対の半周側の周上のどこかの位置、たとえば、中央位置、長方形であれば上辺の位置等とする。
【0027】
上記構成の磁気センサは、以下の種々の作用効果を奏する。すなわち、磁気センサの物理的限界に迫り、従来技術に比べて数倍以上の高周波化を可能とする。また、周波数に対する感度が高く、定量的な周波数応答特性を示す。さらに、厳密に電界信号成分の混入を抑え、磁気信号だけを検出できる。さらにまた、低コスト、歩留が高く、かつ、製造し易いという作用効果を奏する。
【0028】
この場合、前記磁気センサにおいて、前記第2、第4層の誘電体層の、前記1ターンのループ状のグランド線路の内周側の位置に開口を形成する(請求項2記載の発明)。この開口内に磁性試料を挿入して使用される磁気センサを透磁率測定装置に利用することにより、透磁率の測定誤差が小さくなり、高精度化と高周波化を同時に図ることができる。
【0029】
ここで、磁気センサ中、第1層と第5層のグランド線路を接続する複数のビアを形成することで、不要モードの発生を抑制することによって磁気センサの高周波特性を物理的限界まで近づけることができる(請求項3記載の発明)。
【0030】
さらに、磁気センサの第3層の導体層に形成されている略半ターンのループ状の信号線路および前記出力リード用の信号線路のそれぞれ両側に、前記ビアに接続されたグランド導体線路を形成することで、電界シールド効果が高くなり、信号線路およびセンサコイルとして機能するグランド線路の線幅を物理的に細くすることができる(請求項4記載の発明)。
【0031】
この発明の側面開放型のTEMセルは、直方体の導体に、長さ方向側面から垂直方向に長方形四隅を落とした横長八角形の内側断面を持つ空洞を形成して上下面グランド電極と長さ方向両端面グランド電極からなる高周波空洞グランド胴体を形成し、前記両端面グランド電極の中心にパネル取り付け型の第1および第2の高周波同軸コネクタを配し、当該高周波同軸コネクタそれぞれのセンタピンの対向する電極間には、幅が前記上下面グランド電極幅の0.7倍より狭い長方形形状の四隅を落とした横長八角形の板状の高周波信号電極を、前記上下面グランド電極と平行に配し、前記高周波信号電極と前記上下面のグランド電極とが、前記高周波コネクタ間でトリプレート構造の伝送線路を形成し、前記板状の高周波信号電極の、前記高周波同軸コネクタのセンタピンとの接続断面の横幅が前記板状の高周波電極の板厚の3倍以内の値とされ、前記トリプレート構造の伝送線路の全長に渡って特性インピーダンスが50Ωに制御されていることを特徴とする(請求項5記載の発明)。
【0032】
この発明によれば、高周波空洞の中央部では、電界が板状の高周波信号電極の電極面から上下面グランド電極に向かう垂直向きとなり、磁界が高周波信号の伝搬方向および前記電界方向に互いに直交する方向、すなわち、高周波信号電極と上面グランド電極に平行で、前記高周波信号の進行方向に直角な向きとなる。しかも、ある程度の空間的広がり範囲では、電磁界強度は略一定であって、その向きが互いに直交する。
【0033】
さらに、この発明の透磁率測定装置は、特性インピーダンス50Ωの平行伝送線路構造の空洞の一端から高周波信号が入力され、前記空洞の他端を短絡するか終端抵抗で整合して空洞中に前記高周波信号の進行方向に直角かつ前記平行伝送線路に対して平行の高周波磁界を発生させ、この高周波磁界中に、前記請求項2〜4のいずれか1項に記載の前記磁気センサの前記開口が前記高周波磁界と直交しかつ前記ギャップが前記平行伝送線路中、高周波信号伝送線路に対向するように配置し、前記開口中に磁性試料を水平に挿入配置し、前記高周波信号の進行方向と同じ向きに外部直流磁界の大きさを変えて印加したときの、前記磁性試料の磁気飽和時と非飽和時における前記磁気センサの誘起電圧と前記磁気センサのインピーダンスを測定して、前記磁性試料の複素透磁率を測定することを特徴とする(請求項6記載の発明)。
【0034】
この発明では、平行伝送線路構造の空洞として、ダブレット型の空洞あるいはトリプレート型の空洞のいずれも使用することができる。たとえばダブレット型の空洞の他端を短絡して使用する構造とすることで、廉価な透磁率測定装置となる。
【0035】
また、前記特性インピーダンス50Ωの平行伝送線路構造の空洞として、前記第2の高周波同軸コネクタが50Ω終端されたトリプレート型の側面開放型TEMセルを用いることで、空洞中に、超広帯域に渡りきわめて均一な高周波電磁界を発生することができる(請求項7記載の発明)。
【0036】
この場合において、前記磁気センサが、前記高周波信号電極と前記下面グランド電極との間の下半分の空間に配されるとき、前記上面グランド電極の前記高周波信号電極で形成される上半分の空間が拡張するように前記上面グランド電極の前記高周波信号電極の対向面側が加工され、前記側面開放型TEMセル全体の伝送方向各部の特性インピーダンスが50Ωに整合性されるようにすることで、より一層不要モードの発生を抑制することが可能となり、より一層高周波帯で使用することができる(請求項8記載の発明)。
【0037】
ここで、前記側面開放型TEMセルの下面グランド電極の中央には電磁波進行方向に沿って前記開口を有する前記磁気センサ中、センサヘッド部として機能する前記1ターンのループ状のグランド線路が挿入できる大きさのスリットを形成し、前記1ターンのループ状のグランド線路全体が前記スリットを介して前記下半分の空間に挿入されたときの挿入位置が、前記磁気センサと前記高周波信号電極との正方向伝達係数S21が−10[dB]より小さい値となる挿入位置にすることにより、電磁界の空間的乱れを最小にすることができる(請求項9記載の発明)。もちろん、前記開口が、前記側面開放型TEMセルの前記下半分の空間の中に存在することはいうまでもない。前記1ターンのループ状のグランド線路パターンの下端位置が、前記側面開放型TEMセルの下面グランド電極の空洞側の面に一致する程度の位置が好ましい。
【0038】
さらには、前記特性インピーダンス50Ωの平行伝送線路構造の空洞の開口から漏れでる高周波電磁波を反射し、干渉し、または吸収する電磁波抑制部材を前記空洞の近傍に配置することで、空洞外部境界で反射した空洞の開口への高周波電磁波の反射もどり強度を抑える、または反射波の位相を乱して、共振横モードが生じるのを抑制することができる(請求項10記載の発明)。なお、電磁波抑制部材としては、反射板、干渉板または電波吸収板を使用することができる。
【0039】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0040】
図1は、この発明の第1実施形態に係る磁気センサ10の斜視図、図2は、図1の磁気センサ10のII−II線断面図、図3は、磁気センサ10の分解斜視図を示している。図4は、磁気センサ10の導体パターンの一部の模式図を示している。
【0041】
この第1実施形態の磁気センサ10は、基本的には、磁気を検出するセンサとして機能するシールディドループコイル100と、後述する同軸線等に接続される高周波接続部102と、シールディドループコイル100および高周波接続部102とを接続する出力リード部104とから構成されている。
【0042】
図1〜図4において、磁気センサ10は、第1層(表面導体層または第1表面導体層ともいう。)11、第3層(内部導体層ともいう。)13、第5層(裏面導体層または第2表面導体層ともいう。)15の3層の導体層と、第1表面導体層11と内部導体層13との間および内部導体層13と第2表面導体層15の間に配される第2層(誘電体層)12および第4層(誘電体層)14の2層の誘電体層を備える5層のプリント配線回路基板で作製された、トリプレート型のストリップ線路構造を有するシールディドループコイル型の磁気センサ10の構成とされている。
【0043】
この第1実施形態では、5層構造のプリント配線回路基板として、従来、標準的に使われているガラスエポキシ系樹脂のプリント基板材料のFR4に比較して、誘電率および周波数分散が比較的に小さく高周波特性が優れているPPE(ポリフェニレンエーテル)樹脂で0.2[mm]厚みの誘電体層12、14と、それぞれCuで厚み18[μm]の第1および第2表面導体層11、15並びにCuで厚み35[μm]の内部導体層13からなる基板を使用している。
【0044】
このシールディドループコイル型の磁気センサ10は、シールディドループコイル100中に、第1〜第5層11〜15を貫通する開口16を有している。
【0045】
なお、開口16は、後述するように、複素透磁率を測定しようとする磁性薄膜試料挿入用の開口として設けているので、磁性薄膜試料挿入用の開口が不要な磁気センサとして使用する場合には、第2、第4層の誘電体層12、14には設ける必要はない。すなわち、この発明の磁気センサとしては、貫通する開口16の不要な形状も採りうる。
【0046】
図5は、貫通する開口16の不要な第2実施形態の磁気センサ10Aの構成を示している。なお、この磁気センサ10Aの構成は、開口16が存在しない以外は、図1〜図4に示す第1実施形態の磁気センサ10と同一の構成である。
【0047】
図1〜図4に示す第1実施形態では、シールディドループコイル100を構成する開口16の周囲に、周上の同一位置にギャップ18a、18bを有する1ターンのループ状のグランド線路22、24が、第1層(第1導体表面層)11と第5層(第2導体表面層)15に対向して形成されている。
【0048】
さらに、1ターンのループ状のグランド線路22、24の中央から外方に延びる出力リード部104を構成するグランド線路26、28が形成されている。
【0049】
図6にも示すように、一端側がループ状のグランド線路22、24の中央部に接続されるこのグランド線路26、28の他端側は、同軸線40と50Ω系で接続するために、徐々にパターン幅が広げられたU字状のグランド線路36とされている。この徐々にパターン幅が広げられる部分、換言すれば、前記U字状(2本の縦線部と、この2本の縦線部の一端側を接続する略円弧状部からなる形状、袖状ともいう。)のグランド線路36の略円弧状部のグランド線路上に、この第1実施形態の磁気センサ10では、第1表面導体層11と第2表面導体層15の間に前記グランド線路に沿ってそれぞれ3個のビア62、64が、磁気センサ10の長さ方向の軸(信号線路34(たとえば、図3参照)の延長方向)に対称に形成されている。
【0050】
さらに第3導体層13には、一端側がビア30を介して第1導体層11と第5導体層15のループ状のグランド線路22、24のギャップ端の近くに接続され、その一端側がギャップ18a、18bの部分を延び、さらにループ状のグランド線路22、24の対向面の間を延びて略半ターンのループ状の信号線路32が形成され、ストリップ線路となっている。
【0051】
略半ターンのループ状の信号線路32の他端側が、外方に延びるグランド線路26、28の対向面の間を延び、出力リード部104を構成する信号線路34の一端側に接続され、ストリップ線路となっている。
【0052】
この信号線路34の他端側は、図6に示した同軸線40の信号線電極42と半田付け等で接続するための切欠ビア44に接続されている。
【0053】
ここで、同軸線40は、特性インピーダンスが50Ω、外部導体50がCuのパイプ、誘電体がポリテトラフルオロエチレン製の樹脂、信号線電極42となる中心導体がCuの単線または撚線の、いわゆるセミリジッドケーブルを使用している。
【0054】
なお、図6に示す、磁気センサ10の切欠ビア44と袖状のグランド線路36に対する同軸線40の高周波伝送線接続構造は、損失が少なく、かつインピーダンス整合のきわめて良好な接続であり(接続部で、50±1[Ω]以内を容易に実現することができる。)、この出願の発明者の一部が、特願2002−56400号明細書で提案した一例を示している。
【0055】
この高周波伝送線接続構造において、袖状のグランド線路36間の間隙に同軸線40の一端側の外部導体50を挿入して外部導体50と袖状のグランド線路36とを半田52(好ましくは、外部導体50の両側の上下、合計4箇所)で接続するとともに、電極(同軸線の心線)42と切欠ビア44とを半田で接続する。
【0056】
なお、同軸線40の他端側は、SMA型の同軸コネクタ58に接続される。同軸線40および同軸コネクタ58が接続された磁気センサ10、10Aを(後述する磁気センサ10B〜10Gについても)磁気センサ組立体60という。
【0057】
ここで、この発明の根幹に係わるシールディドループコイル型磁気センサ10の全周波数領域に渡る物理特性の振舞いを、正しく記述する電気的マクロモデルについて説明する。なお、この第1実施形態の磁気センサ10において、シールディドループコイル100は、図3を参照して説明すれば、開口16と、ギャップ18a、18bを有する1ターンのループ状のグランド線路22、24と、このグランド線路22、24にビア30を介して電気的に接続されている略半ターンのループ状の信号線路32と、これら開口16、ギャップ18a、18b、グランド線路22、24、信号線路32がパターンとして形成されている部分の誘電体層12、14とから構成されている。
【0058】
図7は、10[GHz]以上の周波数まで応答する試作した磁気センサ10の出力リード部104の一部が接続されたシールディドループコイル100の模式図である。シールディドループコイル100のサイズは、外部が3.6[mm]×6.8[mm](外周長20.8[mm])の長方形、内部が1.8[mm]×4.8[mm](内周長13.2[mm])の長方形形状となっており、上部に0.5[mm]のギャップ18(18a、18b)が設けられている。
【0059】
この場合、トリプレート構造の第1表面導体層11と第2表面導体層15のCuのグランド線路22、24は、グランド電極であり、厚さは上述したように18[μm]である。中間の内部導体層13の略半ターンのループ状の信号線路32は、信号電極面であり、この信号電極面の信号線路32は、この信号線路32を上下に挟むグランド線路22、24とで50Ωのストリップ線路を形成して出力リード部104に接続されている。
【0060】
グランド線路22、24の導体は、紙面に垂直に鎖交する外部磁界に対して各々1ターンのループコイルとして作用し、コイル上部の間隙18の間にはファラデーの法則に従った誘導起電力が発生する。
【0061】
第1表面導体層11と第2表面導体層15で並列に接続されたグランド線路22、24を1ターンのコイルとしてみたときのインダクタンスLの値は、物理的形状とサイズで規定されて決定される。
【0062】
また、コイル上部の0.5[mm]の間隙であるギャップ18には、グランド線路22、24の電極端部22xと22y、24xと24y同士が対向した時に形成される容量と、同一平面上に広がりを持った電極(電極端部22xと22y、24xと24y近傍のグランド線路22、24同士)間に形成される容量を合成した容量C、すなわちギャップ18a、18bを間にして対向する1ターンのループ状のグランド線路22、24の端側電極の間で高周波的に形成される合成容量をCとするとき、ギャップ18を間にして対向する電極間で高周波的に形成される合成容量Cが形成される。この合成容量Cの値も物理的形状とサイズで一義的に決まる値である。
【0063】
一方、グランド線路22、24と信号線路32は、ビア30を介して、図7中、ギャップ18の右傍で接続されているため、ギャップ18間に発生した誘起電圧は、インダクタンスLと並列に接続された容量Cの合成インピーダンスを経由して50Ωの伝送線路である出力リード部104に接続され伝送され(ループアンテナとして機能するシールディドループコイル100をデバイスとしてみたとき、デバイス内にグランド線路22、24と信号線路32で形成されるストリップ線路と、出力リード部104のストリップ線路を経由して、このデバイスの外に取り出され)、最終的には伝送線路の固有インピーダンス50Ωに整合して検出される。具体的には、出力リード部104から接続部102および同軸線40を通じて50Ωの終端器に接続され、その終端器の端子間電圧として検出される。
【0064】
図8は、上述した作用を忠実にモデル化したマクロモデルMMである。シールディドループコイル100が存在する周囲の空間に振幅一定で均一に分布する角周波数ω[rad/sec]の高周波磁界h[A/m]は、インダクタンスLへの変換係数をk[m]として誘起電圧k・ωL・hを発生する。
【0065】
磁気センサ10のデバイス中に形成された各種ストリップ線路を含め、理想的な伝送線路Tを経由して完全に整合されて検出される電圧信号は、より簡略した電気的マクロモデルMMとして図9に示すように表すことができる。
【0066】
このとき、抵抗値R=50Ωの終端抵抗器に発生する検出電圧Vは、並列に接続されたインダクタンスLと容量Cとの合成インピーダンスをZsとするとき、次の(1)式で表される。
【0067】
V=k・ωL・h×R/(Zs+R)
=k・ωL・h×50/(Zs+50)
=50(1−ωCL)kωLh/{jωL+50(1−ωCL)}… (1)
ここで、合成容量CがC=3.0×10−15[F]=3[fF]、インダクタンスLがL=3.9×10−9[H]=3.9[nH]として、(1)式を計算する。
【0068】
図10は、検出電圧Vの計算値(一点鎖線)と、磁気センサ10のネットワークアナライザによるSパラメータの正方向伝達係数S21の実測値(実線)の利得特性を示している。周波数100MHzから9GHzまでの全ての周波数で観測値である実測値(実線)と上記(1)式による予測値である計算値(一点鎖線)が、良く一致していることが確認できる。
【0069】
容量CとインダクタンスLの値についても、Maxwellの方程式を有限要素法を使って解析するソフトウエアから求めた値とも近い値であった。積ωLが50Ωより小さいときには、検出電圧Voは、k・ωL・hと周波数に比例して利得が増大し、純粋にコイルと見なされる特性である(図10の例では、低周波から1[GHz]近傍までの特性)。
【0070】
一方、積ωLが50Ωより大きい領域では、50・k・hと周波数に依存せず一定の利得を示す(4GHz近傍〜10GHz近傍)。そして、さらに、高い周波数でωCL=1に近づくと緩やかに利得は下がる。
【0071】
図10に示すように、単純にLCの並列共振周波数(fpとする。)を計算するとfp=46GHzとなるが、実測値ではそれよりも低周波の約15GHzに鋭い共振状の利得の落ち込みが観測される。
【0072】
この周波数(ノッチ周波数fnという。)15GHzの自由空間での波長を調べて見ると、ちょうど、これは図7に示したシールディドループコイル100の外周長(最外周長)20.8[mm])の長さに略一致する値となっており、低インピーダンスの電圧信号源kωLhと出力リード部104までの間のシールディドループコイル100の物理長に対応しているので、現象的に妥当な値であるといえる。
【0073】
以上、図7例のシールディドループコイル100では、比較的物理形状が大きい場合を扱った。それにも拘わらず9GHzを超える周波数特性を示し、最高周波数を制限するものはコイルの最外周の長さ(最外周長)であることが分かった。もちろん、これはLC並列共振周波数がより高い周波数にあるためである。
【0074】
一方、さらなる高周波特性を得るためには、コイルサイズを小さくしてコイルの最外周の長さの制限を解放してやれば良い。
【0075】
例えばセラミックとリソグラフィー技術、またはSi半導体プロセス技術を適用して、一辺が1mm程度以下のシールディドループコイルを作ることができる。そのとき、物理的サイズに比例してLは小さくできるが、Cは単純には減らすことができなくなって、LC並列共振周波数fpがコイルの最大周波数をリミットすることになる。
【0076】
以上示した通り、シールディドループコイル100からなる磁気センサ10の電気的マクロモデルMMと物理的特性が初めて明らかとなり、かつ理想的なモデルMMにおける磁気センサ素子の特性を制限する条件が明らかになった。
【0077】
上記のように作用する第1実施形態のトリプレート型のストリップ線路構造を有する磁気センサ10は、LCの並列共振周波数fpがfp≧1[GHz]以上の高周波の領域で他の原理の磁気センサより優れた特性を発揮でき、かつノッチ周波数fnに関しfn≧6[GHz]以上が有効であることを考慮すると、第1層(第1表面導体層)11と第5層(第2表面導体層)15のそれぞれの導体層に形成された1ターンのループ状のグランド線路22、24を並列接続したインダクタンスをLとし、ギャップ18a、18bを有する半ターン側のグランド線路22、24のギャップ18a、18bを間にして対向する電極間で高周波的に形成される合成容量をCとするとき、インダクタンスLと合成容量との積LCがLC=2.5×10−20以下とされ、かつ1ターンのループ状のグランド線路22、24の上述した最外周長が50[mm]以下とされていることが好ましい。なお、図11は、並列共振周波数fpと積LCとの関係を示している。
【0078】
1ターンのループ状のグランド線路22、24は、長方形、5角形以上の多角形、円形あるいは楕円形等に形成され、ギャップ18a、18bの形成位置は、1ターンのループ状のグランド線路22、24の中央から外方に延びる出力リード部104のグランド線路26、28が形成された半周側の反対の半周側の周上のいずれかの位置、たとえば、中央位置(図1に示す位置)、長方形であれば上辺の位置等とする。
【0079】
第1実施形態の磁気センサ10についてさらに補足的な説明を加える。
【0080】
図3に示すように、内部導体層13に形成されている略半ターンのループ状の信号線路32および直線状の信号線路34は、線路幅およびコーナー部特性インピーダンス50Ωとなるように隅を切り落として設計し、かつ、同軸線40との高周波接続部102は、上述したように、特願2002−56400号明細書で開示した技術(図6参照)で設計し、基板作成プロセスを管理して加工した結果、50±0.5[Ω]以下にインピーダンス制御された線路で信号を伝搬でき、たとえばネットワークアナライザーの第2ポートに入力され、伝送線路の特性インピーダンスに50Ωにマッチングされた無反射終端された検波器(図示省略)に接続される。
【0081】
従来は、シールディドループコイルより発生した信号を前記検出器まで伝搬する際、伝送線路上に存在するインピーダンスが乱れている点で生じる反射と、物理的に短絡終端としての作用を持つコイル接続点(ビア30の形成されている点)における反射とが多重干渉を起こし、大小の多数の異常共振が発生して、結果的に利得が乱れるためにそれが磁気センサの帯域制限となっていることが十分には認識されていなかった。
【0082】
前記の実施形態のように、50±0.5[Ω]以下に制御できれば、伝送線路上の信号の乱れが発生せず、1ターンのループコイル(1ターンコイル)部の理論的特性がそのまま観測された。センサの利得特性誤差をどこまで許容するかにも依存するが、インピーダンス誤差は50±5[Ω]以内に制限することが望ましいことが分かった。
【0083】
さらに、これらインピーダンスの乱れに原因するものに加え、従来は純粋なコイルを仮定し、周波数に比例して電圧利得が増大するのが理想と考えられ、利得が飽和気味に現れる特性を周波数の限界と捉える解釈もあったが、フォトリソグラフィー技術を使って磁気センサ10の形状は再現性良く製作できるので、上記周波数感度特性を1dB以内で再現できる。
【0084】
1ターンのループコイルとして働くグランド線路22、24の線幅に関しては、検出する磁界を乱さないようにするにはなるべく狭い方が良い。一方、グランド線路22、24のインピーダンスを設計の50Ωに一致するようにし、かつ高周波電磁界のシールド特性を保つためにはなるべく広い方が良い。
【0085】
実用的には、グランド線路22、24並びにグランド線路26、28は、信号線路32、34の線路幅の8倍以下で2倍以上とするように選ぶと良い結果が得られた。
【0086】
なお、たとえば図4に示すように、有限の線幅を持ったコイルであるグランド線路22、24に対して、実際に検出される磁界の磁束密度は、コイルであるグランド線路22、24の凡そ中心線66で囲まれた範囲が誘起電圧Vに寄与していることが実験的に確かめられている。この中心線66の内側の面積をコイル有効面積という。
【0087】
また図12に再掲するように、第1実施形態のシールディドループコイル100は、上部中心にギャップ18を持つループコイルが電気的に左右対称な形状をしているため、両端に矢印を有する矢線で示した電界に対してモノポール・アンテナとして作用する左右の電極部72、73では、実質的に電界誘起電流または電圧信号が同一で逆向きとなるような信号が生じるので、ストリップ線路に伝搬される磁界信号には重畳される高周波電界誘起信号が互いにキャンセルして、出力リード部104に導出される出力信号には電界信号による誤差は小さく抑えられる特性を示す。その結果、進行波モードの電磁界に対しても、磁界成分の大きさだけを選択的に超高周波まで正しく計測できる。電気的構造の左右対称のバランスが厳密には確保できなかった場合でも、その周波数応答は、周波数の2乗に比例した特性を示すので、磁界信号と同程度の大きさになる周波数より周波数以下では急激に減衰するので、実質的に無視できる大きさの誤差とすることができる。
【0088】
この特性は、後述する透磁率測定装置の高精度化と広帯域化の実現に決定的に寄与する作用として働く。
【0089】
なお、シールディドループコイル100の形状としては、図1(図12)に示した、磁気センサ10の長軸に対して左右対称な形状ではなく、図13に示すように、ギャップ18が長辺の端にあるシールディドループコイル100x、図14に示すように、円状のシールディドループコイル100y、さらには、図15に示すように、円周の横側にあるシールディドループコイル100zとすることができる。これらの場合には、略半ターンのループ状の信号線路32は、図13例では約2/3ターンの信号線路32x、図15例では約1/4ターンの信号線路32zになる。
【0090】
図16、図17、図18は、それぞれ、第3、第4、第5実施形態の磁気センサ10B、10C、10Dの構成を示す斜視図である。なお、以下に参照する図面において、図1〜図15に示したものと対応するものには同一の符号を付け、その詳細な説明は省略する。
【0091】
図16の磁気センサ10Bでは、シールディドループコイル100Bを構成する1ターンのループ状のグランド線路22、24の周囲の4隅部を接続するビア(グランドビア)120と、出力リード部104のグランド線路22、24の両端4箇所を接続するビア(グランドビア)122を形成している。
【0092】
図17のシールディドループコイル100Cを有する磁気センサ10Cでは、ビア120、122に加えて、さらに、出力リード部104のグランド線路26、28の軸に沿って対称に4個のビア(グランドビア)124を形成している。
【0093】
図18のシールディドループコイル100Dを有する磁気センサ10Dでは、さらに、略半ターンのループ状の信号線路32に沿っておよび開口16の4隅にビア(グランドビア)126を形成している。
【0094】
ビア120、122、124、126が形成されていないときには、上下のグランド線路22(24)、26(28)の対向面間が独立電極として電磁界に作用することによって生じる不要モードが発生し、10GHz近傍では感度特性に緩やかな周波数依存性が見られる。
【0095】
ビア120、122、124、126および袖部36のビア62を形成することによって、上下全てのグランド電極が電気的に強く結合されるため、独立電極的挙動は抑圧され、結果的に不要モードの発生が抑えられて高周波まで平坦な応答特性が得られる。
【0096】
特に、3GHz以上の周波数帯域では、センサ感度がなだらかに最大数dB程度落ち込む場合があるが、図16、図17に示す構造のビア120、122、124を形成することによって完全に感度、すなわち誘起電圧Vの落ち込みを避けることができる。
【0097】
図18に示すように、1ターンのループ状のグランド線路22、24の内側、すなわちコイル内側にもビア126を形成した場合には、図16例の感度曲線とほとんど差異が認められなかった。
【0098】
よって、実用的には、1ターンのループ状のグランド線路22、24の内側または外側、すなわちコイルの内側または外側だけにビアを設ければ理想的な感度特性が実現できる。
【0099】
なお、ビア120、124等を形成する目的は、不要モードを抑圧して理想的な磁気センサ10の感度特性を得ることにあるが、信号線路34等の脇にグランド短絡線を形成することになるので、副次的には、電界シールド効果も得られる可能性がある。
【0100】
図19、図20は、第6、第7実施形態の磁気センサ10E、10Fの内部導体層13の正面図を示している。
【0101】
図19例のシールディドループコイル100Eの磁気センサ10Eでは、略半ターンのループ状の信号線路32および出力リード部104の信号線路34をそれぞれ両側から沿うようにグランドビアとグランドビアとを接続するグランド導体線路132、134を設けている。
【0102】
また、図20例のシールディドループコイル100Fの磁気センサ10Fでは、略半ターンのループ状の信号線路32および出力リード部104の信号線路34の片側に沿うようにグランド導体線路132を設けるとともに、信号線路32のもう片側に沿いかつ開口16の周囲に沿うグランド導体線路136とシールディドループコイル100Fの全外周に沿わせるためのグランド導体線路138とを設けている。
【0103】
これら図19例、図20例の磁気センサ10E、10Fにおいて、グランド導体線路132、134、136、138が側に存在する信号線路32、34では、信号線とグランドとの間に分布容量が発生するため、磁気センサ10A〜10Dと同じ信号線幅では特性インピーダンスが50Ωより低下してしまう。
【0104】
このインピーダンスの低下を避けるため、図19例、図20例の磁気センサ10E、10Fでは、磁気センサ全体の寸法を変えることなく、信号線路32、34の線幅を細くすることによって調節した。
【0105】
図19例、図20例のように、信号線路32、34の両側に沿うグランド導体線路132、134、136、138を設ける前には、高周波電磁界の信号が−30[dB]程度漏れていたが、設けた後には、結果として、信号線路32、34をグランドパターンで囲んだ後には、グランド電極のシールド効果が現れ、低周波側でさらに−5[dB]、GHz帯ではさらに−20[dB]程度の効果が観測された。
【0106】
図19例、図20例の伝送線路構造を別の視点から見ると、グランディドコプレナー線路とも見なせる。すなわち、信号線路32、34の線幅は変えずに、内部導体層13のグランド導体線路132、134、136、138を信号線路32、34に近づけ、さらに、第1表面導体層11と第2表面導体層15のグランド線路22、24、26、28の線幅を狭くしてインピーダンスを50[Ω]に整合させることもできる。
【0107】
このときには、実質的なコイル線幅を物理的に狭くできるため、検出する磁界エリアを局所的に特定したり、コイル自身の形状を小さくすることに、威力を発揮させることができる。
【0108】
もともと信号線路32、34の線幅より数倍以上幅が広いグランド線路22、24、26、28が使われていることに加えて、グランド線路22、24、26、28の導体厚さは、スキンデプスより厚く、グランド線路22、24、26、28間に挟まれた信号線路32、34に直接侵入する電磁界強度は外部電磁界の大きさに比べてかなり小さい。
【0109】
事実、Maxwellの方程式を厳密に解く方式の電磁界シミュレーション解析を行った結果では、−30[dB]以下となることが分かり実験結果の値と一致している。
【0110】
そのため、通常のトリプレート構造の伝送線路を使用するアプリケーションでは、現実には、内部導体層13に一定間隔で点線状的にビアを設けただけではシールド効果は小さい。
【0111】
図19、図20の第6、第7実施形態の磁気センサ10E、10Fにおけるグランド線路22、24、26、28(たとえば、図18等参照)のシールド効果は、点線状にビアを設けた磁気センサに比較して大きいものの、グランド線路22、24、26、28による本来のシールド効果に比べてそれ程大きいものではない。
【0112】
ただし、以下に説明する透磁率測定装置のセンサに応用するときのように、高度なシールド特性を要求される場合には、グランド線路22、24、26、28のシールド効果も大きい。
【0113】
図21は、この発明の第8実施形態に係る透磁率測定装置200の構成を示すブロック図である。
【0114】
この透磁率測定装置200は、試料としての磁性薄膜材料等の磁性試料202の複素透磁率を測定する装置である。
【0115】
この透磁率測定装置200は、磁性試料202が水平方向から挿入配置される均一高周波磁界発生装置として機能し詳細構成を後述する側面開放型TEMセル204と、磁性試料202が配置された側面開放型TEMセル204を内部の空間に保持して直流飽和磁界と非飽和磁界を磁性試料202に印加するソレノイドコイル205とを備えている。ソレノイドコイル205は、透磁率を測定するときには左側に移動して、側面開放型TEMセル204がソレノイドコイル205の中心に配置されるように設定して使用する。
【0116】
ソレノイドコイル205には、パーソナルコンピュータ208からGPIB(General Purpose Interface Bus)インタフェースを通じて電流量が制御される直流電源210から所定の電流が供給される。パーソナルコンピュータ208は、図示しないGPIBインタフェースを備えるとともに、モニタ192、キーボード194、マウス196に接続されている。
【0117】
側面開放型TEMセル204の入力端216には、パーソナルコンピュータ208によりGPIBインタフェースを通じて動作が制御されるネットワークアナライザ212のポートP1から50Ωの同軸ケーブル214を通じて一定高周波信号の入射波E1iが供給される。
【0118】
この側面開放型TEMセル204の出力端218は、50Ωの終端器228で終端されている。側面開放型TEMセル204の出力端218が50Ωの終端器228で終端されることで、均一磁界電界発生装置として機能するようになる。
【0119】
図22は、この透磁率測定装置200に適用される磁気センサ組立体220の構成を示している。この磁気センサ組立体220は、シールディドループコイル100(これまで説明した図1のシールディドループコイル100、その他のシールディドループコイル100B〜100G等を代表する。)を有する磁気センサ10(同様に図1の磁気センサ10、その他の磁気センサ10B〜10G等を代表する。)がL字形状を有する構成とされている。
【0120】
図23に示すように、この磁気センサ組立体220は、シールディドループコイル100の部分が、側面開放型TEMセル204の底面に形成されているスリット206から挿入される。
【0121】
挿入された後、シールディドループコイル100の開口16に、ポリテトラフルオロエチレン製等の樹脂製のL型の試料ホルダ222が、側面開放型TEMセル204の側面の両側から挿入して固定される。
【0122】
この試料ホルダ222の凹状のチャネル部223に載せられて水平方向から磁性試料202が挿入され、開口16を横切って配置されることで、磁性材料20の複素透磁率の測定可能な状態とされる。
【0123】
測定結果、すなわち、上述の誘起電圧Vは、同軸線40および同軸ケーブル224を介してネットワークアナライザ212のポートP2に、出力側の伝達波E2rとして供給される。
【0124】
ネットワークアナライザ212は、入射波E1iと伝達波E2rとから正方向伝達係数S21(Sパラメータ)を計算して、パーソナルコンピュータ208に送る。また、後述するようにネットワークアナライザ212は、入力側の入射波E1iと反射波E1rとから入射端反射係数S11を計算し、さらには、出力側の入射波E2iと反射波E2rとから出力端反射係数S22を計算してパーソナルコンピュータ208に送る。
【0125】
ここで、図21の透磁率測定装置200のさらに詳細な動作説明(透磁率の計算の説明)に先立ち、この透磁率測定装置200の均一電界磁界発生装置等として利用される各種TEMセルについて詳細に説明する。
【0126】
図24は、切り出し加工により作製された第9実施形態の一体型の側面開放型TEMセル204の構成を示している。
【0127】
図25は、第10実施形態に係る分割型の側面開放型TEMセル204Aの斜視構成を示している。
【0128】
図26は、第10実施形態に係る分割型の側面開放型TEMセル204Aの分解斜視構成を示している。
【0129】
図24に示す一体型の側面開放型TEMセル204は、直方体の導体(たとえば、幅30mm、高さ19mm長さが51.7mmのCuの直方体ブロック)に、長さ方向側面から垂直方向に長方形四隅を落とした横長八角形(上下辺の長さ20[mm]、4つの傾斜辺の長さ13.5[mm]、両端面の辺の長さ3[mm])の内側断面を持つ空洞を切削して上下面グランド電極230、232と、両端面グランド電極234、236からなる高周波空洞のグランド胴体を形成したものである。
【0130】
図25、図26に示す分割型の側面開放型TEMセル204Aは、外観形状は、一体型の側面開放TEMセル204と同様であり、長さ方向側面から垂直方向に長方形四隅を落とした横長八角形の内側断面を持つ空洞を形成するための、上下面グランド電極230A、232Aと、両端面グランド電極234A、236Aからなる外観が直方体形状の分解・組立可能な高周波空洞のグランド胴体を形成したものである。
【0131】
図24の一体型の側面開放型TEMセル204および図25の分割型の側面開放型TEMセル204において、両端面グランド電極234、234A、236、236Aの中心にはパネル取り付け型の第1および第2の高周波同軸コネクタ238、240が取り付けるための深さ3.35mmの穴が明けられ、その穴に高周波コネクタ238、240が取り付けられている、この穴の深さは、センタピン242をささえるポリテトラフルオロエチレンなどの樹脂製のガイド252の長さと一致させている。
【0132】
高周波同軸コネクタ238、240のそれぞれのセンタピン242の対向する電極間には、幅W2が上下面グランド電極230、230A、232、232Aの幅W1の0.7倍(W2≦0.7×W1:図27の模式図参照)より狭い長方形形状の四隅を落とした横長八角形(板厚が1mmで、横幅が16mm、長さが45mmの長方形Cu板の四隅を長手に12.5mm、幅方向に7.17mmだけ切った八角形)の板状の高周波信号電極250が、上下面グランド電極230、230A、232、232Aと平行して配されている。
【0133】
この高周波信号電極250とセンタピン242との接続部は、完全に平面となるように仕上げた。その結果、トリプレート構造の伝送線路を持つ高周波空洞のトリプレート構造の伝送線路の全長に渡って特性インピーダンスが50Ωになっている。
【0134】
この構造の高周波空洞は、通常のTEMセルではグランド電極が全ての側面がグランド電極で覆われているのに対して両側面が開放されている側面開放型TEMセルである。
【0135】
このように構成される側面開放型TEMセル204、204Aは、高周波信号電極250と上下面のグランド電極230、230A、232、232Aとが、高周波コネクタ238、240間でトリプレート構造の伝送線路を形成している。
【0136】
この場合、図28(図27のYY線一部省略断面)に示すように、板状の高周波信号電極250の、高周波同軸コネクタ240のセンターピン242との接続断面の横幅W3は板状の高周波電極250の板厚(信号線板の厚さ)t1の3倍以内(W3≦3×t1)の値とされ、トリプレート構造の伝送線路の全長に渡って特性インピーダンスが50[Ω]に制御されている。
【0137】
なお、図28中、幅W3は、板状の高周波信号電極250のセンタピン242への取付面の幅である。
【0138】
センタピン242は、図26を参照して説明すれば、樹脂ガイド252に嵌められた状態で、両端面グランド電極234A、236A内の開口、および同軸コネクタ238、240の開口内に嵌められて固定される。
【0139】
図26に示す分割型の側面開放型TEMセル204Aを組み立てる際には、両端に同軸コネクタ238、240が固定された両端面グランド電極234A、236Aのセンタピン242間に、板状の高周波信号電極250が導電性接着剤で固定され、上下面グランド電極230A、232Aが、樹脂製のねじ252でねじ穴のクリアランスを利用して上下位置、すなわち電極間隔が調整されて両端面グランド電極234A、236Aに取り付けられる。
【0140】
このようにして組み立てられた分割型の側面開放型TEMセル204Aは、もちろん、図24に示した一体型の側面開放型TEMセル204も、特性インピーダンスは、全長に渡って50±1[Ω]以内にインピーダンスが制御されている。
【0141】
側面開放型TEMセル204、204Aの形状は設計の自由度が大きいが、できるだけ高周波まで良好な特性を保つためには、信号線幅W2は空洞グランド幅W1の0.7倍以内、信号線電極250の板厚は、空洞長に応じ撓みによるインピーダンス誤差が5Ω以下となる値以上とし、上述したように、センタピン242と接続される信号線端面の横幅W3は板厚t1の3倍以内とすることが望ましい。空洞長については特別に制限はない。ただし、均一電磁界を広い領域で利用したい場合には長めの方が有利なのは言うまでもない。
【0142】
以上の説明では、空洞を上面から見たとき長方形になるグランドの電極形状を想定してきた。しかし、伝送線路の空洞としては同軸コネクタが接続されている部分まで幅が広いグランドは必要ない。従って、通常のTEMセル同様、同軸コネクタ238、240から中心に向かってテーパー状になるように四隅を隅きりしたグランド電極の形状に変更してもよい。
【0143】
以上のように構成される側面開放型TEMセル204、204Aでは、同軸モードの電磁界分布が、側面を開放にしたトリプレート空洞への電磁界分布に変換されるだけなので、モード変換は比較的スムーズである。その結果ダブレット構造の伝送線路で見られるような超高周波領域での挿入損失は大きくなく、10GHzでも0.5[dB]以下の通過損失であった。
【0144】
図29は、側面開放型TEMセル204、204A単体の入力端反射係数S11の特性測定図である。9GHzまで−30[dB]以下の値を示しており、挿入損失の値と組合わせて考えると空洞内に発生する高周波電磁界の強度は、周波数に依存しないで数%以内で一定に保つことができる。
【0145】
以上のような構造および高周波特性を有する側面開放型TEMセル204、204Aを50Ωの終端器228で終端して、上述した図21の透磁率測定装置200に好適に使用することができる。
【0146】
なお、この透磁率測定装置200では、これら、50Ωの終端器228で終端して、均一磁界電界発生装置として使用するトリプレート構造の側面開放型TEMセル204、204Aに代えて、図30に示す第11実施形態のダブレット構造の側面開放型TEMセル262を使用することもできる。
【0147】
このダブレット構造の側面開放型TEMセル262は、板状の高周波信号電極264の端部と下面グランド電極266の端部とが端面268で短絡されている定在波モード型の側面開放型TEMセル262である。
【0148】
次に、上述したトリプレート構造の側面開放型TEMセル204、204Aおよびダブレット構造の側面開放型TEMセル262をそれぞれ均一電磁界発生装置として使用する図21に示した透磁率測定装置200のさらに詳細な動作を説明(透磁率の計算等の説明)する。
図21例の透磁率測定装置200では、特性インピーダンス50Ωの平行伝送線路構造の高周波空洞(TEMセル204、204AまたはTEMセル262)の一端側の高周波同軸コネクタ238を通じて高周波信号が入射波E1iとしてネットワークアナライザ212から入力される。
【0149】
この場合、高周波空洞(TEMセル204、204AまたはTEMセル262)の他端側を短絡するか(ダブレット構造の側面開放型TEMセル262の場合)終端抵抗で整合して(トリプレート構造の側面開放型TEMセル204、204Aの場合)空洞中に高周波信号の進行方向に直角かつ平行伝送線路に対して平行の、すなわち、後述するように開口16に挿入されている磁性試料202の軸方向に均一な高周波磁界を発生させる。
【0150】
まず、トリプレート構造の側面開放型TEMセル204、204Aが高周波均一電磁界発生装置として機能している場合について説明する。
【0151】
この場合、ネットワークアナライザ212のポートP1から一定の高周波電圧である入射波E1iが磁気センサ組立体202の1ターンコイル部を収容した側面開放型TEMセル204,204Aの入力端216に供給される。
【0152】
このとき、側面開放型TEMセル204,204Aの空洞の上半分または下半分(磁気センサ組立体220が挿入されている側の空洞)の中心付近(下半分の中心付近は、磁気センサ10の図12に示す開口16の中心点400付近に略等しい。)では、電界は信号導体である高周波信号電極250から上下面グランド電極230、232に向けて高周波信号の伝搬方向に対して垂直向き平行に均一に発生し(図12参照)、一方、磁界は高周波信号の伝搬方向および電界方向に互いに直交する方向、すなわち高周波信号電極250と上下面グランド電極230、232に平行で進行方向に直角な向きで平行に均一に発生する。
【0153】
入力した高周波電圧の振幅に比例する磁界と電界の電磁界強度の均一な発生範囲(向きが互いに直交し強度が一定の範囲)は、この側面開放型TEMセル204、204Aの下半分の中心付近では、図4を参照して説明した中心線66の内側の有効面積と磁性試料202の体積を十分に囲える立体範囲となっている。
【0154】
このトリプレート構造の側面開放型TEMセル204、204Aが高周波均一電磁界発生装置として機能している透磁率測定装置200は、磁性試料202に印加される高周波磁界の均一性が高く、平均電力が一定でかつ同じ入力では強い磁界が発生するため、非常に優れた装置となっている。
【0155】
側面開放型TEMセル204、262中に発生した高周波磁界中に、磁気センサ10のシールディドループコイル100の開口16が高周波磁界と直交しかつギャップ18が平行伝送線路を構成する高周波伝送線路である高周波信号電極250、264に対向するように配置されている。そして、開口16中に磁性試料202を水平に挿入配置する。
【0156】
すなわち、トリプレート構造の側面開放型TEMセル204(204と204Aを代表して204という。)の左端のSMAコネクタである同軸コネクタ238が設置されたトリプレート構造の特性インピーダンスが50Ωの平行状伝送線路構造の空洞には、ほぼ一定の高周波信号がネットワークアナライザ212から入力され、もう一端のSMAコネクタである同軸コネクタ240の出力は50Ωの終端器228で整合が採られている。
【0157】
この場合、高周波信号源から空洞を経由して終端器228まで全て、ほぼ50Ωにインピーダンス整合が採られているため、空洞中にはTEMモードの進行波が周波数に依存することなく発生されている。すなわち、空洞中に進行方向に直角の方向に高周波磁界が発生されている。この高周波磁界は、入力電圧に比例した振幅の均一高周波磁界である。
【0158】
そして、高周波磁界の中心には、高周波磁界は垂直の向きで、かつ高周波進行方向に平行に磁気センサ10が設置されている。
【0159】
磁気センサ10の開口16の両側にはポリテトラフルオロエチレン製の試料ホルダ222が設置されており、開口16を貫く形に試料ホルダ222上には磁性試料202が水平に設置されている。
【0160】
次に、高周波信号の進行方向と同じ向きに、パーソナルコンピュータ210により電流値が制御される直流電源210から電流が供給されるソレノイドコイル205により外部直流磁界の大きさを変えて印加する。
【0161】
このとき、磁性試料202の磁気飽和時と非飽和時における磁気センサ10の誘起電圧V0、すなわち正方向伝達係数S21と磁気センサ10のインピーダンス、すなわち入力端反射係数S11と出力端反射係数S22をネットワークアナライザ212により測定して、磁性試料202の複素透磁率をパーソナルコンピュータ208により計算で求める。計算結果(測定結果)は、モニタ192上に表示される。
【0162】
すなわち、高周波フィクスチャである側面開放型TEMセル204の外側にはソレノイドコイル205が設置され、高周波進行方向と同一向きの外部直流磁界が印加できるようになっている。この外部直流磁界の大きさを変えて測定することで、磁性試料202の飽和時と非飽和時各々の磁気センサの誘起電圧である正方向伝達係数S21s、S21nと、磁気センサ10のインピーダンスZsとZnを複素数として測定する。
【0163】
このとき、開口16に挿入設置されている磁性試料202の複素比透磁率μrは、次の(2)式の計算式で求めることができる。
【0164】
μr=1+[S21n(Zn+50)/S21s(Zs+50)−1]/F…(2)
ここでFは、磁性試料202の高周波磁場の向きの断面積(磁性試料202は、扁平な直方体形状であるので、長手方向の軸と直交する方向の断面積(mとする。)のコイル内側断面積(開口16より大きく、グランド線路22、24の内側の面積、nとする。)に対する比(m/n)である。
【0165】
以上、トリプレート構造の空洞である側面開放型TEMセル204を使用した例で説明した。
【0166】
図30に示したダブレット構造の終端短絡の定在波モード型空洞である側面開放型TEMセル262を使用した場合には、2〜3GHz程度の周波数帯域までの透磁率を測定する透磁率測定装置を実現できる。
【0167】
これに対して、進行波モードの高周波電磁界を利用した側面開放型TEMセル204を使用する透磁率測定装置200の場合には、空洞内に定在波が立たないために広帯域であり、9GHz以上の高周波まで測定することができる。
【0168】
また、ダブレット構造の終端短絡型の定在波モード型空洞である側面開放型TEMセル262を使用した場合に比べると、トリプレート構造の側面開放型TEMセル204を使用したときの方が高周波磁界の空間的均一性が高かったほか、印加される高周波磁界強度もほとんど同じか、むしろ1GHz超では大幅に向上しており、側面開放型TEMセル204を進行波モードで使う透磁率測定装置200がより有利であることが分かる。
【0169】
図31は、図23に示した側面開放型TEMセル204の空洞の上側の上面グラウンド電極230に加工をして凹みを設けた形の第12実施形態の側面開放型TEMセル204Bの構成を示している。側面開放型TEMセル204の空洞に磁気センサ10を挿入すると、その場所のインピーダンスが約3.7Ω低下する。これは、負荷インピーダンスが小さい磁気センサ10は、基本的には空洞からのエネルギー散逸の作用をなすため、見掛上インピーダンスが下がり、容量性負荷が付いたことと同じになる。
【0170】
一方、上面グランド電極230の形状を加工して凹みを設けることは、電極間隔が広がって上半分の容量を低下させ、下半分の容量性インピーダンスの増大を補償し、総合的にインピーダンスをマッチングさせることとなる。
【0171】
この図31例のように上面グランド電極230を加工した側面開放型TEMセル204Bに磁気センサ10を挿入したときのインピーダンスを測定すると、0.5[Ω]以内で一定であった。
【0172】
図32は、この図32例の側面開放型TEMセル204Bの入射端反射係数S11の測定結果を示している。この場合においても、8GHzまでは全て−30[dB]以下であることが観測され、図30に示した理想的な状態の特性と変わらない特性が得られた。
【0173】
なお、このように、上面グランド電極230を単純に加工するだけではなく、予めインダクタンスを過剰気味に空洞を形成しておき、ポリテトラフルオロエチレンのような高周波特性の良い誘電体ブロックを、上面グランド電極230側に挿入配置することによっても、ローカルな容量調整が可能となり、マッチング特性が改善することが出来た。
【0174】
この方法は、磁気センサ10の挿入によって生じるインピーダンス分布の空間的非対称特性も容易に補償して改善する手法にも活用すると有効であることが分かった。
【0175】
透磁率を精度良く測定するには、できるだけ均一な高周波磁界を利用することが重要である。できるだけ均一な高周波磁界を発生できる位置は、側面開放型TEMセル204の空洞の下半分中央部分である。そこは同時に、高周波電界の電気力線が上下向平行の均一になる位置でもある。電気的に略左右対称に作られた磁気センサ10は、均一電界では高周波電界による影響が最小となり、高周波磁界信号だけを検出できる理想的なデバイスとして働く。
【0176】
従って、図24、図25に示したように、下面グランド電極232には電磁波進行方向に沿って磁気センサ10のシールディドループコイル100が挿入できる大きさの細いスリット206を穴加工し、図23、図31に示したように、磁気センサ10が挿入されたとき、開口16が下面グランド電極232の内面よりは上で、かつ信号電極250との正方向伝達係数(結合利得)S21が−10[dB]よりは小さい値となる程度に低い挿入位置することによって、側面開放型TEMセル204の空洞の周波数依存性を生じないようにすることができる。
【0177】
図21例の透磁率測定装置200を使用するとき、直流磁界を印加するソレノイドコイル205など電気的に空間境界(電気境界)を限定する物が、高周波フィクスチャである磁気センサ組立体220挿入された側面開放型TEMセル204を囲うことになる。
【0178】
そのような電気境界での反射は、空洞内モードに影響して小さな周波数依存性を生じることがあり、かつ、それが空洞の入出力ポート近傍での僅かのインピーダンス乱れが残っている場合には、反射電気長の差分で、利得または位相が急激に変化する特性につながることがあった。
【0179】
このときでも、図23等に示したように、物理的にシールディドループコイル100を空洞の中心に置くことによって、入力ポートと出力ポートの干渉が相殺されて透磁率測定の誤差を最小とすることができる。
【0180】
図33は、磁気センサ組立体220が挿入された側面開放型TEMセル204を囲う直流磁化印加用のソレノイドコイル205の内面に発泡ウレタンにカーボンを含浸させた電波吸収体300を貼り付けた透磁率測定装置の一部構成を示している。
【0181】
電波吸収体300が存在しない場合には、側面開放型TEMセル204から漏れ出た高周波電磁波は、ソレノイドコイル205の内面で反射した後、再び、側面開放型TEMセル204の空洞内に戻り異常共振モードを発生することがある。
【0182】
共振は急激な利得または位相の変化を伴い、僅かの観測条件の変化で測定データの誤差に繋がるため、測定した透磁率には共振周波数で雑音が増大して現れる。
【0183】
電波吸収体300を設置することによって、異常共振モードは小さくなり、かつ幅が大きく広がるため、測定誤差を著しく小さくすることができる。
【0184】
電波吸収体300に限らず、空洞開口から漏れでる高周波電波に対して、空洞外近傍に反射板を設けたり、電波干渉を使用したりしても、空洞外部境界で反射した空洞開口への高周波電磁波の反射戻り強度を抑えたり、または、反射波の位相を乱して、共振横モードが生じるのを抑えことができる。
【0185】
元々、空間への漏れ電波が少ない側面開放型TEMセル204を使った透磁率測定装置200では、このような手段を必要とする場合は少ないが、図31に示したダブレット構造の短絡型空洞である側面開放型TEMセル262を使う場合には、効果的である。
【0186】
なお、側面開放型TEMセル204、262を構成する部品中、空洞の内部表面には金メッキを施すことが好ましい。また、構成部品は、Cu以外に真鍮その他の金属を使用することができる。
【0187】
磁気センサ10等を形成する基板材料としては、上述したPPE基板の他、FR−4、ポリテトラフルオロエチレン基板、あるいはガラス、アルミナ、窒化アルミ等のセラミック基板、またはGaN、GaAs、Ipなどの半絶縁型半導体基板等を利用することが可能である。また、半田を用いている箇所は、導電性接着剤に代替することが可能である。
【0188】
以上では、高周波コネクタに対してSMAコネクタを例として述べたが、N型コネクタ、Kコネクタ、Vコネクタ、3.5mmコネクタなど同軸型高周波コネクタの種類は問わない。
【0189】
【発明の効果】
以上説明したように、この発明によれば、従来技術に比較して高周波特性が数倍向上したシールディドループコイル型磁気センサを簡易に製作できる。
【0190】
また、この発明によれば、外部から空洞内部に容易に接近でき、かつ、ある程度の空間的ボリュームの範囲では、周波数に依らず均一な(一定値の平行な)高周波電磁界が発生できる構造(側面開放型TEMセル空洞)を実現することができる。
【0191】
さらに、この発明によれば、超高周波まで透磁率を測定可能な透磁率測定装置を実現できる。
【図面の簡単な説明】
【図1】この発明の実施形態に係る磁気センサの斜視図である。
【図2】図1例のII−II線断面図である。
【図3】図1例の分解斜視図である。
【図4】図1例の導体パターンの一部の模式図である。
【図5】開口のない磁気センサの斜視図である。
【図6】磁気センサ組立体の斜視図である。
【図7】シールディドループコイルの模式図である。
【図8】シールディドループコイルのマクロモデルである。
【図9】簡略化したマクロモデルである。
【図10】検出電圧の計算値(一点鎖線)と、正方向伝達係数S21の実測値(実線)の特性図である。
【図11】並列共振周波数とLC積との関係を示す図である。
【図12】シールディドループコイルと電界の関係説明図である。
【図13】ギャップが長辺端にあるシールディドループコイルの模式図である。
【図14】円状のシールディドループコイルの模式図である。
【図15】ギャップが横についているシールディドループコイルの模式図である。
【図16】他の実施形態の磁気センサの分解斜視図である。
【図17】さらに他の実施形態の磁気センサ(ビア形成その1)の分解斜視図である。
【図18】さらに他の実施形態の磁気センサ(ビア形成その2)の分解斜視図である。
【図19】さらに他の実施形態の磁気センサの内部導体(グランド導体線路その1)の正面図である。
【図20】さらに他の実施形態の磁気センサの内部導体(グランド導体線路その2)の正面図である。
【図21】この発明の実施形態に係る透磁率測定装置の構成を示すブロック図である。
【図22】磁気センサ組立体の斜視図である。
【図23】磁気センサ組立体が取り付けられた側面開放型TEMセルの斜視図である。
【図24】一体型の側面開放型TEMセルの斜視図である。
【図25】分割型の側面開放型TEMセルの斜視図である。
【図26】分割型の側面開放型TEMセルの分解斜視図である。
【図27】分割型TEMセルの正面図である。
【図28】図27の分割型TEMセルのYY線断面図である。
【図29】側面開放型TEMセル単体の入力端反射係数の特性測定図である。
【図30】磁気センサ組立体が取り付けられたダブレット構造の終端短絡の定在波モード型空洞である側面開放型TEMセルの斜視図である。
【図31】上面グラウンド電極が加工された側面開放型TEMセルの斜視図である。
【図32】図31例の側面開放型TEMセルの入射端反射係数の特性測定図である。
【図33】側面開放型TEMセルを囲うソレノイドコイルの電波吸収体を貼り付けた透磁率測定装置の一部構成図である。
【符号の説明】
10、10A〜10G…磁気センサ
11…第1層(表面導体層または第1表面導体層)
12…第2層(誘電体層)         13…第3層(内部導体層)
14…第4層(誘電体層)
15…第5層(裏面導体層または第2表面導体層)
16…開口                18、18a、18b…ギャップ22、24…1ターンのループ状のグランド線路
26、28…グランド線路         30…ビア
32…略半ターンのループ状の信号線路   34…信号線路
40…同軸線               60、220…磁気センサ組立体200…透磁率測定装置          202…磁性試料
204、204A、204B…側面開放型TEMセル
205…ソレノイドコイル         206…スリット
300…電波吸収体

Claims (10)

  1. 第1、第3、第5層の3層の導体層と、前記第1および第3導体層との間および前記第3及び第5導体層の間に配される第2、第4層の2層の誘電体層を備え、トリプレート型のストリップ線路構造を有するシールディドループコイル型の磁気センサにおいて、
    周上の同一位置にギャップを有する1ターンのループ状のグランド線路が前記第1層と前記第5層に対向して形成され、
    前記各グランド線路の中央から外方に延びる出力リード用のグランド線路が形成され、
    前記第3層に形成され、一端側がビアを介して前記第1層と第5層のループ状のグランド線路の前記ギャップ端の近くに接続され、前記一端側が前記ギャップ部を延び、さらに前記ループ状のグランド線路の対向面の間を延びて略半ターンのループ状のストリップ線路中心導体の信号線路とされ、
    前記信号線路の他端側が、前記外方に延びる前記出力リード用の前記グランド線路の対向面の間を延び、出力リード用の信号線路とされるトリプレート型のストリップ線路構造を有し、
    前記第1層と第5層のそれぞれに形成された前記1ターンのループ状のグランド線路を並列接続したインダクタンスをLとし、前記ギャップを間にして対向する前記1ターンのループ状のグランド線路端側電極の間で高周波的に形成される合成容量をCとするとき、前記インダクタンスLと前記合成容量Cとの積LCが2.5×10−20以下とされ、かつ前記1ターンのループ状のグランド線路の最外周長が50[mm]以下とされている
    ことを特徴とする磁気センサ。
  2. 請求項1記載の磁気センサにおいて、
    前記第2、第4層の誘電体層の、前記1ターンのループ状のグランド線路の内周側の位置に開口が形成されている
    ことを特徴とする磁気センサ。
  3. 請求項1または2記載の磁気センサにおいて、
    前記第1層と第5層のグランド線路を接続する複数のビアが形成されている
    ことを特徴とする磁気センサ。
  4. 請求項3記載の磁気センサにおいて、
    前記第3層の導体層に形成されている前記略半ターンのループ状の信号線路および前記出力リード用の信号線路のそれぞれ両側に前記ビアに接続されたグランド導体線路を有する
    ことを特徴とする磁気センサ。
  5. 直方体の導体に、長さ方向側面から垂直方向に長方形四隅を落とした横長八角形の内側断面を持つ空洞を形成して上下面グランド電極と長さ方向両端面グランド電極からなる高周波空洞グランド胴体を形成し、前記両端面グランド電極の中心にパネル取り付け型の第1および第2の高周波同軸コネクタを配し、当該高周波同軸コネクタそれぞれのセンタピンの対向する電極間には、幅が前記上下面グランド電極幅の0.7倍より狭い長方形形状の四隅を落とした横長八角形の板状の高周波信号電極を、前記上下面グランド電極と平行に配し、前記高周波信号電極と前記上下面のグランド電極とが、前記高周波コネクタ間でトリプレート構造の伝送線路を形成し、
    前記板状の高周波信号電極の、前記高周波同軸コネクタのセンタピンとの接続断面の横幅が前記板状の高周波電極の板厚の3倍以内の値とされ、前記トリプレート構造の伝送線路の全長に渡って特性インピーダンスが50Ωに制御されている
    ことを特徴とする側面開放型TEMセル。
  6. 特性インピーダンス50Ωの平行伝送線路構造の空洞の一端から高周波信号が入力され、前記空洞の他端を短絡するか終端抵抗で整合して空洞中に前記高周波信号の進行方向に直角かつ前記平行伝送線路に対して平行の高周波磁界を発生させ、この高周波磁界中に、前記請求項2〜4のいずれか1項に記載の前記磁気センサの前記開口が前記高周波磁界と直交しかつ前記ギャップが前記平行伝送線路中、高周波信号伝送線路に対向するように配置し、
    前記開口中に磁性試料を水平に挿入配置し、
    前記高周波信号の進行方向と同じ向きに外部直流磁界の大きさを変えて印加したときの、前記磁性試料の磁気飽和時と非飽和時における前記磁気センサの誘起電圧と前記磁気センサのインピーダンスを測定して、前記磁性試料の複素透磁率を測定する
    ことを特徴とする透磁率測定装置。
  7. 請求項6記載の透磁率測定装置において、
    前記特性インピーダンス50Ωの平行伝送線路構造の空洞として、
    請求項5記載の前記第2の高周波同軸コネクタが50Ω終端された側面開放型TEMセルが用いられている
    ことを特徴とする透磁率測定装置。
  8. 請求項7記載の透磁率測定装置において、
    前記磁気センサが、前記高周波信号電極と前記下面グランド電極との間の下半分の空間に配されるとき、前記上面グランド電極の前記高周波信号電極で形成される上半分の空間が拡張するように前記上面グランド電極の前記高周波信号電極の対向面側が加工され、前記側面開放型TEMセル全体の伝送方向各部の特性インピーダンスが50Ωに整合性される
    ことを特徴とする透磁率測定装置。
  9. 請求項7または8記載の透磁率測定装置において、
    前記側面開放型TEMセルの下面グランド電極の中央には電磁波進行方向に沿って請求項2〜4のいずれか1項に記載された前記磁気センサ中、センサヘッド部として機能する前記1ターンのループ状のグランド線路が挿入できる大きさのスリットが形成され、
    前記1ターンのループ状のグランド線路全体が前記スリットを介して前記下半分の空間に挿入されたときの挿入位置が、前記磁気センサと前記高周波信号電極との正方向伝達係数S21が−10[dB]より小さい値となる挿入位置にある
    ことを特徴とする透磁率測定装置。
  10. 請求項6〜9のいずれか1項に記載の透磁率測定装置において、
    前記特性インピーダンス50Ωの平行伝送線路構造の空洞の開口から漏れる高周波電磁波を反射し、干渉し、または吸収する電磁波抑制部材を前記空洞の近傍に配置することを特徴とする透磁率測定装置。
JP2002225436A 2002-08-01 2002-08-01 磁気センサ、側面開放型temセル、およびこれらを利用した装置 Expired - Lifetime JP4219634B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002225436A JP4219634B2 (ja) 2002-08-01 2002-08-01 磁気センサ、側面開放型temセル、およびこれらを利用した装置
US10/355,092 US6856131B2 (en) 2002-08-01 2003-01-31 Magnetic sensor, side-opened TEM cell, and apparatus using such magnetic sensor and side-opened TEM cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225436A JP4219634B2 (ja) 2002-08-01 2002-08-01 磁気センサ、側面開放型temセル、およびこれらを利用した装置

Publications (2)

Publication Number Publication Date
JP2004069337A true JP2004069337A (ja) 2004-03-04
JP4219634B2 JP4219634B2 (ja) 2009-02-04

Family

ID=31185048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225436A Expired - Lifetime JP4219634B2 (ja) 2002-08-01 2002-08-01 磁気センサ、側面開放型temセル、およびこれらを利用した装置

Country Status (2)

Country Link
US (1) US6856131B2 (ja)
JP (1) JP4219634B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170732A (ja) * 2004-12-15 2006-06-29 Nec Engineering Ltd 磁界センサ
JP2007155597A (ja) * 2005-12-07 2007-06-21 Nec Corp 磁界および電流測定に使用される磁界検出器及び電流測定方法
JP2007212471A (ja) * 2007-03-28 2007-08-23 Renesas Technology Corp 半導体集積回路の製造方法及びプローブカード
JP2008215908A (ja) * 2007-03-01 2008-09-18 Tohoku Univ 平行平板型透磁率測定装置及び透磁率測定方法
JP2011169793A (ja) * 2010-02-19 2011-09-01 Murata Mfg Co Ltd 磁界プローブ
JP2012013608A (ja) * 2010-07-02 2012-01-19 Murata Mfg Co Ltd 磁界プローブ
JP2013055637A (ja) * 2011-08-10 2013-03-21 Murata Mfg Co Ltd アンテナ装置および通信端末装置
JP2013068454A (ja) * 2011-09-21 2013-04-18 Fujitsu Ltd 磁界測定装置
JP2013072822A (ja) * 2011-09-29 2013-04-22 Hitachi Ltd 電流プローブ、電流プローブ計測システム及び電流プローブ計測方法
US8704531B2 (en) 2008-03-28 2014-04-22 Nec Corporation Loop element and noise analyzer
KR101616114B1 (ko) * 2015-01-09 2016-04-27 서울대학교산학협력단 원 포트 탐침을 이용한 투자율 및 유전율 측정 장치 및 방법
KR101884800B1 (ko) * 2017-01-31 2018-08-30 조선대학교 산학협력단 크기 가변 시료의 유전율 및 투자율 측정장치
US11782106B2 (en) 2019-03-27 2023-10-10 National Institute Of Advanced Industrial Science And Technology Permeability measurement jig, permeability measurement device, and permeability measurement method

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645991B (zh) * 2004-01-19 2011-06-15 松下电器产业株式会社 多层印刷电路板
US7301693B2 (en) 2004-08-13 2007-11-27 Sipix Imaging, Inc. Direct drive display with a multi-layer backplane and process for its manufacture
KR100724133B1 (ko) * 2005-10-11 2007-06-04 삼성전자주식회사 원격 모니터링을 위한 소형 액세서리
FR2892521B1 (fr) * 2005-10-24 2008-01-04 Commissariat Energie Atomique Systeme de mesure de permeabilite magnetique et echantillon de reference utilise dans celui-ci
JP5151032B2 (ja) * 2006-01-13 2013-02-27 株式会社日立製作所 磁界プローブ装置及び磁界プローブ素子
US8668334B2 (en) 2006-02-27 2014-03-11 Vital Art And Science Incorporated Vision measurement and training system and method of operation thereof
JP5252939B2 (ja) * 2008-02-07 2013-07-31 株式会社ジェイテクト モータ制御装置およびこれを備える車両用操舵装置
US8325955B2 (en) * 2008-03-17 2012-12-04 Auden Techno Corp. Method for improving compatibility of hearing aid with antenna
EP2840648B1 (en) * 2008-05-21 2016-03-23 Murata Manufacturing Co., Ltd. Wireless IC device
CN102187518B (zh) * 2008-11-17 2014-12-10 株式会社村田制作所 天线及无线ic器件
WO2010132304A1 (en) 2009-05-09 2010-11-18 Vital Art And Science Incorporated Shape discrimination vision assessment and tracking system
US8860402B2 (en) 2009-10-16 2014-10-14 Emprimus, Llc Electromagnetic field detection systems and methods
US8704514B2 (en) * 2010-02-11 2014-04-22 Infineon Technologies Ag Current sensor including a sintered metal layer
TWI457582B (zh) * 2011-01-20 2014-10-21 Tatung Co 平面式磁場探測棒
JP5429717B2 (ja) * 2011-03-07 2014-02-26 国立大学法人名古屋大学 磁気検出装置
CN105896093B (zh) 2011-08-24 2019-10-18 日本电气株式会社 天线和电子装置
US20130207926A1 (en) * 2012-02-15 2013-08-15 Viktor Kremin Stylus to host synchronization
JP5725573B2 (ja) * 2013-02-26 2015-05-27 Necプラットフォームズ株式会社 アンテナ及び電子装置
TWI487916B (zh) 2013-03-06 2015-06-11 Univ Nat Taiwan 磁場探針及其探針頭
TWI509272B (zh) 2013-12-09 2015-11-21 Univ Nat Taiwan 磁場探針、磁場量測系統及磁場量測方法
US9485671B2 (en) * 2014-02-27 2016-11-01 Azurewave Technologies, Inc. Inter-stage test structure for wireless communication apparatus
US10367248B2 (en) * 2014-03-31 2019-07-30 Nec Corporation Antenna, array antenna, and radio communication apparatus
US9209771B1 (en) * 2014-06-17 2015-12-08 Qualcomm Incorporated EM coupling shielding
TWI565375B (zh) * 2014-06-25 2017-01-01 中原大學 傳輸線佈線結構
WO2016093507A1 (ko) 2014-12-12 2016-06-16 한국표준과학연구원 자기장 센서 및 자기장 측정 장치
US11367947B2 (en) * 2015-03-16 2022-06-21 St. Jude Medical International Holding S.á r.l. Field concentrating antennas for magnetic position sensors
US10285277B1 (en) * 2015-12-31 2019-05-07 Lockheed Martin Corporation Method of manufacturing circuits using thick metals and machined bulk dielectrics
US20180191061A1 (en) * 2017-01-05 2018-07-05 Intel Corporation Process technology for embedded horn structures with printed circuit boards
CN106646868B (zh) * 2017-01-18 2022-07-22 河南师范大学 一种磁场均匀增强的近场光学天线
US10870499B2 (en) 2018-10-08 2020-12-22 The Boeing Company Transverse electromagnetic (TEM) system and method of manufacture
WO2021200533A1 (ja) * 2020-03-30 2021-10-07 国立大学法人東北大学 透磁率計測用プローブ及びそれを用いた透磁率計測装置
JP7453891B2 (ja) * 2020-10-06 2024-03-21 日本航空電子工業株式会社 電気部品検査器具
US11536589B2 (en) * 2021-03-09 2022-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Electromagnetic noise position sensing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353774A (ja) * 1991-05-31 1992-12-08 Advantest Corp Temセル
JPH05312866A (ja) * 1991-02-25 1993-11-26 Kyoritsu Denshi Kogyo Kk 挿入筒付きtemセル
JPH08129058A (ja) * 1994-10-31 1996-05-21 Ryowa Denshi Kk 磁界センサ
JPH09243689A (ja) * 1996-03-08 1997-09-19 Taiyo Yuden Co Ltd 同軸型誘電体共振器の共振周波数の測定方法及び調整方法
JPH1082845A (ja) * 1996-09-06 1998-03-31 Ryowa Denshi Kk 磁界センサ
JP2001102817A (ja) * 1999-09-29 2001-04-13 Nec Corp 高周波回路及び該高周波回路を用いたシールディドループ型磁界検出器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201721A (en) * 1963-12-30 1965-08-17 Western Electric Co Coaxial line to strip line connector
US4846696A (en) * 1988-06-15 1989-07-11 M/A-Com Omni Spectra, Inc. Microwave stripline connector
FR2635920B1 (fr) * 1988-08-30 1990-10-12 Thomson Csf Procede de fabrication d'une zone de connexion pour un circuit hyperfrequence de type triplaque et circuit ainsi obtenu
FR2720196B1 (fr) * 1994-05-19 1996-06-21 Thomson Csf Dispositif de raccordement pour assurer un raccordement par câble sur un circuit imprimé et circuit imprimé équipé d'un tel dispositif.
JP3976473B2 (ja) * 2000-05-09 2007-09-19 日本電気株式会社 高周波回路及びそれを用いたモジュール、通信機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312866A (ja) * 1991-02-25 1993-11-26 Kyoritsu Denshi Kogyo Kk 挿入筒付きtemセル
JPH04353774A (ja) * 1991-05-31 1992-12-08 Advantest Corp Temセル
JPH08129058A (ja) * 1994-10-31 1996-05-21 Ryowa Denshi Kk 磁界センサ
JPH09243689A (ja) * 1996-03-08 1997-09-19 Taiyo Yuden Co Ltd 同軸型誘電体共振器の共振周波数の測定方法及び調整方法
JPH1082845A (ja) * 1996-09-06 1998-03-31 Ryowa Denshi Kk 磁界センサ
JP2001102817A (ja) * 1999-09-29 2001-04-13 Nec Corp 高周波回路及び該高周波回路を用いたシールディドループ型磁界検出器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170732A (ja) * 2004-12-15 2006-06-29 Nec Engineering Ltd 磁界センサ
JP2007155597A (ja) * 2005-12-07 2007-06-21 Nec Corp 磁界および電流測定に使用される磁界検出器及び電流測定方法
JP2008215908A (ja) * 2007-03-01 2008-09-18 Tohoku Univ 平行平板型透磁率測定装置及び透磁率測定方法
JP2007212471A (ja) * 2007-03-28 2007-08-23 Renesas Technology Corp 半導体集積回路の製造方法及びプローブカード
US8704531B2 (en) 2008-03-28 2014-04-22 Nec Corporation Loop element and noise analyzer
JP2011169793A (ja) * 2010-02-19 2011-09-01 Murata Mfg Co Ltd 磁界プローブ
JP2012013608A (ja) * 2010-07-02 2012-01-19 Murata Mfg Co Ltd 磁界プローブ
JP2013055637A (ja) * 2011-08-10 2013-03-21 Murata Mfg Co Ltd アンテナ装置および通信端末装置
JP2013068454A (ja) * 2011-09-21 2013-04-18 Fujitsu Ltd 磁界測定装置
JP2013072822A (ja) * 2011-09-29 2013-04-22 Hitachi Ltd 電流プローブ、電流プローブ計測システム及び電流プローブ計測方法
KR101616114B1 (ko) * 2015-01-09 2016-04-27 서울대학교산학협력단 원 포트 탐침을 이용한 투자율 및 유전율 측정 장치 및 방법
KR101884800B1 (ko) * 2017-01-31 2018-08-30 조선대학교 산학협력단 크기 가변 시료의 유전율 및 투자율 측정장치
US11782106B2 (en) 2019-03-27 2023-10-10 National Institute Of Advanced Industrial Science And Technology Permeability measurement jig, permeability measurement device, and permeability measurement method

Also Published As

Publication number Publication date
JP4219634B2 (ja) 2009-02-04
US6856131B2 (en) 2005-02-15
US20040021463A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4219634B2 (ja) 磁気センサ、側面開放型temセル、およびこれらを利用した装置
JP5424220B2 (ja) 受動相互変調ひずみの測定方法および測定システム
US5231346A (en) Field strength measuring instrument for the simultaneous detection of e and h fields
US20180299488A1 (en) High/Low Temperature Contactless Radio Frequency Probes
CN102112884B (zh) 非接触式环形探头
WO2019154496A1 (en) Solid dielectric resonator, high-power filter and method
US7482814B2 (en) Electric/magnetic field sensor
US9568568B2 (en) Apparatus and method of measuring permeability of a sample across which a DC voltage is being applied
US7501909B2 (en) Wide-bandwidth polarization modulator for microwave and mm-wavelengths
Sivaraman et al. Broad band PCB probes for near field measurements
Ishibashi et al. Non-contact PIM evaluation method using a standing wave coaxial tube
Namahoot et al. Design of a low‐cost 1‐20 GHz magnetic near‐field probe with FR‐4 printed circuit board
Wang et al. A wideband tangential electric probe based on common mode absorbing
Yang et al. A dual-component electric probe embedded with a 0°/180° hybrid coupler for near-field scanning
TWI759018B (zh) 電磁特性量測裝置、電磁特性量測系統以及電磁特性量測方法
US11946953B2 (en) Electromagnetic field sensor
Sorensen et al. Design of TEM transmission line for probe calibration up to 40 GHz
KR100289618B1 (ko) 결합전송선로셀
JP2010054255A (ja) 遮蔽型磁気センサー
Wang et al. Simultaneous Measurement of Electric and Magnetic Fields with a High-sensitivity Differential Composite Probe
JP7336390B2 (ja) 電磁干渉抑制体の評価方法及び評価装置
Chen et al. Non-contacting near-field mapping of planar circuits in microwave frequency band
US5397980A (en) Current probe calibration fixture
Sterns et al. Novel tunable hexaferrite bandpass filter based on rectangular waveguide coupled shielded coplanar transmission lines
Chen et al. Measurement of surface EM field of planar circuit in microwave frequency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term